Mathematics

On Regular Cohomologies of Biparabolic Subalgebras of $s l(n)$

Alexander Elashvili* and Giorgi Rakviashvili**
${ }_{* *}^{*}$ A. Razmadze Mathematical Institute, Ivane Javakhishvili Tbilisi State University, Tbilisi
${ }^{* *}$ Faculty of Science and Arts, Ilia State University, Tbilisi
(Presented by Academy Member Hvedri Inassaridze)

Abstract

It is proved that if P is a biparabolic subalgebra of the special linear Lie algebra $s l(n)$ over the field of complex numbers and $\mathbf{Z}(\mathbf{P})$ is its center, then $H^{n}(P, P)=H^{n}(P, Z(P)), n \geq 0$; if P is an indecomposable biparabolic subalgebra, i. e. for corresponding two partitions ($a_{1}, a_{2}, \ldots, a_{r}$) and $\left(b_{1}, b_{2}, \ldots, b_{s}\right)$ of \boldsymbol{n} partial sums of this partitions never equal each other then $Z(P)=0$ and, consequently, $H^{n}(P, P)=0, \quad n \geq 0$. Analogous results, for Borel and parabolic subalgebras of semisimple Lie algebras respectively, were obtained by G. Leger, E. Luks [1972] and A. Tolpygo [1972]. © 2016 Bull. Georg. Natl. Acad. Sci.

Key words: biparabolic subalgebra, regular representation, Lie algebra cohomologies

Biparabolic Lie subalgebras [1] (initially named "seaweed algebras") constitute a relatively new object in Lie theory; they generalize the notion of a parabolic subalgebra [2]. There are many articles about cohomologies of parabolic subalgebras and some of their subalgebras, e.g. nilpotent, Heisenberg subalgebras [3-6], but cohomologies of biparabolic subalgebras are not investigated yet. In this paper we investigate regular cohomologies of biparabolic subalgebras of the simple Lie algebras $s l(n)$.

In 1972 Leger and Luks proved that cohomologies of a Borel subalgebra with coefficients in itself (i.e. regular cohomologies) are equal to zero in all dimensions. In the same year Tolpygo proved that this result is true in a more general case, for parabolic subalgebras. We prove that the foresaid result is true for biparabolic subalgebras too, but we consider biparabolic subalgebras only of $s l(n)$; we hope, that this is true also for biparabolic subalgebras of all semisimple Lie algebras.

A biparabolic subalgebra [1] of the special linear Lie algebra $s l(n)$ over the field of complex numbers is the intersection of two parabolic subalgebras of $s l(n)$ whose sum is $s l(n)$; we may represent such subalgebra graphically as

It is apparent, that two partitions of n exist.

$$
\begin{equation*}
\left(a_{1}, a_{2}, \ldots, a_{r}\right),\left(b_{1}, b_{2}, \ldots, b_{s}\right) \tag{1}
\end{equation*}
$$

(i.e. $\sum a_{i}=\sum b_{i}=n, a_{i}$ and b_{i} are natural numbers) such that from $a_{i j} \neq 0$ it follows that $a_{t}+1 \leq a_{i j} \leq a_{t+1}$ if $i \leq j$ and $b_{t}+1 \leq a_{i j} \leq b_{t+1}$ if $i \geq j$.
Our main results are:
Theorem 1. If P is a biparabolic subalgebra of $\operatorname{sl}(n)$ and $Z(P)$ is its center, then for all $n \geq 0$

$$
H^{n}(P, P) \cong H^{n}(P, Z(P))
$$

If partial sums of a pair of partitions never equal each other, i.e.

$$
a_{1}+a_{2}+\ldots+a_{r_{1}} \neq b_{1}+b_{2}+\ldots+b_{s_{1}}
$$

where $r_{1}<r, s_{1}<s$, then we call such a pair indecomposable.
Theorem 2. If the pair of partitions corresponding to the biparabolic subalgebra P of $\operatorname{sl}(n)$ is indecomposable, then

$$
H^{n}(P, P)=0
$$

To prove these theorems, we need to describe our main object more accurately. Let R denote the reductive subalgebra of $P\left(R\right.$ consists of block-diagonal submatrices of relevant shape in $\operatorname{sl}(n)$) and let $N=N_{1}+N_{2}$ denote the nilradical of P; there, N_{1} is located above R and, N_{2} is located below R. It is clear, that $P \cong R+N$ as vector spaces. The Cartan subalgebra H of P coincides with the diagonal of P and

$$
\begin{equation*}
s l(n) \cong\left(R+N_{1}+N_{2}\right)+\overline{N_{1}}+\overline{N_{2}}+M+\bar{M} \tag{2}
\end{equation*}
$$

as vector spaces; here $\overline{N_{1}}$ and $\overline{N_{2}}$ are conjugated by the Killing form to N_{1} and N_{2} respectively, M is a top right supplement of $P+N_{1}+\overline{N_{2}}$ in $s l(n)$ and \bar{M} is conjugated by the Killing form to M.

Lemma 1.

$$
H^{i}(N, P)^{R}=\left\{\begin{array}{cl}
Z(P), & \text { if } i=0 \\
0, & \text { if } i>0
\end{array}\right.
$$

Sketch of proof. If we choose conjugated by Killing form bases $\left\{u_{i}\right\}$ and $\left\{u^{i}\right\}$ in $\operatorname{sl(n)}$ as in [4], then we may construct a homotopy operator

$$
C^{i}(s l(n), s l(n)) \xrightarrow{k} C^{i-1}(\operatorname{sl}(n), s l(n))
$$

by the formula

$$
(k f)\left(g_{1}, g_{2}, \ldots, g_{i-1}\right)=\sum u^{i} f\left(u_{i}, g_{1}, g_{2}, \ldots, g_{i-1}\right)
$$

Let us consider the chain of maps:

$$
C^{i}(N, P) \xrightarrow{\psi} C^{i}(\operatorname{sl}(n), \operatorname{sl}(n)) \xrightarrow{d} C^{i-1}(\operatorname{sl}(n), \operatorname{sl}(n)) \xrightarrow{k} C^{i}(\operatorname{sl}(n), \operatorname{sl}(n)) \xrightarrow{\phi} C^{i}(N, s l(n)) ;
$$

there, ψ is induced by the projection $\operatorname{sl}(n) \rightarrow N-\operatorname{see}(2)-$ and ϕ is induced by restriction on N. As in [4] we can prove that this map induces in dimensions $i \geq 1$ injections

$$
Z\left(C^{i}(N, P)^{R}\right) \rightarrow B\left(C^{i}(N, P)^{R}\right)
$$

i.e., in this case $H^{i}(N, P)=0$. The case $i=0$ is proved by direct computations.

Lemma 2. If P is indecomposable, then $Z(P)=0$.
Lemma 2 is proved by induction with respect to the sum $r+s$ (see [1]).
Let us now prove theorem 1 . Since $R \cong P / N$, we can construct a spectral sequence

$$
E_{2}^{i, j}=H^{i}\left(R, H^{j}(N, P)\right) \Rightarrow H^{n}(P, V) .
$$

It is well known [7] that if V is a semisimple module over a reductive Lie algebra R then

$$
H^{i}(R, V)=H^{i}\left(R, V^{R}\right)
$$

Therefore, our statement follows from Lemma 1.
As for Theorem 2, it follows from Theorem 1 and Lemma 2.
Acknowledgement. This work is partially supported by the GNSF grant FR/307/5-113/13; additionally, first author is partially supported by the DFG grant "Spektrale Strukturen und Topologische Methoden in der Mathematik" of Bielefeld University.

 ò̉omolo

REFERENCES:

1. Dergachev V., Kirillov A. (2000) J. Lie Theory. 10:331-343.
2. Tauvel P., Yu R. W. T. (2005) Lie Algebras and Algebraic Groups. Springer.
3. Leger G., Luks E. (1972) Can. J. Math. 24:1019-1026.
4. Tolpygo A. (1972) Math. Notes Acad. of Sciences of the USSR. 12:585-587 (Transl. from Russian).
5. Khakimdzhanov Y. (1977) Usp. Mat. Nauk. 32:237-238 (in Russian).
6. Alvarez M. (2015) J. Lie Theory. 25:91-104.
7. Verona A. 1974 Introducer in Coomologia Algebrelor Lie, Bucharest (in Romanian).
