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Mellin convolution equations acting in Bessel potential spaces are considered. The 
study is based upon two results. The first one concerns the interaction of Mellin 
convolutions and Bessel potential operators (BPOs). In contrast to the Fourier 
convolutions, BPOs and Mellin convolutions do not commute and we derive an 
explicit formula for the corresponding commutator in the case of Mellin convolutions 
with meromorphic symbols. These results are used in the lifting of the Mellin 
convolution operators acting on Bessel potential spaces up to operators on Lebesgue 
spaces. The operators arising belong to an algebra generated by Mellin and Fourier 
convolutions acting on Lp-spaces. Fredholm conditions and index formulae for such 
operators have been obtained earlier by one of the authors and are employed here. 
The results of the present work have numerous applications in boundary value 
problems for partial differential equations, in particular, for equations in domains 
with angular points.

© 2016 Elsevier Inc. All rights reserved.

0. Introduction

Boundary value problems for elliptic equations in domains with angular points play an important role in 
applications and have a rich and exciting history. A prominent representative of this family is the Helmholtz 
equation. In the classical W1-setting, the existence and uniqueness of the solution of coercive systems with 
various types of boundary conditions and various elliptic and even non-linear partial differential operators 
are easily obtainable by using the celebrated Lax–Milgram Theorem (see, e.g., [8,30] and the recent pa-
per [21] where Laplace–Beltrami equations are considered on smooth surface with Lipschitz boundary). 
Similar problems arise in new applications in physics, mechanics and engineering. Thus recent publica-
tions on nano-photonics [1,25] deal with physical and engineering problems described by BVPs for the 
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Helmholts equation in 2D domains with angular points. They are investigated with the help of a modified 
Lax–Milgram Lemma for so-called T -coercive operators. Similar problems occur for the Lamé systems in 
elasticity, Cauchy–Riemann systems, Carleman–Vekua systems in generalized analytic function theory etc.

Despite an impressive number of publications and ever growing interest to such problems, the results 
available to date are not complete. In particular, serious difficulties arise if information on the solvability in 
non-classical setting in the Sobolev spaces W1

p, 1 < p < ∞ is required, and one wants to study the solvability 

of equivalent boundary integral equations in the trace spaces W1−1/p
p on the boundary. Integral equations 

arising in this case often have fixed singularities in the kernel and are of Mellin convolution type. For 
example, [6] describes how model BVPs in corners emerge from the localization of BVP for the Helmholtz 
equation in domains with Lipschitz boundary. Consequently, an attempt to study the corresponding Mellin 
convolution operators in Bessel potential spaces has been undertaken in [19]. However, the main Theorem 2.7 
and Theorem 4.1 (based on Theorem 2.7) are incorrect. The aim of the present work is to provide correct 
formulations and proofs of Theorem 2.7 and 4.1 from [19]. We also hope that the results of the present 
paper will be helpful in further studies of boundary value problems for various elliptic equations in Lipschitz 
domains.

Consider the following BVP with the mixed Dirichlet–Neumann boundary conditions

⎧⎪⎨
⎪⎩

Δu(x) + k2u(x) = 0, x ∈ Ωα,

u+(t) = g(t), t ∈ R
+,

(∂νu)+(t) = h(t), t ∈ Rα

(1)

in the corner Ωα of magnitude α,

∂Ωα = R
+ ∪ Rα, R

+ = (0,∞),

Rα := {teiα = (t cos α, t sin α) : t ∈ R
+}

with a complex wave number Im k �= 0. In [20] the BVP (1) is reduced to the following equivalent system 
of boundary integral equations on R+:

⎧⎪⎨
⎪⎩

ϕ + 1
2
[
K1

eiα + K1
e−iα

]
ψ = G1,

ψ − 1
2
[
K1

eiα + K1
e−iα

]
ϕ = H1.

(2)

Here

K1
e±iαψ(t) := 1

π

∞∫
0

ψ(τ)dτ
t− e±iατ

, 0 < |α| < π, (3)

are Mellin convolution operators with homogeneous kernels of order −1 (see e.g. [16,17] and Section 1
below), also called integral equations with fixed singularities in the kernel. Similar integral operators arise 
in the theory of singular integral equations with complex conjugation if the contour of integration possesses 
corner points. A complete theory of such equations was worked out by R. Duduchava and T. Latsabidze, 
whereas various approximation methods have been investigated in [13]. For a more detailed survey of this 
theory, applications in elasticity, and numerical methods for the corresponding equations we refer the reader 
to [16,17,32] and [11,12]. Note that a similar approach has been employed by M. Costabel and E. Stephan 
[9,10] in order to study boundary integral equations on curves with corner points.
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All of the above mentioned investigations consider integral equations in the Lebesgue space Lp with and 
without exponential weights. However, the available results are insufficient to fully investigate the BVP (1). 
On the other hand, if we are looking for solutions of BVP (1) in the classical (finite energy) formulation

g ∈ H
1/2(R+), h ∈ H

−1/2(Rα), u ∈ H
1(Ωα) = W

1(Ωα),

u(x) = O(1) as |x| → ∞,
(4)

we have to investigate the corresponding equivalent system of boundary integral equation (2) in the Bessel 
potential space H̃−1/2(R+). There exist several different approaches to the study of BVPs (1) in the classical 
setting, which in some cases go beyond the Hilbert space setting. We refer to the recent paper [7] for one of 
approaches and the survey of relevant investigations.

If we consider the BVP (1) in the non-classical formulation

g ∈ W
1−1/p
p (R+), h ∈ W

−1/p
p (Rα), u ∈ H

1
p(Ωα) = W

1
p(Ωα),

u(x) = O(1) as |x| → ∞, 1 < p < ∞,
(5)

then the corresponding equivalent system of boundary integral equation (2) has to be studied in the Besov 
(Sobolev–Slobodeckij) space W̃−1/p

p (R+). The non-classical formulation is very helpful to explore the max-
imal smoothness of a solution to the BVP. This plays an important role in approximation methods and 
other applications.

While considering equation (2) in the Besov (Sobolev–Slobodeckij) space W̃s
p(R+) one encounters the 

three major tasks.

• In general, Mellin convolution operators are not bounded in neither Besov nor Bessel potential spaces. 
Therefore, in order to study equations (2) in the spaces of interest, one has to find a subclass of multipliers 
with the boundedness property.

• If boundedness criteria for the operators associated with equation (2) are available, one can lift this 
equation from the Besov or the Bessel potential space to a Lebesgue space.

• The lifted equations should be studied in the Lebesgue space.

Here we offer a complete solution to all the problems mentioned above.
The boundedness of general Mellin pseudodifferential operators was addressed, for example, in [14] and 

solved by introducing the additional constraints on the space. We choose a different approach and intro-
duce constraints on the kernel of the operator, prompted by application to boundary value problems for 
elliptic equations. A suitable class of Mellin convolution operators bounded in the Bessel potential spaces 
is introduced in [19]. These are Mellin convolutions with admissible meromorphic kernels (see (20) below).

Having proved the boundedness result, one can study convolution equations in Bessel potential spaces. 
In particular, by lifting an equation with Mellin convolution operator M0

a with the help of Bessel potential 
operators Λs

+ and Λs−r
− , one obtains an equation in Lp-space with the operator Λs−r

− M0
aΛ−s

+ . However, the 
resulting operator Λs−r

− M0
aΛ−s

+ is neither a Mellin nor a Fourier convolution and in order to describe its 
properties, one first has to study the commutators of Bessel potential operators and Fourier convolutions 
with discontinuous symbols. As was already mentioned, this problem has been considered in [19], but not 
all of the results of that work are correct. Therefore, in Section 1 the commutator problem is discussed once 
again, Theorem 3.3 and Corollary 3.4 below provide correct formulae for the commutators in question.

The lifted operator Λs−r
− MaΛ−s

+ belongs to the Banach algebra generated by Mellin and Fourier convo-
lution operators with discontinuous symbols. Such algebras have been studied before in [18] and the results 
obtained are systematized and updated in the recent paper [19]. In Section 2, these results are applied to 
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the lifted equation, hereby establishing properties of the initial Mellin convolution equation in the Bessel 
potential space.

The results of the present paper are applied to BVP (1) in [20] (more correctly [20] is based on corrected 
results of the paper [19]). These results can also be employed to other elliptic equations on planar Lipschitz 
domains and also on 2D Lipschitz surfaces. The relevant investigations of R. Duduchava, M. Tsaava and 
T. Tsutsunava will appear soon.

The advantage of the present approach in comparison with other methods, especially in comparison with 
the approach based on the Lax–Milgram Theorem and its generalization for so-called T-coercive operators 
(see [1]), is that it provides better tools to analyze the solvability of the equations involved (provides 
the solvability criteria) and the asymptotic behavior of their solutions. Moreover, it can also be of use in 
studying the Schrödinger operator on combinatorial and quantum graphs. Such a problem has attracted a 
lot of attention recently, since the operator mentioned has a wide range of applications in nano-structures 
[28,29] and possesses interesting properties. Another area where the results of the present paper can be 
useful, is the study of Mellin pseudodifferential operators on graphs. This problem has been considered in 
[31] but in the periodic case only. Moreover, some of the results obtained below play an important role in 
the theory of approximation methods for Mellin operators in Bessel potential spaces.

The present paper is organized as follows. In the first two sections we define Mellin convolution operators 
and recall some of their properties. In the second section we also consider Fourier convolution operators in the 
Bessel potential spaces and discuss the lifting of these operators from the Bessel potential spaces to Lebesgue 
spaces, mostly according the papers [16,22]. For Mellin convolutions such a lifting operation has not been 
studied before, and in Section 3 the interaction between Bessel potential operators and the Mellin convolution 
K1

c with the kernel (t − cτ)−1 is considered. In particular, we derive formulae for commutators of Bessel 
potential operators and Mellin convolutions, and these results are crucial for our further considerations.

Section 4 recalls results from [18,19] concerning the Banach algebra generated by Fourier and Mellin 
convolution operators in Lebesgue spaces with weight. These results, together with Theorem 3.3 and Corol-
lary 3.4, are used in Section 5 in order to describe the lifting of Mellin convolution operators from the Bessel 
potential spaces up to operators in Lebesgue spaces. It turns out that the objects arising belong to a Banach 
algebra generated by Mellin and Fourier convolutions in Lp-space on the semi-axis. The main result here is 
represented by Theorem 5.1 and Theorem 5.2, where the interaction between Bessel potential operators and 
the Mellin convolution resulting from the lifting of a model operator K1

c is described. Theorem 5.3 deals 
with the lifting of the operator K2

c. In conclusion of Section 5, we present explicit formulae for the symbols 
of Mellin convolution operators with meromorphic kernels, which allow us to find Fredholm criteria and an 
index formula for the operators under consideration (see Theorem 5.4 and Corollary 5.5).

1. Mellin convolution operators

Equations (2) are a particular case of the Mellin convolution equation

M0
aϕ(t) := c0ϕ(t) + c1

πi

∞∫
0

ϕ(τ) dt
τ − t

+
∞∫
0

K
(
t

τ

)
ϕ(τ)dτ

τ
= f(t) (6)

where c0, c1 ∈ C. If the kernel K satisfies the condition

∞∫
0

tβ |K(t)|dt
t

< ∞, 0 < β < 1,

then both equation (6) and analogous equations on the unit interval I := (0, 1) considered, respectively, on 
Lebesgue spaces Lp(R+) and Lp(I), are fully studied in [16].
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Let a be an essentially bounded measurable N ×N matrix function a ∈ L∞(R), and let Mβ and M−1
β

denote, respectively, the Mellin transform and its inverse, i.e.

Mβψ(ξ) :=
∞∫
0

tβ−iξψ(t) dt
t
, ξ ∈ R,

M−1
β ϕ(t) := 1

2π

∞∫
−∞

tiξ−βϕ(ξ) dξ, t ∈ R
+.

On the Schwartz space S(R+) of the rapidly decaying functions on R+, consider the equation

M0
aϕ(t) = f(t), (7)

where M0
a is the Mellin convolution operator,

M0
aϕ(t) :=M−1

β aMβϕ(t)

= 1
2π

∞∫
−∞

a(ξ)
∞∫
0

( t

τ

)iξ−β

ϕ(τ) dτ
τ

dξ, ϕ ∈ S(R+).
(8)

Note that equation (6) has the form (7) with the function a defined by

a(ξ) := c0 + c1 coth[ π(iβ + ξ)] + (MβK)(ξ).

Equations of the form (6), (7) and similar equations on finite intervals often arise in various areas of 
mathematics and mechanics (see [16,26]).

The function a(ξ) in (8) is usually referred to as the symbol of the Mellin operator M0
a. Further, if 

the corresponding Mellin convolution operator M0
a is bounded on the weighted Lebesgue space Lp(R+, tγ)

endowed with the norm

∥∥ϕ | Lp(R+, tγ)
∥∥ :=

[ ∞∫
0

tγ |ϕ(t)|p dt
]1/p

,

then the symbol a(ξ) is called a Mellin Lp,γ-multiplier.
The two most important examples of Mellin convolution operators are

SR+ϕ(t) := 1
πi

∞∫
0

ϕ(τ) dτ
τ − t

, Km
c ϕ(t) := 1

π

∞∫
0

τm−1ϕ(τ) dτ
(t− c τ)m ,

where Im c �= 0 and m ∈ N (see (3), (6)). The operator SR+ is the celebrated Cauchy singular integral 
operator. The Mellin symbols of these operators are (cf. [19, § 2])

σ(SR+)(ξ) := −i cot[π(β − iξ)], ξ ∈ R,

σ(Km
c )(ξ) :=

(
β − iξ − 1
m− 1

)
e∓π(β−iξ)i

sin[π(β − iξ)] c
β−iξ−m, 0 < ± arg c < π,

where (
θ − 1

)
:= (θ − 1) · · · (θ −m + 1)

,

(
θ − 1

)
:= 1.
m− 1 (m− 1)! 0
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In particular,

MβK1
−c(ξ) = cβ−iξ−1

sin[π(β − iξ)] , −π < arg c < π, (9)

MβK1
−1(ξ) = 1

sin[π(β − iξ)] , arg c = π. (10)

The study of the equation (7) does not require much effort. The Mellin transform Mβ converts (7) into 
the equation

a(ξ)Mβϕ(ξ) = Mβf(ξ). (11)

If inf | det a(ξ)| > 0 and the matrix-function a−1 is a Mellin Lp,γ-multiplier, then equation (11) has the 
unique solution ϕ = M0

a−1f .
The solvability of analogues of equation (8) on the unit interval I = (0, 1) in a weighted Lebesgue space 

Lp([0, 1], tγ) is also well understood. Namely if

1 < p < ∞, −1 < γ < p− 1, β := 1 + γ

p
, 0 < β < 1, (12)

then one can use the isomorphisms

Zβ : Lp([0, 1], tγ) → Lp(R+), Zβϕ(ξ) := e−βξϕ(e−ξ), ξ ∈ R
+,

Z−1
β : Lp(R+) → Lp([0, 1], tγ), Z−1

β ψ(t) := t−βψ(− ln t), t ∈ (0, 1],
(13)

which transform the corresponding equation on the unit interval I into an equivalent Wiener–Hopf equation, 
i.e. into the equation

c0ψ(x) +
∞∫
0

K1(x− y)ϕ(y)dy = f0(t). (14)

The Fourier transform of the kernel K1 is called the symbol of the corresponding Fourier convolution operator 
and is used to describe Fredholm properties, index and solvability of the equation (14). In passing note that 
Fourier convolution equations with discontinuous symbols are well studied [2,3,16,34].

2. Fourier convolution operators in the Bessel potential spaces: definition and lifting

Let N be a positive integer and let A be a Banach algebra. We will write A for both scalar and N ×N

matrix algebras with entries from A if no confusion arises. Similarly, the same notation A is used for the set 
of N -dimensional vectors with entries from A. It will be usually clear from the context what kind of space 
or algebra is considered.

Along with Mellin convolutions M0
a, let us consider the Fourier convolution operators

W 0
aϕ := F−1aFϕ, ϕ ∈ S(R),

where a ∈ L∞,loc(R) is a locally bounded N ×N matrix function, called the symbol of W 0
a and F and F−1

are, respectively, the direct and inverse Fourier transforms, i.e.

Fϕ(ξ) :=
∞∫

eiξxϕ(x) dx, F−1ψ(x) := 1
2π

∞∫
e−iξxψ(ξ) dξ, x ∈ R.
−∞ −∞
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Let 1 < p < ∞. An N × N matrix symbol a(ξ), ξ ∈ R is called Lp-multiplier if the corresponding 
convolution operator W 0

a : Lp(R) −→ Lp(R) is bounded. The set of all Lp-multipliers is denoted by 
Mp(R). It is known (see, e.g. [16]), that Mp(R) is a Banach subalgebra of L∞(R) which contains the 
algebra V1(R) of all functions with finite variation. For p = 2 we have the exact equality M2(R) = L∞(R).

The operator

Wa := rR+W 0
a

∣∣∣Lp(R+) : Lp(R+) −→ Lp(R+),

where rR+ : Lp(R) → Lp(R+) denotes the restriction operator, is called the convolution on the semi-axis 
R

+ or the Wiener–Hopf operator. It is worth noting that unlike the operators W 0
a and M0

a, which possess 
the property

W 0
aW

0
b = W 0

ab, M0
aM

0
b = M0

ab for all a, b ∈ Mp(R), (15)

the product of Wiener–Hopf operators cannot be computed by the simple rule (15). In fact for the operators 
Wa and Wb, a similar relation

WaWb = Wab (16)

is valid if and only if either a(ξ) has an analytic extension into the lower half plane or b(ξ) has an analytic 
extension into the upper half plane [16].

If the conditions (12) hold, the isometrical isomorphisms (13) are extended to the following isomorphisms 
of Lebesgue spaces:

Zβ : Lp(R+, tγ) → Lp(R), Zβϕ(ξ) := e−βξϕ(e−ξ), ξ ∈ R,

Z−1
β : Lp(R) → Lp(R+, tγ), Z−1

β ψ(t) := t−βψ(− ln t), t ∈ R
+,

and provide the following connection between the Fourier and Mellin transformations and the corresponding 
convolution operators:

Mβ = FZβ , M−1
β = Z−1

β F−1,

M0
a = M−1

β aMβ = Z−1
β F−1aFZβ = Z−1

β W 0
aZβ .

These identities also justify the following assertion.

Proposition 2.1 ([16]). Let 1 < p < ∞ and −1 < γ < p − 1. The class of Mellin Lp,γ-multipliers does not 
depend on the parameter γ and coincides with the Banach algebra Mp(R) of Fourier Lp-multipliers.

Corollary 2.2 ([16]). A Mellin convolution operator of the form (8) is bounded in the setting M0
a :

Lp(R+, tγ) → Lp(R+, tγ) if and only if a ∈ Mp(R).

For s ∈ R and 1 < p < ∞, the Bessel potential space, known also as a fractional Sobolev space, is a 
subspace of the Schwartz space S′(R) of the distributions having the finite norm

‖ϕ|Hs
p(R)‖ :=

⎡
⎣ ∞∫ ∣∣∣F−1(1 + |ξ|2)s/2(Fϕ)(t)

∣∣∣p dt
⎤
⎦

1/p

< ∞.
−∞
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For the integer parameters s = m ∈ N, space Hs
p(R) coincides with the Sobolev space Wm

p (R) endowed 
with an equivalent norm

‖ϕ|Wm
p (R)‖ :=

⎡
⎣ m∑
k=0

∞∫
−∞

∣∣∣∣dkϕ(t)
dtk

∣∣∣∣
p

dt

⎤
⎦

1/p

.

If s < 0, one gets the space of distributions. Moreover, H−s
p′ (R) is the dual to the space Hs

p(R), provided 

that p′ := p

p− 1 , 1 < p < ∞. Note that Hs
2(R) is a Hilbert space with the inner product

〈ϕ,ψ〉s =
∫
R

(Fϕ)(ξ)(Fψ)(ξ)(1 + ξ2)sdξ , ϕ, ψ ∈ H
s(R).

By rΣ we denote the operator restricting functions or distributions defined on R to the subset Σ ⊂ R. 
Thus Hs

p(R+) = rR+(Hs
p(R)), and the norm in Hs

p(R+) is defined by

‖f |Hs
p(R+)‖ = inf

�
‖f |Hs

p(R)‖,

where f stands for any extension of f to a distribution in Hs
p(R).

Further, we denote by H̃s
p(R+) the (closed) subspace of Hs

p(R) which consists of all distributions supported 
in the closure of R+.

Note that H̃s
p(R+) is always continuously embedded in Hs

p(R+) and for s ∈ (1/p − 1, 1/p) these two 

spaces coincide. Moreover, Hs
p(R+) may be viewed as the quotient-space Hs

p(R+) := H
s
p(R)/H̃s

p(R−), R− :=
(−∞, 0).

If the Fourier convolution operator (FCO) on the semi-axis R+ with the symbol a ∈ L∞,loc(R) is bounded 
in the space setting

Wa : H̃
s
p(R+) −→ H

s−r
p (R+),

we say that Wa has order r and a is an Lp multiplier of order r. The set of all Lp multipliers of order r is 
denoted by Mr

p(R). Let us mention another description of the space Mr
p(R), viz. a ∈ Mr

p(R) if and only if 
λ−ra ∈ Mp(R) = M0

p(R), where λr(ξ) := (1 + |ξ|2)r/2.
Note that, FCOs are particular cases of pseudodifferential operators (ΨDOs).

Theorem 2.3. Let 1 < p < ∞. Then

1. For any r, s ∈ R and for any γ ∈ C, Im γ > 0, the pseudodifferential operators Λr
γ := Λr

+γ and Λr
−γ

defined by

Λr
γ = Wλr

γ
: H̃

s
p(R+) → H̃

s−r
p (R+),

Λr
−γ = Wλr

−γ
: H

s
p(R+) → H

s−r
p (R+),

(17)

where λr
±γ(ξ) := (ξ ± γ)r, ξ ∈ R

+, are isomorphisms between the corresponding spaces.
2. For any operator A : H̃

s
p(R+) → H

s−r
p (R+) of order r, the following diagram is commutative:

H̃
s
p(R+) A−→ H

s−r
p (R+)

↑ Λ−s
γ ↓ Λs−r

−γ

L (R+)
Λs−r

−γ AΛ−s
γ−→ L (R+).

(18)
p p
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Thus the diagram (18) provides an equivalent lifting of the operator A of order r up to the operator 
Λs−r

−γ AΛ−s
γ : Lp(R+) −→ Lp(R+) of order 0.

3. Let μ, ν ∈ R. If a is an Lp-multiplier of order r, then for any complex numbers γ1, γ2 such that Im γj > 0, 
j = 1, 2, the operator Λμ

−γ1
WaΛν

γ2
is a Fourier convolution Waμ,ν

of order r + μ + ν,

Waμ,ν
: H̃

s+ν
p (R+) −→ H

s−r−μ
p (R+), (19)

with the symbol

aμ,ν(ξ) := (ξ − γ1)μa(ξ)(ξ + γ2)ν .

In particular, the lifting of the operator Wa up to the operator Λs−r
−γ WaΛ−s

γ acting in the space Lp(R+)
is FCO of order zero with the symbol

as−r,−s(ξ) = λs−r
−γ (ξ)a(ξ)λ−s

γ (ξ) =
(ξ − γ

ξ + γ

)s−r a(ξ)
(ξ + γ)r .

4. The Hilbert transform K1
1 = iSR+ = W−i sign is a Fourier convolution operator and

Λs
−γ1

K1
1Λ−s

γ2
= W−i gs

−γ1,γ2
sign,

where

gs−γ1,γ2
(ξ) :=

(
ξ − γ1

ξ + γ2

)s

.

Proof. For the proof of items 1–3 we refer the reader to [16, Lemma 5.1] and [22]. The item 4 is a consequence 
of 2–3 (see [16,19]). �

Note that the operator equality in (19) is in fact a consequence of the relation (16).

3. Mellin convolution operators in the Bessel potential spaces – lifting

In contrast to the Fourier convolution operators the lifted Mellin convolution operator is not a Mellin 
convolution anymore. Moreover, there are Mellin convolution operators M0

aβ
with symbols aβ ∈ Mp(R)

which are unbounded in the Bessel potential spaces. Thus in order to study the Mellin convolutions in the 
space of Bessel potentials, one has to address the boundedness problem first. To this end, a class of integral 
operators with admissible kernels was introduced in [19]. For the sake of simplicity, here we consider a lighter 
version of such kernels.

Definition 3.1. The function K is called an admissible meromorphic kernel if it can be represented in the 
form

K(t) :=
�∑

j=0

dj
t− cj

+
N∑

j=�+1

dj
(t− cj)mj

, (20)

where dj , cj ∈ C, j = 0, 1, . . . , N , m�+1, . . . , mN ∈ {2, 3, . . .}, and 0 < αk := | arg ck| � π for k =
 + 1, . . . , N .

Note that the kernel K(t) has poles at the points c0, c1, . . . , cN ∈ C.
Recall that boundary integral operators for BVPs in planar domains with corners have admissible kernels 

(see (2) and [16,17,19,20]).
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Theorem 3.2 ([19, Theorem 2.5 and Corollary 2.6]). If K is an admissible kernel, then the corresponding 
Mellin convolution operator with the kernel K

Kϕ(t) :=
∞∫
0

K
(
t

τ

)
ϕ(τ)dτ

τ
,

K : H̃
s
p(R+) −→ H

s
p(R+),

(21)

is bounded for all 1 < p < ∞ and s ∈ R.

The next result is crucial for what follows. Note that a similar assertion appears in [19], but the proof 
there contains fatal errors.

Theorem 3.3. Let s ∈ R, c, γ ∈ C, 0 < arg c < 2π, 0 < arg γ < π and −π < arg(c γ) < 0. Then

Λs
−γK1

c = c−sK1
cΛs

−c γ , (22)

where c−s = |c|−se−s arg(c) i.

Proof. Taking into account the mapping properties of Bessel potential operators (17) and the mapping 
properties of a Mellin convolution operator with an admissible kernel (21), one observes that both operators

Λs
−γK1

c : H̃r
p(R+) −→ H

r−s
p (R+),

K1
cΛs

−c γ : H̃
r
p(R+) −→ H

r−s
p (R+)

(23)

are correctly defined and bounded for all s ∈ R, 1 < p < ∞, since 0 < arg γ < π and 0 < − arg(c γ) < π.
On the other hand, let us note that the reverse superpositions K1

cΛs
−γ and Λs

−c γK1
c are correctly defined 

only for 1/p − 1 < s < 1/p and s = 1, 2, . . . .
For a smooth function ϕ ∈ C∞

0 (R+) with compact support and for k = 1, 2, . . . we can use integration 
by parts and obtain

dk

dtk
K1

cϕ(t) = 1
π

∞∫
0

dk

dtk
1

t− c τ
ϕ(τ) dτ = (−c)−k

π

∞∫
0

dk

dτk
1

t− c τ
ϕ(τ) dτ =

= c−k

π

∞∫
0

1
t− c τ

dkϕ(τ)
dτk

dτ = c−k
(
K1

c

dk

dtk
ϕ
)
(t). (24)

Let us consider the case where s is a positive integer, i.e. s = m = 1, 2, . . . . The Bessel potentials 
Λm

± = Wλm
±γ

are the Fourier convolutions of order m and they represent ordinary differential operators of 
the order m, namely,

Λm
±γ = Wλm

±γ
=

(
i
d

dt
± γ

)m

=
m∑

k=0

(
m

k

)
ik(±γ)m−k dk

dtk
. (25)

Since C∞
0 (R+) is a dense subset of H̃s

p(R+), by taking into account formulae (24) and (25) we get the 
following:

Λm
−γK1

cϕ =
(
i
d

dt
− γ

)m

K1
cϕ =

m∑(
m

k

)
ik(−γ)m−k dk

dtk
K1

cϕ

k=0
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=
m∑

k=0

(
m

k

)
ik(−γ)m−kc−k

(
K1

c

dk

dtk
ϕ
)
(t) =

= c−mK1
c

( m∑
k=0

(
m

k

)
ik (−c γ)m−k dk

dtk
ϕ

)
(t) =

= c−mK1
cΛm

−c γϕ, ϕ ∈ H̃
r
p(R+).

Thus for s = m = 1, 2, . . . , formula (22) is proved.
By the relations (17) the mappings

Λr
−cγ : H̃s

p(R+) −→ H̃
s−r
p (R+),

Λr
−γ : Hs

p(R+) −→ H
s−r
p (R+),

are isomorphisms of the corresponding spaces for arbitrary r ∈ R since we have assumed that Im(−γ) < 0
and Im (−cγ) > 0.

If s = −m, m ∈ N is a negative integer, then we apply the inverse operators Λ−m
−γ and Λ−m

−cγ to the 
already proven operator equality

Λm
−γK1

c = c−mK1
cΛm

−c γ , m = 1, 2, . . . ,

from the left-hand side and from the right-hand side, respectively. This leads to the relation:

K1
cΛ−m

−cγ = c−mΛ−m
−γ K1

c or Λ−m
−γ K1

c = cmK1
cΛ−m

−cγ .

The equality (22) is now proved also for a negative s = −1, −2, . . . .
In order to derive formula (22) for non-integer values of s, we can confine ourselves to the case −2 < s <

−1. Indeed, any non-integer value s ∈ R can be represented in the form s = s0 + m, where −2 < s0 < −1
and m is an integer. Therefore, if for s = s0 + m the operators in (23) are correctly defined and bounded, 
and if the relations in question are valid for −2 < s0 < −1, then we can write

Λs
−γK1

c = Λs0+m
−γ K1

c = c−mΛs0
−γK1

cΛm
−c γ = c−s0−mK1

cΛ
s0
−c γΛm

−c γ

= c−s0−mK1
cΛ

s0+m
−c γ = c−sK1

cΛs
−c γ .

Thus let us assume that −2 < s < −1 and consider the expression

Λs
−γK1

cϕ(t) = 1
2π2 r+

∞∫
−∞

e−iξt(ξ − γ)s
∞∫
0

eiξy
∞∫
0

ϕ(τ)
y − cτ

dτ dy dξ, (26)

where r+ is the restriction to R+. It is clear that the integral in the right-hand-side of (26) exists. Indeed, 
if ϕ ∈ L2, then K1

cϕ ∈ L2 ∩ C∞ and Λs
−γK1

cϕ ∈ H
−s ∩ C∞ ⊂ L2 ∩ C∞.

Now consider the function e−izt(z − γ)seizy, z ∈ C. Since Imγ �= 0, s < −1, then for sufficiently small 
ε > 0 this function is analytic in the strip between the lines R and R + iε and vanishes at the infinity for 
all finite t ∈ R and for all y > 0. Therefore, the integration over the real line R in the first integral of (26)
can be replaced by the integration over the line R + iε, i.e.

Λs
−γK1

cϕ(t) = 1
2π2 r+

∞∫
e−iξt+εt(ξ + iε− γ)s

∞∫
eiξy−εy

∞∫
ϕ(τ)
y − cτ

dτ dy dξ. (27)

−∞ 0 0
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Let us use the density of the set C∞
0 (R+) in H̃s

p(R+). Thus for all finite t ∈ R and for all functions ϕ ∈ C∞
0 (R)

with compact supports the integrand in the corresponding triple integral for (27) is absolutely integrable. 
Therefore, for such functions one can use Fubini–Tonelli theorem and change the order of integration in 
(27). Thereafter, one returns to the integration over the real line R and obtains

Λs
−γK1

cϕ(t) = 1
2π2 r+

∞∫
0

ϕ(τ)
∞∫
0

1
y − cτ

∞∫
−∞

eiξ(y−t)(ξ − γ)sdξ dy dτ . (28)

In order to study the expression in the right-hand side of (28), one can use a well known formula

∞∫
−∞

(β + ix)−νe−ipx dx =

⎧⎪⎨
⎪⎩

0 for p > 0,
2π(−p)ν−1eβ p

Γ(ν) for p < 0,

Reβ > 0, Re ν > 0

[24, Formula 3.382.6]. It can be rewritten in a more convenient form – viz.,

∞∫
−∞

eiμ ξ(ξ − γ)s dξ =

⎧⎨
⎩

0 if μ < 0,
2π μ−s−1e−

π
2 si+μ γi

Γ(−s) if μ > 0,
(29)

Im γ > 0, Re s < 0.

Applying (29) to the last integral in (28), one obtains

Λs
−γK1

cϕ(t) = e−
π
2 si

πΓ(−s)r+
∞∫
0

ϕ(τ) dτ
∞∫
t

ei(y−t)γdy

(y − t)1+s(y − cτ)

= e−
π
2 si

πΓ(−s)r+
∞∫
0

ϕ(τ) dτ
∞∫
0

y−s−1eiγ ydy

y + t− cτ
, (30)

where the integrals exist since 0 < −s − 1 < 1 and 0 < arg γ < π (i.e., Im γ > 0).
Let us recall the formula

∞∫
0

xν−1e−μ x dx

x + β
= βν−1eβ μΓ(ν)Γ(1 − ν, βμ),

Re ν > 0, Reμ > 0, | arg β| < π

(31)

(cf. [24, formula 3.383.10]). Due to the conditions 0 < arg c < 2π, t > 0, τ > 0 we have | arg(t − cτ)| < π

and, therefore, we can apply (31) to the equality (30). Then (30) acquires the following final form:

Λs
−γK1

cϕ(t) = e−
π
2 si

π
r+

∞∫
0

e−iγ(t−cτ)Γ(1 + s,−iγ(t− cτ))ϕ(τ) dτ
(t− cτ)1+s

. (32)

Consider now the reverse composition K1
cΛs

−c γϕ(t). Changing the order of integration in the correspond-
ing expression (see (28) for a similar motivation), one obtains
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K1
cΛs

−c γϕ(t) := 1
2π2 r+

∞∫
0

1
t− c y

∞∫
−∞

e−iξ y(ξ − c γ)s
∞∫
0

eiξ τϕ(τ)dτ dξ dy

= 1
2π2 r+

∞∫
0

ϕ(τ)
∞∫
0

1
t− c y

∞∫
−∞

eiξ(τ−y)(ξ − c γ)sdξ dy dτ. (33)

In order to compute the expression in the right-hand side of (33), let us recall formula 3.382.7 from [24]:

∞∫
−∞

(β − ix)−νe−ipx dx =

⎧⎪⎨
⎪⎩

0 for p < 0,
2π pν−1e−β p

Γ(ν) for p > 0,

Re ν > 0, Reβ > 0

and rewrite it in a form more suitable for our consideration – viz.,

∞∫
−∞

eiμ ξ(ξ + ω)s dξ =

⎧⎨
⎩

0 μ > 0, Imω > 0,
2π (−μ)−s−1e

π
2 si−μ ωi

Γ(−s) μ < 0, Imω > 0,

Re s < 0, μ ∈ R, ω, s ∈ C.

(34)

Using (34), we represent (33) in the form

K1
cΛs

−c γϕ(t) = e
π
2 si

πΓ(−s) r+
∞∫
0

ϕ(τ) dτ
∞∫
τ

e−ic γ(y−τ) dy

(y − τ)s+1(t− c y)

= − e
π
2 si

πcΓ(−s)r+
∞∫
0

ϕ(τ) dτ
∞∫
0

y−s−1e−icγ y dy

y + τ − c−1t
,

(35)

where the integrals exist since −s − 1 > −1 and −π < arg(c γ) < 0 (i.e., Im(c γ) < 0).
Due to the conditions 0 < arg c < 2π, t > 0, τ > 0 we have | arg(τ − c−1t)| < π. Therefore, we can apply 

formulae (31) to (35) and get the following representation:

K1
cΛs

−c γϕ(t) = − c−1e
π
2 si

π
r+

∞∫
0

e−icγ(c−1t−τ)Γ(1 + s,−icγ(c−1t− τ))ϕ(τ) dτ
(τ − c−1t)1+s

=cse−
π
2 si

π
r+

∞∫
0

e−iγ(t−c τ)Γ(1 + s,−iγ(t− c τ))ϕ(τ) dτ
(t− c τ)1+s

. (36)

If we multiply (36) by c−s we get precisely the expression in (32) and, therefore, Λs
−γK1

cϕ(t) =
c−sK1

cΛs
−c γϕ(t), which proves the claimed equality (22) for −2 < s < −1 and accomplishes the proof. �

Corollary 3.4. Let 0 < arg c < 2π and 0 < arg γ < π. Then for arbitrary γ0 ∈ C such that 0 < arg γ0 < π

and −π < arg(c γ0) < 0, one has

Λs
−γK1

c = c−sWg−γ,−γ
K1

cΛs
−c γ , (37)
0 0
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where

gs−γ,−γ0
(ξ) :=

(
ξ − γ

ξ − γ0

)s

. (38)

If, in addition, 1 < p < ∞ and 1/p − 1 < r < 1/p then equality (37) can be supplemented as follows:

Λs
−γK1

c = c−s
[
K1

cWgs
−γ,−γ0

+ T
]
Λs

−c γ0
, (39)

where T : H̃
r
p(R+) → H

r
p(R+) is a compact operator, and if c is a real negative number, then c−s :=

|c|−se−πsi.

Proof. It follows from equalities (16) and (22) that

Λs
−γK1

c = Λs
−γΛ−s

−γ0
Λs

−γ0
K1

c = c−sWg−γ,−γ0
K1

cΛs
−c γ0

and (37) is proved. If 1 < p < ∞ and 1/p − 1 < r < 1/p, then the commutator

T := Wgs
−γ,−γ0

K1
c − K1

cWgs
−γ,−γ0

: H̃
r
p(R+) → H

r
p(R+)

of Mellin and Fourier convolution operators is correctly defined and bounded. It is compact for r = 0 and all 
1 < p < ∞ (see [15,18]). Due to Krasnoselsky’s interpolation theorem (see [27] and also [35, Sections 1.10.1 
and 1.17.4]), the operator T is compact in all Lr-spaces for 1/p − 1 < r < 1/p. Therefore, the equality (37)
can be rewritten as

Λs
−γK1

c = c−s
[
K1

cWgs
−γ,−γ0

+ T
]
Λs

−c γ0
,

and we are done. �
Remark 1. The assumption 1/p −1 < r < 1/p in (39) cannot be relaxed. Indeed, the operator Wgs

−γ,−γ0
K1

c =
Λs

−γΛ−s
−γ0

K1
c : H̃

r
p(R+) → H

r
p(R+) is bounded for all r ∈ R (see (23)). But the operator K1

cWgs
−γ,−γ0

:
H̃r

p(R+) → H
r
p(R+) is bounded only for 1/p − 1 < r < 1/p because the function gs−γ,−γ0

(ξ) has an analytic 
extension into the lower half-plane but not into the upper one.

4. The algebra generated by Mellin and Fourier convolution operators

In the present section we recall some results about the Banach algebra generated by Fourier and Mellin 
convolution operators in the Lebesgue space with weight from [18], revised in [19]. The exposition follows 
[19, Section 2]. For more general algebras we refer the reader to [18] and to [2–5,15,34].

Let us consider the Banach algebra Ap(R+) generated by Mellin convolution and Fourier convolution 
operators in the Lebesgue space Lp(R+). In particular, this algebra contains the operators

A :=
m∑
j=1

M0
aj
Wbj , (40)

and their compositions. Here M0
aj

are Mellin convolution operators with continuous N ×N matrix symbols 
aj ∈ CMp(

•
R) including the infinity aj(−∞) = aj(+∞), Wbj are Fourier convolution operators with N ×N

matrix symbols bj ∈ CMp(R\{0}) := CMp(R
−∪R+) which might have jump discontinuities at 0 and at the 

infinity. The algebra of N ×N matrix Lp-multipliers CMp(R \ {0}) consists of those piecewise-continuous 
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Fig. 1. The domain R of definition of the symbol As
p(ω).

N ×N matrix multipliers b ∈ Mp(R) ∩PC(R) which are continuous on the semi-axes R− and R+ but might 
have finite jump discontinuities at 0 and at the infinity.

Note that the algebra Ap(R+) is actually a subalgebra of the Banach algebra Fp(R+) generated by the 
Fourier convolution operators Wa with piecewise-constant symbols a(ξ) in the space Lp(R+). Let S(Lp(R+))
denote the ideal of all compact operators in Lp(R+). Since in the scalar case N = 1 the quotient algebra 
Fp(R+)/S(Lp(R+)) is commutative, the following proposition is true.

Proposition 4.1 ([18] and [19, Corollary 3.10]). If N = 1, then the quotient algebra Ap(R+)/S(Lp(R+)) is 
commutative.

To describe the symbol of the operator A in (40), consider the infinite clockwise oriented “rectangle” 
R := Γ1 ∪ Γ−

2 ∪ Γ+
2 ∪ Γ3, where (cf. Fig. 1)

Γ1 := {∞} × R, Γ±
2 := R

+ × {±∞}, Γ3 := {0} × R.

Let for a piecewise continuous function g ∈ PC(R) introduce the notation

gp(∞, ξ) := g(+∞) + g(−∞)
2 + g(+∞) − g(−∞)

2i cot
[
π
(1
p
− iξ

)]
,

gp(t, ξ) := g(t + 0) + g(t− 0)
2 + g(t + 0) − g(t− 0)

2i cot
[
π
(1
p
− iξ

)]
,

(41)

where t, ξ ∈ R. Then the symbol Ap(ω) of the operator A in (40) is a function on the set R, viz.

Ap(ω) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
j=1

aj(ξ)(bj)p(∞, ξ), ω = (∞, ξ) ∈ Γ1,

m∑
j=1

aj(∞)bj(η), ω = (η,+∞) ∈ Γ+
2 ,

m∑
j=1

aj(∞)bj(−η), ω = (η,−∞) ∈ Γ−
2 ,

m∑
j=1

aj(ξ)(bj)p(0, ξ), ω = (0, ξ) ∈ Γ3.

(42)

Arc condition ([23,36]): The function gp(∞, ξ) connects the point g(−∞) with g(+∞). More precisely, it 
fills up the discontinuity of the function g at ∞ with an oriented arc of the circle such that from every point 
of the arc the oriented interval [g(−∞), g(+∞)] is seen under the angle π/p. Moreover, the oriented arc lies 
on the left of the oriented interval if 1/2 < 1/p < 1 (i.e., if 1 < p < 2) and the oriented arc is on the right 
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Fig. 2. Arc condition.

of the oriented interval if 0 < 1/p < 1/2 (i.e., if 2 < p < ∞). For p = 2 the oriented arc coincides with the 
oriented interval (see Fig. 2).

A similar geometric interpretation is valid for the function gp(t, ξ), which connects the points g(t − 0)
and g(t + 0) when g has a jump at t ∈ R.

The image of the function detAp(ω), ω ∈ R is a closed curve in the complex plane. This follows from the 
continuity of the symbol at the angular points of the rectangle R where the one-sided limits coincide. Thus

Ap(±∞,∞) =
m∑
j=1

aj(∞)bj(±∞),

Ap(±∞, 0) =
m∑
j=1

aj(∞)bj(0 ± 0).

Hence, if the symbol of the corresponding operator is elliptic, i.e. if

inf
ω∈R

∣∣ detAp(ω)
∣∣ > 0,

the increment of the argument (1/2π) argAp(ω) when ω ranges through R in the direction of orientation, is 
an integer. It is called the winding number or the index of the curve Γ := {z ∈ C : z = detAp(ω), ω ∈ R}
and is denoted by ind detAp.

Theorem 4.2 ([19, Theorem 3.13]). Let 1 < p < ∞ and let A be defined by (40). The operator A :
Lp(R+) −→ Lp(R+) is Fredholm if and only if its symbol Ap(ω) is elliptic. If A is Fredholm, then the index 
of this operator is

IndA = −ind detAp.

If Ap(ω) is the symbol of an operator A in (40), then the set R(Ap) := {Ap(ω) ∈ C : ω ∈ R} coincides 
with the essential spectrum of A. Recall that the essential spectrum σess(A) of a bounded operator A is 
the set of all λ ∈ C such that the operator A − λI is not Fredholm in Lp(R+) or, equivalently, the coset 
[A − λI] is not invertible in the quotient algebra Ap(R+)/S(Lp(R+)). Then, due to Banach’s theorem, the 
essential norm ‖ |A‖ | of the operator A can be estimated as follows

sup
ω∈ω

|Ap(ω)| � ‖|A‖| := inf
T∈S(Lp(R+))

∥∥(A + T) | L(Lp(R+))
∥∥. (43)

The inequality (43) enables one to extend the symbol map (42)

[A] −→ Ap(ω), [A] ∈ Ap(R+)/S(Lp(R+))

continuously onto the whole Banach algebra Ap(R+). Now, applying Theorem 4.2 and standard methods, 
cf. [18, Theorem 3.2], one can derive the following result.
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Corollary 4.3 ([19, Corollary 3.15]). Let 1 < p < ∞ and A ∈ Ap(R+). The operator A : Lp(R+) −→ Lp(R+)
is Fredholm if and only if its symbol Ap(ω) is elliptic. If A is Fredholm, then

IndA = −indAp.

5. Fredholm properties of Mellin convolution operators in the Bessel potential spaces

As it was already mentioned, the primary aim of the present paper is to study Fredholm properties and 
the invertibility of Mellin convolution operators M0

a acting in Bessel potential spaces, namely,

M0
a : H̃s

p(R+) −→ H
s
p(R+).

The symbols of these operators are N × N matrix functions a ∈ CM0
p(R), continuous on the real axis R

with the only possible jump at infinity.

Theorem 5.1. Let s ∈ R and 1 < p < ∞.

1. If the conditions of Theorem 3.3 hold, the Mellin convolution operator

K1
c : H̃

r
p(R+) → H

r
p(R+), (44)

is lifted to the equivalent operator

Λs
−γK1

cΛ−s
γ = c−sK1

cWgs
−cγ,γ

: Lp(R+) → Lp(R+),

where c−s = |c|−se−is arg c and the function gs−cγ,γ is defined in (38).
2. If the conditions of Corollary 3.4 hold, the Mellin convolution operator between Bessel potential spaces 

(44) is lifted to the equivalent operator

Λs
−γK1

cΛ−s
γ = c−sWgs

−γ,−γ0
K1

cWgs
−cγ0,γ

= c−sK1
cWgs

−γ,−γ0
gs
−cγ0,γ

+ T : Lp(R+) → Lp(R+),

where T : Lp(R+) → Lp(R+) is a compact operator.

Proof. By Theorem 2.3, using the lifting procedure, one obtains the following equivalent operator:

Λs
−γK1

cΛ−s
γ : Lp(R+) → Lp(R+).

In order to proceed, we need two formulae

Λs
−cγΛ−s

γ = Wgs
−cγ,γ

, Wgs
−γ,−γ0

Wgs
−cγ0,γ

= Wgs
−γ,−γ0

gs
−cγ0,γ

. (45)

The first relation holds because, by the conditions of Theorem 3.3, 0 < arg γ < π and the second one holds 
because gs−γ,−γ0

(ξ) has a smooth, uniformly bounded analytic extension in the lower complex half plane.
If the conditions of Theorem 3.3 are fulfilled, we apply the equalities (22), (45) and get the following:

Λs
−γK1

cΛ−s
γ = c−sK1

cΛs
−cγΛ−s

γ = c−sK1
cWgs

−cγ,γ
.

If the conditions of Corollary 3.4 hold, we successively apply formulae (37), (39), both formulae (45) and 
get the following:
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Λs
−γK1

cΛ−s
γ = c−sWgs

−γ,−γ0
K1

cΛs
−cγΛ−s

γ

= c−sWgs
−γ,−γ0

K1
cWgs

−cγ0,γ
= c−sK1

cWgs
−γ,−γ0

Wgs
−cγ0,γ

+ T.

The obtained equality accomplishes the proof. �
Remark 2. The operator K1

1 is the Hilbert transform K1
1 = iSR+ = W−i sign and does not satisfy the 

condition arg c �= 0 of Theorem 5.1. As already emphasized in Theorem 2.3, this case is essentially differ-
ent. Considered as acting between the Bessel potential spaces (44), K1

1 is lifted to the equivalent Fourier 
convolution operator

Λs
−γK1

1Λ−s
γ = W−igs

−γ,γsign : Lp(R+) → Lp(R+),

cf. Theorem 2.3.

Theorem 5.2. Let cj , dj ∈ C, 0 < arg cj < 2π for j = 1, . . . , n, 0 < arg γ < π, −π < arg(cjγ) < 0 for 
j = 1, . . . , m and 0 < arg(cjγ) < π for j = m + 1, . . . , n. The Mellin convolution operator A,

A =
n∑

j=1
djK1

cj : H̃
r
p(R+) → H

r
p(R+),

is lifted to the equivalent operator

Λs
−γAΛ−s

γ =
m∑
j=0

djc
−s
j K1

cjWgs
−cjγ,−γ

+
n∑

j=m+1
djc

−s
j Wgs

−γ,−γj
K1

cjWgs
−cjγj,γ

(46)

=
m∑
j=0

djc
−s
j K1

cjWgs
−cjγ,γ

+
n∑

j=m+1
djc

−s
j K1

cjWgs
−γ,−γj

gs
−cjγj,γ

+ T

in the Lp(R+) space, where c−s = |c|−se−is arg c and γj are such that 0 < arg γj < π, −π < arg(cj γj) < 0
for j = m + 1, . . . , n and T : Lp(R+) → Lp(R+) is a compact operator.

Proof. The proof is a direct consequence of Theorem 5.1. �
Theorem 5.3. Let s ∈ R and 1 < p < ∞. If the conditions of Theorem 3.3 hold, then the Mellin convolution 
operator

K2
c : H̃

r
p(R+) → H

r
p(R+), (47)

is lifted to the equivalent operator in Lp(R+) space

Λs
−γK2

cΛ−s
γ = c−s

[
K2

c − sc−1K1
c

]
Wgs

−cγ,γ
+ s γ c−sK1

cW(ξ+γ)−1gs−1
−cγ,γ

, (48)

where c−s = |c|−se−is arg c, the function gs−cγ,γ is defined in (38).
If the conditions of Corollary 3.4 hold, the Mellin convolution operator K2

c between Bessel potential spaces 
(47) is lifted to the equivalent operator in the space Lp(R+)

Λs
−γK2

cΛ−s
γ = (49)

= c−sWgs
−γ,−γ0

[
K2

c − sc−1K1
c

]
Wgs

−cγ0,γ
+ s γ c−sWgs

−γ,−γ0
K1

cW(ξ+γ)−1gs−1
−cγ ,γ
0
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= c−s
[
K2

c − sc−1K1
c

]
Wgs

−γ,−γ0
gs
−c γ0,γ

+ s γ c−sK1
cW(ξ−cγ0)−1gs

−cγ0,−γ0
gs
−γ,γ

+ T,

where the operator T : Lp(R+) → Lp(R+) is compact.

Proof. If the conditions of Theorem 3.3 are satisfied, then Im γ > 0 and Im c γ < 0. Hence

1
(t− c)2 = lim

ε→0

1
2εi

[
1

t− c− εi
− 1

t− c + εi

]

and we have

Λs
−γK2

cΛ−s
γ = lim

ε→0

1
2εiΛ

s
−γ

[
K1

c+εi − K1
c−εi

]
Λ−s

γ

= lim
ε→0

1
2εi

[
(c + εi)−sK1

c+εiΛs
−(c+εi)γ − (c− εi)−sK1

c−εiΛs
−(c−εi)γ

]
Λ−s

γ

= lim
ε→0

{
(c + εi)−s − (c− εi)−s

2εi K1
c+εiΛs

−(c+εi)γ

+ (c− εi)−s 1
2εi

[
K1

c+εi − K1
c−εi

]
Λs

−(c+εi)γ

+ (c− εi)−sK1
c−εi

1
2εi

[
Λs

−(c+εi)γ − Λs
−(c−εi)γ

]}
Λ−s

γ

= −s c−s−1K1
cΛs

−c γΛ−s
γ + c−sK2

cΛs
−c γΛ−s

γ

+ c−sK1
c lim
ε→0

F−1 (ξ − c γ − εγi)s − (ξ − c γ + εγi)s

2εi FΛ−s
γ

= c−s
[
K2

c − sc−1K1
c

]
Wgs

−cγ,γ
+ s γ c−sK1

cΛs−1
−c γΛ−s

γ

= c−s
[
K2

c − sc−1K1
c

]
Wgs

−cγ,γ
+ s γ c−sK1

cW(ξ+γ)−1gs−1
−cγ,γ

.

Thus formula (48) is proved.
The formula (49) can be derived from (48) similarly Theorem 5.1. �

Remark 3. The operators Kn
c , n = 3, 4, . . . , can be treated analogously to the approach of Corollary 5.3. 

Indeed, let us represent the operator Kn
c in the form

Kn
cϕ = lim

ε→0
Kc1,ε,...,cn,ε

ϕ, ∀ϕ ∈ H̃
r
p(R+),

where

Kc1,ε,...,cn,ε
ϕ(t) :=

∞∫
0

Kc1,ε,...,cn,ε

(
t

τ

)
ϕ(τ)dτ

τ
=

n∑
j=1

dj(ε)K1
cj,εϕ(t),

Kc1,ε,...,cm,ε
(t) := 1

(t− c1,ε) · · · (t− cn,ε)
=

n∑
j=1

dj(ε)
t− cj,ε

, (50)

cj,ε = c(1 + εeiωj ), ωj ∈ (−π, π), arg cj,ε, arg(cj,ε γ) �= 0, j = 1, . . . ,m.
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Since n ∈ {3, 4, . . .} the argument arg c does not vanish. Hence, the points ω1, . . . , ωn ∈ (−π, π] are pairwise 
different, i.e., ωj �= ωk for j �= k. By equating the numerators in the formula (50) we find the coefficients 
d1(ε), . . . , dn−1(ε).

Note that the operators K3
c, K4

c , . . . appear rather rarely in applications. Therefore, in this work exact 
formulae are given in the case of the operators K1

c and K2
c only.

Let a0, . . . , an, b1, . . . , bn ∈ CMp(R \ {0}), d0, c1, . . . , cn ∈ C and consider the model operator A :
H̃s

p(R+) → H
s
p(R+),

A := d0I + Wa0 +
n∑

j=1
Waj

K1
cjWbj , (51)

comprising the identity I, Fourier Wa0 , . . . , Wan
, Wb1 , . . . , Wbn and Mellin K1

c1 , . . . , K
1
cn convolution opera-

tors. In order to ensure proper mapping properties of the operator A : H̃
s
p(R+) → H

s
p(R+), we additionally 

assume that if s ≤ 1/p − 1 or if s ≥ 1/p, then the functions a1(ξ), . . . , an(ξ) and b1(ξ), . . . , bn(ξ) have 
bounded analytic extensions in the lower Im ξ < 0 and the upper Im ξ > 0 half planes, correspondingly.

If 1/p − 1 < s < 1/p, then the spaces H̃s
p(R+) and Hs

p(R+) coincide (can be identified) and the analytic 
extendability assumptions are superfluous.

Now we can describe the symbol As
p of the model operator A. According to the formulae (42) and (41)

one has

As
p(ω) := d0Is

p(ω) + Ws
a0,p(ω) +

n∑
j=1

W0
aj ,p(ω)K1,s

cj ,p(ω)W0
bj ,p(ω), (52)

where the symbols Is
p(ω), W0

a,p(ω), Ws
a,p(ω) and K1,s

cj ,p(ω) have the form

Is
p(ω) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gs−γ,γ,p(∞, ξ), ω = (∞, ξ) ∈ Γ1,(
η − γ

η + γ

)∓s

, ω = (η,±∞) ∈ Γ±
2 ,

eπsi, ω = (0, ξ) ∈ Γ3,

(53a)

W0
a,p(ω) :=

⎧⎪⎪⎨
⎪⎪⎩
ap(∞, ξ), ω = (∞, ξ) ∈ Γ1,

a(±η), ω = (η,±∞) ∈ Γ±
2 ,

ap(0, ξ), ω = (0, ξ) ∈ Γ3,

(53b)

Ws
a,p(ω) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
asp(∞, ξ), ω = (∞, ξ) ∈ Γ1,

a(±η)
(
η − γ

η + γ

)∓s

, ω = (η,±∞) ∈ Γ±
2 ,

eπsiap(0, ξ), ω = (0, ξ) ∈ Γ3,

(53c)

K1,s
c,p(ω) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e
−iπ

(
1
p−iξ−1

)
c

1
p−iξ−s−1

sin[π( 1
p − iξ)]

, ω = (∞, ξ) ∈ Γ1,

0, ω ∈ Γ±
2 ,

e
−iπ

(
1
p−iξ−1

)
c

1
p−iξ−s−1

sin[π( 1
p − iξ)]

, ω = (0, ξ) ∈ Γ3,

(53d)
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asp(∞, ξ) := e2πsia(∞) + a(−∞)
2 + e2πsia(∞) − a(−∞)

2i cot
[
π
(1
p
− iξ

)]
,

ap(x, ξ) := a(x + 0) + a(x− 0)
2 + a(x + 0) − a(x− 0)

2i cot
[
π
(1
p
− iξ

)]
, x = 0,∞,

gs−γ,γ,p(∞, ξ) := e2πsi + 1
2 + e2πsi − 1

2i cot
[
π
(1
p
− iξ

)]

= eπsi
sin

[
π
(

1
p + s− iξ

)]
sin

[
π
(

1
p − iξ

)] , ξ ∈ R, η ∈ R
+,

where a(∞ ± 0) := a(±∞), 0 < | arg(c γ)| < π„ −π < arg(c γ0) < 0, 0 < arg c < π, 0 < arg γ, arg γ0 < π

and cδ = |c|δeiδ arg c.
In the case where a(−∞) = 1 and a(+∞) = e2παi the symbol asp(∞, ξ) takes the form

asp(∞, ξ) = eπ(s+α)i
sin

[
π
(

1
p + s + α− iξ

)]
sin

[
π
(

1
p − iξ

)] . (53e)

Note that, the Mellin convolution operator K1
−1,

K1
−1ϕ(t) := 1

π

∞∫
0

ϕ(τ) dτ
t + τ

= M0
M 1

p
K1

−1
, M 1

p
K1

−1(ξ) = 1
sin

[
π
(

1
p − iξ

)] ,
which often appears in applications, has a rather simple symbol if considered in the Bessel potential space 
H

s
p(R+). Thus using formula (53d) with c = −1, one obtains

K1,s
−1,p(ω) :=

⎧⎪⎨
⎪⎩

eπsi

sin[π(β − iξ)] , ω ∈ Γ1 ∪ Γ3,

0, ω ∈ Γ±
2 .

Theorem 5.4. Let 1 < p < ∞, s ∈ R. The operator

A : H̃s
p(R+) −→ H

s
p(R+) (54)

defined in (51) is Fredholm if and only if its symbol As
p(ω) described by the relations (52), (53a)–(53e), is 

elliptic. If A is Fredholm, then

IndA = −ind detAs
p.

The operator (54) is locally invertible at 0 ∈ R
+ if and only if its symbol As

p(ω), defined in (52), 
(53a)–(53e), is elliptic on Γ1, i.e.

inf
ω∈Γ1

∣∣det As
p(ω)

∣∣ = inf
ξ∈R

∣∣det As
p(ξ,∞)

∣∣ > 0.

Proof. Let d0, c1, . . . , cn ∈ C, −π � arg cj < π arg cj �= 0, for j = 1, . . . , n. Lifting A up to an operator on 
the space Lp(R+) we get
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Λs
−γAΛ−s

γ = d0Λs
−γΛ−s

γ + Λs
−γWa0Λ−s

γ +
n∑

j=1
Waj

Λs
−γK1

cjΛ
−s
γ Wbj , (55)

where γ is such that 0 < arg γ < π, −π < arg(cj γ) < 0 for all j = m + 1, . . . , n.
In (55) we used special properties of convolution operators, namely,

Λs
−γWaj

= Waj
Λs

−γ , WbjΛs
γ = Λs

γWbj , Λ∓s
±γ = Wλ∓s

±γ
,

which follows from the analytic extendability of functions λs
−γ , a1(ξ), . . . , an(ξ) and λ−s

γ , b1(ξ), . . . , bn(ξ) into 
the lower Im ξ < 0 and upper Im ξ > 0 half planes, respectively.

The model operators I, Wa and K1
c lifted to the space Lp(R+) have the form

Λs
−γIΛ−s

γ = Wgs
−γ,γ

, Λs
−γWaΛ−s

γ = Wags
−γ,γ

,

Λs
−γK1

cΛ−s
γ =

⎧⎪⎪⎨
⎪⎪⎩

c−sK1
cWgs

−c γ,γ
if −π < arg(c γ) < 0,

c−sK1
cWgs

− γ,−γ0
gs
−c γ0,γ

+ T, if 0 < arg(c γ) < π

−π < arg(c γ0) < 0,

(56)

where T is a compact operator. Here, as above, 0 < arg c < 2π, 0 < arg γ < π, 0 < arg γ0 < π and either 
−π < arg(c γ) < 0 or, if −π < arg(c γ) < 0, then −π < arg(c γ0) < 0.

Therefore, the operator Λs
−γAΛ−s

γ in (55) can be rewritten as follows

Λs
−γAΛ−s

γ = d0Wgs
−γ,γ

+ Wa0gs
−γ,γ

+
m∑
j=1

c−s
j Waj

K1
cjWgs

−cjγ,−γ
Wbj

+
n∑

j=m+1
c−s
j Waj

K1
cjWgs

−γ,−γj
gs
−cjγj,γ

Wbj + T : Lp(R+) −→ Lp(R+), (57)

where T is a compact operator and we ignore it when writing the symbol of A.
Now we define the symbol of the initial operator A : H̃

s
p(R+) → H

s
p(R+) of (51) as the symbol of the 

corresponding lifted operator Λs
−γAΛ−s

γ : Lp(R+) → Lp(R+) of (57).
To write the symbol of the lifted operator in the Lebesgue space Lp(R+) let us first find the limits of 

involved functions (symbols). The function gs−γ,γ ∈ C(R) is continuous on R, but has different limits at the 
infinity, viz.,

gs−γ,γ(−∞) = 1, gs−γ,γ(+∞) = e2πsi, gs−γ,γ(0) = eπsi, (58)

while the functions gs−γ,−γ0
, gs−cγ,γ , g

s
−cγ0,γ ∈ C(R) are continuous on R including the infinity. Thus

gs−c γ,γ(±∞) = gs−γ,−γ0
(±∞) = gs−c γ0,γ(±∞) = 1,

gs−γ,−γ0
(0)gs−c γ0,γ(0) =

(
−γ

−γ0

)s (−cγ0

γ

)s

= (−c)s ,

gs−c γ,γ(0) = (−c)s if − 0 < arg c < 2π, arg c �= 0.

(59)

In the Lebesgue space Lp(R+), the symbols of the first two operators in (57), are written according the 
formulae (42)–(41) by taking into account the equalities (58) and (59). The symbols of these operators have, 
respectively, the form (53a) and (53c).

For the operators Wa1 , . . . , Wan
and Wb1 , . . . , Wbn we can use the formulae (42)–(41) and write their 

symbols in the form (53b).
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The lifted Mellin convolution operators

Λs
γK1

cjΛ
−s
γ : Lp(R+) −→,Lp(R+)

comprise both Fourier convolution operators Wgs
−cj γ0,γ

and Wgs
− γ,−γ0

gs
−cj γ0,γ

and Mellin convolution oper-
ator K1

cj = M0
K1

cj,p
(ξ), with the symbol K1

cj ,p(ξ) := M1/pK1
cj (ξ) defined in (9) and (10). The symbol of the 

operators Λs
γK1

cjΛ
−s
γ from (56) in the Lebesgue space Lp(R+) is found according formulae (42)–(41), has 

the form (53d) and is declared the symbol of K1
cj : H̃

s
p(R+) → H

s
p(R+). The symbols of Fourier convolution 

factors Wgs
−cj γ0,γ

and Wgs
− γ,−γ0

gs
−cj γ0,γ

, which participate in the symbol of K1
cj = M0

K1
cj,p

are written again 

according formulae (42)–(41) by taking into account the equalities (58) and (59). Now Theorem 4.2 applies 
and that gives the result formulated in Theorem 5.4.

Concerning the concluding assertion of the theorem: A is, after lifting to Lp-space, locally equivalent at 
0 to the Mellin convolution operator M0

As
p(∞,ξ), which is locally invertible if and only if is globally invertible 

and this is the case iff inf
ξ∈R

|As
p(∞, ξ)| > 0. �

In the proof of the foregoing Theorem 5.4 a local principle is used. The definition of the local invertibility 
and a short introduction to a local principle can be found in [23,33].

The next results are concerned with the operators acting in the Sobolev–Slobodeckij (Besov) spaces. For 
the definition of the corresponding spaces Ws

p(Ω) = B
s
p,p(Ω), W̃s

p(Ω) = B̃
s
p,p(Ω) for an arbitrary domain 

Ω ⊂ R
n, including the semi-axis R+, we refer the reader to the monograph [35].

Corollary 5.5. Let 1 < p < ∞, s ∈ R. If the operator A : H̃s
p(R+) −→ H

s
p(R+), defined in (51), is Fredholm 

(invertible) for all s ∈ (s0, s1) and p ∈ (p0, p1), where −∞ < s0 < s1 < ∞, 1 < po < p1 < ∞, then the 
operator

A : W̃s
p(R+) −→ W

s
p(R+), s ∈ (s0, s1), p ∈ (p0, p1) (60)

is Fredholm (invertible) in the Sobolev–Slobodeckij (Besov) spaces Ws
p = B

s
p,p, and

IndA = −ind detAs
p. (61)

Proof. Recall that the Sobolev–Slobodeckij (Besov) spaces Ws
p = B

s
p,p emerge as the result of interpolation 

with the real interpolation method between Bessel potential spaces

(
H

s0
p0

(Ω),Hs1
p1

(Ω)
)
θ,p

= W
s
p(Ω), s := s0(1 − θ) + s1θ,(

H̃
s0
p0

(Ω), H̃s1
p1

(Ω)
)
θ,p

= W̃
s
p(Ω), p := 1

p0
(1 − θ) + 1

p1
θ, 0 < θ < 1.

(62)

If A : H̃s
p(R+) −→ H

s
p(R+) is Fredholm (invertible) for all s ∈ (s0, s1) and p ∈ (p0, p1), it has a regularizer 

R (the inverse A−1 = R, respectively), which is bounded in the setting

R : Ws
p(R+) −→ W̃

s
p(R+)

due to the interpolation (62) and

RA = I + T1, AR = I + T2,

where T1 and T2 are compact in H̃s
p(R+) and in Hs

p(R+), or T1 = T2 = 0 if A is invertible.
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Due to the Krasnoselsky interpolation theorem (see [35]), T1 and T2 are compact in W̃s
p(R+) and in 

W
s
p(R+), respectively for all s ∈ (s0, s1) and p ∈ (p0, p1) and, therefore, A in (60) is Fredholm (is invertible, 

respectively).
The index formulae (61) follows from the embedding properties of the Sobolev–Slobodeckij and Bessel 

potential spaces by standard well-known arguments. �
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