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Abstract. It is a classic result (McKinsey & Tarski, 1944; Rasiowa & Sikorski, 1963) that if we
interpret modal diamond as topological closure, then the modal logic of any dense-in-itself metric
space is the well-known modal system S4. In this paper, as a natural follow-up, we study the modal
logic of an arbitrary metric space. Our main result establishes that modal logics arising from metric
spaces form the following chain which is order-isomorphic (with respect to the ⊃ relation) to the
ordinal ω + 3:

S4.Grz1 ⊃ S4.Grz2 ⊃ S4.Grz3 ⊃ · · · S4.Grz ⊃ S4.1 ⊃ S4.

It follows that the modal logic of an arbitrary metric space is finitely axiomatizable, has the finite
model property, and hence is decidable.

§1. Introduction. In topological semantics of modal logic, modal diamond is inter-
preted as topological closure (and modal box as topological interior). It is well known that
under such interpretation the modal system S4 defines and is complete for the class of
all topological spaces. It is a celebrated result of McKinsey & Tarski (1944) that S4 is
in fact the modal logic of any dense-in-itself separable metric space. Rasiowa & Sikorski
(1963) showed that this result can be strengthened by dropping the separability assumption.
To give credit to all four authors, we refer to this strengthened result as the MTRS-theorem.

Our main goal is to also drop the dense-in-itself assumption, and study the modal logic
of an arbitrary metric space. As follows from Bezhanishvili & Harding (2012), there are
infinitely many modal logics that arise this way. We recall that a Stone space is a zero-
dimensional compact Hausdorff space. By Stone duality (Stone, 1936), Stone spaces are
exactly the ultrafilter spaces of Boolean algebras, and a Boolean algebra is countable iff
its dual Stone space is metrizable. Let X be a metrizable Stone space. As was shown in
Bezhanishvili & Harding (2012), if X is not scattered, then the modal logic of X is S4.1
or S4 (depending on whether or not the set of isolated points is dense in X ); and if X
is scattered, then the modal logic of X is S4.Grz or S4.Grzn , n ≥ 1 (depending on the
Cantor-Bendixson rank of X ). So Bezhanishvili & Harding (2012) axiomatizes the modal
logic of an arbitrary metric Stone space.

Received: May 21, 2014.

c© Association for Symbolic Logic, 2014

178 doi:10.1017/S1755020314000446



MODAL LOGICS OF METRIC SPACES 179

Since metric spaces play an important role in topology, one should ask what happens if
being Stone is dropped from the assumptions? That is, what modal logics can be realized by
arbitrary metric spaces? Our main result shows that, surprisingly enough, no new modal
logics arise even in this general case. Namely, we prove that modal logics arising from
metric spaces form the following chain:

S4.Grz1 ⊃ S4.Grz2 ⊃ S4.Grz3 ⊃ · · · S4.Grz ⊃ S4.1 ⊃ S4.

We briefly summarize our key techniques used in arriving at this general result. One of
the standard tools we employ is building validity preserving maps from an arbitrary metric
space onto suitable finite (counter)models. The difficulty lies in showing that such maps
exist in the general setting. We utilize the Cantor-Bendixson decomposition paired with
a powerful result of Telgarsky (1968) that each scattered metric space is strongly zero-
dimensional.

In a little more detail, let X be a metric space. Using the Cantor-Bendixson theorem,
we decompose X into scattered and dense-in-itself parts S and D. If D is empty, then
X = S is scattered, in which case we show that every finite tree of depth not exceeding
the Cantor-Bendixson rank of X is an interior image of an open subspace of X . Thus, if
the Cantor-Bendixson rank of X is infinite, then the modal logic of X is S4.Grz; and if the
Cantor-Bendixson rank of X is n, then the modal logic of X is S4.Grzn (see Theorem 3.7).

On the other hand, if D is nonempty, then by the MTRS-theorem, the modal logic of
D is S4. But the modal logic of X varies depending on whether or not S is dense in X .
If S is not dense in X , then as we show in Theorem 3.1, the modal logic of X is S4. If
S is dense in X , then the MTRS-theorem gives that there is an interior map from D onto
every suitable finite model. Given such a mapping, thanks to Telgarsky’s theorem, we show
that S can be divided into clopen subsets, which are sufficiently well-behaved to allow us
to extend the mapping to the whole X . This yields that the modal logic of X is S4.1
(see Theorem 3.4).

As a corollary to our main result, we obtain that the modal logic of an arbitrary metric
space is finitely axiomatizable, has the finite model property, and hence is decidable.
We also axiomatize superintuitionistic logics arising from metric spaces.

§2. Background. In this section we briefly recall the basic facts from modal logic
and topology that will be used. We use Chagrov & Zakharyaschev (1997) and Blackburn
et al. (2001) as basic references in modal logic and Engelking (1989) as a basic reference
in topology.

2.1. Modal logic. The modal logic S4 is the least set of formulas containing classical
tautologies, the axioms

2(p → q) → (2p → 2q),

2p → p,

2p → 22p,

and closed under Modus Ponens ϕ, ϕ→ψ
ψ , substitution ϕ(p1,...,pn)

ϕ(ψ1,...,ψn) , and necessitation ϕ
2ϕ .

As usual, we use 3ϕ as an abbreviation for ¬2¬ϕ.
For n ≥ 1, define

bd1 = 32p1 → p1,

bdn+1 = 3(2pn+1 ∧ ¬bdn) → pn+1,
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and set

S4.1 = S4 +23p → 32p,

S4.Grz = S4 +2(2(p → 2p) → p) → p,

S4.Grzn = S4.Grz + bdn .

It is well known that these logics form the following chain:

S4.Grz1 ⊃ S4.Grz2 ⊃ S4.Grz3 ⊃ · · · S4.Grz ⊃ S4.1 ⊃ S4.

This will become apparent after describing relational semantics of these logics.

2.2. Relational semantics. A frame F is a pair (W, R) consisting of a nonempty set
W and a binary relation R ⊆ W × W . For w ∈ W , let R(w) = {v ∈ W : wRv} and
R−1(w) = {v ∈ W : v Rw}. We will only work with S4-frames; that is, frames where
the binary relation R is reflexive and transitive. Thus, S4-frames are quasi-ordered sets
(qosets), while antisymmetric S4-frames are partially ordered sets (posets).

Recall that a qoset F is rooted provided there is r ∈ W , called a root of F, such that
R(r) = W . A chain A in a poset F is a subset of W satisfying wRv or v Rw for each
w, v ∈ A. A tree is a rooted poset in which R−1(w) is a chain for each w ∈ W . The height
or depth of a tree is n ≥ 1 provided there is a chain with n elements and no chain has more
than n elements. Call v ∈ W a child of w ∈ W provided v covers w; that is, wRv , w 	= v ,
and for each u ∈ W , from wRu Rv it follows that w = u or u = v .

We recall that a cluster C in F is a subset of W which is maximal with respect to
set inclusion satisfying the property that wRv and v Rw for each v,w ∈ C . The cluster
generated by w ∈ W is C(w) = R(w) ∩ R−1(w). The set of all clusters of a qoset forms
a partition of W . The relation R induces a partial ordering of the clusters of F and the
associated poset is known as the skeleton of F.

Call F a quasi-tree or qtree provided the skeleton of F is a tree. The root cluster of a qtree
is the root of its skeleton. In a qtree, a cluster C is a child cluster of a cluster C ′ whenever
C is a child of C ′ in its skeleton. The height or depth of a qtree is the height of its skeleton.
Call w ∈ W quasi-maximal (maximal) in F provided wRv implies v Rw (w = v) for all
v ∈ W . We denote the quasi-maximal and maximal nodes of F by qmax(F) and max(F),
respectively. Note that max(F) ⊆ qmax(F) and the containment can be proper.

The modal language has a natural interpretation in a frame F. Namely formulas are
interpreted as subsets, the classical connectives as Booleans, and for modal operators,
we set:

w � 2ϕ iff (∀v ∈ W )(wRv ⇒ v � ϕ),

w � 3ϕ iff (∃v ∈ W )(wRv & v � ϕ).

If w |� ϕ, then we say that ϕ is true at w ∈ W . If w |� ϕ for all w ∈ W , then we say
that ϕ is true in F under a given valuation. We call ϕ valid in F if ϕ is true in F under
all valuations. It is well known that all formulas valid in a frame F form a modal logic,
called the modal logic of F and denoted L(F). The modal logic of a class C of frames
is L(C) = ⋂{L(F) : F ∈ C}. The following characterizes the logics of interest (proofs
of these well-known facts can for example be found in Chagrov & Zakharyaschev, 1997;
see also Bezhanishvili & Harding, 2012, prop. 2.5).
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LEMMA 2.1.

1. S4 is the modal logic of finite qtrees.

2. S4.1 is the modal logic of finite qtrees F satisfying qmax(F) = max(F).

3. S4.Grz is the modal logic of finite trees.

4. S4.Grzn is the modal logic of finite trees of height ≤ n.

Let F = (W, R) andG = (V, S) be frames. ThenG is a subframe of F provided V ⊆ W
and S is the restriction of R to V . We call G a generated subframe if w ∈ V and wRv
imply v ∈ V . A map f : W → V is a p-morphism provided wRw′ implies f (w)S f (w′)
and f (w)Sv implies there is w′ ∈ R(w) such that f (w′) = v . The first condition is usually
referred to as the forth condition and the second one as the back condition of a p-morphism.
If there is a p-morphism from F onto G, then we call G a p-morphic image of F. It is well
known that generated subframes and p-morphic images are truth-preserving operations
(see, e.g., Chagrov & Zakharyaschev, 1997). Therefore, ifG is either a generated subframe
or a p-morphic image of F and G 	� ϕ, then F 	� ϕ.

The next construction can be found in Bezhanishvili & Harding (2012, def. 3.10). Let
G = (V, S) be a finite qtree and let C1, . . . , Cn be the maximal clusters ofG (i.e. each Ci is
maximal in the skeleton ofG). Let m1, . . . , mn be distinct and not in V . Define a new qtree
F = (W, R) by putting each mi on top of Ci . More precisely, set W = V ∪ {m1, . . . , mn}
and let R be the least quasi-order on W containing S and (w, mi ) for each w ∈ Ci , i =
1, . . . , n. We call F obtained in this manner a top thin quasi-tree or tt-qtree; see Figure 1.

Note that any map f : F → G extending the identity on V and satisfying f (mi ) ∈ Ci

for i = 1, . . . , n is onto and satisfies the forth condition of a p-morphism. In addition, if
each cluster Ci consists of a single node (that is, qmax(G) = max(G)), then f also satisfies
the back condition, and hence is an onto p-morphism. For a tt-qtree F = (W, R), we denote
by F− the subframe of F whose underlying set is W − max(F). Thus, F is obtained from
F− by the construction described above. Moreover, if qmax(F−) = max(F−), then F− is
a p-morphic image of F.

LEMMA 2.2 (Bezhanishvili & Harding, 2012). S4.1 is the modal logic of tt-qtrees.

Proof. Clearly each tt-qtree F satisfies qmax(F) = max(F), so F � 23p → 32p. Let
S4.1 	� ϕ. By Lemma 2.1(2), there is a finite qtree G such that qmax(G) = max(G) and
G 	� ϕ. Let F be the tt-qtree obtained from G. Then G is a p-morphic image of F. Thus, F
refutes ϕ, and the result follows. �

Fig. 1. Constructing a tt-qtree F from G.
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2.3. Topological semantics. Topological semantics generalizes relational semantics
for S4. We assume that all topological spaces are nonempty. We interpret modal formulas
as subsets of a topological space, the classical connectives as Booleans, 2 as interior, and
3 as closure. Then for a point x in a topological space X ,

x � 2ϕ iff there is an open neighborhood Ux of x such that y � ϕ for all y ∈ Ux ,

x � 3ϕ iff for all open neighborhoods Ux of x there is y ∈ Ux such that y � ϕ.

In fact, S4-frames are special topological spaces, called Alexandrov spaces, where the
intersection of an arbitrary family of opens is open (alternatively, each point has a least
open neighborhood). Indeed, for an S4-frame F = (W, R), generated subframes of F
serve as (nonempty) opens of the Alexandrov topology of F, {R(w) : w ∈ W } is a basis,
and R−1 is the closure operator of the topology.

Truth and validity of a formula in a topological space is defined as in relational se-
mantics. For a topological space X , we denote by L(X) the modal logic of X (the set of
formulas valid in X ). The modal logic of a class C of spaces is L(C) = ⋂{L(X) : X ∈ C}.

In topological semantics the role of generated subframes and p-morphisms is played by
open subspaces and interior maps. We recall that a map f : X → Y between topological
spaces is continuous if V open in Y implies f −1(V ) is open in X , and f is open if U
open in X implies f (U ) is open in Y . We call f interior if it is both continuous and open.
If f is an onto interior map, then we call Y an interior image of X . It is well known
(see, e.g., van Benthem et al., 2003, prop. 2.9) that open subspaces and interior images are
truth-preserving operations on topological spaces. Therefore, to prove the MTRS-theorem
that S4 is the modal logic of each dense-in-itself metric space X , by Lemma 2.1(1),
it is sufficient to show that each finite qtree is an interior image of X . In fact, the main
construction in the MTRS-theorem proves that each finite rooted S4-frame is an interior
image of X . We will repeatedly utilize this fact.

2.4. Cantor-Bendixson decomposition. Let X be a topological space. We denote the
interior and closure operators of X by i and c, respectively. We recall that the derivative
(or limit point) operator, denoted d, is defined as follows: x ∈ d(A) iff each open neighbor-
hood Ux of x contains a point of A different from x . The interior, closure, and derivative
operators in a subspace Y of X are denoted iY , cY , and dY , respectively. A subset A of X
is dense if c(A) = X , dense-in-itself if A ⊆ d(A) (equivalently a ∈ c(A − {a}) for each
a ∈ A), and discrete if A ∩ d(A) = ∅ (equivalently a /∈ c(A − {a}) for each a ∈ A).

A point x ∈ X is isolated if {x} is open in X . Let iso(X) be the set of isolated points
of X . Then iso(X) = X − d(X), so X is dense-in-itself iff iso(X) = ∅. A space X is
scattered if iso(Y ) 	= ∅ for each nonempty subspace Y of X . This immediately yields that
if X is a scattered space, then iso(X) is dense in X . But there exist non-scattered spaces in
which the isolated points are dense. We call a space X weakly scattered if iso(X) is dense
in X .

By the Cantor-Bendixson theorem, each space X can be decomposed into the disjoint
union of an open scattered and closed dense-in-itself subspaces. For A ⊆ X and an ordinal
α, define dα(A) by setting

d0(A) = A,

dα(A) = d(dβ(A)) if α = β + 1 is a successor,

dα(A) =
⋂

{dβ(A) : β < α} if α is a limit.
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It is well known that X is scattered iff dα(X) = ∅ for some ordinal α. Since dα(X) ⊆
dβ(X) for any ordinals α ≥ β, there is an ordinal α such that dα(X) = dα+1(X). The rank
of X is � = min{α : dα(X) = dα+1(X)}. Putting D = d�(X) and S = X − D delivers the
Cantor-Bendixson decomposition of X .

We note that the rank of X is 0 iff X is dense-in-itself, which happens iff S = ∅.
Therefore, if X is scattered, then its rank is ≥ 1 (because we are only concerned with
nonempty spaces). We view S as dissected into levels, the ‘number’ of levels being the
rank � of X . Specifically, set Xα = dα(X)− dα+1(X) for α < �. It is easy to see that each
Xα is discrete in X and that Xα is the set of isolated points of the subspace dα(X) of X ;
that is, Xα = iso(dα X). See Figure 2.

2.5. Metric spaces. Let X be a metric space with the distance function d : X×X → R.
Then the open balls Bε(x) = {y ∈ X : d(x, y) < ε} form a basis for X . Therefore, for
x ∈ X and A ⊆ X , x ∈ c(A) iff there is a sequence {xn} in A converging to x . The distance
from A to x is d(A, x) = inf{d(a, x) : a ∈ A}. So d(A, x) = 0 iff x ∈ c(A). The next
simple lemma will be of use for us.

LEMMA 2.3. Let X be a metric space. If A is a discrete subset of X, then there is a
pairwise disjoint family of open balls {Bra (a) : a ∈ A}.

Proof. Let a ∈ A. Since A is discrete, a 	∈ c(A − {a}), giving d(A − {a}, a) = εa > 0.
Set ra = εa

2 and consider {Bra (a) : a ∈ A}. Let x ∈ Bra (a) ∩ Bra (b) for some a, b ∈ A.
Then

d(a, b) ≤ d(a, x) + d(x, b) < ra + rb = εa

2
+ εb

2
≤ max(εa, εb).

By symmetry, we may proceed by considering only the case max(εa, εb) = εa , so
d(a, b) < εa . Since b ∈ A and d(A−{a}, a) = εa , it follows that b ∈ A−(A−{a}) = {a}.
This yields a = b, and hence {Bra (a) : a ∈ A} is indeed pairwise disjoint. �

We recall that a subset A of a topological space X is a zero-set if there is a continuous
function f : X → [0, 1] such that A = f −1(0). Complements of zero-sets are called
cozero-sets. A Hausdorff space is completely regular if cozero-sets form a basis for the
topology.

A subset A of X is clopen if it is closed and open, and a Hausdorff space is zero-
dimensional if it has a basis of clopens. Given two covers U = {Ui : i ∈ I } and
V = {Vj : j ∈ J } of X , we say that V is a refinement of U provided for each i ∈ I
there is j ∈ J such that Vj ⊆ Ui .

Fig. 2. Cantor-Bendixson decomposition of X = S ∪ D and the levels Xα of S.
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A completely regular space X is strongly zero-dimensional provided every finite cover
of X consisting of cozero-sets has a finite pairwise disjoint open refinement. (Clearly the
refinement consists of clopen sets.) It is well known that each strongly zero-dimensional
space is zero-dimensional, but the converse is not true in general.

In what follows we will use essentially Telgarsky’s theorem, Telgársky (1968), that each
scattered metric space is strongly zero-dimensional.

REMARK 2.4. In fact, Telgarsky proves (see Telgársky, 1968, cor. 3) that if X is a
scattered paracompact space, then dim(X) = 0. Since each metric space is paracompact
(Engelking, 1989, theorem 5.1.3) and dim(X) = 0 iff X is strongly zero-dimensional
(Engelking, 1989, p. 385), it follows that each scattered metric space is strongly zero-
dimensional.

§3. Main results. In this section we axiomatize the modal logic of each metric space.
Let X be a metric space. Either X is weakly scattered or not. If X is not weakly scattered,
then we use the MTRS-theorem to show that L(X) = S4. If X is weakly scattered, then
either X is scattered or not. If X is not scattered, then we use the Cantor-Bendixson
decomposition and Telgarsky’s theorem to show that L(X) = S4.1. Finally, if X is
scattered, then either the rank of X is finite or infinite. If the rank of X is infinite, then
we show that L(X) = S4.Grz, and if the rank of X is n ∈ ω − {0}, then we show that
L(X) = S4.Grzn .

3.1. The non-weakly scattered case. Let X be a non-weakly scattered metric space.
Set U = X − c(iso(X)). Then U is a nonempty dense-in-itself open subspace of X .
Therefore, U is a dense-in-itself metric space. By the MTRS-theorem, L(U ) = S4. But
since U is an open subspace of X , we have L(X) ⊆ L(U ). Thus, S4 ⊆ L(X) ⊆ L(U ) =
S4, and we arrive at the following.

THEOREM 3.1. If X is a non-weakly scattered metric space, then L(X) = S4.

3.2. The weakly scattered non-scattered case. We prove that each tt-qtree is an in-
terior image of a weakly scattered non-scattered metric space. For this we require the
following lemma, which will also be useful in the scattered case.

LEMMA 3.2. Let k ∈ ω − {0}. For any finite pairwise disjoint family {Fi : i < k} of
nonempty closed subsets of a strongly zero-dimensional normal space X, there is a clopen
partition {Ui : i < k} of X such that Fi ⊆ Ui for each i < k.

Proof. By induction on k. If k = 1, then the family consists of a single nonempty closed
set F , and we take the clopen partition {X}. Clearly F ⊆ X .

Next suppose the result is true for k ≥ 1. Let {Fi : i ≤ k} be a pairwise disjoint
family of nonempty closed subsets of X . Then {Fi , Fk−1 ∪ Fk : i < k − 1} is a pairwise
disjoint family consisting of k nonempty closed subsets of X . The inductive hypothesis
delivers a clopen partition {Ui , U : i < k − 1} of X such that Fi ⊆ Ui when i < k − 1
and Fk−1 ∪ Fk ⊆ U . Since X is normal and the closed sets Fk−1 and Fk are disjoint,
Urysohn’s lemma yields a continuous function f : X → [0, 1] such that Fk−1 ⊆ f −1(0)
and Fk ⊆ f −1(1). Since X is strongly zero-dimensional, by Engelking (1989, lem. 6.2.2),
there is a clopen set V ⊆ X such that Fk−1 ⊆ V ⊆ X − Fk . Setting Uk−1 = U ∩ V
and Uk = U − V gives a clopen partition {Ui : i ≤ k} of X such that Fi ⊆ Ui for each
i ≤ k. �
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LEMMA 3.3. Each tt-qtree is an interior image of any weakly scattered non-scattered
metric space.

Proof. Let F be a tt-qtree. Then F− is a finite qtree. Let X be a weakly scattered non-
scattered metric space and let X = S ∪ D be the Cantor-Bendixson decomposition of
X , where S is an open scattered subspace, D is a closed dense-in-itself subspace, and
S ∩ D = ∅. Since X is weakly scattered, S 	= ∅; and since X is non-scattered, D 	= ∅.
As D is a dense-in-itself metric space, it follows from the MTRS-theorem that there is an
onto interior map g : D → F−. We show there exists an onto interior map f : X → F
extending g such that f (S) = max(F). We proceed by (strong) induction on the height of
F = (W, R). Since F is a tt-qtree, its smallest height is 2.

Base Case: Suppose the height of F is 2. Since F is a tt-qtree of height 2, max(F) = {m}
and F− is the root cluster Cr of F. We extend g : D → F− to f : X → F by setting
f (x) = m for each x ∈ S, see Figure 3.

Clearly f is a well-defined onto map extending g such that f (S) = max(F). Since {m}
is the only nonempty proper generated subframe of F and f −1(m) = S, we see that f is
continuous. To see that f is open, let U be a nonempty open in X . If U ⊆ S, then f (U ) =
{m}. Otherwise, since X = S ∪ D is weakly scattered, both U ∩ D and U ∩ iso(X) ⊆ U ∩ S
are nonempty. Therefore, because g is interior,

f (U ) = f (U ∩ S) ∪ f (U ∩ D) = f (U ∩ S) ∪ g(U ∩ D) = {m} ∪ Cr = W.

Thus, f is open.

Inductive Step: Suppose the height of F is greater than 2. Assume that for any finite tt-
qtree G of lesser height than F, for any weakly scattered non-scattered metric space Y
whose Cantor-Bendixson decomposition is Y = S′ ∪ D′, and for any onto interior map
h′ : D′ → G−, there is an onto interior map h : Y → G extending h′ and satisfying
h(S′) = max(G).

We must extend g : D → F− to an onto interior map f : X → F such that f (S) =
max(F). Let C1, . . . , Ck be the children clusters of the root cluster Cr of F. For i =
1, . . . , k, let Fi be the generated subframe of F whose underlying set is R(Ci ). Then Fi is a
finite tt-qtree and Fi has lesser height than F. Set F = g−1(Cr ) and Di = g−1(RF−(Ci )),
where RF− is the restriction of R to F−. Then D−F = D1∪· · ·∪Dk . Put Y = S∪(D−F),
see Figure 4.

Since D is closed in X and g : D → F− is interior, F is closed in X and each Di is open
in D. Moreover, Y is open in X as Y = X − F . Furthermore, Di is closed in Y . To see this,
observe that

c(Di ) = cD(Di ) = cD(g−1(RF−(Ci )))

= g−1(R−1(RF−(Ci ))) = g−1(RF−(Ci ) ∪ Cr ) = Di ∪ F.

Fig. 3. Extending g to f when the height of F is 2.
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Fig. 4. Extending g to f when the height of F is greater than 2.

Therefore, Di = c(Di ) ∩ Y , and so Di is closed in Y . Since Y is a metric space and
D1, . . . , Dk are disjoint closed subsets of Y , (Rasiowa & Sikorski, 1963, chap. III,
theorem 6.1) yields open subsets U1, . . . , Uk of Y such that Di ⊆ Ui for each i and
cY (U1), . . . , cY (Uk) are also disjoint.

Because Y is open in X , each Ui is open in X . Clearly Di ⊆ Ui ∩ D. To see the converse,
let x ∈ Ui ∩ D. Then x ∈ D = X − S and x ∈ Ui ⊆ Y = S ∪ (D − F), giving that
x ∈ D − F . So x ∈ D j for some j . Therefore, x ∈ D j ⊆ U j ⊆ cY (U j ), yielding
cY (Ui ) ∩ cY (U j ) 	= ∅. Thus, i = j , so x ∈ Di , and hence Di = Ui ∩ D.

Set Fi = cY (Ui ) ∩ S. Then F1, . . . , Fk are disjoint nonempty closed subsets in S. Since
S is a scattered metric space, it follows from Telgarsky’s theorem that S is strongly zero-
dimensional. By Lemma 3.2, there is a clopen partition S1, . . . , Sk of S such that Fi ⊆ Si

for each i . Since S is open in X , each Si is open in X .
Set Yi = Si ∪ Ui for each i . Since both Ui and Si are open in X , Yi is open in X .

Moreover, as Ui ∩ S ⊆ Fi ⊆ Si and Ui ∩ D = Di , we have

Yi = Si ∪ Ui = Si ∪ (Ui ∩ X) = Si ∪ (Ui ∩ (S ∪ D))

= Si ∪ (Ui ∩ S) ∪ (Ui ∩ D) = Si ∪ Di .

Figure 5 depicts the clopen partition S1, . . . , Sk of S and demonstrates the sets Yi .
The Cantor-Bendixson decomposition of Yi is realized through Di and Si . Indeed, Di is

dense-in-itself since Di is an open subset of the dense-in-itself space D, and Si is scattered

Fig. 5. Clopen partition of S and Yi = Si ∪ Di .
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as Si is a subset of the scattered space S. Therefore, if � is the rank of S, then for any
α ≥ �, we have

(dYi )
α(Yi ) = (dYi )

α(Si ∪ Di ) = (dYi )
α(Si ) ∪ (dYi )

α(Di ) = Di .

Since an open subspace of a weakly scattered space is weakly scattered, Yi is weakly
scattered. Furthermore, Yi is not scattered since Di 	= ∅. So Yi is a weakly scattered
metric space that is not scattered.

Let gi = g|Di . Clearly gi : Di → F−
i is onto and continuous. It is also open because Di

is open in D = dom(g). Therefore, gi is an onto interior map. By the inductive hypothesis,
there is an onto interior map fi : Yi → Fi extending gi such that fi (Si ) = max(Fi ).
Define f : X → W by setting f (x) = g(x) on F = g−1(Cr ) and f (x) = fi (x) on Yi .
Since Y1, . . . , Yk, F is a partition of X , f is well defined. Moreover,

f (X) = f (Y1) ∪ · · · ∪ f (Yk) ∪ f (F) = f1(Y1) ∪ · · · ∪ fk(Yk) ∪ g(F)

= R(C1) ∪ · · · ∪ R(Ck) ∪ Cr = W,

showing that f is onto. Clearly f extends g on F . Let x ∈ Di . Then

f (x) = fi (x) = gi (x) = g(x),

showing that f does indeed extend g. Furthermore,

f (S) = f (S1 ∪ · · · ∪ Sk) = f (S1) ∪ · · · ∪ f (Sk) = f1(S1) ∪ · · · ∪ fk(Sk)

= max(F1) ∪ · · · ∪ max(Fk) = max(F).

It remains to prove that f is interior. Let w ∈ W . If w ∈ R(Ci ) for some i , then R(w) ⊆
R(Ci ), so f −1(R(w)) = ( fi )

−1(R(w)) is open in Yi . Since Yi is open in X , we conclude
that f −1(R(w)) is open in X . If w /∈ R(Ci ) for all i , then w ∈ Cr , so R(w) = W , and
hence f −1(R(w)) = f −1(W ) = X is open in X . Thus, f is continuous.

Let U be open in X . If U ∩ F = ∅, then U ⊆ Y1 ∪ · · · ∪ Yk , so

f (U ) = f ((U ∩ Y1) ∪ · · · ∪ (U ∩ Yk)) = f (U ∩ Y1) ∪ · · · ∪ f (U ∩ Yk)

= f1(U ∩ Y1) ∪ · · · ∪ fk(U ∩ Yk).

Since U ∩ Yi is open in Yi and fi : Yi → Fi is interior, fi (U ∩ Yi ) is a generated subframe
of Fi . But Fi is a generated subframe of F, so each fi (U ∩ Yi ) is a generated subframe of
F, and hence f (U ) is a generated subframe of F.

Suppose that U ∩ F 	= ∅. Then U ∩ D 	= ∅, so g(U ∩ D) 	= ∅. Since g(F) = Cr ,
we obtain g(U ∩ D) ∩ Cr 	= ∅. As U ∩ D is open in D and g : D → F− is interior,
g(U ∩ D) = W − max(F). Since the height of F is greater than 2, each Ci belongs to F−.
Therefore, Ci ⊆ g(U ∩ D) ⊆ f (U ). We show that Ci ⊆ f (U ∩ Yi ). Let x ∈ U with
f (x) ∈ Ci . Then x 	∈ S because f (S) = max(F). This implies x ∈ D and f (x) = g(x).
Thus, g(x) ∈ Ci , giving x ∈ Di . This yields x ∈ Yi , so Ci ⊆ f (U ∩ Yi ). Therefore,
Ci ⊆ fi (U ∩ Yi ). Since fi is interior, this implies R(Ci ) ⊆ fi (U ∩ Yi ) ⊆ f (U ). We also
have f (U ) ⊇ g(U ∩ D) ⊇ Cr . Thus, f (U ) = W . Consequently, f is open, and hence
interior. �

THEOREM 3.4. If X is a weakly scattered non-scattered metric space, then L(X) = S4.1.
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Proof. Let X be a weakly scattered non-scattered metric space. Since X is weakly scat-
tered, it is well-known (see, e.g., Bezhanishvili & Harding, 2012, sec. 2) that S4.1 ⊆ L(X).
Conversely, if S4.1 	� ϕ, then by Lemma 2.2, ϕ is refuted on a finite tt-qtree F.
By Lemma 3.3, F is an interior image of X . Therefore, X refutes ϕ. Thus,
S4.1 = L(X). �

3.3. The scattered case. For a scattered space X and n ∈ ω, let X↑
n = ⋃

m≤n Xm ,
where we recall that Xn = dn(X) − dn+1(X) = iso(dn(X)) and each Xn is a discrete
subset of X .

LEMMA 3.5. Let n ∈ ω, T be a finite tree of height at most n + 1, and let X be a
scattered metric space such that Xn 	= ∅. Then there is an onto interior map f : X↑

n → T
such that f (x) is the root of T for each x ∈ Xn.

Proof. The proof is by induction on n ∈ ω.

Base case: If n = 0, then T consists of a single reflexive root r , and X↑
0 = X0 is a

discrete space. Clearly sending the entire X0 to r yields an onto interior map f : X↑
0 → T

satisfying f (x) is the root of T for each x ∈ X0.

Inductive case: Let n ∈ ω − {0}. Suppose that for each finite tree of height at most n and
each scattered metric space Y with Yn−1 	= ∅, there is an interior map from Y ↑

n−1 onto
the tree which maps Yn−1 to the root of the tree. Let T be a finite tree of height n + 1 and
let X be a scattered space such that Xn 	= ∅. We must show that there is an interior map
f : X↑

n → T such that f (x) is the root of T for each x ∈ Xn .
Let r be the root of T and let c1, . . . , ck be the children of r . For each i let Ti be the

subtree of T generated by ci . Then the underlying set of Ti is R(ci ), and the height of Ti

is at most n.
Since Xn is discrete, Lemma 2.3 delivers a pairwise disjoint family of open balls {B(x) :

x ∈ Xn}. Because X is a metric space, for each x ∈ Xn , there is a sequence {ax
i } ⊆ Xn−1

converging to x . By taking an appropriate tail of the sequence, without loss of generality
we may assume that {ax

i } ⊆ B(x).
We partition each {ax

i } into k subsequences, σ x
1 , . . . , σ x

k , each converging to x . For each
i ≤ k, let Fi = ⋃

x∈Xn
σ x

i . Then Xn ⊆ c(Fi ) for each i ≤ k. Moreover, F1, . . . , Fk are

pairwise disjoint and closed in X↑
n−1. Since X↑

n−1 is a scattered metric space (because it is

a subspace of X ), by Telgarsky’s theorem, X↑
n−1 is strongly zero-dimensional. Therefore,

Lemma 3.2 delivers a clopen partition A1, . . . , Ak of X↑
n−1 such that Fi ⊆ Ai for each i .

Clearly each Ai is a scattered metric space. Since each Ai is open in X , we have

dn−1
Ai

(Ai ) − dn
Ai

(Ai ) =
(

dn−1(Ai ) − dn(Ai )
)

∩ Ai = Ai ∩ Xn−1 ⊇ Fi 	= ∅.

Therefore, the inductive hypothesis applies, by which, for each i ≤ k there is fi : Ai → Ti

such that fi (Ai ∩ Xn−1) = {ci }.
Define f : X↑

n → T by setting f (x) = r if x ∈ Xn and f (x) = fi (x) if x ∈ Ai . Clearly
f is well-defined because A1, . . . , Ak, Xn is a partition of X↑

n . Moreover, f is onto since

f
(

X↑
n

)
= f (A1) ∪ · · · ∪ f (Ak) ∪ f (Xn) = f1(A1) ∪ · · · ∪ fk(Ak) ∪ f (Xn)

= T1 ∪ · · · ∪ Tk ∪ {r} = T.
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It is left to prove that f is interior. Let t ∈ T and consider f −1(R(t)). If t = r , then
f −1(R(t)) = f −1(T) = X↑

n is open in X↑
n . If t 	= r , then t ∈ Ti for some i ≤ k.

Therefore, f −1(R(t)) = ( fi )
−1(R(t)) is open in Ai , and since Ai is open in X↑

n , it follows
that f −1(R(t)) is open in X↑

n . Thus, f is continuous.
Let U be open in X↑

n . Let i ≤ k. Then U ∩ Ai is open in Ai . Since fi is interior,
fi (U ∩ Ai ) is a generated subframe of Ti . But Ti is a generated subframe of T. Therefore,
fi (U ∩ Ai ) is a generated subframe of T. If U ∩ Xn = ∅, then

f (U ) = f ((U ∩ A1) ∪ · · · ∪ (U ∩ Ak)) = f (U ∩ A1) ∪ · · · ∪ f (U ∩ Ak)

= f1(U ∩ A1) ∪ · · · ∪ fk(U ∩ Ak),

showing that f (U ) is a union of generated subframes of T, hence a generated subframe
of T.

Suppose U ∩ Xn 	= ∅. Let x ∈ U ∩ Xn . Since ax
i converges to x , a tail of the sequence

is in U . Therefore, U ∩ Ai ∩ Xn−1 	= ∅, and so f (U ∩ Ai ) = fi (U ∩ Ai ) is a generated
subframe of Ti containing the root ci of Ti . This yields f (U ∩ Ai ) = Ti for each i ≤ k.
Thus,

f (U ) = f ((U ∩ A1) ∪ · · · ∪ (U ∩ Ak) ∪ (U ∩ Xn))

= f (U ∩ A1) ∪ · · · ∪ f (U ∩ Ak) ∪ f (U ∩ Xn)

= T1 ∪ · · · ∪ Tk ∪ {r} = T.

Consequently, f is open, and hence interior. �

LEMMA 3.6. Let X be a scattered space and let V be a valuation. For each n ∈ ω,
we have X↑

n ⊆ V (bdn+1).

Proof. By induction on n ∈ ω. For the base case, suppose that n = 0. Let A1 = V (p1).
Then V (bd1) = (X − ci(A1)) ∪ A1. Since X↑

0 = X0, we must show that X0 ⊆ V (bd1).
Let x ∈ X0. Then {x} is open in X . If x /∈ X − ci(A1), then x ∈ ci(A1). Since {x} is open,
{x} ∩ i(A1) 	= ∅. Therefore, x ∈ i(A1) ⊆ A1. Thus, X0 ⊆ V (bd1).

Let n ≥ 0. Suppose that X↑
n ⊆ V (bdn+1). We must show that X↑

n+1 ⊆ V (bdn+2).
Let V (pn+2) = An+2. Then

V (bdn+2) = (X − c(i(An+2) − V (bdn+1))) ∪ An+2.

Let x ∈ X↑
n+1. If x 	∈ X − c(i(An+2) − V (bdn+1)), then x ∈ c(i(An+2) − V (bdn+1)).

Consider the set U = {x} ∪ X↑
n . Since X↑

n is open and Xn+1 is discrete, U is open in
X . As x ∈ c(i(An+2) − V (bdn+1)), there is y ∈ U ∩ (i(An+2) − V (bdn+1)). Because
y /∈ V (bdn+1) and X↑

n ⊆ V (bdn+1), we have y /∈ X↑
n . But y ∈ U = {x} ∪ X↑

n , so x = y.
Therefore, x ∈ i(An+2) ⊆ An+2. Thus, X↑

n+1 ⊆ V (bdn+2). �

THEOREM 3.7. Let X be a scattered metric space.

1. If the rank of X is infinite, then L(X) = S4.Grz.

2. If the rank of X is n ∈ ω − {0}, then L(X) = S4.Grzn.

Proof. (1) It is well known (see, e.g., Esakia, 1981) that if X is scattered, then S4.Grz ⊆
L(X). Conversely, suppose that S4.Grz 	� ϕ. By Lemma 2.1(3), there is a finite tree T
refuting ϕ. Let n ≥ 1 be the height of T. Since the rank of X is infinite, Xn−1 is a nonempty
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subset of X . By Lemma 3.5, T is an interior image of X↑
n−1. Therefore, X↑

n−1 refutes ϕ.

Since X↑
n−1 is an open subspace of X , we conclude that X also refutes ϕ. Thus, L(X) =

S4.Grz.
(2) By (1), S4.Grz ⊆ L(X). By Lemma 3.6, X↑

n−1 � bdn . Since the rank of X is n,

we have X = X↑
n−1. Therefore, X � bdn . Thus, S4.Grzn ⊆ L(X). Conversely, suppose

that S4.Grzn 	� ϕ. By Lemma 2.1(4), there is a tree T of height at most n refuting ϕ.
By Lemma 3.5, T is an interior image of X . Therefore, X refutes ϕ. Thus, L(X) =
S4.Grzn . �

Combining Theorems 3.1, 3.4, and 3.7 yields:

THEOREM 3.8 (Main Theorem). Let X be a metric space.

1. If X is not weakly scattered, then L(X) = S4.

2. If X is weakly scattered but not scattered, then L(X) = S4.1.

3. If X is scattered and has infinite rank, then L(X) = S4.Grz.

4. If X is scattered and has rank n ∈ ω − {0}, then L(X) = S4.Grzn.

Since each of these logics is finitely axiomatizable, has the finite model property, and
hence is decidable, we obtain:

COROLLARY 3.9. The modal logic of an arbitrary metric space is finitely axiomatizable,
has the finite model property, and hence is decidable.

REMARK 3.10. Our results have an immediate application in the setting of superintu-
itionistic logics. Let IPC be the intuitionistic propositional calculus and let IPCn be the
superintuitionistic logics IPC + ibdn , where:

ibd1 = p1 ∨ ¬p1,

ibdn+1 = pn+1 ∨ (pn+1 → ibdn).

The formula ibdn is the intuitionistic version of the modal formula bdn . The well-known
Gödel translation associates with each superintuitionistic logic L a normal extension S of
S4, called a modal companion of L . It is well known (see, e.g., Chagrov & Zakharyaschev,
1997, sec. 9.6) that modal companions of IPC are the logics in the interval [S4, S4.Grz].
In particular, S4, S4.1, and S4.Grz are modal companions of IPC. Also, S4.Grzn is a
modal companion of IPCn for each n ≥ 1. Thus, our Main Theorem yields that the super-
intuitionistic logics of metric spaces form the following chain which is order-isomorphic
(with respect to the ⊃ relation) to the ordinal ω + 1:

IPC1 ⊃ IPC2 ⊃ IPC3 ⊃ · · · IPC.

More precisely, the superintuitionistic logic of a metric space X is IPCn iff X is a scattered
metric space of rank n, and it is IPC otherwise.

REMARK 3.11. Since Telgarsky’s theorem holds for scattered paracompact spaces,
it is natural to seek to generalize our results from metric spaces to paracompact spaces.
For this, however, it is necessary to extend the MTRS-theorem to the paracompact
setting.
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