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Abstract
We consider an alternate form of the equivalence between the category of compact Hausdorff
spaces and continuous functions and a category formed fromGleason spaces and certain rela-
tions. This equivalence arises from the study of the projective cover of a compact Hausdorff
space. This line leads us to consider the category of compact Hausdorff spaces with closed
relations, and the corresponding subcategories with continuous and interior relations. Various
equivalences of these categories are given extending known equivalences of the category of
compact Hausdorff spaces and continuous functions with compact regular frames, de Vries
algebras, and also with a category of Gleason spaces that we introduce. Study of categories
of compact Hausdorff spaces with relations is of interest as a general setting to consider
Gleason spaces, for connections to modal logic, as well as for the intrinsic interest in these
categories.
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1 Introduction

The category KHaus of compact Hausdorff spaces and the continuous functions between
them has been extensively studied, and many well-known equivalences and dual equiva-
lences between KHaus and other well-known categories have been established. Among them
is the dual equivalence to the category KRFrm of compact regular frames and the frame homo-
morphisms between them, and the dual equivalence to the category DeV of de Vries algebras
and the de Vries algebra homomorphisms between them. The duality between KHaus and
KRFrm is established via the open set functor, and that between KHaus andDeV via the regular
open set functor.

In [5] a further equivalence was established between KHaus and what we call here Gle0 of
Gleason spaces and certain relations between them. The idea is to take the projective cover
π : ̂X → X of a compact Hausdorff space X , and associate to this a pair (̂X , E) where E is
the kernel of π . These are pairs consisting of an extremally disconnected compact Hausdorff
space and an equivalence relation on it with certain properties. In [5] morphismswere defined
between Gleason spaces giving a categoryGle0, and this category was shown to be equivalent
to KHaus.

The morphisms in [5] were certain relations between Gleason spaces. Their properties
were motivated from constructing a duality with DeV and lifting the necessary properties.
Composition in Gle0 was defined through that of DeV, and was not simple relational compo-
sition. Here we construct a different category based on Gleason spaces where morphisms are
again certain relations between them. These different morphisms have simpler description
than in Gle0, and their composition is given by relational composition. This new category is
denoted Gle.

Gleason spaces (X , E) consist of an extremally disconnected compact Hausdorff space
X and an equivalence relation E on X with certain properties. Morphisms in Gle0 and Gle
consist of certain relations betweenGleason spaces. It becomes natural in our study towork in
the generality of relations between compact Hausdorff spaces. Two general types of relations
arise as extensions of continuous functions, the closed relations R being those that are closed
in the product topology, and the continuous ones that are closed and have R−1[U ] open for
each open setU . Such continuous relations arise naturally in considering the Vietoris functor
on KHaus (see, e.g., [6, Sec. 2]).

This leads naturally to consideration of the category KHausR of compact Hausdorff spaces
and closed relations between them under relational composition, and the category KHausc

of compact Hausdorff spaces and continuous relations between them. We also consider the
category KHausi of compact Hausdorff spaces and interior relations between them. These
generalize interior functions, that is, continuous and open functions. These categories are
natural to consider also in the context of modal compact Hausdorff spaces [6,7], which have
applications in modal logic. But perhaps the strongest motivation for consideration of these
categories is their inherent interest.

The category KHausR was considered in [21]. It was also studied in [19] in the more
general setting of stably compact spaces and closed relations. By [21, Thm. 4.3.3], the duality
between KHaus and KRFrm generalizes to a duality between KHausR and the category KRFrmR

of compact regular frames and preframe homomorphisms. This is also a consequence of the
results of [19].

Here we define the category GleR and establish equivalences and dual equivalences
between GleR and the categories KHausR and KRFrmR. We do similarly for continuous and
interior relations. We define categories KRFrmc, DeVc, Glec and extend the equivalences and
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Fig. 1 Equivalences and dual
equivalences involving KHaus

KHaus

Gle0

DeVKRFrm

dual equivalences of Fig. 1 to equivalences and dual equivalences between these categories
and KHausc. We also define categories KRFrmi, DeVi, Glei and obtain similar equivalences
and dual equivalences between these categories and KHausi. An analog of DeVR is left out
of this process since closed relations on a compact Hausdorff space are not determined in a
natural way by their behavior on regular open sets.

This paper is arranged in the following way. The second section gives preliminaries and
reviews the known equivalences and dual equivalences given in Fig. 1. The third section pro-
vides equivalences and dual equivalences related to KHausR and provides obstacles for such
an equivalence in the setting of de Vries algebras. The fourth section provides equivalences
and dual equivalences related to KHausc, and the fifth section does similarly for KHausi. The
sixth section shows that the equivalences and dual equivalences obtained in earlier sections
restrict to known equivalences and dual equivalences among KHaus, KRFrm, and DeV and
their subcategories, and produces a new equivalence between KHaus and what we call Gle.

2 Preliminaries

Here we review the categories and known equivalences and dual equivalences between them,
as given in Fig. 1. Throughout we use I and C for topological interior and closure.

Definition 2.1 KHaus is the category of compact Hausdorff spaces and continuous functions
between them, with composition being function composition.

Recall [17,20] that a frame is a complete lattice that satisfies a∧∨

S = ∨{a∧ s | s ∈ S},
and a frame homomorphism is a function between frames that preserves finite meets and
arbitrary joins. An element a of a frame is compact if a ≤ ∨

S implies that there is a
finite T ⊆ S with a ≤ ∨

T , and a frame is compact if its top element 1 is compact. Using
¬a := ∨{x | a ∧ x = 0} for the pseudocomplement of a, the well inside relation ≺ in a
frame is defined by x ≺ y iff ¬x ∨ y = 1. We set ↡a = {b | b ≺ a} and ↟a = {b | a ≺ b}.
A frame is regular if for each a we have a = ∨

↡a. For a subset S of a frame, we set
↡S = {b | b ≺ s for some s ∈ S} and ↟S = {b | s ≺ b for some s ∈ S}. An ideal I of a
frame is round if I = ↡I , and a filter F of a frame is round if F = ↟F .
Definition 2.2 KRFrm is the category of compact regular frames and frame homomorphisms
between them, with composition being function composition.

A de Vries algebra [3,9] (B,≺) is a complete Boolean algebra B with binary relation ≺
that satisfies
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1. 1 ≺ 1,
2. a ≺ b implies a ≤ b,
3. a ≤ b ≺ c ≤ d implies a ≺ d ,
4. a ≺ b, c implies a ≺ b ∧ c,
5. a ≺ b implies ¬b ≺ ¬a,
6. a ≺ b implies there is c with a ≺ c ≺ b (interpolation)
7. a 	= 0 implies there is b 	= 0 with b ≺ a.

Amorphism between de Vries algebras is a function α satisfying (i) α(0) = 0, (ii) α(a∧b) =
α(a) ∧ α(b), (iii) a ≺ b implies ¬α(¬a) ≺ α(b), and (iv) α(a) = ∨{α(b) | b ≺ a}.
Definition 2.3 DeV is the category of deVries algebras and theirmorphismswith composition
of de Vries morphisms β�α given by (β�α)(a) = ∨{βα(b) | b ≺ a}.

A binary relation R from X to Y is a subset R ⊆ X × Y . For A ⊆ X and B ⊆ Y , the
image of A under R is R[A] = {y | x Ry for some x ∈ A}, and the preimage of B under R
is R−1[B] = {x | x Ry for some y ∈ B}. For x ∈ X and y ∈ Y we use R[x] for R[{x}] and
R−1[y] for R−1[{y}] for the image and preimage of these singletons.

A topological space is extremally disconnected if the closure of each open set is open.
A Gleason space [5] is a pair (X , E) consisting of an extremally disconnected compact
Hausdorff space X and an equivalence relation E on X that satisfies (i) E is a closed subset
of X × X and (ii) if A is a proper closed subset of X , then so is E[A]. The following is the
way that a category was constructed from Gleason spaces in [5].

Definition 2.4 Gle0 is the category whose objects are Gleason spaces, where a morphism
between Gleason spaces (X , E) and (X ′, E ′) is a relation R ⊆ X × X ′ that satisfies

1. R[x] is closed for each x ∈ X ,
2. for each clopen B we have R−1[B] is clopen and is the interior of (R ◦ E)−1[B],
3. for each A ⊆ X , if A is nonempty, then R[A] is nonempty,
4. R ◦ E ◦ R−1 ⊆ E ′.

The identity morphisms in this category are identity relations. The rule of composition
S�R in Gle0 is not easily described, and we refer to [5, p. 399].

Remark 2.5 As is customary for functions, which we will treat as special relations, if R is a
relation from X to Y , and S is a relation from Y to Z , then we write the composite relation
from X to Z as S ◦ R. It is the set of all ordered pairs (x, z) such that there is y with x Ry
and ySz.

There are equivalences and dual equivalences among these categories as shown in Fig. 1.
We begin with the dual equivalence between KHaus and KRFrm that is known as Isbell duality
[2,16,17]. There is a functorO from KHaus to KRFrm taking a compact Hausdorff space X to
its frameOX of open sets and a continuous function f : X → Y to the frame homomorphism
f −1[ · ] : OY → OX . There is also a functor pt from KRFrm to KHaus taking a frame L
to its space of points, that is the frame homomorphisms p : L → 2, where the open sets
of the topology are the sets φ(a) = {p | p(a) = 1} for a ∈ L . This functor pt takes a
frame homomorphism f : L → M to the continuous map pt( f ) : ptM → pt L where
pt( f )(p) = p ◦ f .

Theorem 2.6 (Isbell duality) The open set functor O and the point functor pt provide a dual
equivalence between KHaus and KRFrm.
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The dual equivalence between KHaus and DeV is known as de Vries duality [3,9]. There
is a functorRO from KHaus to DeV that takes a compact Hausdorff space X to the complete
Boolean algebra of its regular open sets with the relation ≺ on this Boolean algebra given
by U ≺ V if CU ⊆ V . This functor takes a continuous function f : X → Y to the de Vries
homomorphism RO( f ) : ROY → ROX where RO( f )(U ) = IC f −1[U ].

For a de Vries algebra (A,≺) and S ⊆ A, we set ↡ S = {a | a ≺ s for some s ∈ S} and
↟S = {a | s ≺ a for some s ∈ S}. An ideal I of A is round if I = ↡ I , and a filter F of A is
round if F = ↟F . Maximal round filters are called ends. There is a functor End from DeV
to KHaus taking (A,≺) to the space of its ends topologized by taking as a basis all sets of
the form {E | a ∈ E} where a ∈ A and E is an end. For a de Vries morphism f : A → B,
End( f ) : End B → End A takes the end E to ↟ f −1[E].
Theorem 2.7 (De Vries duality) The regular open set functor RO and the end functor End
provide a dual equivalence between KHaus and DeV.

It follows from Theorems 2.6 and 2.7 that KRFrm is equivalent to DeV. For a direct point-
free proof of this result see [4].

We conclude by outlining the object level correspondence between compact Hausdorff
spaces and Gleason spaces. This is extended in [5] to an equivalence between KHaus and
Gle0. For a compact Hausdorff space X , let ̂X be the Stone space of the complete Boolean
algebra of regular open sets of X , and let π : ̂X → X be the map sending an ultrafilter u of
regular open sets of X to its unique limit point in X . Gleason [13] showed that π : ̂X → X
is irreducible, meaning that it is onto continuous and the image of a proper closed subset is
proper, that ̂X is projective inKHaus, and that the pair (̂X , π) is unique up to homeomorphism.
We call π : ̂X → X the Gleason cover of X .

Theorem 2.8 Let X be a compact Hausdorff space with Gleason cover π : ̂X → X and let
E = ker π . Then ̂X/E is compact Hausdorff and there is a homeomorphism ηX : X → ̂X/E
given by ηX (x) = π−1[x].
Proof This is easy to verify directly, but also follows from general considerations about
categories of algebras over a monad on sets. By Manes’ Theorem (see, e.g., [17, Sec. III.2]),
the category of compact Hausdorff spaces is equivalent to the category of algebras over the
ultrafilter monad on the category of sets. Every surjective homomorphism of such algebras
is the coequalizer of its kernel pair. �

Theorem 2.9 If (X , E) is a Gleason space, then the canonical quotient map κ : X → X/E
is the Gleason cover of X/E. More precisely, if π : ̂X/E → X/E is the Gleason cover
of X/E, then there is a homeomorphism ε(X ,E) : X → ̂X/E such that π ◦ ε(X ,E) = κ .1

Therefore, for F = ker π we have ε(X ,E) ◦ E = F ◦ ε(X ,E).

Proof Consult [13, Thm. 3.2] for the existence of such a homeomorphism ε(X ,E). The state-
ment about the composition of the relations is then a consequence of the commutativity
π ◦ ε(X ,E) = κ . �


3 Compact Hausdorff Spaces and Closed Relations

In this section we consider the category of compact Hausdorff spaces with closed relations,
give corresponding definitions of categories of compact regular frames and Gleason spaces,
and prove equivalences and dual equivalences for these categories.

1 This homeomorphism takes an element x to the ultrafilter of all regular open sets of X/E that contain x/E .
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Definition 3.1 A closed relation R between compact Hausdorff spaces X , Y is a subset
R ⊆ X × Y that is closed in the product topology.

The following is easily proved, and can be found in [5, Lem. 2.12].

Lemma 3.2 For a relation R from a compact Hausdorff space X to a compact Hausdorff
space Y , these are equivalent.

1. R is closed.
2. For any closed F ⊆ X and G ⊆ Y , both R[F] and R−1[G] are closed.
3. If (x, y) /∈ R, then there are open neighborhoods x ∈ U and y ∈ V with R[U ] ∩V = ∅.
This has as a consequence that the composite of closed relations is closed.

Definition 3.3 KHausR is the category of compact Hausdorff spaces and the closed relations
between them with composition being relational composition. The identity morphism on a
compact Hausdorff space X is the identity relation on X .

We note that the graph of every continuous function between compact Hausdorff spaces
is a closed relation. Hence, KHaus can be viewed as a non-full subcategory of KHausR that
has the same objects as KHausR. Such subcategories are usually called wide.

Definition 3.4 KRFrmR is the category of compact regular frames and preframe homomor-
phisms; that is, maps � : L → M between frames that preserve finite meets, including 1,
and directed joins. We note that 0 is not a directed join, so � need not preserve it.

Remark 3.5 Preframe homomorphisms between compact regular frames are exactly the Scott
continuous maps [11,12] that preserve finite meets. Thus, the category KRFrmR is a natural
object of study in its own right.

Clearly KRFrm is a wide subcategory of KRFrmR.

Definition 3.6 GleR is the category of Gleason spaces with a morphism between Gleason
spaces (X , E) and (X ′, E ′) being a closed relation R from X to X ′ with R◦E = R = E ′ ◦R.
Composition of morphisms is composition of relations and the identity morphism on (X , E)

is the relation E .

Remark 3.7 If R is a closed relation between compact Hausdorff spaces X and Y , then its
inverse R−1 is a closed relation between Y and X by Lemma 3.2. Therefore, KHausR carries
the structure of a dagger category (see, e.g., [15]), i. e. it admits a contravariant endofunctor
† : (

KHausR
)op → KHausR such that † is identity on objects and † ◦ † is the identity functor.

It is given by assigning to R : X → Y its inverse R−1 : Y → X . This in particular implies
that KHausR is self-dual. Similar comments hold for GleR.

We next discuss the equivalences and dual equivalences depicted in Fig. 2. The dual
equivalence between KHausR and KRFrmR follows from [19,21]. In view of Remark 3.7,
this dual equivalence is in fact an equivalence, and KRFrmR is also a dagger category (see
Remark 3.17).

Proposition 3.8 There is a contravariant functor OR:KHausR → KRFrmR that takes a com-
pact Hausdorff space X to its frame OX of open sets and a closed relation R ⊆ X × Y to
the function �R : OY → OX given by �RU = −R−1[−U ] = {x | R[x] ⊆ U }.
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Fig. 2 Equivalences and dual
equivalences involving KHausR

KHausR

GleR

KRFrmR

Proof This follows from [19, Prop. 3.3]. �

Proposition 3.9 There is a contravariant functor ptR : KRFrmR → KHausR that takes a
compact regular frame L to its space pt(L) of points and a morphism � : L → M to the
relation pt(�) = R� where qR� p for points p : L → 2 and q : M → 2 iff q ◦ � ≤ p.

Proof This follows from [19, Prop. 3.4]. �

Theorem 3.10 The functors OR and ptR give a dual equivalence between KHausR and
KRFrmR.

Proof See [21, Thm. 4.3.3]. It also follows from [19, Thm. 3.5]. �

We now turn our attention to the equivalence between KHausR and GleR.

Proposition 3.11 There is a functor GR : KHausR → GleR taking a compact Hausdorff space
X to the pair (̂X , E)whereπ : ̂X → X is theGleason cover of X and E = ker π . For compact
Hausdorff spaces X1 and X2 with Gleason covers π1 : ̂X1 → X1 and π2 : ̂X2 → X2, this
functor takes a closed relation R from X1 to X2 to the relation GR(R) = π−1

2 ◦ R ◦ π1.

Proof As described in the preliminaries, the pair (̂X , E) is a Gleason space. For GR(R) to
be a morphism in GleR it must be closed and satisfy GR(R) ◦ E1 = GR(R) = E2 ◦ GR(R).
Each πi : ̂Xi → Xi for i = 1, 2 is by definition irreducible, which implies that they are
continuous functions, hence closed relations. It is clear that the converse of a closed relation
is also closed, and the composite of closed relations is closed, thus GR(R) = π−1

2 ◦ R ◦ π1

is a closed relation. Since E1 = ker π1 and E2 = ker π2 we have that

E2 ◦ (π−1
2 ◦ R ◦ π1) = π−1

2 ◦ R ◦ π1 = (π−1
2 ◦ R ◦ π1) ◦ E1.

So GR(R) is a morphism in GleR. Let R : X1 → X2 and S : X2 → X3 be closed relations
between compact Hausdorff spaces, and let πi : ̂Xi → Xi for i = 1, 2, 3 be their Gleason
covers. Then GR(S)◦GR(R) = (π−1

3 ◦ S ◦π2)◦ (π−1
2 ◦ R ◦π1). Since π2 is onto, π2 ◦π−1

2 is
the identity relation, and this expression reduces to π−1

3 ◦ (S ◦ R) ◦ π1 = GR(S ◦ R). Finally,
GR applied to the identity relation on X is the relation π−1 ◦π = E on ̂X . Thus, GR preserves
identities. So GR is a functor. �

Proposition 3.12 There is a functorQR : GleR → KHausR that takes a Gleason space (X , E)

to the quotient space X/E. For Gleason spaces (X1, E1) and (X2, E2) and a morphism
R : (X1, E1) → (X2, E2), this functor takes R to QR(R) : X1/E1 → X2/E2 where
QR(R) = κ2 ◦ R ◦ κ−1

1 is the composite using the quotient maps κi : Xi → Xi/Ei for
i = 1, 2.
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Proof For a Gleason space (X , E), the relation E is closed, so X/E is a compact Hausdorff
space. The morphism R is by definition a closed relation from X1 to X2. Since the quotient
maps are continuous maps between compact Hausdorff spaces, they also are closed rela-
tions, and so are their inverses. Since the composite of closed relations is closed, we have
thatQR(R) is a closed relation, and hence a morphism of KHausR. To see that composition is
preserved, suppose R is a morphism from (X1, E1) to (X2, E2) and S is a morphism
from (X2, E2) to (X3, E3). Then QR(S) ◦ QR(R) = (κ3 ◦ S ◦ κ−1

2 ) ◦ (κ2 ◦ R ◦ κ−1
1 ).

But κ−1
2 ◦ κ2 = E2 and since R is a morphism, we have E2 ◦ R = R. Therefore,

QR(S) ◦ QR(R) = κ3 ◦ (S ◦ R) ◦ κ−1
1 = QR(S ◦ R). Since κ ◦ E ◦ κ−1 is the identity

relation on X/E , QR preserves identity morphisms, hence is a functor. �

Theorem 3.13 The functors GR and QR give an equivalence between KHausR and GleR.

Proof For a compact Hausdorff space X with Gleason cover π : ̂X → X and E = ker π ,
Theorem 2.8 gives a homeomorphism ηX : X → ̂X/E where ηX (x) = π−1[x]. Since ηX is a
homeomorphism, it is an isomorphism in KHausR. Suppose X1 and X2 are compactHausdorff
spaces with Gleason covers πi : ̂Xi → Xi for i = 1, 2 and R is a closed relation from X1 to
X2. Then QR GR(R) = κ2 ◦ π−1

2 ◦ R ◦ π1 ◦ κ−1
1 . Using the fact that κ−1

1 ◦ ηX1 = π−1
1 and

κ2 ◦ π−1
2 = ηX2 , it follows that QR GR(R) ◦ ηX1 = ηX2 ◦ R. Thus, the ηX provide a natural

transformation from the identity functor to QR GR.
For a Gleason space (X , E), we have that GR QR(X , E) is the Gleason space (̂X/E, F)

where F is the kernel of π : ̂X/E → X/E . Theorem 2.9 gives a homeomorphism ε(X ,E) :
X → ̂X/E taking x to the ultrafilter of regular open sets of X/E that contain x/E . This
theorem further provides F ◦ε(X ,E) = ε(X ,E) ◦ E . So ε(X ,E) is a morphism in GleR, and since
it is a homeomorphism, it follows that it is an isomorphism in this category.

Suppose R : (X1, E1) → (X2, E2) is a morphism inGleR. Then for κi : Xi → Xi/Ei and
πi : ̂Xi/Ei → Xi/Ei for i = 1, 2 we have GR QR(R) = π−1

2 ◦ κ2 ◦ R ◦ κ−1
1 ◦ π1. Using that

π−1
2 ◦ κ2 = ε(X2,E2) and κ−1

1 ◦ π1 = ε−1
(X1,E1)

we have GR QR(R) ◦ ε(X1,E1) = ε(X2,E2) ◦ R.

Thus, the ε(X ,E) provide a natural transformation from the identity functor to GR QR. �

Remark 3.14 Onemight hope to generalizeDeV to a categoryDeVR of de Vries algebras with
some type of morphisms and rule of composition with the following properties: (1) DeVR

is dually equivalent to KHausR, (2) DeV is a wide subcategory of DeVR, and (3) the duality
between DeVR and KHausR restricts to de Vries duality between DeV and KHaus. Below we
indicate that there are problems in the way of constructing one.

One such problem is raised by considering the empty relation R from the unit interval
I = [0, 1] to itself, and the relation S = {(1, 1)} from I to itself. Clearly both R and S are
closed relations. Onewould seek some type of functions�R and�S from the deVries algebra
ROI of regular open subsets of I to itself with �R(U ) and �S(U ) being some regular open
sets formed fromU using relational image and inverse image under R and S and set theoretic
and topological operations. The only sets one can form by taking R−1[U ], R[U ], S−1[U ],
or S[U ] for any set U ⊆ I are ∅ and {1}. Allowing complementation, arbitrary unions, and
arbitrary intersections, interior and closure, ∅, {1}, I \ {1} and I are the only sets one can
obtain from these, and the only regular open sets one can obtain in this way are ∅ and I . So
it is difficult to imagine a way to define �R and �S on ROI such that �R 	= �S .

Remark 3.15 As we pointed out in Remark 3.7, KHausR is a dagger category. It also has
additional structure and properties of interest. The situation is similar to that of the category
Rel of sets and relations which is treated in detail in [1, Sec. 3.1] and [14, Sec 9], and the
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proofs of the following statements amount only to verifying that the relations given in [1,14]
are closed. First, for compact Hausdorff spaces X , Y , their topological sum X 
 Y serves
as both a product and coproduct of X and Y in KHausR, and the associated injections and
projections have further properties required for the topological sum to provide biproducts for
KHausR. These biproducts are compatible with the dagger † and KHausR is a dagger biproduct
category. The usual cartesian product of sets gives a monoidal structure ⊗ on KHausR, and
with respect to this monoidal structure, KHausR is a strongly compact closed category with
biproducts [1, Def. 7.11]. Such categories are of interest for their role in categorical treatments
of quantum mechanics.

Remark 3.16 The category KHausR shares other properties with the category Rel of relations.
In particular, it comes with a partial order on hom-sets defined by set-theoretic inclusion of
closed relations. Order-enriched categories of this particular kind have been axiomatized in
slightly differentways in [8,10]. The terminology for the former isCartesian bicategories and
for the latterallegories. The structure of a general allegory amounts to havingmeet-semilattice
structure on hom-sets and involutions hom(X , Y ) → hom(Y , X) that are compatible with
composition and satisfy the modular identity. For KHausR the meet-semilattice structure
corresponds to the intersection of relations and the involution to assigning to R its inverse
R−1. The modular identity amounts to (R ◦ S) ∩ T ⊆ (R ∩ (T ◦ S−1)) ◦ S for S : X → Y ,
R : Y → Z , and T : X → Z .

The category KHausR has the structure of an allegory of special kind, called a tabular
allegory. In a general allegory, a map f : X → Y is defined as a morphism such that f −1

is adjoint to f ; that is, 1X ⊆ f −1 ◦ f and f ◦ f −1 ⊆ 1Y . In KHausR these are precisely
the relations which are graphs of continuous maps. A tabulation of a morphism R : X → Y
in an allegory is a pair of maps f : Z → X , g : Z → Y such that R = g ◦ f −1 and
( f −1 ◦ f ) ∩ (g−1 ◦ g) = 1Z . An allegory is called tabular if every morphism admits a
tabulation. For KHausR such tabulation for a closed relation R : X → Y is given by Z = R,
with the maps f : R → X , g : R → Y being the projections.

Remark 3.17 Due to the equivalences among KHausR, KRFrmR, and GleR, the latter two cate-
gories also have the additional structure discussed in the previous two remarks. Aswe pointed
out in Remark 3.7, the dagger structure of GleR is simply given by the relational inverse. For
KRFrmR, each preframe homomorphism is essentially of the form OR(R) = −R−1− for
some closed relation R between compact Hausdorff spaces. The dagger endofunctor takes
this morphism to OR(R−1) = −R−, again essentially obtained through relational inverse.
This can be realized directly. For a preframe homomorphism h : L → M we define its
dagger g : M → L as follows. For m meet-prime in M , set

g(m) =
∧

{n | n meet-prime in L and h(n) ≤ m};
and for an arbitrary x ∈ M set

g(x) =
∧

{g(m) | m meet-prime in M and x ≤ m}.
We leave it to the reader to verify the details.

4 Compact Hausdorff Spaces and Continuous Relations

In this section we restrict the dualities and equivalences obtained in the previous section to
the setting of continuous relations. A new duality involving de Vries algebras is added in
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this setting. Results in this section are closely linked to the study in [6,7] where continuous
relations on compact Hausdorff spaces were studied in relation to the Vietoris construction.
In fact, much of what we do here is suggested in [7, Rem. 4.9], although notation there is
different.

Definition 4.1 A relation R from a compact Hausdorff space X to a compact Hausdorff space
Y is continuous if it is closed and for each open set V ⊆ Y we have R−1[V ] is open.

A function is a special type of relation. It is well known that a function between compact
Hausdorff spaces is closed as a relation iff it is continuous as a function, which occurs iff it is
continuous as a relation. So closed relations and continuous relations are both generalizations
of continuous functions between compact Hausdorff spaces. Note also that the composition
of continuous relations is continuous.

Definition 4.2 KHausc is the category of compact Hausdorff spaces and the continuous rela-
tions between them.

Clearly KHausc is a wide subcategory of KHausR. We next consider a partner for KHausc

in the setting of compact regular frames.

Definition 4.3 A morphism � : L → M in KRFrmR is a c-morphism if there is a function
♦ : L → M , called the companion of �, that preserves arbitrary joins and satisfies

�(a ∨ b) ≤ �a ∨ ♦b and �a ∧ ♦b ≤ ♦(a ∧ b).

Remark 4.4 Such pairs of functions�,♦ : L → L on a frame L were studied in [6] as modal
operators on a compact regular frame. They were motivated by Johnstone’s construction of
the Vietoris frame V(L) [17,18]. It was shown in [6, Rem. 3.7] that� and♦ are interdefinable
via ♦a = ∨{¬�¬b | b ≺ a} and �a = ∨{¬♦¬b | b ≺ a}. These facts remain valid in our
more general setting of c-morphisms between L and M . In [6], pairs (�,♦) were taken as
basic. Here we take those � for which such ♦ exists as basic since it fits more nicely with
considerations of KRFrmR, but these approaches are clearly equivalent.

Proposition 4.5 The identity morphism on a frame L is a c-morphism, and the composition
of c-morphisms is a c-morphism.

Proof For� = idL take♦ = idL for its companion. For composition, suppose�1 : L → M
and �2 : M → N are c-morphisms with ♦1 and ♦2 their companions. We claim ♦2 ◦ ♦1 is
a companion to �2 ◦ �1. Since ♦2 ◦ ♦1 is a composite of maps that preserve arbitrary joins,
it preserves arbitrary joins. For the additional conditions note for i = 1, 2 that �i preserves
order since it preserves finite meets, and ♦i preserves order since it preserves arbitrary joins.
Thus,

�2�1(a ∨ b) ≤ �2(�1a ∨ ♦1b) ≤ �2�1a ∨ ♦2♦1b,

�2�1a ∧ ♦2♦1b ≤ ♦2(�1a ∧ ♦1b) ≤ ♦2♦1(a ∧ b).

�


Definition 4.6 KRFrmc is the wide subcategory of KRFrmR whose morphisms are the c-
morphisms.
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Before considering the dual equivalence between KHausc and KRFrmc we require several
facts. First, in any compact regular frame, if c ≺ a then ¬a ≺ ¬c, and by interpolation
there is b with c ≺ b ≺ a. Next, for a c-morphism � : L → M with companion ♦, it was
shown in [6, Lem. 3.6] that c ≺ a implies �c ≺ �a. In [6] this was proved in the setting
of � : L → L , but the general case requires only trivial modification. We also require the
following result that essentially appears in [7, Lem. 5.4], but in a different context. For clarity,
we state and prove this in the form required here.

Lemma 4.7 If � : L → M is a c-morphism with companion ♦, then for points p : L → 2
and q : M → 2, we have q ◦ � ≤ p iff p ≤ q ◦ ♦.

Proof “⇒” Suppose q ◦ � ≤ p and p(a) = 1. Since a = ∨{c | c ≺ a} and p is a point,
there is c ≺ a with p(c) = 1. So there is b with c ≺ b ≺ a. Then since c ∧ ¬c = 0 and
p(c) = 1, we have p(¬c) = 0. As q ◦ � ≤ p, we have that q(�¬c) = 0. Since c ≺ b
we have ¬b ≺ ¬c, hence �¬b ≺ �¬c. This means that ¬�¬b ∨ �¬c = 1. Therefore,
as q(�¬c) = 0, we have q(¬�¬b) = 1. Since ♦a = ∨{¬�¬b | b ≺ a} and q preserves
joins, q(♦a) = 1. So p ≤ q ◦ ♦.

“⇐” Suppose p ≤ q ◦ ♦ and q(�a) = 1. Since �a = ∨{¬♦¬c | c ≺ a} and q is a
point, there is c ≺ a with q(¬♦¬c) = 1. Since ¬♦¬c ∧ ♦¬c = 0, we have q(♦¬c) = 0.
By assumption p ≤ q ◦ ♦, so p(¬c) = 0. But c ≺ a gives ¬c ∨ a = 1, hence p(a) = 1. So
q ◦ � ≤ p. �

Theorem 4.8 KHausc is dually equivalent to KRFrmc.

Proof By Theorem 3.10, there is a dual equivalence between KHausR and KRFrmR given by
the functorsOR and ptR. It is enough to show that these functors restrict to functors between
the subcategories KHausc and KRFrmc. To do this, we must show for R a continuous relation,
that �R is a c-morphism; and for � a c-morphism, that R� is a continuous relation.

For a continuous relation R from X to Y , �R : OY → OX is defined by �R(U ) =
−R−1[−U ]. To show that �R is a c-morphism, we must show it has a companion. Define
♦R : OY → OX by ♦R[U ] = R−1[U ]. Since R is continuous, the preimage R−1[U ] is
open, so ♦R is well defined. Surely ♦R preserves arbitrary unions. The two inequalities in
Definition 4.3 are established in [6, Prop. 3.10] for the case of a continuous relation R from
X to itself, and carry over to the general case with obvious modification.

Suppose � : L → M is a c-morphism with companion ♦. Then R� is the relation from
pt(M) to pt(L) given by q R� p iff q ◦ � ≤ p. We have seen in Proposition 3.9 that R� is
closed. It remains to show for any open set φ(a) of pt(L) that the preimage R−1

� [φ(a)] is
open in pt(M). We claim that R−1

� [φ(a)] is the open set φ(♦a).

By Lemma 4.7, q R� p iff p ≤ q ◦ ♦. If q ∈ R−1
� [φ(a)], we have q R� p for some point

p of L with p(a) = 1. But then p ≤ q ◦ ♦ implies that q(♦a) = 1, hence q ∈ φ(♦a).
Conversely, let q ∈ φ(♦a). Set cq = ∨{b | q(♦b) = 0}, and note that q preserves arbitrary
joins, so cq is the largest element mapped by q ◦ ♦ to 0. Since q(♦a) = 1, we have a � cq .
Because compact regular frames are spatial, there is a point p of L with p(a) = 1 and
p(cq) = 0. Thus, every element mapped by q ◦ ♦ to 0 is mapped by p to 0, so p ≤ q ◦ ♦,
giving q R� p. As p(a) = 1 we have p ∈ φ(a), hence q ∈ R−1

� [φ(a)]. �

We next consider a partner for KHausc in the setting of de Vries algebras. But first a word

about our approach. When choosing morphisms for KRFrmc we chose certain functions �
that preserved finite meets, directed joins, and had a companion ♦ that preserved arbitrary
joins. Aswementioned,� and♦ determined one another.We chose to use� to be compatible
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with KRFrmR, but we could have chosen ♦ to serve as morphisms, or even the pair (�,♦)

for morphisms. A similar situation arises in creating a category DeVc. Choosing analogs of
� for morphisms would make comparison with KRFrmc more natural, but choosing analogs
of ♦ is better compatible with the usual composition in DeV, and is the course we take. The
next definition generalizes [6, Def. 4.7].

Definition 4.9 A map ♦ between de Vries algebras (A,≺) and (B,≺) is de Vries additive if
(i) ♦0 = 0 and (ii) a1 ≺ a2 and b1 ≺ b2 imply ♦(a1 ∨ b1) ≺ ♦a2 ∨ ♦b2.

A de Vries multiplicative map � is one with �1 = 1 where a1 ≺ a2 and b1 ≺ b2 imply
�a1 ∧ �b1 ≺ �(a2 ∧ b2). The two are dual concepts to each other. Namely, � is de Vries
multiplicative iff ¬�¬ is de Vries additive, and ♦ is de Vries additive iff ¬♦¬ is de Vries
multiplicative. We can work with either one of them, and each determines the other since ¬
is Boolean negation.

Proposition 4.10 There is a category DeVc whose objects are de Vries algebras, whose
morphisms are functions ♦ : A → B that are de Vries additive and satisfy ♦a = ∨{♦b |
b ≺ a}, and with composition defined as (♦2�♦1)a = ∨{♦2♦1b | b ≺ a}.
Proof Clearly identity maps are such morphisms. It remains to show that if ♦1 and ♦2 are
such morphisms, then so is ♦2�♦1, and that � is associative. For this observe that given such
a morphism ♦, de Vries additivity yields that a ≺ b implies ♦a ≺ ♦b, and a ≤ b implies
♦a ≤ ♦b since ♦a = ∨{♦c | c ≺ a} and ♦c ≺ ♦b implies ♦c ≤ ♦b.

Using these observations, it follows that ♦2�♦1 ≤ ♦2♦1. Using this, the properties
above, and interpolation, it follows that [♦3�(♦2�♦1)]a and [(♦3�♦2)�♦1]a are both equal
to

∨{♦3♦2♦1b | b ≺ a}. De Vries additivity of ♦2�♦1 follows from that of ♦2 and ♦1.
This implies that if b ≺ a then (♦2�♦1)b ≺ (♦2�♦1)a. Using this and ♦2�♦1 ≤ ♦2♦1 gives
(♦2�♦1)a = ∨{(♦2�♦1)b | b ≺ a}. So ♦2�♦1 is a morphism. �

Remark 4.11 Rather than define DeVc as we have done, we could work with functions � :
A → B that are de Vries multiplicative and satisfy �a = ∧{�b | a ≺ b}. The composition
in this case would be defined as (�2��1)a = ∧{�2�1b | a ≺ b}. The functions � and ♦
are definable from one another by � = ¬♦¬ and ♦ = ¬�¬.

Proposition 4.12 There is a contravariant functorROc : KHausc → DeVc taking a compact
Hausdorff space X to its de Vries algebra of regular open sets, and taking a continuous
relation R from X to Y to the map ♦R : ROY → ROX given by ♦RU = I C R−1[U ].
Proof Clearly ♦R is well defined, and a similar proof to [6, Thm. 5.8] shows that ♦R is a
morphism in DeVc. To show composition is preserved, we must show that for continuous
relations R from X to Y and S from Y to Z , that ♦S◦R U = (♦S�♦R)U . That is,

I C R−1S−1[U ] =
∨

{I C R−1 I C S−1[V ] | C V ⊆ U }.
That the left side is contained in the right follows since I C R−1S−1[U ] = ∨{I C R−1S−1[V ] |
C V ⊆ U } and clearly I C R−1S−1[V ] ⊆ I C R−1 I C S−1[V ]. For the other containment,
suppose C V ⊆ U . Since S−1 preserves closed and open sets,

I C S−1[V ] ⊆ I C S−1[C V ] = I S−1[C V ] ⊆ I S−1[U ] = S−1[U ].
Thus, I C R−1 I C S−1[V ] ⊆ I C R−1S−1[U ]. �
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Proposition 4.13 There is a contravariant functor Endc : DeVc → KHausc taking a de Vries
algebra (A,≺) to its space of ends, and taking a morphism ♦ : A → B to the relation R♦
from End B to End A given by E R♦ F iff ♦[F] ⊆ E.

Proof That R♦ is continuous can be proved as in [6, Thm. 5.2]. To see that composition is
preserved, for morphisms ♦1 : A → B and ♦2 : B → C we must show that R♦2�♦1 =
R♦1 ◦ R♦2 . We have E R♦2�♦1 F iff (♦2�♦1)[F] ⊆ E and E(R♦1 ◦ R♦2)F iff there is an
end G with ♦1[F] ⊆ G and ♦2[G] ⊆ E .

First suppose E(R♦1 ◦ R♦2)F . Then♦2♦1[F] ⊆ E . If a ∈ F , then since F is round, there
is b ∈ F with b ≺ a. So ♦2♦1b ≤ (♦2�♦1)a. Since ♦2♦1b ∈ ♦2♦1[F] ⊆ E , we conclude
that (♦2�♦1)a ∈ E . Thus, (♦2�♦1)[F] ⊆ E , and hence E R♦2�♦1 F .

Next suppose E R♦2�♦1 F , so (♦2�♦1)[F] ⊆ E . Since F is a round filter and ♦1 is de
Vries additive, ↟♦1[F] is a round filter. Also, since E is an end and ♦2 is de Vries additive,
{b | ♦2↟b � E} is a round ideal. As ♦2�♦1 ≤ ♦2♦1 we have that ↟♦1[F] is disjoint from
{b | ♦2↟b � E}. So there is an end G containing ↟♦1[F] and disjoint from {b | ♦2↟b � E}.
But then ♦1[F] ⊆ G and ♦2[G] ⊆ E . Thus, E(R♦1 ◦ R♦2)F . �

Theorem 4.14 The functors ROc and Endc give a dual equivalence between KHausc and
DeVc.

Proof For a compact Hausdorff space X and de Vries algebra (A,≺), the natural isomor-
phisms in de Vries duality are given by ηX : X → End(ROX) and εA : A → RO(End A)

where ηX (x) = {U | x ∈ U } and εA(a) = {E | a ∈ E}. Since ηX is a homeomorphism, it
is an isomorphism in KHausc, and since εA is a de Vries isomorphism, it is an isomorphism
also in DeVc. For a continuous relation R from X to Y and morphism ♦ : A → B in DeVc,
we must show that the following diagrams commute.

X Y

End(ROX) End(ROY )

A B

RO(End(A)) RO(End(B))

ηX ηY

R♦R

R

εA εB

♦R♦

♦

If x R y then for each regular open V with y ∈ V wehave R−1[V ] is an open neighborhood
of x , hence ♦RV = I C R−1[V ] is in ηX (x), so ηX (x) R♦R ηY (y). If x is not R-related to y
then since R is closed, there are regular open neighborhoods U of x and V of y with U × V
disjoint from R. So U is disjoint from R−1[V ], and therefore I C R−1[V ] /∈ ηX (x), showing
that ηX (x) is not R♦R -related to ηY (y).

For the second diagram, let a ∈ A. Consider [6, Thm. 5.2(1)]. This result uses ϕ(a) in
place of our εA(a), and is in the context of ♦ : A → A. But with obvious modifications it
shows that R−1

♦ εA(a) = ⋃{εB(♦a′) | a′ ≺ a}. Since ♦R♦ = I C R−1
♦ and ♦R♦ is de Vries

additive, it follows that
∨{♦R♦εA(a′) | a′ ≺ a} is equal to ∨{εB(♦a′) | a′ ≺ a}, and hence

from the definition of composition, that (♦R♦�εA)(a) = (εB�♦)(a). �

For a Gleason space (X , E), we say that U ⊆ X is saturated if E[U ] = U . Note that if

R is a morphism in GleR from (X , E) to (X ′, E ′), then R ◦ E = R = E ′ ◦ R, giving that the
preimage of any S′ ⊆ X ′ is saturated. The following is then obvious.

Proposition 4.15 There is a wide subcategory Glec of GleR whose morphisms R ⊆ X × X ′
in addition satisfy that R−1[U ] is open when U is a saturated open of X ′.
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Theorem 4.16 KHausc is equivalent to Glec.

Proof By Theorem 3.13, there is an equivalence between KHausR and GleR given by the
functors GR and QR. It is enough to show that these functors restrict to functors between
the subcategories KHausc and Glec. To do this, we must show for R a continuous relation,
that GR(R) is a morphism in Glec; and for S a morphism in Glec, that QR(S) is a continuous
relation.

̂X1 ̂X2

X1 X2

(X1, E1) (X2, E2)

X1/E1 X2/E2

π1 π2

R

GR(R)

κ1 κ2

QR(S)

S

Suppose R is a continuous relation between compact Hausdorff spaces X1 and X2. Then
for i = 1, 2 we have GR(Xi ) = (̂Xi , Ei ) where πi : ̂Xi → Xi is the Gleason cover
and Ei = ker πi , and GR(R) = π−1

2 ◦ R ◦ π1. Let U ⊆ X2 be saturated open. Then
GR(R)−1[U ] = (π−1

1 ◦ R−1 ◦ π2)[U ]. SinceU is saturated and π2 is a continuous map from
̂X2 onto X2, hence a quotient map, π2[U ] is open. Then continuity of R and π1 give that
GR(R)−1[U ] is open.

Suppose that (Xi , Ei ) are Gleason spaces for i = 1, 2 and S is a morphism in Glec from
(X1, E1) to (X2, E2). Wemust show thatQR(S) is continuous. Suppose V ⊆ X2/E2 is open.
Then QR(S)−1[V ] = (κ1 ◦ S−1 ◦ κ−1

2 )[V ]. Since κ2 is the quotient map for the equivalence
relation E2, we have that κ−1

2 [V ] is saturated open in X2. Then since S is a morphism in
Glec we have (S−1 ◦ κ−1

2 )[V ] is open, and as noted above also saturated. Thus, since κ1 is a
quotient map, (κ1 ◦ S−1 ◦ κ−1

1 )[V ] is open. �

We conclude this section by giving an example of a morphism in Glec that is not a

continuous relation, and a further remark.

Example 4.17 Let X = βN be the Stone-Čech compactification of the natural numbers and
define E on X by letting E be the diagonal on N and setting x Ey for all x, y in the remainder
N

∗ := βN \ N. Then (X , E) ∈ Glec. Now define R ⊆ X × X by setting R = E . Clearly R
is closed and R ◦ E = R = E ◦ R. Moreover, if U is a saturated open, then either U ⊆ N

or N

∗ ⊆ U . In either case R−1[U ] = U . Therefore, R is a morphism in Glec. On the other
hand, letU be clopen in X such thatU ∩N

∗,−U ∩N

∗ 	= ∅. Then R−1[U ] = (U ∩N)∪N

∗,
which is not open. Thus, R is not a continuous relation.

Remark 4.18 Since the notion of a continuous relation is not symmetric, i. e. the inverse of
a continuous relation is not continuous in general, the category KHausc possesses neither
the structure of a dagger category nor that of an allegory. Nevertheless, an important feature
emerges in KHausc that was absent in KHausR. Namely, continuous relations R : X → Y
become representable by continuous maps X → VY to the Vietoris space of Y .

By [22, Thm. 5.6], the Vietoris endofunctor on KHaus carries a monad structure. The
multiplication transformation VVX → VX of this monad assigns to a closed set in VX
its union in X . It follows that the Kleisli composition for this monad corresponds to the
relational composition in KHausc, and hence KHausc is equivalent to the Kleisli category
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for this monad. For KHausR there is no similar description since closed (but not necessarily
continuous) relations correspond to continuous maps to VX with the Scott topology, and
with this topology VX is not Hausdorff in general. However, the category of stably compact
spaces with closed relations is equivalent to the Kleisli category of a monad [19, Prop. 2.10].

5 Compact Hausdorff Spaces and Interior Relations

In this section we restrict the dualities and equivalences obtained in the previous section for
continuous relations to the setting of interior relations.

Definition 5.1 Aclosed relation R from a compactHausdorff space X to a compactHausdorff
space Y is interior if for each open set U ⊆ X and each open set V ⊆ Y , we have R[U ] and
R−1[V ] are open. In other words, R is interior provided both R and R−1 are continuous.

A function between topological spaces is called an interior function if it is continuous
and open. As noted before, a function between compact Hausdorff spaces is continuous iff
it is closed when considered as a relation between the spaces. Thus, the interior functions
between compact Hausdorff spaces are exactly the interior relations between the spaces that
are functions.Noting that the composite of interior relations is an interior relation immediately
gives the following.

Proposition 5.2 The collection of compact Hausdorff spaces with the interior relations
between them forms a category KHausi that is a wide subcategory of KHausc.

Remark 5.3 It would be natural to consider also open relations from a compact Hausdorff
space X to a compact Hausdorff space Y . These are closed relations R from X to Y where
R[U ] is an open subset of Y for each open U ⊆ X . However, the category of compact
Hausdorff spaces and open relations is simply the opposite of the category KHausc of compact
Hausdorff spaces and continuous relations, so little new is gained from this direction.

Definition 5.4 Let KRFrmi be the category whose objects are compact regular frames and
whose morphisms are the morphisms � : L → M of KRFrmc that have a left adjoint. We
call such morphisms i-morphisms.

Clearly KRFrmi is a wide subcategory of KRFrmc.

Theorem 5.5 KHausi is dually equivalent to KRFrmi.

Proof By Theorem 4.8, there is a dual equivalence between KHausc and KRFrmc given by
the restrictions of the functors OR and ptR. It is enough to show that these functors restrict
further to functors between KHausi and KRFrmi. To do this, we must show that if R is an
interior relation, then �R is an i-morphism; and if � is an i-morphism, then R� is an interior
relation. This means we must show that if R is an interior relation, then�R has a left adjoint;
and if � is a c-morphism with a left adjoint, then R� is an interior relation.

Suppose X , Y are compact Hausdorff spaces and R ⊆ X × Y is an interior relation. Then
R[·] is an order preserving function from OX to OY . Let U ⊆ X and V ⊆ Y be open.
Since �R(V ) = {x | R[x] ⊆ V }, we have (R ◦ �R)(V ) ⊆ V , so R ◦ �R ≤ idOY . Also,
U ⊆ {x | R[x] ⊆ R[U ]} = (�R ◦ R)(U ), so idOX ≤ �R ◦ R. Thus, R is a left adjoint of
�R .
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Suppose � : L → M is a c-morphism between compact regular frames that has a
left adjoint f : M → L . Earlier results provide that R� is a continuous relation from
ptM to ptL . An open set of ptM is of the form φ(a) = {q ∈ ptM | q(a) = 1}. By
definition, R�[φ(a)] = {p ∈ ptL | q ◦ � ≤ p for some q with q(a) = 1}. We claim that
R�[φ(a)] = φ( f (a)), so R� is open, hence interior.

Suppose p ∈ R�[φ(a)], so there is q ∈ φ(a)with q◦� ≤ p. Then q(� f (a)) ≤ p( f (a)).
But f being a left adjoint of � gives that idL ≤ � ◦ f , hence a ≤ � f (a). Therefore,
1 = q(a) ≤ q(� f (a)) ≤ p( f (a)), showing p ∈ φ( f (a)). For the other containment,
suppose p ∈ φ( f (a)). Since p is a point, it preserves arbitrary joins, so there is a largest
element c ∈ L with p(c) = 0. As p( f (a)) = 1, we have f (a) � c. Because f is the left
adjoint of�, we have a � �c. But then there is a point q ofM with q(a) = 1 and q(�c) = 0.
For any d with p(d) = 0, we have d ≤ c, hence �d ≤ �c, so q(�d) ≤ q(�c) = 0.
Therefore, q ◦ � ≤ p. Thus, p ∈ R�[φ(a)]. �


In the setting of maps between Boolean algebras, there is another feature to adjoints.
Suppose A and B are Boolean algebras and f : A → B and g : B → A have f left adjoint
to g and so g right adjoint to f . Let h : B → A be the dual of g given by h(b) = ¬g(¬b).
Then f , h have the following property which defines them to be conjugates:

f (a) ∧ b = 0 iff a ∧ h(b) = 0.

It is easily seen that g is right adjoint to f iff f , h are conjugates. Thus, if a map has
a conjugate, it is unique. The property of being conjugates is symmetric, and each map
involved in a pair of conjugates preserves arbitrary joins.

Proposition 5.6 There is a wide subcategory DeV i of DeVc whose morphisms are the mor-
phisms ♦ of DeVc that have conjugates that belong to DeVc.

Proof Suppose ♦1 : A → B and ♦2 : B → C are morphisms in DeVc that have conjugates
h2 : C → B and h1 : B → A that also belong toDeVc. It is easily seen that the usual function
composites ♦2♦1 and h1h2 are conjugates. We must show that the composites ♦2�♦1 and
h1�h2 in DeVc are conjugates. Earlier results show that they indeed belong to DeVc.

In the following, we make use of the infinite distributive law in the complete Boolean
algebras A and C , the definition of composition �, that ♦2♦1 and h1h2 are conjugates, and
the fact that a = ∨{a′ | a′ ≺ a}. If (♦2�♦1)(a) ∧ c = 0, then

∨{♦2♦1a′ | a′ ≺ a} ∧ c = 0,
so (♦2♦1a′) ∧ c = 0 for each a′ ≺ a. This gives a′ ∧ (h1h2c) = 0 for each a′ ≺ a,
hence a′ ∧ (h1h2c′) = 0 for each a′ ≺ a and c′ ≺ c. So a′ ∧ ∨{h1h2c′ | c′ ≺ c} = 0
for each a′ ≺ a, giving a′ ∧ (h1�h2)(c) = 0. Since this is true for each a′ ≺ a, we have
∨{a′ | a′ ≺ a}∧(h1�h2)(c) = 0, hencea∧(h1�h2)(c) = 0. Showing thata∧(h1�h2)(c) = 0
implies (♦2�♦1)(a) ∧ c = 0 is similar. �

Theorem 5.7 There is a dual equivalence between KHausi and DeV i.

Proof Theorem 4.14 provides a dual equivalence between KHausc and DeVc. We must show
that the functors giving this equivalence restrict to functors between KHausi and DeV i. So if
X and Y are compact Hausdorff spaces and R ⊆ X ×Y is an interior relation, we must show
that♦R : ROY → ROX given by♦RU = I C R−1[U ] has a conjugate that belongs toDeVc;
and if ♦ : (A,≺) → (B,≺) is a morphism in DeV i with a conjugate that belongs to DeVc,
we must show that the relation R♦ from End B to End A given by E R♦ F iff ♦[F] ⊆ E is
interior.

Suppose R ⊆ X × Y is interior and let h : ROX → ROY be given by h(V ) = I C R[V ].
Note that since R is interior, so is R−1. Thus, h = ♦R−1 , and hence belongs toDeVc. Suppose
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U ∈ ROX and V ∈ ROY with ♦RV ∧ U = 0. Then I C R−1[V ] ∩ U = ∅, and as R−1[V ]
is open, R−1[V ] ∩ U = ∅. Thus, no element of U is R-related to an element of V , hence
V ∩ R[U ] = ∅. Since V , R[U ] are open, we have V ∩ C R[U ] = ∅, so V ∩ I C R[U ] = ∅,
and hence V ∧ ♦R−1U = 0. Showing that V ∧ ♦R−1U = 0 implies ♦RV ∧ U = 0 follows
by symmetry. Thus, ♦R−1 is a conjugate of ♦R that belongs to DeVc.

Suppose♦ : A → B is a morphism inDeVc that has a conjugate♦′ : B → A that belongs
to DeVc. Then R♦ is the relation from End B to End A defined by E R♦ F iff ♦[F] ⊆ E ,
and R♦′ is the relation from End A to End B defined by F R♦′ E iff ♦′[E] ⊆ F . We claim
that E R♦ F iff F R♦′ E , so R♦′ = R−1

♦ . Results regarding DeVc then provide that both R♦
and R−1

♦ are continuous, and hence R♦ is interior.
Suppose E ∈ End B and F ∈ End Awith♦[F] ⊆ E .We show♦′[E] ⊆ F . Let a ∈ ♦′[E].

Then a = ♦′b for some b ∈ E . A basic property of ends [9, Thm. I.2.2] provides that if x ≺ y,
then either ¬x or y belongs to the end. If b′ ≺ b, de Vries additivity of ♦′ gives ♦′b′ ≺ ♦′b.
Therefore, if a = ♦′b does not belong to F , then¬♦′ b′ ∈ F for each b′ ≺ b. The assumption
that ♦[F] ⊆ E then gives that ♦¬♦′ b′ ∈ E for each b′ ≺ b. Thus, ♦¬♦′¬¬b′ ∈ E for each
b′ ≺ b. Letting �′ = ¬♦′¬, we have that �′ is right adjoint to ♦, and hence ♦�′ ≤ idB .
Since ♦�′¬b′ ∈ E for each b′ ≺ b and ♦�′¬b′ ≤ ¬b′, we then have that ¬b′ ∈ E for
each b′ ≺ b. So b′ /∈ E for each b′ ≺ b. Since b ∈ E , this contradicts that E is round. This
contradiction shows that a = ♦′b ∈ F , and therefore that ♦′[E] ⊆ F . Symmetry provides
that ♦′[E] ⊆ F implies ♦[F] ⊆ E . �

Example 5.8 As follows from Proposition 5.6, morphisms in DeV i are morphisms ♦ in DeVc

that have a conjugate that is a morphism in DeVc. It is not the case that if a morphism ♦
in DeVc has a conjugate h, then h is a morphism in DeVc. Let S = {1/n | n ∈ Z \ {0}}
and consider S ∪ {x} where x /∈ S and S ∪ {x} is given the discrete topology. Let X be
the one-point compactification of S ∪ {x}. Clearly X is compact Hausdorff. Let 0 be the
compactification point. Define R ⊆ X × X to be the union of the usual partial ordering
on S ∪ {0} and {(x, 1/n) | n ≥ 1} ∪ {(x, 0), (x, x)}. One verifies that R is a continuous
relation from X to X that is not interior. Then ♦R is a morphism in DeVc that has a conjugate
h = I C R, but the conjugate is not a morphism in DeV i.

−1

− 1
2

0

x

1
2

1

Recall that for (X , E) a Gleason space, U ⊆ X is saturated if E[U ] = U . Note that if R
is a morphism in GleR from (X , E) to (X ′, E ′), then R ◦ E = R = E ′ ◦ R, giving that the
image of any S ⊆ X is saturated. The following is then obvious.

Proposition 5.9 There is a wide subcategory Glei of Glec whose morphisms R ⊆ X × X ′ in
addition satisfy that R[U ] is open when U is a saturated open of X.

Theorem 5.10 KHausi is equivalent to Glei.
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Proof Theorem 4.16 provides that KHausc is equivalent to Glec. We need only show that the
functors involved in this equivalence restrict to functors between KHausi and Glei. So if X1

and X2 are compact Hausdorff spaces and R ⊆ X1 × X2 is an interior relation, we must
show that the relation π−1

2 ◦ R ◦ π1 from ̂X1 to ̂X2 has the image of a saturated open set
open. Also, if R is a morphism in Glei between Gleason spaces (X1, E1) and (X2, E2), we
must show that the relation κ2 ◦ R ◦ κ−1

1 from X1/E1 to X2/E2 has the image of an open set
open.

Suppose R ⊆ X1 × X2 is an interior relation. Then R−1 ⊆ X2 × X1 is a continuous
relation. So our earlier results provide that the preimage under π−1

1 ◦ R−1 ◦π2 of a saturated
open subset U ⊆ X1 is open. But (π

−1
1 ◦ R−1 ◦ π2)

−1[U ] = (π−1
2 ◦ R ◦ π1)[U ] is open, as

required.
Suppose R is a morphism in Glec from (X1, E1) to (X2, E2) so that for a saturated open

set U ⊆ X1 we have R[U ] is open. Then R−1 is a morphism in Glec. So κ2 ◦ R ◦ κ−1
1 and

κ1 ◦ R−1 ◦ κ−1
2 are continuous relations. Since they are inverse to each other, κ2 ◦ R ◦ κ−1

1
is an interior relation. �

Remark 5.11 In Remark 3.15 we described further properties of KHausR. In particular, it is a
self-dual category, and even a strongly compact closed category with biproducts. It is routine
to verify that the biproduct injections and projections in KHausR are interior relations, and
that the tensor product of interior relations is interior. This yields that KHausi is a monoidal
category with biproducts. As before, the dagger on morphisms is given by relational inverse,
biproducts by disjoint sums, and the Cartesian product provides an additional symmetric
monoidal structure. However, unlike KHausR, the monoidal structure is not closed since the
evaluation and coevaluation morphisms required for the closed monoidal structure are not
interior. Indeed, it is easy to see that for compact Hausdorff spaces X , Y these should be
given by the relation between X × X ×Y and Y defined by the diagonal embedding of X ×Y
into X × X × Y × Y , so the resulting map X × Y → X × X × Y is not open, hence the
relation is not interior.

Remark 5.12 In Remark 3.16 we saw that KHausR is a tabular allegory. Since a relation
R : X → Y is interior iff its inverse is interior iff both projections R → X and R → Y are
interior, it is easy to see that KHausi is also a tabular allegory. However, the Vietoris functor
does not equip KHausi with the structure of a power allegory because interior relations
R : X → Y no longer correspond to interior maps X → VY to the Vietoris space of Y . For
example, while the identity relation R : X → X is interior, the correspondingmap X → VX ,
assigning to x ∈ X the singleton {x} ∈ VX , is not in general an interior map.

6 Restricting to KHaus, KRFrm, and DeV

In this section we restrict the dualities and equivalences established in the previous sections
to the setting of compact Hausdorff spaces and continuous functions. The duality between
KHausR and KRFrmR that restricts to a duality between KHausc and KRFrmc further restricts
to Isbell duality between KHaus and KRFrm. We show that the duality between KHausc

and DeVc restricts to de Vries duality between KHaus and DeV, and that the equivalence
between KHausR and GleR that restricts to an equivalence between KHausc and Glec further
restricts to an equivalence between KHaus and Gle. As a consequence, we obtain dualities
and equivalences between the wide subcategory of KHaus whose morphisms are interior
functions and the corresponding wide subcategories of KRFrm, DeV, and Gle.
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Theorem 6.1 The dual equivalence between KHausR and KRFrmR given by OR and ptR

restricts to Isbell duality between KHaus and KRFrm that is given by O and pt. Therefore,
the dual equivalence between KHausc and KRFrmc also restricts to Isbell duality.

Proof That the dual equivalence between KHausR and KRFrmR restricts to Isbell duality
follows from [19, Cor. 3.7]. Since KHaus ⊆ KHausc ⊆ KHausR and KRFrm ⊆ KRFrmc ⊆
KRFrmR, we then have that the dual equivalence between KHausc and KRFrmc also restricts
to Isbell duality. �

Theorem 6.2 The category DeV is a wide subcategory of DeVc and the dual equivalence
between KHausc and DeVc given byROc and Endc restricts to de Vries duality between the
subcategories KHaus and DeV.

Proof Clearly the objects of DeV are those of DeVc, and the rule of composition is the same
in both categories. By [4, Lem. 2.2], every de Vries morphism is de Vries additive. Thus,
DeV is a wide subcategory of DeVc.

Suppose ♦ : A → B is a morphism in DeV. Then EndR(♦) is the continuous relation R♦
from End B to End A given by E R♦ F iff ♦[F] ⊆ E . We have ♦[F] ⊆ E iff F ⊆ ♦−1[E].
Since F is round, this is equivalent to F ⊆ ↟♦−1[E]. By de Vries duality, ↟♦−1[E] is an
end, yielding that F = ↟♦−1[E]. Therefore, ↟♦−1[E] is a unique end F of A satisfying
♦[F] ⊆ E . Thus, EndR(♦) = End(♦).

Let f : X → Y be a continuous function between compact Hausdorff spaces. Then
ROc( f ) is the map ♦ f : ROY → ROX given by ♦ f U = I C f −1[U ]. This is identical to
the definition of RO( f ). Thus, the dual equivalence between KHausc and DeVc restricts to
de Vries duality between KHaus and DeV. �


We next turn our attention to the equivalence between KHausR and GleR given by the
functors GR andQR, and its restriction to an equivalence between KHausc and Glec. We wish
to restrict this further to the setting of KHaus. To do so, we must isolate a wide subcategory of
Glec whose morphisms correspond to the GR( f ) where f is a continuous function between
compact Hausdorff spaces.

Definition 6.3 A morphism R in GleR between Gleason spaces (X1, E1) and (X2, E2) is
functional if E1 ⊆ R−1 ◦ R and R ◦ R−1 ⊆ E2.

The ordinary notion of adjunction has an analoguewhen the category is enriched in posets;
that is, when homsets carry the structure of a poset. Then for morphisms f : A → B and
g : B → A we say that f is left adjoint to g and g is right adjoint to f provided 1A ≤ g ◦ f
and f ◦ g ≤ 1B .

Proposition 6.4 A morphism R : (X1, E1) → (X2, E2) in Gle
R is functional iff it has a right

adjoint.

Proof For i = 1, 2 since Ei is the identity on (Xi , Ei ), it follows from the definition that if
R is functional, then R−1 is the right adjoint of R. Conversely, suppose that S : (X2, E2) →
(X1, E1) is the right adjoint of R. To see that S = R−1, let ySx . As x E1x and E1 ⊆ S ◦ R,
there is y′ ∈ X2 such that x Ry′ and y′Sx . Therefore, ySx and x Ry′. Because R ◦ S ⊆ E2,
this yields yE2y′. Thus, x Ry′ and y′E2y, which gives x Ry. Consequently, S ⊆ R−1. The
reverse inclusion is proved similarly. �


If an equivalence between categories enriched in posets preserves the order of homsets,
then morphisms that have right adjoints in one category transfer to morphisms that have
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right adjoints in the other. For an order-enriched category, its category of adjunctions is its
wide subcategory whose morphisms have a right adjoint. It follows from [19, Cor. 4.9] that
a morphism in KHausR has a right adjoint iff it is a continuous function. (Note that [19] uses
⊇ rather than ⊆ as the order on the homsets.) Thus, KHaus is the category of adjunctions of
KHausR. We next consider the category of adjunctions in GleR.

Definition 6.5 Let Gle be the wide subcategory of GleR whose morphisms are functional
(i.e. Gle is the category of adjunctions in GleR).

Proposition 6.6 Gle is a wide subcategory of Glec.

Proof Let R : (X1, E1) → (X2, E2) be a morphism in Gle. To see that R is a morphism
in Glec, let U be saturated open in X2. We claim that R−1[U ] = −R−1[−U ]. Clearly
−R−1[−U ] ⊆ R−1[U ]. Suppose x ∈ R−1[U ]. Then there is y ∈ U with x Ry. To see that
R[x] ⊆ U , let x Rz. Since R is functional, yE2z. As U is saturated, y ∈ U and yE2z imply
z ∈ U . Therefore, R[x] ⊆ U , and hence x ∈ −R−1[−U ]. Since R is a closed relation,
−R−1[−U ] is open, so R−1[U ] is open, and so R is a morphism in Glec. �


Since the equivalence of Theorem 3.13 between KHausR and GleR preserves the order
of homsets, it restricts to an equivalence between their categories of adjunctions. Thus, by
Theorem 4.16 and Proposition 6.6, we arrive at the following theorem.

Theorem 6.7 The functors GR andQR giving an equivalence between KHausR and GleR that
restricts to an equivalence between KHausc and Glec further restricts to an equivalence
between KHaus and Gle.

Remark 6.8 It is instructive to see more directly why morphisms in Gle correspond to
morphisms in KHaus. Suppose R : (X1, E1) → (X2, E2) is a morphism in Gle. Then
QR(R) : X1/E1 → X2/E2 is the relation κ2 ◦ R ◦ κ−1

1 where κi : Xi → Xi/Ei is the
quotient map. We know that QR(R) is a continuous relation, so we only need to show that
it is a function. Let x1 ∈ X1. Since R is functional we have (i) E1 ⊆ R−1 ◦ R and (ii)
R ◦ R−1 ⊆ E2. By (i) there is x2 ∈ X2 with x1 R x2. Thus,

x1/E1 κ−1
1 x1 R x2 κ2 x2/E2.

So each element of X1/E1 is QR(R)-related to an element of X2/E2. We must show it is
related to only one such element. Suppose x ′

1 ∈ X1 and x ′
2 ∈ X2 are such that

x1/E1 κ−1
1 x ′

1 R x ′
2 κ2 x ′

2/E2.

Then x1 E1 x ′
1. So x1 E1 x ′

1 R x ′
2. Since R is a morphism in GleR we have x1 R x ′

2. Then
x ′
2 R

−1 x1 R x2. By (ii) we have x2 E2 x ′
2. This gives x2/E2 = x ′

2/E2. SoQR(R) is a function.

Remark 6.9 As we pointed out in Remark 3.7, KHausR has a dagger structure given by R† =
R−1. This dagger structure carries to KRFrmR and GleR. For GleR the dagger is again given
by the relational inverse, but the description of the dagger in KRFrmR is more involved (see
Remark 3.17). It is noteworthy that when a morphism in KHausR has a right adjoint, then it is
given by the dagger. This follows from [19, Cor. 4.9] and the observation that for a continuous
function f : X → Y we have 1X ⊆ f −1 ◦ f and f ◦ f −1 ⊆ 1Y . This carries over to Gle

R as
is witnessed by Proposition 6.4. It also carries to KRFrmR, but a direct proof is not obvious.
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Remark 6.10 The categories Gle and Gle0 are equivalent since both are dually equivalent to
DeV. The equivalence canbeobtaineddirectly as follows.The functorS : Gle0 → Gle is iden-
tity on the objects and sends a morphism S inGle0 to the morphism R = E ◦S◦E inGle. The
functor T : Gle → Gle0 is also identity on the objects and sends a morphism R in Gle to the
morphism S inGle0 given by xSy iff x ∈ ⋂{IR−1[U ] | y ∈ U }, whereU ranges over clopens.
Intuitively, since R is not continuous in general, S is a continuous approximation of R.

Remark 6.11 It is natural to consider the intersection of the subcategories KHaus and KHausi

of KHausR as they yield the category of compact Hausdorff spaces and interior maps (con-
tinuous open maps). Considering our other categories as well, we define:

KHauso = KHaus ∩ KHausi;
KRFrmo = KRFrm ∩ KRFrmi;
DeVo = DeV ∩ DeVi;
Gleo = Gle ∩ Glei.

Then Theorems 5.5 and 6.1 yield that KHauso is dually equivalent to KRFrmo. Similarly,
Theorems 5.7 and 6.2 give that KHauso is dually equivalent to DeVo, and Theorems 5.10 and
6.7 provide an equivalence between KHauso and Gleo. Thus, KRFrmo is equivalent to DeVo,
and both are dually equivalent to Gleo.

Remark 6.12 By the dual equivalence between KHauso and KRFrmo, an interior map cor-
responds to a frame homomorphism having a left adjoint, hence to a complete lattice
homomorphism. In general, a continuous map between topological spaces is interior iff the
corresponding frame homomorphism h : L → M has a left adjoint g : M → L satisfying
the Frobenius equality

g(h(a) ∧ b) = a ∧ g(b).

However, if L is regular (or more generally subfit), then the Frobenius equality always holds
(see, e.g., [20, V.1.8]). Thus, we do not need to require the Frobenius equality.

We conclude the paper with several tables that list the categories considered, and equiva-
lences and dual equivalences established.

Categories of compact Hausdorff spaces

Category Morphisms Appears

KHausR closed relations 3.3
KHausc continuous relations 4.2
KHausi interior relations 5.2
KHaus continuous maps 2.1
KHauso interior maps 6.11

Categories of Gleason spaces

Category Morphisms Appears

GleR closed relations with R ◦ E = R = E ′ ◦ R 3.6
Glec morphisms in GleR with R−1[U ] open for each saturated open U 4.15
Glei morphisms in Glec with R[U ] open for each saturated open U 5.9
Gle functional morphisms 6.5
Gle0 as in [5] 2.4
Gleo functional morphisms in Glei 6.11

123



G. Bezhanishvili et al.

Categories of compact regular frames

Category Morphisms Appears

KRFrmR preframe homomorphisms 3.4
KRFrmc c-morphisms 4.6
KRFrmi i-morphisms 5.4
KRFrm frame homomorphisms 2.2
KRFrmo i-morphisms that are frame homomorphisms 6.11

Categories of de Vries algebras

Category Morphisms Appears

DeVc de Vries additive ♦ : A → B with ♦a = ∨{♦b | b ≺ a} 4.10
DeVi morphisms in DeVc that have conjugates in DeVc 5.6
DeV de Vries morphisms 2.3
DeVo de Vries morphisms that have conjugates in DeVc 6.11

Equivalences

Functors Appears

(

KHausR
)op OR

ptR
KRFrmR 3.10

KHausR
GR

QR
GleR 3.13

(

KHausc
)op OR

ptR
KRFrmc 4.8

(

KHausc
)op ROc

Endc
DeVc 4.14

KHausc
GR

QR
Glec 4.16

(

KHausi
)op OR

ptR
KRFrmi 5.5

(

KHausi
)op ROc

Endc
DeVi 5.7

KHausi
GR

QR
Glei 5.10

KHausop
O
pt

KRFrm 2.6

KHausop
RO

End
DeV 2.7

KHaus
GR

QR
Gle 6.7

Gle0
S
T

Gle 6.10

(

KHauso
)op OR

ptR
KRFrmo 6.11
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Functors Appears

(

KHauso
)op ROc

Endc
DeVo 6.11

KHauso
GR

QR
Gleo 6.11

Acknowledgements We thank the referee for pointing out [19] to us, as well as for a number of useful
suggestions, particularly involving adjunctions in order enriched categories.

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols In: Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science (LiCS-04), pp. 415–425. IEEE Computer
Society, New York (2004) (Extended version at arXiv:quant-ph/0402130)
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