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1. Introduction

1.1. In [7], V. Kac and M. Wakimoto suggested a construction of some class
of rational vertex algebras coming from W-algebras. The data for this construc-
tion consists of a positive integer m and a nilpotent element e of a semisimple
Lie algebra g satisfying some special conditions (see Section 2). A pair (m, e)
satisfying those conditions was called exceptional by Kac and Wakimoto. They
classified exceptional pairs in simple Lie algebras of type An . In this paper, we
simplify the definition of exceptional pairs and classify such pairs in all semisimple
Lie algebras. In particular, we prove that, for any semisimple Lie algebra g and
for any m , there is at most one, up to conjugation, nilpotent element e in g such
that the pair (m, e) is exceptional.

1.2. Let G be a connected semisimple algebraic group over an algebraically
closed field F of characteristic 0, and let g =Lie G .

Let spr be a principal sl2 -subalgebra of g [8]. The corresponding connected
subgroup Spr ∈ G is isomorphic to SL2 or PSL2 , in the former case its center
being contained in the center of G . Let hpr be the semisimple element of spr

corresponding to the matrix diag(1,−1) ∈ sl2 .

For a positive integer m , let ε2m ∈ F be a primitive 2m-th root of 1, and
let sm be the element of Spr corresponding to the matrix diag(ε2m, ε−1

2m). Then
σm = Ad(sm) is an automorphism of order m of g . We shall call σm a principal
automorphism of order m . Note that in general there are several conjugacy classes
of principal automorphisms of order m depending on the choice of ε2m .
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The action of σm can be described as follows. Choose a maximal torus
T ⊂ G and a Weyl chamber in t =Lie T containing hpr . Let {α1, ..., αn} be the
corresponding set of simple roots. Then αi(h

pr) = 2 for i = 1, . . . , n . For any root
α , denote by ht(α) its height, i. e. the sum of coefficients in the linear expression
of α in terms of α1, ..., αn . Then, for any root vector eα ,

σm(eα) = εht(α)
m eα,

where εm = ε2
2m .

For any automorphism σ of g , denote by gσ the subalgebra of fixed points
of σ . Clearly, the subalgebra gσm up to conjugacy does not depend on the choice
of ε2m . Set

d(m) = dim gσm .

Recall that, for a simple Lie algebra g , its Coxeter number h(g) is defined
as the order of the Coxeter element of the Weyl group, and it is known [8] that

h(g) = ht(δ) + 1,

where δ is the highest root of g . The Coxeter numbers of simple Lie algebras are
given in the following table:

g An Bn Cn Dn E6 E7 E8 F4 G2

h(g) n + 1 2n 2n 2n− 2 12 18 30 12 6

For any reductive Lie algebra l , define the Coxeter number h(l) as the maximum
of the Coxeter numbers of the simple factors of l . (For l abelian, set h(l) = 1.)

The above formula for the action of σm implies that d(m) =rk(g) (that is,
sm is a regular element of G) if and only if m > h(g). It is interesting that in the
cases m = h(g) and m = h(g) + 1 the automorphism σm is, up to conjugacy, the
only regular inner automorphism of order m [6].

Theorem 1. (J.-P. Serre [10].) Let σ be an inner automorphism of g satisfying
the condition σm = id for a positive integer m. Then

dim gσ > d(m).

A proof of this theorem has never been published. By kind permission of
Serre, we include his elegant proof in Section 3 of this paper.

Corollary[6]. Regular semisimple elements s ∈ G with Ad(s)m = id exist if and
only if m > h(g) (and in this case sm is one such element).

1.3. For a nilpotent element e ∈ g , denote by L(e) the centralizer of a maximal
torus of the centralizer Z(e) of e in G . This is a (reductive) Levi subgroup of
G defined up to conjugacy by an element of Z(e). Its tangent Lie algebra l(e)
contains e . Define the Coxeter number h(e) of e as the Coxeter number of l(e).
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Theorem 2. For any nilpotent element e ∈ g with h(e) 6 m ,

dim Z(e) > d(m).

This theorem looks similar to the above theorem of Serre. For even nilpotent
elements, it can be proved if making use of an unpublished result of D. Panyushev.
But, unfortunately, we do not have a conceptual proof of Theorem 2 in the general
case. In this paper, a proof of it comes as a result of the classification: see Sections
4, 5.

Definition. Let m be a positive integer and e ∈ g be a nilpotent element. The
pair (m, e) is called exceptional if

h(e) 6 m, (I)

dim Z(e) = d(m). (II)

In this case e is called an exceptional nilpotent element and m an exceptional
integer (for g).

This definition does not coincide with but is essentially equivalent to that
of Kac and Wakimoto: see the discussion in Section 2.

Let g = g1 + ... + gs be the decomposition of g into a direct sum of simple
ideals, and let e = e1 + ... + es (ei ∈ gi ) be a nilpotent element. Clearly, the pair
(m, e) is exceptional in g if and only if the pair (m, ei) is exceptional in gi for
every i . Thus, the classification problem for exceptional pairs reduces to the case,
when g is simple.

The pair (1,0) is obviously exceptional. For all other exceptional pairs,
m > 1 and e 6= 0. On the other hand, a pair (m, e) with m > h(g) is exceptional
if and only if e is regular (=principal). The exceptional pairs of these two types
are called trivial.

A nilpotent element e ∈ g is said to be of principal type if it is principal in
l(e). We shall prove (see Section 2) that any exceptional nilpotent element e is of
principal type.

1.4. The main result of this paper is the following classification theorem.

Theorem 3. For any simple Lie algebra g and any positive integer m, there exists
at most one nilpotent orbit Ad(G)e in g such that the pair (m, e) is exceptional.
All non-trivial exceptional pairs (m, e) in the classical and exceptional simple Lie
algebras are listed in Tables 1 and 2, respectively.

(In fact, Table 1 contains also some trivial exceptional pairs.)

In Table 1, the nilpotent element e is given by the corresponding partition
of N , constituted by the orders of its Jordan blocks. In Table 2, it is given by
the type of the derived algebra l(e)′ of l(e). In the cases of G2 and F4 , tildas
mean that the root system of the corresponding regular subalgebra consists of
short roots.
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Formulas for the numbers d(m) in the classical case are given in 4. In the
exceptional case, these numbers are given in the tables on Figures 2-6.

Table 1. Table 2.

g m e

slN any (m, ..., m, r), 0 6 r 6 m− 1

spN , any (m, ..., m︸ ︷︷ ︸
even

, r), 0 6 r 6 m, r even

N even

odd (m, ..., m︸ ︷︷ ︸
even

, m− 1, m− 1)

soN , odd (m, ..., m︸ ︷︷ ︸
even

, r), 1 6 r 6 m, r odd

N odd

odd (m, ..., m︸ ︷︷ ︸
odd

, 1, 1)

even (m + 1, m, ...,m︸ ︷︷ ︸
even

)

even (m + 1, m, ...,m︸ ︷︷ ︸
even

, 1, 1)

even (m + 1, m, ...,m︸ ︷︷ ︸
even

, m− 1, m− 1)

soN , odd (m, ..., m︸ ︷︷ ︸
even

, r, 1), 1 6 r 6 m, r odd

N even

odd (m, ..., m︸ ︷︷ ︸
even

)

even (m + 1, m, ...,m︸ ︷︷ ︸
even

, 1)

even (m + 1, m, ...,m︸ ︷︷ ︸
even

, m− 1, m− 1, 1)

g m e

G2 2 Ã1

F4 2 A1 + Ã1

3 Ã2+A1

E6 2 3A1

3 2A2+A1

5 A4+A1

8 D5

E7 2 4A1

3 2A2+A1

4 A3+A2+A1

5 A4+A2

7 A6

E8 2 4A1

3 2A2+2A1

4 2A3

5 A4+A3

7 A6+A1

8 A7

1.5. If (m, e) is an exceptional pair, then m > h(e) and

d(h(e)) 6 dim Z(e) = d(m) 6 d(h(e)),

whence d(m) = d(h(e)) and (h(e), e) is also an exceptional pair. A priori it is
possible that m > h(e). This really happens for regular e , where any m > h(e) =
h(g) fits. Apart from this case, this never happens in the exceptional Lie algebras.
In the classical Lie algebras, this happens only in the following two cases:

1) g = sp2n , n even, e is defined by the partition (n, n), m = n + 1 (> n =
h(e));
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2) g = so2n+1 , e is defined by the partition (2n − 1, 1, 1), m = 2n − 1
(> 2n− 2 = h(e)).

1.6. It follows from the tables in [1] that the centralizer of any exceptional
nilpotent element in a simple Lie algebra g 6= soN is connected. For g = soN , it
may have at most two connected components.

1.7. For any positive integer k and any simple Lie algebra g , set Nk(g) = {x ∈
g : (adx)k = 0} . The irreducible components of the varieties Nk(g) are found in
[13]. One checks, using these results, that a pair (m, e) is exceptional if and only
if e is of principal type and Ad(G)e is open in N2m(g).

1.8. We thank D. Panyushev who let us know about an unpublished result
of J.-P. Serre (Theorem 1 above) having been mentioned in Serre’s talk on an
Oberwolfach conference in 1998, and to J.-P. Serre who permitted us to include
his proof in this paper and made some useful remarks on the paper. We also thank
M. Jibladze for providing technical help in the preparation of this manuscript.

This work was mainly done during the stay of the first and third authors at
the University of Bielefeld in July of 2008, supported by SFB 701. We thank this
university for its hospitality. The first author also acknowledges partial support
from GNSF (Grant # ST07/3-174).

2. Definition of exceptional pairs

2.1. The original definition of exceptional pairs was given in terms of W-algebras.
However, Theorem 2.32 of [7] permits to give an equivalent definition in internal
terms of the algebra g .

For a nilpotent element e of a semisimple Lie algebra g and a positive
integer m , denote by S(m, e) the set of all regular semisimple elements s of L(e)
such that Ad(s)m=id. According to [7], the pair (m, e) is exceptional if e is of
principal type, S(m, e) 6= ∅ , and

min
s∈S(m,e)

dim Z(s) = dim Z(e).

Remark. In fact, Kac and Wakimoto require in addition that m should be
coprime to the ”lacety” of g , which is 1 for types A,D,E, 2 for B,C,F, and 3 for
G. We will disregard this requirement, which is natural from the point of view of
W -algebras but looks artificial from the point of view of the theory of semisimple
Lie algebras and, besides, it does not facilitate the classification. One can note,
however, that this requirement is violated in cases 1) and 2) of subsection 1, so
if we adopt it, then for any non-principal nilpotent element e ∈ g there will be
at most one positive integer m such that the pair (m, e) is exceptional, as was
conjectured in [7].

Applying Corollary to Theorem 1 to L(e), we obtain that S(m, e) 6= ∅ if
and only if h(e) 6 m , which is just condition (I) of the definition of an exceptional
pair given in the introduction.
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Let us fix a maximal torus T ⊂ G and a set of simple roots α1 ,..., αn with
respect to it. Fix also a principal sl2 -subalgebra spr with hpr contained in the
Weyl chamber in t =Lie T . Let sm be the element of the corresponding subgroup
Spr defined as in the introduction. One may assume that L(e) contains T and,
moreover, that l(e) is generated by t =Lie T and some positive and the opposite
negative simple root vectors. Then sm ∈ T ⊂ L(e), and the description of the
action of σm =Ad(sm ) given in the introduction shows that if h(e) 6 m , then sm

is a regular element of L(e), so sm ∈ S(m, e). Now, Theorem 1 implies that

min
s∈S(m,e)

dim Z(s) = dim Z(sm) = d(m).

Thus, the dimension condition in the above definition of an exceptional pair reduces
to condition (II) of the definition given in the introduction.

2.2. Let e ∈ g be a nilpotent element with h(e) 6 m , and let e0 be a principal
nilpotent element of l(e). Then l(e0) = l(e), so h(e0) = h(e) 6 m . Further, e lies
in the closure of the L(e)-orbit of e0 , hence, in the closure of the G-orbit of e0 .
Hence,

dim Z(e) > dim Z(e0),

the equality taking place only if e ∈Ad(G)e0 .

According to Theorem 2 (which will be proved in Sections 4,5 together with
the classification of exceptional pairs), dim Z(e0) > d(m). Hence, the equality dim
Z(e) = d(m) can only take place if e ∈Ad(G)e0 .

Suppose that e =Ad(g)e0 for some g ∈ G . Multiplying g from the left by
some element of Z(e), one may assume that Ad(g)l(e) = l(e). Then Ad(g ) leaves
invariant the principal nilpotent orbit in l(e). Hence, e lies in this orbit, i.e., e is
a principal nilpotent element in l(e).

Thus, the original definition of an exceptional pair given in [7] is in fact
equivalent to the definition given in the introduction.

3. Proof of Theorem 1

3.1. Serre’s proof of Theorem 1 is based on the product formula for the character
ϕλ of the restriction to Spr of the irreducible representation of G with highest
weight λ . Apparently, this formula was already known in the 60s but was not
explicitly written at that time. A more recent reference is [5], formula (3.29).

Denote by s(t) the element of Spr corresponding to the matrix
diag(t, t−1) ∈SL2 . Then the formula is

ϕλ(s(t)) = t−〈λ,ρ∨〉
∏
α>0

t〈λ+ρ,α∨〉 − 1

t〈ρ,α∨〉 − 1
,

where ρ is, as usual, the half-sum of positive roots, α∨ denotes the coroot corre-
sponding to α , and ρ∨ is the half-sum of positive coroots. It is obtained from the
Weyl character formula; one should only note that the Weyl denominator formula
(for the dual root system) is applicable to the numerator if one is only interested
in the restriction of the character to Spr .
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Clearly, the product in the right hand side must be a polynomial in t .
Let us represent it in a little different form. First, note that 〈ρ, α∨〉 is nothing
else than the height ht(α∨) of α∨ , since 〈ρ, α∨

i 〉 = 1 for every simple coroot α∨
i .

Second, 〈λ+ρ, α∨〉 can be interpreted as the “weighted height” of α if one assigns
the weight li = 〈λ + ρ, α∨

i 〉 = 〈λ, α∨
i 〉 + 1 to each simple coroot α∨

i . Denote
the so defined weighted height of α∨ by ht l(α

∨), where l = (l1, ..., ln). Note that
l1, ..., ln may be arbitrary positive integers. In particular, ht(α∨) =ht1(α

∨), where
1 = (1, ..., 1).

Finally, replacing the root system of G with its dual, we come to the
following

Proposition 2.1 [12, Theorem 1]. For any set l = (l1, ..., ln) of positive integers,
the polynomial

Pl(t) =
∏
α>0

(thtl(α) − 1)

is divisible by the polynomial

P1(t) =
∏
α>0

(tht(α) − 1).

3.2. Now we are ready to prove Theorem 1.

Let σ be an inner automorphism of g satisfying the condition σm =id for
some positive integer m . One may assume that σ is a conjugation by some element
s ∈ T . Then

σ(eαi
) = εli

meαi
(li ∈ {1, ...,m}),

where εm = exp 2πi
m

, and, hence, for any α > 0,

σ(eα) = εhtl(α)
m eα,

where l = (l1, ..., ln). This implies that

dim gσ = rk g + 2#{α > 0 : m | htl(α)}.

In particular,

d(m) = rk g + 2#{α > 0 : m | ht(α)}.

Clearly, #{α > 0 : m | ht(α)} is the multiplicity of εm as a root of the
polynomial P1(t), while #{α > 0 : m | htl(α)} is the multiplicity of εm as a root
of the polynomial Pl(t). According to Proposition 2.1, the latter is not less than
the former, whence Theorem 1 follows.

3.3. In addition, let us prove some useful monotonicity properties of the function
m 7→ d(m).

Proposition 2.2. If m′ < m, then d(m′) > d(m). Moreover, if m′ |m, m′ 6=
m < h(g), then d(m′) > d(m).
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Proof. The second inequality immediately follows from the preceding formula
for d(m) and the definition of h(g).

The first inequality follows from the well-known fact that the number
#{α > 0 : ht(α) = k} is monotonically decreasing in k (see [3, 8]). Indeed,
if m′ < m , then, for any k ,

#{α > 0 : ht(α) = km′} > #{α > 0 : ht(α) = km},

whence the required inequality follows.

4. Classification: the classical Lie algebras

4.1. Our strategy in proving Theorems 2 and 3 will be the following. For each
simple Lie algebra g we consider the set Nil(g) of its nilpotent orbits partially
ordered by the inclusion of the closures. Then for each m < h(g) we consider the
subset Nilm(g) of nilpotent orbits Ad(G)e with h(e) 6 m and determine its max-
imal elements, which we call essential nilpotent orbits. (They are automatically
nilpotent orbits of principal type: see Section 2.) We check that dimZ(e) > d(m)
for any essential nilpotent orbit and thereby prove Theorem 2. At the same time,
we find all essential nilpotent orbits Ad(G)e ∈Nilm(g) with dim Z(e) = d(m) and
thus obtain a classification of exceptional pairs. It turns out that for each m there
is at most one essential nilpotent orbit with this property.

4.2. First of all, we will deduce some general formulas for the dimensions of the
centralizers of semisimple elements in the classical groups G = SLN , SpN , SON .

Let s ∈ SLN be a semisimple element with eigenvalues of multiplicities
n1, ..., np (so n1 + ... + np = N ). Denote by K the sum of squares of these
multiplicities. The centralizer of s in GLn is isomorphic to GLn1 × ... × GLnp

and, hence, its dimension is equal to K . The dimension of the centralizer Z(s) of
s in SLN is one less. Thus,

dim Z(s) = K − 1 for G = SLN . (1)

If s ∈ SpN or SON , the eigenvalues of s distinct from ±1 decompose
into pairs of mutually inverse ones. Let n1, ..., nq be the common multiplicities
of the eigenvalues of these pairs, and let n+ and n− be the multiplicities of the
eigenvalues 1 and −1 (so 2(n1 + ... + nq) + n+ + n− = N). As above, denote by
K the sum of squares of all the multiplicities, that is,

K = 2(n2
1 + ... + n2

q) + n2
+ + n2

−.

For s ∈ SpN the centralizer of s in SpN is isomorphic to GLn1 × ... ×
GLnq × Spn+ × Spn− . Hence,

dim Z(s) = n2
1 + ... + n2

q +
n+(n+ + 1)

2
+

n−(n− + 1)

2
,

which can be written in the form

2 dim Z(s) = K + n+ + n− for G = SpN . (2)



Elashvili, Kac, and Vinberg 379

Similarly, for s ∈ SON the connected centralizer of s in SON is isomorphic
to GLn1 × ...×GLnq × SOn+ × SOn− , whence

2 dim Z(s) = K − n+ − n− for G = SON . (3)

4.3. Let us now calculate the numbers d(m) for the classical simple Lie algebras
g = slN , spN , soN . In the last two cases, we will suppose that the invariant
(skew-symmetric or symmetric) inner product is defined by

(ei, eN+1−i) = 1 for i 6 (N + 1)/2,

(ei, ej) = 0 for i + j 6= (N + 1),

where {e1, . . . , eN} is the standard basis of FN .

Fix a maximal torus T in G consisting of diagonal matrices and a Borel
subgroup consisting of upper triangular matrices. If g 6= soN with N even, then

hpr = diag(N − 1, N − 3, ...,−(N − 3),−(N − 1)),

and, hence,

sm = diag(εN−1
2m , εN−3

2m , ..., ε
−(N−3)
2m , ε

−(N−1)
2m ). (4)

If g = soN with N even, then the subgroup Spr is contained in the subgroup
SON−1 embedded into SON in the standard way (and is a principal 3-dimensional
subgroup there). It follows that in this case

sm = diag(εN−2
2m , εN−4

2m , ..., ε2
2m, 1, 1, ε−2

2m, ..., ε
−(N−4)
2m , ε

−(N−2)
2m ). (5)

Let N = qm+r , where 1 6 r 6 m , if g = soN , N even, and 0 6 r 6 m−1
in all the other cases. Then (m, ..., m︸ ︷︷ ︸

q

, r) is a partition of N . Denote by K(m)

the sum of squares of the parts of the dual partition (q + 1, ..., q + 1︸ ︷︷ ︸
r

, q, ..., q︸ ︷︷ ︸
m−r

), that

is,

K(m) = r(q + 1)2 + (m− r)q2.

Proposition 3.1.

1) For g = slN ,

d(m) = K(m)− 1.

2) For g = spN ,

2d(m) = K(m) +


q, if m is odd, q is even,

q + 1, if m and q are odd,

0, if m is even.
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3) For g = soN , N odd,

2d(m) = K(m)−


q, if m and q are odd,

q + 1, if m is odd, q is even,

2q + 1, if m is even.

4) For g = soN , N even,

2d(m) = K(m)−


q, if m is odd, q is even,

q + 1, if m and q are odd,

2q, if m and q are even,

2(q + 1), if m is even, q is odd.

Proof. The proof of 1)-3) is obtained by applying formulas (1)-(3) to s = sm .
Since the eigenvalues of sm constitute a geometric progression with denominator
εm , their multiplicities are q + 1, ...q + 1︸ ︷︷ ︸

r

, q, ..., q︸ ︷︷ ︸
m−r

. In particular, K = K(m),

whence 1) immediately follows.

To prove 2) and 3), one should determine n+ + n− for s = sm .

For g = spN , it follows from (4) that all the eigenvalues of sm are m-th
roots of -1. Hence, 1 is not an eigenvalue of sm . Moreover, if m is even, -1 is
not an eigenvalue, neither. If m is odd, n+ = q or q + 1. In order to distinguish
between these two possibilities, it suffices to note that for symmetry reason n+

must be even.

For g = soN , N odd, the eigenvalues of sm are m-th roots of 1. Hence, if
m is odd, -1 is not an eigenvalue, while n+ = q or q + 1; but for symmetry reason
n+ must be odd, which permits to determine n+ uniquely. If m is even, both n+

and n− are equal to q or q + 1. For symmetry reason, n+ + n− must be odd,
whence n+ + n− = 2q + 1.

Let now g = soN with N even. It follows from our definition of K(m) that
K = K(m) if q is odd, and K = K(m) + 2 if q is even. As in the preceding
case, the eigenvalues of sm are m-th roots of 1 (see (5)). If m is odd, -1 is not an
eigenvalue, while the multiplicity of the eigenvalue 1 is even and equals q + 1 or
q + 2. If m is even, we have n+ = q + 1 or q + 2 and n− = q or q + 1; but for
symmetry reason n+ and n− are even, so n+ + n− = 2q + 2, which gives 4).

4.4. In this subsection, we collect some well-known facts about nilpotent orbits
in the classical simple Lie algebras g = slN , spN , soN . For more details and
proofs, see, for example, [2].

A nilpotent orbit Ad(G)e in g is uniquely defined by the partition (n1, ...np)
of N constituted by the orders of Jordan blocks of e (acting on FN ), with the
only reservation that in the case g = soN with N ≡ 0 (mod 4), the partitions
with all even parts correspond to two different nilpotent orbits permuted by an
outer automorphism of g . The partition (n1, ..., np) may be arbitrary for g = slN
but in the other cases is subject to some restrictions. Namely, for g = spN the
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multiplicity of each odd part of the partition should be even, while for g = soN

the multiplicity of each even part should be even; we shall call such partitions
admissible for g . We agree to think of the parts of a partition as of the rows of a
Young diagram going from the bottom to the top and aligned from the left.

Denote by K(e) the sum of squares of the parts of the partition dual to
(n1, ..., np) (constituted by the columns of the corresponding Young diagram).
Then the dimension of the centralizer Z(e) of e in G is given by the following
formulas:

dim Z(e) = K(e)− 1 for g = slN , (6)

2 dim Z(e) = K(e) + #{i : ni odd} for g = spN , (7)

2 dim Z(e) = K(e)−#{i : ni odd} for g = soN . (8)

To describe the partial order on the set Nil(g) of nilpotent orbits in g , let
us introduce the notion of a “simple crumbling” of a partition (n1, ..., np) as the
transition to a partition of the form

(n1, ...ni−1, ni + 1, ni+1, ..., nj−1, nj − 1, nj+1, ..., np),

provided ni−1 > ni and nj > nj+1 . For example, on Fig. 1 the simple crumbling
of the partition (8,6,6,3,2) to the partition (8,7,6,2,2) is shown.

7−→

Fig.1

Let Ad(G)e and Ad(G)e′ be two nilpotent orbits in g corresponding to par-
titions (n1, ..., np) and (n′

1, ..., n
′
p′). Then Ad(G)e lies in the closure of Ad(G)e′

if and only if the partition (n′
1, ..., n

′
p′) can be obtained from (n1, ...np) by con-

secutive simple crumblings (without assuming that all the intermediate partitions
should be admissible) (see [2]).

4.5. As was explained in Section 2, for our purposes it suffices to consider only
nilpotent elements of principal type. Let us describe such elements in terms of
partitions (cf. [7]).

First of all, in all the classical simple Lie algebras, but soN with N even,
a principal nilpotent element is defined by the trivial partition (N). In soN with
N even, it is defined by the partition (N − 1, 1).

Let e ∈ slN be a nilpotent element defined by a partition (n1, ..., np). Then
e is conjugate to a principal nilpotent element of the Levi subalgebra consisting of
the matrices

A = diag(A1, ..., Ap) (A1 ∈ gln1
, ..., Ap ∈ glnp

)
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with tr A = 0. Thus, all nilpotent elements in glN are of principal type.

In g = spN or soN , any Levi subalgebra l consists of the matrices of the
form

A = diag(A1, ..., As, A0,−A′
s, ...,−A′

1)

(A1 ∈ gln1
, ..., As ∈ glns

, A0 ∈ spn0
or son0 , resp.; (2(n1 + ... + ns) + n0 = N),

where ′ denotes the transposition with respect to the second diagonal. Thus, l is
isomorphic to gln1

+ ... + glns
+ spn0

or gln1
+ ... + glns

+ son0 , resp. This implies
the following characterization of nilpotent elements of principal type in terms of
the corresponding partition (n1, ..., np):

1) for g = spN , the multiplicities of all parts of the partition, except for at most
one even part, should be even;

2) for g = soN , N odd, the multiplicities of all parts of the partition, except
for at most one odd part, should be even;

3) for soN , N even, either all the multiplicities are even, or the multiplicities
of 1 and some other odd part are odd, while all the other multiplicities are
even.

We shall refer to such partitions as to (admissible) partitions of principal
type.

It follows from this description and the table of the Coxeter numbers of
simple Lie algebras (see the introduction) that, for g = slN or spN , the Coxeter
number of a nilpotent element of principal type corresponding to the partition
(n1, ..., np), is equal to n1 (the maximum of the parts of the partition). For
g = soN , it is equal to n1 or n1 − 1, the latter taking place iff n1 is odd and
n1 > n2 .

4.6. Case g = slN . In this case, Nilm(g) consists of the nilpotent orbits defined
by the partitions all whose parts do not exceed m . Any such partition crumbles to
the partition (m, ..., m, r) with 0 6 r 6 m− 1, which is thereby the only maximal
element of Nilm(g). Let Ad(G)e be the corresponding nilpotent orbit. Then, by
(6) and Proposition 3.1.1),

dim Z(e) = r(q + 1)2 + (m− r)q2 − 1 = d(m).

This proves Theorems 2 and 3 for slN (cf. [7]).

4.7. Case g = spN . In this case, the nilpotent orbits of principal type in Nilm(g)
are defined by the partitions of principal type all whose parts do not exceed m .
Any such partition crumbles to one of the following partitions of the same class:

1) (m, ..., m︸ ︷︷ ︸
even

, r) with 0 6 r 6 m ;

2) (m, ..., m︸ ︷︷ ︸
even

, s, s) with m
2

+ 1 6 s 6 m− 1;
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3) (m, ..., m︸ ︷︷ ︸
even

, m− 1, s, s) with m odd, 1 6 s 6 m−3
2

;

4) (m, ..., m︸ ︷︷ ︸
odd

, s, s) with m even, 1 6 s 6 m− 1.

Applying (7) and Proposition 3.1.2) to partitions 1)-4), we obtain Theorems
2 and 3 for spN . The calculations can be simplified if one notes that the difference
dim Z(e) − d(m) does not change when deleting 2k parts equal to m from the
partition (and diminishing N by 2km). In case 1) this reduces the consideration
to the partition (r), which corresponds to the principal nilpotent orbit in spr ;
hence, in this case the pair (m, e) is always exceptional. In case 2) it suffices to
consider the partition (s, s), where we obtain

2( dim Z(e)− d(m))

=

[
4s +

{
0, if s is even,

2, if s is odd

]
−

[
(6s− 2m) +

{
0, if m is even,

2, if m is odd

]

= 2(m− s) +

{
0, if s is even,

2, if s is odd
−

{
0, if m is even,

2, if m is odd
> 0,

the equality taking place iff m is odd and s = m − 1. The cases 3) and 4) are
treated similarly.

4.8. Case g = soN , N odd. In this case, the nilpotent orbits of principal type
in Nilm(g) are defined by the partitions of principal type all whose parts do not
exceed m or, if m is even, by the partitions of principal type, whose maximal part
is equal to m + 1 and occurs with multiplicity 1. Any such partition crumbles to
one of the following partitions of the same class:

1) (m, ..., m︸ ︷︷ ︸
even

, r) with 1 6 r 6 m ;

2) (m, ..., m︸ ︷︷ ︸
odd

, s, s) with m odd, 1 6 s 6 m−1
2

;

3) (m, ..., m︸ ︷︷ ︸
even

, s, s, 1) with m odd, m+1
2

6 s 6 m− 1;

4) (m + 1, m, ...,m︸ ︷︷ ︸
even

, s, s) with m even, 0 6 s 6 m− 1.

Applying (8) and Proposition 3.1.3) to partitions 1)-4), we obtain Theorems
2 and 3 for soN , N odd. To simplify the calculations, one can note that in cases
1)-3) the difference dimZ(e)−d(m) does not change when deleting 2k parts equal
to m from the partition, if m is odd, and decreases, if m is even. In case 1) this
reduces the consideration to the partition (r), which corresponds to the principal
nilpotent orbit in sor ; hence, in this case the pair (m, e) is always exceptional if
m is odd, while if m is even, it is exceptional only in the trivial case when N = r
(and, hence, m > h(e)).
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In case 4), a direct calculation shows that for s < m
2

2(dim Z(e)− d(m)) = 2s−

{
0, if s is even,

2, if s is odd
> 0,

the equality taking place iff s = 0 or 1. For s > m
2

2(dim Z(e)− d(m)) = 2(m− s)−

{
0, if s is even,

2, if s is odd
> 0,

the equality taking place iff s = m− 1.

4.9. Case g = soN , N even. The partitions defining nilpotent orbits of principal
type in Nilm(g) are described in the same way as for soN , N odd. Any such
partition crumbles to one of the following partitions of the same class:

1) (m, ..., m︸ ︷︷ ︸
even

, r, 1) with 1 6 r 6 m ;

2) (m, ..., m︸ ︷︷ ︸
even

, s, s) with m
2

< s 6 m ;

3) (m, ..., m︸ ︷︷ ︸
odd

, s, s, 1) with m odd, 1 6 s 6 m−1
2

;

4) (m + 1, m, ...,m︸ ︷︷ ︸
even

, s, s, 1) with m even, 1 6 s 6 m .

Applying (8) and Proposition 3.1.4) to partitions 1)-4), we obtain Theorems 2 and
3 for soN , N even. The calculations are similar to those in the preceding case.

5. Classification: the exceptional Lie algebras

5.1. To classify exceptional pairs in the exceptional simple Lie algebras, we need
a formula for computing the numbers d(m). Let g be a simple Lie algebra of rank
n , and spr be a principal sl2 -subalgebra of g . It is well-known [8] that the adjoint
representation of spr in g decomposes into a sum of n irreducible representations of
dimensions 2m1 +1, ..., 2mn +1, where m1, ...,mn are the exponents of g . Clearly,
the eigenspace of ad(hpr ) corresponding to the eigenvalue 2k > 0 is spanned by
the positive root vectors eα with ht(α) = k . It follows that

#{α > 0 : ht(α) = k} = #{i : mi > k},

Hence,

#{α > 0 : m|ht(α)} =
n∑

i=1

[mi

m

]
and (see the formula for d(m) in Section 3)

d(m) = n + 2
n∑

i=1

[mi

m

]
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(cf. [10].)

Making use of the above formula, it is easy to compute the numbers d(m)
for all exceptional algebras. They are given in the tables on Fig. 2-6.

5.2. A classification of nilpotent elements e in the exceptional Lie algebras
follows from the classification of sl2 -triples obtained in [3]. The corresponding
Levi subalgebras l(e) and, hence, the Coxeter numbers h(e) also can be derived
from the tables of that paper. The centralizers z(e) were determined in [4]. The
inclusion relation for the closures of nilpotent orbits was described in [11] (see also
[9]).

Having all this information, it is easy to find the nilpotent orbits that do
not lie in the closure of another nilpotent orbit with the same Coxeter number.
The Hasse diagrams for the sets of such orbits are depicted on Fig 2-6, where each
involved orbit Ad(G)e is given by the type of l(e)′ , and the dimension of z(e) is
indicated in parentheses. For each m , the set of orbits with Coxeter number m is
situated in the corresponding stripe between dotted lines.

G2

m 2 3 4 5
d(m) 6 4 4 4

m (d(m))

G2 (2)6 (2)

Ã1 (6)A1 (8)2 (6)

0 (14)1 (14)

Fig. 2
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F4

m 2 3 4 5 6 7 8 9 10 11 12
d(m) 24 16 12 12 8 8 6 6 6 6 4

m (d(m))

F4 (4)12 (4)

B3 (10)6 (8) C3 (10)

B2 (16)4 (12)

Ã2+A1 (16)3 (16)

A1+Ã1 (24)2 (24)

0 (52)1 (52)

Fig. 3

E6

m 2 3 4 5 6 7 8 9 10 11 12
d(m) 38 24 20 16 12 12 10 8 8 8 6

m (d(m))

E6 (6)12 (6)

D5 (10)8 (10)

D4 (18)6 (12)

A4+A1 (16)5 (16)

A3+A1 (22)4 (20)

2A2+A1 (24)3 (24)

3A1 (38)2 (38)

0 (78)1 (78)

Fig. 4
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E7

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
d(m) 63 43 33 27 21 19 17 15 13 13 11 11 9 9 9 9 7

m (d(m))

E7 (7)18 (7)

E6 (13)12 (11)

D6 (15)10 (13)

D5+A1 (19)8 (17)

A6 (19)7 (19)

A ′
5 (25)6 (21) [A5+A1 ] ′′ (25) D4+A1 (31)

A4+A2 (27)5 (27)

A3+A2+A1 (33)4 (33)

2A2+A1 (43)3 (43)

4A1 (63)2 (63)

0 (133)1 (133)

Fig. 5
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E8

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15
d(m) 120 80 60 48 40 36 30 28 24 24 20 20 18 16

m 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
d(m) 16 16 14 14 12 12 12 12 10 10 10 10 10 10 8

m (d(m))

E8 (8)30 (8)

E7 (16)18 (14)

D7 (22)12 (20) E6+A1 (26)

D6+A1 (28)10 (24)

A7 (30)8 (30)

A6+A1 (36)7 (36)

A5+A2 (42)6 (40)

A4+A3 (48)5 (48)

A3+A3 (60)4 (60)

2A2+2A1 (80)3 (80)

4A1 (120)2 (120)

0 (248)1 (248)

Fig. 6
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Theorems 2 and 3 for the exceptional Lie algebras are immediately obtained
by observing these diagrams. The nilpotent orbits that turn out to be exceptional
are framed there.

References

[1] Alekseevski, A. V., Component groups of the centralizers of unipotent elements
in semisimple algebraic groups, Trudy Tbilis. Mat. Inst. Razmadze, 62 (1979),
5–27 (in Russian). English translation: Lie Groups and Invariant Theory. E.
Vinberg, Ed., Providence, RI. Amer. Math. Soc. Translations Series 2, 213.
Advances in the Math. Sciences 56 (2005), 15–32.

[2] Collingwood, D., and W. M. McGovern, “Nilpotent orbits in semisimple Lie
algebras,” Van Norstand Reinhold, NY, 1993.

[3] Dynkin, E. B., Semisimple subalgebras of semisimple Lie algebras, Mat.
Sb. 30 (1952), 349–462 (in Russian). English translation: Amer. Math. Soc
Translations 6 (1957), 111–244.

[4] Elashvili, A., The centralizers of nilpotent elements in semisimple Lie algebras,
Proc. Razmadze Math. Inst. 46 (1975), 109–132.

[5] Kac, V., Infinite-dimensional algebras, Dedekind η -function, classical Möbius
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