MODAL LOGICS OF METRIC SPACES

GURAM BEZHANISHVILI
Department of Mathematical Sciences, New Mexico State University
DAVID GABELAIA
A. Razmadze Mathematical Institute, Tbilisi State University
JOEL LUCERO-BRYAN
Department of Applied Mathematics and Sciences, Khalifa University

Abstract

It is a classic result (McKinsey \& Tarski, 1944; Rasiowa \& Sikorski, 1963) that if we interpret modal diamond as topological closure, then the modal logic of any dense-in-itself metric space is the well-known modal system S4. In this paper, as a natural follow-up, we study the modal logic of an arbitrary metric space. Our main result establishes that modal logics arising from metric spaces form the following chain which is order-isomorphic (with respect to the \supset relation) to the ordinal $\omega+3$:

$$
\mathrm{S} 4 . \mathrm{Grz}_{1} \supset{\mathrm{~S} 4 . \mathrm{Grz}_{2} \supset \mathrm{~S} 4 . \mathrm{Grz}_{3} \supset \cdots \mathrm{~S} 4 . \mathrm{Grz} \supset \mathrm{~S} 4.1 \supset \mathrm{~S} 4 ~}_{\text {. }}
$$

It follows that the modal logic of an arbitrary metric space is finitely axiomatizable, has the finite model property, and hence is decidable.
§1. Introduction. In topological semantics of modal logic, modal diamond is interpreted as topological closure (and modal box as topological interior). It is well known that under such interpretation the modal system S4 defines and is complete for the class of all topological spaces. It is a celebrated result of McKinsey \& Tarski (1944) that S4 is in fact the modal logic of any dense-in-itself separable metric space. Rasiowa \& Sikorski (1963) showed that this result can be strengthened by dropping the separability assumption. To give credit to all four authors, we refer to this strengthened result as the MTRS-theorem.

Our main goal is to also drop the dense-in-itself assumption, and study the modal logic of an arbitrary metric space. As follows from Bezhanishvili \& Harding (2012), there are infinitely many modal logics that arise this way. We recall that a Stone space is a zerodimensional compact Hausdorff space. By Stone duality (Stone, 1936), Stone spaces are exactly the ultrafilter spaces of Boolean algebras, and a Boolean algebra is countable iff its dual Stone space is metrizable. Let X be a metrizable Stone space. As was shown in Bezhanishvili \& Harding (2012), if X is not scattered, then the modal logic of X is S4.1 or S4 (depending on whether or not the set of isolated points is dense in X); and if X is scattered, then the modal logic of X is $\mathrm{S} 4 . \mathrm{Grz}$ or $\mathrm{S}^{2} . \mathrm{Grz}_{n}, n \geq 1$ (depending on the Cantor-Bendixson rank of X). So Bezhanishvili \& Harding (2012) axiomatizes the modal logic of an arbitrary metric Stone space.

Received: May 21, 2014.

Since metric spaces play an important role in topology, one should ask what happens if being Stone is dropped from the assumptions? That is, what modal logics can be realized by arbitrary metric spaces? Our main result shows that, surprisingly enough, no new modal logics arise even in this general case. Namely, we prove that modal logics arising from metric spaces form the following chain:

$$
\mathrm{S} 4 . \mathrm{Grz}_{1} \supset \mathrm{~S}_{4} . \mathrm{Grz}_{2} \supset \mathrm{~S} 4 . \mathrm{Grz}_{3} \supset \ldots \mathrm{~S} 4 . \mathrm{Grz} \supset \mathrm{~S} 4.1 \supset \mathrm{~S} 4 .
$$

We briefly summarize our key techniques used in arriving at this general result. One of the standard tools we employ is building validity preserving maps from an arbitrary metric space onto suitable finite (counter)models. The difficulty lies in showing that such maps exist in the general setting. We utilize the Cantor-Bendixson decomposition paired with a powerful result of Telgarsky (1968) that each scattered metric space is strongly zerodimensional.

In a little more detail, let X be a metric space. Using the Cantor-Bendixson theorem, we decompose X into scattered and dense-in-itself parts S and D. If D is empty, then $X=S$ is scattered, in which case we show that every finite tree of depth not exceeding the Cantor-Bendixson rank of X is an interior image of an open subspace of X. Thus, if the Cantor-Bendixson rank of X is infinite, then the modal logic of X is S4.Grz; and if the Cantor-Bendixson rank of X is n, then the modal logic of X is $\mathrm{S}_{4} \mathrm{Grz}_{n}$ (see Theorem 3.7).

On the other hand, if D is nonempty, then by the MTRS-theorem, the modal logic of D is S4. But the modal logic of X varies depending on whether or not S is dense in X. If S is not dense in X, then as we show in Theorem 3.1, the modal logic of X is S4. If S is dense in X, then the MTRS-theorem gives that there is an interior map from D onto every suitable finite model. Given such a mapping, thanks to Telgarsky's theorem, we show that S can be divided into clopen subsets, which are sufficiently well-behaved to allow us to extend the mapping to the whole X. This yields that the modal logic of X is S4.1 (see Theorem 3.4).

As a corollary to our main result, we obtain that the modal logic of an arbitrary metric space is finitely axiomatizable, has the finite model property, and hence is decidable. We also axiomatize superintuitionistic logics arising from metric spaces.
§2. Background. In this section we briefly recall the basic facts from modal logic and topology that will be used. We use Chagrov \& Zakharyaschev (1997) and Blackburn et al. (2001) as basic references in modal logic and Engelking (1989) as a basic reference in topology.
2.1. Modal logic. The modal logic S4 is the least set of formulas containing classical tautologies, the axioms

$$
\begin{aligned}
& \square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q), \\
& \square p \rightarrow p, \\
& \square p \rightarrow \square \square p,
\end{aligned}
$$

and closed under Modus Ponens $\frac{\varphi, \varphi \rightarrow \psi}{\psi}$, substitution $\frac{\varphi\left(p_{1}, \ldots, p_{n}\right)}{\varphi\left(\psi_{1}, \ldots, \psi_{n}\right)}$, and necessitation $\frac{\varphi}{\square \varphi}$. As usual, we use $\diamond \varphi$ as an abbreviation for $\neg \square \neg \varphi$.

For $n \geq 1$, define

$$
\begin{aligned}
\mathrm{bd}_{1} & =\diamond \square p_{1} \rightarrow p_{1} \\
\mathrm{bd}_{n+1} & =\diamond\left(\square p_{n+1} \wedge \neg \mathrm{bd}_{n}\right) \rightarrow p_{n+1}
\end{aligned}
$$

and set

$$
\begin{aligned}
\mathrm{S} 4.1 & =\mathrm{S} 4+\square \diamond p \rightarrow \diamond \square p, \\
\mathrm{~S} 4 . \mathrm{Grz} & =\mathrm{S} 4+\square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p, \\
\mathrm{~S}_{4} \mathrm{Grz}_{n} & =\mathrm{S} 4 . \mathrm{Grz}+\mathrm{bd}_{n} .
\end{aligned}
$$

It is well known that these logics form the following chain:

$$
\mathrm{S}_{4 . \mathrm{Grz}_{1} \supset \mathrm{~S}_{4} \mathrm{Grz}_{2} \supset \mathrm{~S} 4 . \mathrm{Grz}_{3} \supset \cdots \mathrm{~S} 4 . \mathrm{Grz} \supset \mathrm{~S} 4.1 \supset \mathrm{~S} 4 ~}^{\text {. }}
$$

This will become apparent after describing relational semantics of these logics.
2.2. Relational semantics. A frame \mathfrak{F} is a pair (W, R) consisting of a nonempty set W and a binary relation $R \subseteq W \times W$. For $w \in W$, let $R(w)=\{v \in W: w R v\}$ and $R^{-1}(w)=\{v \in W: v R w\}$. We will only work with S4-frames; that is, frames where the binary relation R is reflexive and transitive. Thus, S4-frames are quasi-ordered sets (qosets), while antisymmetric S 4 -frames are partially ordered sets (posets).

Recall that a qoset \mathfrak{F} is rooted provided there is $r \in W$, called a root of \mathfrak{F}, such that $R(r)=W$. A chain A in a poset \mathfrak{F} is a subset of W satisfying $w R v$ or $v R w$ for each $w, v \in A$. A tree is a rooted poset in which $R^{-1}(w)$ is a chain for each $w \in W$. The height or depth of a tree is $n \geq 1$ provided there is a chain with n elements and no chain has more than n elements. Call $v \in W$ a child of $w \in W$ provided v covers w; that is, $w R v, w \neq v$, and for each $u \in W$, from $w R u R v$ it follows that $w=u$ or $u=v$.
We recall that a cluster C in \mathfrak{F} is a subset of W which is maximal with respect to set inclusion satisfying the property that $w R v$ and $v R w$ for each $v, w \in C$. The cluster generated by $w \in W$ is $C(w)=R(w) \cap R^{-1}(w)$. The set of all clusters of a qoset forms a partition of W. The relation R induces a partial ordering of the clusters of \mathfrak{F} and the associated poset is known as the skeleton of \mathfrak{F}.

Call \mathfrak{F} a quasi-tree or qtree provided the skeleton of \mathfrak{F} is a tree. The root cluster of a qtree is the root of its skeleton. In a qtree, a cluster C is a child cluster of a cluster C^{\prime} whenever C is a child of C^{\prime} in its skeleton. The height or depth of a qtree is the height of its skeleton. Call $w \in W$ quasi-maximal (maximal) in \mathfrak{F} provided $w R v$ implies $v R w(w=v)$ for all $v \in W$. We denote the quasi-maximal and maximal nodes of \mathfrak{F} by $q \max (\mathfrak{F})$ and $\max (\mathfrak{F})$, respectively. Note that $\max (\mathfrak{F}) \subseteq q \max (\mathfrak{F})$ and the containment can be proper.

The modal language has a natural interpretation in a frame \mathfrak{F}. Namely formulas are interpreted as subsets, the classical connectives as Booleans, and for modal operators, we set:

$$
\begin{array}{lll}
w \vDash \square \varphi & \text { iff } & (\forall v \in W)(w R v \Rightarrow v \vDash \varphi), \\
w \vDash \diamond \varphi & \text { iff } & (\exists v \in W)(w R v \& v \vDash \varphi) .
\end{array}
$$

If $w \models \varphi$, then we say that φ is true at $w \in W$. If $w \models \varphi$ for all $w \in W$, then we say that φ is true in \mathfrak{F} under a given valuation. We call φ valid in \mathfrak{F} if φ is true in \mathfrak{F} under all valuations. It is well known that all formulas valid in a frame \mathfrak{F} form a modal logic, called the modal logic of \mathfrak{F} and denoted $L(\mathfrak{F})$. The modal logic of a class \mathfrak{C} of frames is $L(\mathfrak{C})=\bigcap\{L(\mathfrak{F}): \mathfrak{F} \in \mathfrak{C}\}$. The following characterizes the logics of interest (proofs of these well-known facts can for example be found in Chagrov \& Zakharyaschev, 1997; see also Bezhanishvili \& Harding, 2012, prop. 2.5).

Lemma 2.1.

1. S 4 is the modal logic of finite qtrees.
2. S 4.1 is the modal logic of finite qtrees \mathfrak{F} satisfying $\mathrm{qmax}(\mathfrak{F})=\max (\mathfrak{F})$.
3. S4.Grz is the modal logic of finite trees.
4. $\mathrm{S}_{4} \mathrm{Grz}_{n}$ is the modal logic of finite trees of height $\leq n$.

Let $\mathfrak{F}=(W, R)$ and $\mathfrak{G}=(V, S)$ be frames. Then \mathfrak{G} is a subframe of \mathfrak{F} provided $V \subseteq W$ and S is the restriction of R to V. We call \mathfrak{G} a generated subframe if $w \in V$ and $w R v$ imply $v \in V$. A map $f: W \rightarrow V$ is a p-morphism provided $w R w^{\prime}$ implies $f(w) S f\left(w^{\prime}\right)$ and $f(w) S v$ implies there is $w^{\prime} \in R(w)$ such that $f\left(w^{\prime}\right)=v$. The first condition is usually referred to as the forth condition and the second one as the back condition of a p-morphism. If there is a p-morphism from \mathfrak{F} onto \mathfrak{G}, then we call \mathfrak{G} a p-morphic image of \mathfrak{F}. It is well known that generated subframes and p-morphic images are truth-preserving operations (see, e.g., Chagrov \& Zakharyaschev, 1997). Therefore, if \mathfrak{G} is either a generated subframe or a p-morphic image of \mathfrak{F} and $\mathfrak{G} \nvdash \varphi$, then $\mathfrak{F} \nLeftarrow \varphi$.

The next construction can be found in Bezhanishvili \& Harding (2012, def. 3.10). Let $\mathfrak{G}=(V, S)$ be a finite qtree and let C_{1}, \ldots, C_{n} be the maximal clusters of \mathfrak{G} (i.e. each C_{i} is maximal in the skeleton of \mathfrak{G}). Let m_{1}, \ldots, m_{n} be distinct and not in V. Define a new qtree $\mathfrak{F}=(W, R)$ by putting each m_{i} on top of C_{i}. More precisely, set $W=V \cup\left\{m_{1}, \ldots, m_{n}\right\}$ and let R be the least quasi-order on W containing S and (w, m_{i}) for each $w \in C_{i}, i=$ $1, \ldots, n$. We call \mathfrak{F} obtained in this manner a top thin quasi-tree or $t t$-qtree; see Figure 1 .

Note that any map $f: \mathfrak{F} \rightarrow \mathfrak{G}$ extending the identity on V and satisfying $f\left(m_{i}\right) \in C_{i}$ for $i=1, \ldots, n$ is onto and satisfies the forth condition of a p-morphism. In addition, if each cluster C_{i} consists of a single node (that is, $\operatorname{qmax}(\mathfrak{G})=\max (\mathfrak{G})$), then f also satisfies the back condition, and hence is an onto p-morphism. For a tt-qtree $\mathfrak{F}=(W, R)$, we denote by \mathfrak{F}^{-}the subframe of \mathfrak{F} whose underlying set is $W-\max (\mathfrak{F})$. Thus, \mathfrak{F} is obtained from \mathfrak{F}^{-}by the construction described above. Moreover, if $\operatorname{qmax}\left(\mathfrak{F}^{-}\right)=\max \left(\mathfrak{F}^{-}\right)$, then \mathfrak{F}^{-}is a p-morphic image of \mathfrak{F}.

Lemma 2.2 (Bezhanishvili \& Harding, 2012). S4.1 is the modal logic of tt-qtrees.
Proof. Clearly each tt-qtree \mathfrak{F} satisfies $q \max (\mathfrak{F})=\max (\mathfrak{F})$, so $\mathfrak{F} \vDash \square \diamond p \rightarrow \diamond \square p$. Let S4.1 $\vdash \varphi$. By Lemma 2.1(2), there is a finite qtree \mathfrak{G} such that $\operatorname{qmax}(\mathfrak{G})=\max (\mathfrak{G})$ and $\mathfrak{G} \nvdash \varphi$. Let \mathfrak{F} be the tt-qtree obtained from \mathfrak{G}. Then \mathfrak{G} is a p-morphic image of \mathfrak{F}. Thus, \mathfrak{F} refutes φ, and the result follows.

\mathfrak{G}

\mathfrak{F}

Fig. 1. Constructing a tt-qtree \mathfrak{F} from \mathfrak{G}.
2.3. Topological semantics. Topological semantics generalizes relational semantics for S4. We assume that all topological spaces are nonempty. We interpret modal formulas as subsets of a topological space, the classical connectives as Booleans, \square as interior, and \diamond as closure. Then for a point x in a topological space X,

$$
\begin{array}{lll}
x \vDash \square \varphi & \text { iff } & \text { there is an open neighborhood } U_{x} \text { of } x \text { such that } y \vDash \varphi \text { for all } y \in U_{x}, \\
x \vDash \diamond \varphi & \text { iff } & \text { for all open neighborhoods } U_{x} \text { of } x \text { there is } y \in U_{x} \text { such that } y \vDash \varphi .
\end{array}
$$

In fact, S4-frames are special topological spaces, called Alexandrov spaces, where the intersection of an arbitrary family of opens is open (alternatively, each point has a least open neighborhood). Indeed, for an S4-frame $\mathfrak{F}=(W, R)$, generated subframes of \mathfrak{F} serve as (nonempty) opens of the Alexandrov topology of $\mathfrak{F},\{R(w): w \in W\}$ is a basis, and R^{-1} is the closure operator of the topology.
Truth and validity of a formula in a topological space is defined as in relational semantics. For a topological space X, we denote by $L(X)$ the modal logic of X (the set of formulas valid in X). The modal logic of a class \mathfrak{C} of spaces is $L(\mathfrak{C})=\bigcap\{L(X): X \in \mathfrak{C}\}$.

In topological semantics the role of generated subframes and p -morphisms is played by open subspaces and interior maps. We recall that a map $f: X \rightarrow Y$ between topological spaces is continuous if V open in Y implies $f^{-1}(V)$ is open in X, and f is open if U open in X implies $f(U)$ is open in Y. We call f interior if it is both continuous and open. If f is an onto interior map, then we call Y an interior image of X. It is well known (see, e.g., van Benthem et al., 2003, prop. 2.9) that open subspaces and interior images are truth-preserving operations on topological spaces. Therefore, to prove the MTRS-theorem that S 4 is the modal logic of each dense-in-itself metric space X, by Lemma 2.1(1), it is sufficient to show that each finite qtree is an interior image of X. In fact, the main construction in the MTRS-theorem proves that each finite rooted S4-frame is an interior image of X. We will repeatedly utilize this fact.
2.4. Cantor-Bendixson decomposition. Let X be a topological space. We denote the interior and closure operators of X by \mathbf{i} and \mathbf{c}, respectively. We recall that the derivative (or limit point) operator, denoted \mathbf{d}, is defined as follows: $x \in \mathbf{d}(A)$ iff each open neighborhood U_{x} of x contains a point of A different from x. The interior, closure, and derivative operators in a subspace Y of X are denoted $\mathbf{i}_{Y}, \mathbf{c}_{Y}$, and \mathbf{d}_{Y}, respectively. A subset A of X is dense if $\mathbf{c}(A)=X$, dense-in-itself if $A \subseteq \mathbf{d}(A)$ (equivalently $a \in \mathbf{c}(A-\{a\})$ for each $a \in A$), and discrete if $A \cap \mathbf{d}(A)=\varnothing$ (equivalently $a \notin \mathbf{c}(A-\{a\})$ for each $a \in A$).

A point $x \in X$ is isolated if $\{x\}$ is open in X. Let iso (X) be the set of isolated points of X. Then iso $(X)=X-\mathbf{d}(X)$, so X is dense-in-itself iff iso $(X)=\varnothing$. A space X is scattered if iso $(Y) \neq \varnothing$ for each nonempty subspace Y of X. This immediately yields that if X is a scattered space, then iso (X) is dense in X. But there exist non-scattered spaces in which the isolated points are dense. We call a space X weakly scattered if iso (X) is dense in X.
By the Cantor-Bendixson theorem, each space X can be decomposed into the disjoint union of an open scattered and closed dense-in-itself subspaces. For $A \subseteq X$ and an ordinal α, define $\mathbf{d}^{\alpha}(A)$ by setting

$$
\begin{aligned}
\mathbf{d}^{0}(A) & =A, \\
\mathbf{d}^{\alpha}(A) & =\mathbf{d}\left(\mathbf{d}^{\beta}(A)\right) \text { if } \alpha=\beta+1 \text { is a successor, } \\
\mathbf{d}^{\alpha}(A) & =\bigcap\left\{\mathbf{d}^{\beta}(A): \beta<\alpha\right\} \text { if } \alpha \text { is a limit. }
\end{aligned}
$$

It is well known that X is scattered iff $\mathbf{d}^{\alpha}(X)=\varnothing$ for some ordinal α. Since $\mathbf{d}^{\alpha}(X) \subseteq$ $\mathbf{d}^{\beta}(X)$ for any ordinals $\alpha \geq \beta$, there is an ordinal α such that $\mathbf{d}^{\alpha}(X)=\mathbf{d}^{\alpha+1}(X)$. The rank of X is $\varrho=\min \left\{\alpha: \mathbf{d}^{\alpha}(X)=\mathbf{d}^{\alpha+1}(X)\right\}$. Putting $D=\mathbf{d}^{\varrho}(X)$ and $S=X-D$ delivers the Cantor-Bendixson decomposition of X.

We note that the rank of X is 0 iff X is dense-in-itself, which happens iff $S=\varnothing$. Therefore, if X is scattered, then its rank is ≥ 1 (because we are only concerned with nonempty spaces). We view S as dissected into levels, the 'number' of levels being the rank ϱ of X. Specifically, set $X_{\alpha}=\mathbf{d}^{\alpha}(X)-\mathbf{d}^{\alpha+1}(X)$ for $\alpha<\varrho$. It is easy to see that each X_{α} is discrete in X and that X_{α} is the set of isolated points of the subspace $\mathbf{d}^{\alpha}(X)$ of X; that is, $X_{\alpha}=\operatorname{iso}\left(\mathbf{d}^{\alpha} X\right)$. See Figure 2.
2.5. Metric spaces. Let X be a metric space with the distance function $d: X \times X \rightarrow \mathbb{R}$. Then the open balls $B_{\varepsilon}(x)=\{y \in X: d(x, y)<\varepsilon\}$ form a basis for X. Therefore, for $x \in X$ and $A \subseteq X, x \in \mathbf{c}(A)$ iff there is a sequence $\left\{x_{n}\right\}$ in A converging to x. The distance from A to x is $d(A, x)=\inf \{d(a, x): a \in A\}$. So $d(A, x)=0$ iff $x \in \mathbf{c}(A)$. The next simple lemma will be of use for us.

Lemma 2.3. Let X be a metric space. If A is a discrete subset of X, then there is a pairwise disjoint family of open balls $\left\{B_{r_{a}}(a): a \in A\right\}$.

Proof. Let $a \in A$. Since A is discrete, $a \notin \mathbf{c}(A-\{a\})$, giving $d(A-\{a\}, a)=\varepsilon_{a}>0$. Set $r_{a}=\frac{\varepsilon_{a}}{2}$ and consider $\left\{B_{r_{a}}(a): a \in A\right\}$. Let $x \in B_{r_{a}}(a) \cap B_{r_{a}}(b)$ for some $a, b \in A$. Then

$$
d(a, b) \leq d(a, x)+d(x, b)<r_{a}+r_{b}=\frac{\varepsilon_{a}}{2}+\frac{\varepsilon_{b}}{2} \leq \max \left(\varepsilon_{a}, \varepsilon_{b}\right) .
$$

By symmetry, we may proceed by considering only the case $\max \left(\varepsilon_{a}, \varepsilon_{b}\right)=\varepsilon_{a}$, so $d(a, b)<\varepsilon_{a}$. Since $b \in A$ and $d(A-\{a\}, a)=\varepsilon_{a}$, it follows that $b \in A-(A-\{a\})=\{a\}$. This yields $a=b$, and hence $\left\{B_{r_{a}}(a): a \in A\right\}$ is indeed pairwise disjoint.

We recall that a subset A of a topological space X is a zero-set if there is a continuous function $f: X \rightarrow[0,1]$ such that $A=f^{-1}(0)$. Complements of zero-sets are called cozero-sets. A Hausdorff space is completely regular if cozero-sets form a basis for the topology.

A subset A of X is clopen if it is closed and open, and a Hausdorff space is zerodimensional if it has a basis of clopens. Given two covers $\mathcal{U}=\left\{U_{i}: i \in I\right\}$ and $\mathcal{V}=\left\{V_{j}: j \in J\right\}$ of X, we say that \mathcal{V} is a refinement of \mathcal{U} provided for each $i \in I$ there is $j \in J$ such that $V_{j} \subseteq U_{i}$.

Fig. 2. Cantor-Bendixson decomposition of $X=S \cup D$ and the levels X_{α} of S.

A completely regular space X is strongly zero-dimensional provided every finite cover of X consisting of cozero-sets has a finite pairwise disjoint open refinement. (Clearly the refinement consists of clopen sets.) It is well known that each strongly zero-dimensional space is zero-dimensional, but the converse is not true in general.
In what follows we will use essentially Telgarsky's theorem, Telgársky (1968), that each scattered metric space is strongly zero-dimensional.

Remark 2.4. In fact, Telgarsky proves (see Telgársky, 1968, cor. 3) that if X is a scattered paracompact space, then $\operatorname{dim}(X)=0$. Since each metric space is paracompact (Engelking, 1989, theorem 5.1.3) and $\operatorname{dim}(X)=0$ iff X is strongly zero-dimensional (Engelking, 1989, p. 385), it follows that each scattered metric space is strongly zerodimensional.
§3. Main results. In this section we axiomatize the modal logic of each metric space. Let X be a metric space. Either X is weakly scattered or not. If X is not weakly scattered, then we use the MTRS-theorem to show that $L(X)=$ S4. If X is weakly scattered, then either X is scattered or not. If X is not scattered, then we use the Cantor-Bendixson decomposition and Telgarsky's theorem to show that $L(X)=$ S4.1. Finally, if X is scattered, then either the rank of X is finite or infinite. If the rank of X is infinite, then we show that $L(X)=$ S4.Grz, and if the rank of X is $n \in \omega-\{0\}$, then we show that $L(X)=S 4 . \mathrm{Grz}_{n}$.
3.1. The non-weakly scattered case. Let X be a non-weakly scattered metric space. Set $U=X-\mathbf{c}(\operatorname{iso}(X))$. Then U is a nonempty dense-in-itself open subspace of X. Therefore, U is a dense-in-itself metric space. By the MTRS-theorem, $L(U)=$ S4. But since U is an open subspace of X, we have $L(X) \subseteq L(U)$. Thus, $\mathrm{S} 4 \subseteq L(X) \subseteq L(U)=$ S4, and we arrive at the following.

Theorem 3.1. If X is a non-weakly scattered metric space, then $L(X)=S 4$.
3.2. The weakly scattered non-scattered case. We prove that each tt -qtree is an interior image of a weakly scattered non-scattered metric space. For this we require the following lemma, which will also be useful in the scattered case.

Lemma 3.2. Let $k \in \omega-\{0\}$. For any finite pairwise disjoint family $\left\{F_{i}: i<k\right\}$ of nonempty closed subsets of a strongly zero-dimensional normal space X, there is a clopen partition $\left\{U_{i}: i<k\right\}$ of X such that $F_{i} \subseteq U_{i}$ for each $i<k$.

Proof. By induction on k. If $k=1$, then the family consists of a single nonempty closed set F, and we take the clopen partition $\{X\}$. Clearly $F \subseteq X$.

Next suppose the result is true for $k \geq 1$. Let $\left\{F_{i}: i \leq k\right\}$ be a pairwise disjoint family of nonempty closed subsets of X. Then $\left\{F_{i}, F_{k-1} \cup F_{k}: i<k-1\right\}$ is a pairwise disjoint family consisting of k nonempty closed subsets of X. The inductive hypothesis delivers a clopen partition $\left\{U_{i}, U: i<k-1\right\}$ of X such that $F_{i} \subseteq U_{i}$ when $i<k-1$ and $F_{k-1} \cup F_{k} \subseteq U$. Since X is normal and the closed sets F_{k-1} and F_{k} are disjoint, Urysohn's lemma yields a continuous function $f: X \rightarrow[0,1]$ such that $F_{k-1} \subseteq f^{-1}(0)$ and $F_{k} \subseteq f^{-1}(1)$. Since X is strongly zero-dimensional, by Engelking (1989, lem. 6.2.2), there is a clopen set $V \subseteq X$ such that $F_{k-1} \subseteq V \subseteq X-F_{k}$. Setting $U_{k-1}=U \cap V$ and $U_{k}=U-V$ gives a clopen partition $\left\{U_{i}: i \leq k\right\}$ of X such that $F_{i} \subseteq U_{i}$ for each $i \leq k$.

Lemma 3.3. Each tt-qtree is an interior image of any weakly scattered non-scattered metric space.

Proof. Let \mathfrak{F} be a tt-qtree. Then \mathfrak{F}^{-}is a finite qtree. Let X be a weakly scattered nonscattered metric space and let $X=S \cup D$ be the Cantor-Bendixson decomposition of X, where S is an open scattered subspace, D is a closed dense-in-itself subspace, and $S \cap D=\varnothing$. Since X is weakly scattered, $S \neq \varnothing$; and since X is non-scattered, $D \neq \varnothing$. As D is a dense-in-itself metric space, it follows from the MTRS-theorem that there is an onto interior map $g: D \rightarrow \mathfrak{F}^{-}$. We show there exists an onto interior map $f: X \rightarrow \mathfrak{F}$ extending g such that $f(S)=\max (\mathfrak{F})$. We proceed by (strong) induction on the height of $\mathfrak{F}=(W, R)$. Since \mathfrak{F} is a tt-qtree, its smallest height is 2.
Base Case: Suppose the height of \mathfrak{F} is 2 . Since \mathfrak{F} is a tt-qtree of height $2, \max (\mathfrak{F})=\{m\}$ and \mathfrak{F}^{-}is the root cluster C_{r} of \mathfrak{F}. We extend $g: D \rightarrow \mathfrak{F}^{-}$to $f: X \rightarrow \mathfrak{F}$ by setting $f(x)=m$ for each $x \in S$, see Figure 3 .

Clearly f is a well-defined onto map extending g such that $f(S)=\max (\mathfrak{F})$. Since $\{m\}$ is the only nonempty proper generated subframe of \mathfrak{F} and $f^{-1}(m)=S$, we see that f is continuous. To see that f is open, let U be a nonempty open in X. If $U \subseteq S$, then $f(U)=$ $\{m\}$. Otherwise, since $X=S \cup D$ is weakly scattered, both $U \cap D$ and $U \cap \operatorname{iso}(X) \subseteq U \cap S$ are nonempty. Therefore, because g is interior,

$$
f(U)=f(U \cap S) \cup f(U \cap D)=f(U \cap S) \cup g(U \cap D)=\{m\} \cup C_{r}=W .
$$

Thus, f is open.
Inductive Step: Suppose the height of \mathfrak{F} is greater than 2. Assume that for any finite $\mathrm{tt}-$ qtree \mathfrak{G} of lesser height than \mathfrak{F}, for any weakly scattered non-scattered metric space Y whose Cantor-Bendixson decomposition is $Y=S^{\prime} \cup D^{\prime}$, and for any onto interior map $h^{\prime}: D^{\prime} \rightarrow \mathfrak{G}^{-}$, there is an onto interior map $h: Y \rightarrow \mathfrak{G}$ extending h^{\prime} and satisfying $h\left(S^{\prime}\right)=\max (\mathfrak{G})$.

We must extend $g: D \rightarrow \mathfrak{F}^{-}$to an onto interior map $f: X \rightarrow \mathfrak{F}$ such that $f(S)=$ $\max (\mathfrak{F})$. Let C_{1}, \ldots, C_{k} be the children clusters of the root cluster C_{r} of \mathfrak{F}. For $i=$ $1, \ldots, k$, let \mathfrak{F}_{i} be the generated subframe of \mathfrak{F} whose underlying set is $R\left(C_{i}\right)$. Then \mathfrak{F}_{i} is a finite tt-qtree and \mathfrak{F}_{i} has lesser height than \mathfrak{F}. Set $F=g^{-1}\left(C_{r}\right)$ and $D_{i}=g^{-1}\left(R_{\mathfrak{F}^{-}}\left(C_{i}\right)\right)$, where $R_{\mathfrak{F}^{-}}$is the restriction of R to \mathfrak{F}^{-}. Then $D-F=D_{1} \cup \cdots \cup D_{k}$. Put $Y=S \cup(D-F)$, see Figure 4.

Since D is closed in X and $g: D \rightarrow \mathfrak{F}^{-}$is interior, F is closed in X and each D_{i} is open in D. Moreover, Y is open in X as $Y=X-F$. Furthermore, D_{i} is closed in Y. To see this, observe that

$$
\begin{aligned}
\mathbf{c}\left(D_{i}\right) & =\mathbf{c}_{D}\left(D_{i}\right)=\mathbf{c}_{D}\left(g^{-1}\left(R_{\mathfrak{F}^{-}}\left(C_{i}\right)\right)\right) \\
& =g^{-1}\left(R^{-1}\left(R_{\mathfrak{F}^{-}}\left(C_{i}\right)\right)\right)=g^{-1}\left(R_{\mathfrak{F}^{-}}\left(C_{i}\right) \cup C_{r}\right)=D_{i} \cup F .
\end{aligned}
$$

X
\mathfrak{F}
Fig. 3. Extending g to f when the height of \mathfrak{F} is 2 .

Fig. 4. Extending g to f when the height of \mathfrak{F} is greater than 2.

Therefore, $D_{i}=\mathbf{c}\left(D_{i}\right) \cap Y$, and so D_{i} is closed in Y. Since Y is a metric space and D_{1}, \ldots, D_{k} are disjoint closed subsets of Y, (Rasiowa \& Sikorski, 1963, chap. III, theorem 6.1) yields open subsets U_{1}, \ldots, U_{k} of Y such that $D_{i} \subseteq U_{i}$ for each i and $\mathbf{c}_{Y}\left(U_{1}\right), \ldots, \mathbf{c}_{Y}\left(U_{k}\right)$ are also disjoint.
Because Y is open in X, each U_{i} is open in X. Clearly $D_{i} \subseteq U_{i} \cap D$. To see the converse, let $x \in U_{i} \cap D$. Then $x \in D=X-S$ and $x \in U_{i} \subseteq Y=S \cup(D-F)$, giving that $x \in D-F$. So $x \in D_{j}$ for some j. Therefore, $x \in D_{j} \subseteq U_{j} \subseteq \mathbf{c}_{Y}\left(U_{j}\right)$, yielding $\mathbf{c}_{Y}\left(U_{i}\right) \cap \mathbf{c}_{Y}\left(U_{j}\right) \neq \varnothing$. Thus, $i=j$, so $x \in D_{i}$, and hence $D_{i}=U_{i} \cap D$.

Set $F_{i}=\mathbf{c}_{Y}\left(U_{i}\right) \cap S$. Then F_{1}, \ldots, F_{k} are disjoint nonempty closed subsets in S. Since S is a scattered metric space, it follows from Telgarsky's theorem that S is strongly zerodimensional. By Lemma 3.2, there is a clopen partition S_{1}, \ldots, S_{k} of S such that $F_{i} \subseteq S_{i}$ for each i. Since S is open in X, each S_{i} is open in X.

Set $Y_{i}=S_{i} \cup U_{i}$ for each i. Since both U_{i} and S_{i} are open in X, Y_{i} is open in X. Moreover, as $U_{i} \cap S \subseteq F_{i} \subseteq S_{i}$ and $U_{i} \cap D=D_{i}$, we have

$$
\begin{aligned}
Y_{i} & =S_{i} \cup U_{i}=S_{i} \cup\left(U_{i} \cap X\right)=S_{i} \cup\left(U_{i} \cap(S \cup D)\right) \\
& =S_{i} \cup\left(U_{i} \cap S\right) \cup\left(U_{i} \cap D\right)=S_{i} \cup D_{i} .
\end{aligned}
$$

Figure 5 depicts the clopen partition S_{1}, \ldots, S_{k} of S and demonstrates the sets Y_{i}.
The Cantor-Bendixson decomposition of Y_{i} is realized through D_{i} and S_{i}. Indeed, D_{i} is dense-in-itself since D_{i} is an open subset of the dense-in-itself space D, and S_{i} is scattered

Fig. 5. Clopen partition of S and $Y_{i}=S_{i} \cup D_{i}$.
as S_{i} is a subset of the scattered space S. Therefore, if ϱ is the rank of S, then for any $\alpha \geq \varrho$, we have

$$
\left(\mathbf{d}_{Y_{i}}\right)^{\alpha}\left(Y_{i}\right)=\left(\mathbf{d}_{Y_{i}}\right)^{\alpha}\left(S_{i} \cup D_{i}\right)=\left(\mathbf{d}_{Y_{i}}\right)^{\alpha}\left(S_{i}\right) \cup\left(\mathbf{d}_{Y_{i}}\right)^{\alpha}\left(D_{i}\right)=D_{i} .
$$

Since an open subspace of a weakly scattered space is weakly scattered, Y_{i} is weakly scattered. Furthermore, Y_{i} is not scattered since $D_{i} \neq \varnothing$. So Y_{i} is a weakly scattered metric space that is not scattered.

Let $g_{i}=\left.g\right|_{D_{i}}$. Clearly $g_{i}: D_{i} \rightarrow \mathfrak{F}_{i}^{-}$is onto and continuous. It is also open because D_{i} is open in $D=\operatorname{dom}(g)$. Therefore, g_{i} is an onto interior map. By the inductive hypothesis, there is an onto interior map $f_{i}: Y_{i} \rightarrow \mathfrak{F}_{i}$ extending g_{i} such that $f_{i}\left(S_{i}\right)=\max \left(\mathfrak{F}_{i}\right)$. Define $f: X \rightarrow W$ by setting $f(x)=g(x)$ on $F=g^{-1}\left(C_{r}\right)$ and $f(x)=f_{i}(x)$ on Y_{i}. Since Y_{1}, \ldots, Y_{k}, F is a partition of X, f is well defined. Moreover,

$$
\begin{aligned}
f(X) & =f\left(Y_{1}\right) \cup \cdots \cup f\left(Y_{k}\right) \cup f(F)=f_{1}\left(Y_{1}\right) \cup \cdots \cup f_{k}\left(Y_{k}\right) \cup g(F) \\
& =R\left(C_{1}\right) \cup \cdots \cup R\left(C_{k}\right) \cup C_{r}=W
\end{aligned}
$$

showing that f is onto. Clearly f extends g on F. Let $x \in D_{i}$. Then

$$
f(x)=f_{i}(x)=g_{i}(x)=g(x)
$$

showing that f does indeed extend g. Furthermore,

$$
\begin{aligned}
f(S) & =f\left(S_{1} \cup \cdots \cup S_{k}\right)=f\left(S_{1}\right) \cup \cdots \cup f\left(S_{k}\right)=f_{1}\left(S_{1}\right) \cup \cdots \cup f_{k}\left(S_{k}\right) \\
& =\max \left(\mathfrak{F}_{1}\right) \cup \cdots \cup \max \left(\mathfrak{F}_{k}\right)=\max (\mathfrak{F}) .
\end{aligned}
$$

It remains to prove that f is interior. Let $w \in W$. If $w \in R\left(C_{i}\right)$ for some i, then $R(w) \subseteq$ $R\left(C_{i}\right)$, so $f^{-1}(R(w))=\left(f_{i}\right)^{-1}(R(w))$ is open in Y_{i}. Since Y_{i} is open in X, we conclude that $f^{-1}(R(w))$ is open in X. If $w \notin R\left(C_{i}\right)$ for all i, then $w \in C_{r}$, so $R(w)=W$, and hence $f^{-1}(R(w))=f^{-1}(W)=X$ is open in X. Thus, f is continuous.

Let U be open in X. If $U \cap F=\varnothing$, then $U \subseteq Y_{1} \cup \cdots \cup Y_{k}$, so

$$
\begin{aligned}
f(U) & =f\left(\left(U \cap Y_{1}\right) \cup \cdots \cup\left(U \cap Y_{k}\right)\right)=f\left(U \cap Y_{1}\right) \cup \cdots \cup f\left(U \cap Y_{k}\right) \\
& =f_{1}\left(U \cap Y_{1}\right) \cup \cdots \cup f_{k}\left(U \cap Y_{k}\right) .
\end{aligned}
$$

Since $U \cap Y_{i}$ is open in Y_{i} and $f_{i}: Y_{i} \rightarrow \mathfrak{F}_{i}$ is interior, $f_{i}\left(U \cap Y_{i}\right)$ is a generated subframe of \mathfrak{F}_{i}. But \mathfrak{F}_{i} is a generated subframe of \mathfrak{F}, so each $f_{i}\left(U \cap Y_{i}\right)$ is a generated subframe of \mathfrak{F}, and hence $f(U)$ is a generated subframe of \mathfrak{F}.

Suppose that $U \cap F \neq \varnothing$. Then $U \cap D \neq \varnothing$, so $g(U \cap D) \neq \varnothing$. Since $g(F)=C_{r}$, we obtain $g(U \cap D) \cap C_{r} \neq \varnothing$. As $U \cap D$ is open in D and $g: D \rightarrow \mathfrak{F}^{-}$is interior, $g(U \cap D)=W-\max (\mathfrak{F})$. Since the height of \mathfrak{F} is greater than 2 , each C_{i} belongs to \mathfrak{F}^{-}. Therefore, $C_{i} \subseteq g(U \cap D) \subseteq f(U)$. We show that $C_{i} \subseteq f\left(U \cap Y_{i}\right)$. Let $x \in U$ with $f(x) \in C_{i}$. Then $x \notin S$ because $f(S)=\max (\mathfrak{F})$. This implies $x \in D$ and $f(x)=g(x)$. Thus, $g(x) \in C_{i}$, giving $x \in D_{i}$. This yields $x \in Y_{i}$, so $C_{i} \subseteq f\left(U \cap Y_{i}\right)$. Therefore, $C_{i} \subseteq f_{i}\left(U \cap Y_{i}\right)$. Since f_{i} is interior, this implies $R\left(C_{i}\right) \subseteq f_{i}\left(U \cap Y_{i}\right) \subseteq f(U)$. We also have $f(U) \supseteq g(U \cap D) \supseteq C_{r}$. Thus, $f(U)=W$. Consequently, f is open, and hence interior.

THEOREM 3.4. If X is a weakly scattered non-scattered metric space, then $L(X)=$ S4.1.

Proof. Let X be a weakly scattered non-scattered metric space. Since X is weakly scattered, it is well-known (see, e.g., Bezhanishvili \& Harding, 2012, sec. 2) that S4.1 $\subseteq L(X)$. Conversely, if S4.1 $\vdash \varphi$, then by Lemma $2.2, \varphi$ is refuted on a finite tt-qtree \mathfrak{F}. By Lemma 3.3, \mathfrak{F} is an interior image of X. Therefore, X refutes φ. Thus, S4.1 $=L(X)$.
3.3. The scattered case. For a scattered space X and $n \in \omega$, let $X_{n}^{\uparrow}=\bigcup_{m \leq n} X_{m}$, where we recall that $X_{n}=\mathbf{d}^{n}(X)-\mathbf{d}^{n+1}(X)=\operatorname{iso}\left(\mathbf{d}^{n}(X)\right)$ and each X_{n} is a discrete subset of X.

Lemma 3.5. Let $n \in \omega, \mathfrak{T}$ be a finite tree of height at most $n+1$, and let X be a scattered metric space such that $X_{n} \neq \varnothing$. Then there is an onto interior map $f: X_{n}^{\uparrow} \rightarrow \mathfrak{T}$ such that $f(x)$ is the root of \mathfrak{T} for each $x \in X_{n}$.

Proof. The proof is by induction on $n \in \omega$.
Base case: If $n=0$, then \mathfrak{T} consists of a single reflexive root r, and $X_{0}^{\uparrow}=X_{0}$ is a discrete space. Clearly sending the entire X_{0} to r yields an onto interior map $f: X_{0}^{\uparrow} \rightarrow \mathfrak{T}$ satisfying $f(x)$ is the root of \mathfrak{T} for each $x \in X_{0}$.

Inductive case: Let $n \in \omega-\{0\}$. Suppose that for each finite tree of height at most n and each scattered metric space Y with $Y_{n-1} \neq \varnothing$, there is an interior map from Y_{n-1}^{\uparrow} onto the tree which maps Y_{n-1} to the root of the tree. Let \mathfrak{T} be a finite tree of height $n+1$ and let X be a scattered space such that $X_{n} \neq \varnothing$. We must show that there is an interior map $f: X_{n}^{\uparrow} \rightarrow \mathfrak{T}$ such that $f(x)$ is the root of \mathfrak{T} for each $x \in X_{n}$.

Let r be the root of \mathfrak{T} and let c_{1}, \ldots, c_{k} be the children of r. For each i let \mathfrak{T}_{i} be the subtree of \mathfrak{T} generated by c_{i}. Then the underlying set of \mathfrak{T}_{i} is $R\left(c_{i}\right)$, and the height of \mathfrak{T}_{i} is at most n.

Since X_{n} is discrete, Lemma 2.3 delivers a pairwise disjoint family of open balls $\{B(x)$: $\left.x \in X_{n}\right\}$. Because X is a metric space, for each $x \in X_{n}$, there is a sequence $\left\{a_{i}^{x}\right\} \subseteq X_{n-1}$ converging to x. By taking an appropriate tail of the sequence, without loss of generality we may assume that $\left\{a_{i}^{x}\right\} \subseteq B(x)$.

We partition each $\left\{a_{i}^{x}\right\}$ into k subsequences, $\sigma_{1}^{x}, \ldots, \sigma_{k}^{x}$, each converging to x. For each $i \leq k$, let $F_{i}=\bigcup_{x \in X_{n}} \sigma_{i}^{x}$. Then $X_{n} \subseteq \mathbf{c}\left(F_{i}\right)$ for each $i \leq k$. Moreover, F_{1}, \ldots, F_{k} are pairwise disjoint and closed in X_{n-1}^{\uparrow}. Since X_{n-1}^{\uparrow} is a scattered metric space (because it is a subspace of X), by Telgarsky's theorem, X_{n-1}^{\uparrow} is strongly zero-dimensional. Therefore, Lemma 3.2 delivers a clopen partition A_{1}, \ldots, A_{k} of X_{n-1}^{\uparrow} such that $F_{i} \subseteq A_{i}$ for each i. Clearly each A_{i} is a scattered metric space. Since each A_{i} is open in X, we have

$$
\mathbf{d}_{A_{i}}^{n-1}\left(A_{i}\right)-\mathbf{d}_{A_{i}}^{n}\left(A_{i}\right)=\left(\mathbf{d}^{n-1}\left(A_{i}\right)-\mathbf{d}^{n}\left(A_{i}\right)\right) \cap A_{i}=A_{i} \cap X_{n-1} \supseteq F_{i} \neq \varnothing \text {. }
$$

Therefore, the inductive hypothesis applies, by which, for each $i \leq k$ there is $f_{i}: A_{i} \rightarrow \mathfrak{T}_{i}$ such that $f_{i}\left(A_{i} \cap X_{n-1}\right)=\left\{c_{i}\right\}$.

Define $f: X_{n}^{\uparrow} \rightarrow \mathfrak{T}$ by setting $f(x)=r$ if $x \in X_{n}$ and $f(x)=f_{i}(x)$ if $x \in A_{i}$. Clearly f is well-defined because $A_{1}, \ldots, A_{k}, X_{n}$ is a partition of X_{n}^{\uparrow}. Moreover, f is onto since

$$
\begin{aligned}
f\left(X_{n}^{\uparrow}\right) & =f\left(A_{1}\right) \cup \cdots \cup f\left(A_{k}\right) \cup f\left(X_{n}\right)=f_{1}\left(A_{1}\right) \cup \cdots \cup f_{k}\left(A_{k}\right) \cup f\left(X_{n}\right) \\
& =\mathfrak{T}_{1} \cup \cdots \cup \mathfrak{T}_{k} \cup\{r\}=\mathfrak{T} .
\end{aligned}
$$

It is left to prove that f is interior. Let $t \in \mathfrak{T}$ and consider $f^{-1}(R(t))$. If $t=r$, then $f^{-1}(R(t))=f^{-1}(\mathfrak{T})=X_{n}^{\uparrow}$ is open in X_{n}^{\uparrow}. If $t \neq r$, then $t \in \mathfrak{T}_{i}$ for some $i \leq k$. Therefore, $f^{-1}(R(t))=\left(f_{i}\right)^{-1}(R(t))$ is open in A_{i}, and since A_{i} is open in X_{n}^{\uparrow}, it follows that $f^{-1}(R(t))$ is open in X_{n}^{\uparrow}. Thus, f is continuous.

Let U be open in X_{n}^{\uparrow}. Let $i \leq k$. Then $U \cap A_{i}$ is open in A_{i}. Since f_{i} is interior, $f_{i}\left(U \cap A_{i}\right)$ is a generated subframe of \mathfrak{T}_{i}. But \mathfrak{T}_{i} is a generated subframe of \mathfrak{T}. Therefore, $f_{i}\left(U \cap A_{i}\right)$ is a generated subframe of \mathfrak{T}. If $U \cap X_{n}=\varnothing$, then

$$
\begin{aligned}
f(U) & =f\left(\left(U \cap A_{1}\right) \cup \cdots \cup\left(U \cap A_{k}\right)\right)=f\left(U \cap A_{1}\right) \cup \cdots \cup f\left(U \cap A_{k}\right) \\
& =f_{1}\left(U \cap A_{1}\right) \cup \cdots \cup f_{k}\left(U \cap A_{k}\right),
\end{aligned}
$$

showing that $f(U)$ is a union of generated subframes of \mathfrak{T}, hence a generated subframe of \mathfrak{T}.

Suppose $U \cap X_{n} \neq \varnothing$. Let $x \in U \cap X_{n}$. Since a_{i}^{x} converges to x, a tail of the sequence is in U. Therefore, $U \cap A_{i} \cap X_{n-1} \neq \varnothing$, and so $f\left(U \cap A_{i}\right)=f_{i}\left(U \cap A_{i}\right)$ is a generated subframe of \mathfrak{T}_{i} containing the root c_{i} of \mathfrak{T}_{i}. This yields $f\left(U \cap A_{i}\right)=\mathfrak{T}_{i}$ for each $i \leq k$. Thus,

$$
\begin{aligned}
f(U) & =f\left(\left(U \cap A_{1}\right) \cup \cdots \cup\left(U \cap A_{k}\right) \cup\left(U \cap X_{n}\right)\right) \\
& =f\left(U \cap A_{1}\right) \cup \cdots \cup f\left(U \cap A_{k}\right) \cup f\left(U \cap X_{n}\right) \\
& =\mathfrak{T}_{1} \cup \cdots \cup \mathfrak{T}_{k} \cup\{r\}=\mathfrak{T} .
\end{aligned}
$$

Consequently, f is open, and hence interior.
Lemma 3.6. Let X be a scattered space and let V be a valuation. For each $n \in \omega$, we have $X_{n}^{\uparrow} \subseteq V\left(\mathrm{bd}_{n+1}\right)$.

Proof. By induction on $n \in \omega$. For the base case, suppose that $n=0$. Let $A_{1}=V\left(p_{1}\right)$. Then $V\left(\mathrm{bd}_{1}\right)=\left(X-\mathbf{c i}\left(A_{1}\right)\right) \cup A_{1}$. Since $X_{0}^{\uparrow}=X_{0}$, we must show that $X_{0} \subseteq V\left(\mathrm{bd}_{1}\right)$. Let $x \in X_{0}$. Then $\{x\}$ is open in X. If $x \notin X-\mathbf{c i}\left(A_{1}\right)$, then $x \in \mathbf{c i}\left(A_{1}\right)$. Since $\{x\}$ is open, $\{x\} \cap \mathbf{i}\left(A_{1}\right) \neq \varnothing$. Therefore, $x \in \mathbf{i}\left(A_{1}\right) \subseteq A_{1}$. Thus, $X_{0} \subseteq V\left(\mathrm{bd}_{1}\right)$.

Let $n \geq 0$. Suppose that $X_{n}^{\uparrow} \subseteq V\left(\mathrm{bd}_{n+1}\right)$. We must show that $X_{n+1}^{\uparrow} \subseteq V\left(\mathrm{bd}_{n+2}\right)$. Let $V\left(p_{n+2}\right)=A_{n+2}$. Then

$$
V\left(\mathrm{bd}_{n+2}\right)=\left(X-\mathbf{c}\left(\mathbf{i}\left(A_{n+2}\right)-V\left(\mathrm{bd}_{n+1}\right)\right)\right) \cup A_{n+2} .
$$

Let $x \in X_{n+1}^{\uparrow}$. If $x \notin X-\mathbf{c}\left(\mathbf{i}\left(A_{n+2}\right)-V\left(\mathrm{bd}_{n+1}\right)\right)$, then $x \in \mathbf{c}\left(\mathbf{i}\left(A_{n+2}\right)-V\left(\mathrm{bd}_{n+1}\right)\right)$. Consider the set $U=\{x\} \cup X_{n}^{\uparrow}$. Since X_{n}^{\uparrow} is open and X_{n+1} is discrete, U is open in X. As $x \in \mathbf{c}\left(\mathbf{i}\left(A_{n+2}\right)-V\left(\mathrm{bd}_{n+1}\right)\right)$, there is $y \in U \cap\left(\mathbf{i}\left(A_{n+2}\right)-V\left(\mathrm{bd}_{n+1}\right)\right)$. Because $y \notin V\left(\mathrm{bd}_{n+1}\right)$ and $X_{n}^{\uparrow} \subseteq V\left(\mathrm{bd}_{n+1}\right)$, we have $y \notin X_{n}^{\uparrow}$. But $y \in U=\{x\} \cup X_{n}^{\uparrow}$, so $x=y$. Therefore, $x \in \mathbf{i}\left(A_{n+2}\right) \subseteq A_{n+2}$. Thus, $X_{n+1}^{\uparrow} \subseteq V\left(\mathrm{bd}_{n+2}\right)$.

Theorem 3.7. Let X be a scattered metric space.

1. If the rank of X is infinite, then $L(X)=\mathrm{S} 4 . \mathrm{Grz}$.
2. If the rank of X is $n \in \omega-\{0\}$, then $L(X)=S 4 . \mathrm{Grz}_{n}$.

Proof. (1) It is well known (see, e.g., Esakia, 1981) that if X is scattered, then $\mathrm{S} 4 . \mathrm{Grz} \subseteq$ $L(X)$. Conversely, suppose that S4.Grz $\vdash \varphi$. By Lemma 2.1(3), there is a finite tree \mathfrak{T} refuting φ. Let $n \geq 1$ be the height of \mathfrak{T}. Since the rank of X is infinite, X_{n-1} is a nonempty
subset of X. By Lemma 3.5, \mathfrak{T} is an interior image of X_{n-1}^{\uparrow}. Therefore, X_{n-1}^{\uparrow} refutes φ. Since X_{n-1}^{\uparrow} is an open subspace of X, we conclude that X also refutes φ. Thus, $L(X)=$ S4.Grz.
(2) By (1), $\mathrm{S} 4 . \mathrm{Grz} \subseteq L(X)$. By Lemma 3.6, $X_{n-1}^{\uparrow} \vDash \mathrm{bd}_{n}$. Since the rank of X is n, we have $X=X_{n-1}^{\uparrow}$. Therefore, $X \vDash \mathrm{bd}_{n}$. Thus, $\mathrm{S}_{4} . \mathrm{Grz}_{n} \subseteq L(X)$. Conversely, suppose that $\mathrm{S}_{4} . \mathrm{Grz}_{n} \nvdash \varphi$. By Lemma 2.1(4), there is a tree \mathfrak{T} of height at most n refuting φ. By Lemma 3.5, \mathfrak{T} is an interior image of X. Therefore, X refutes φ. Thus, $L(X)=$ S4.Grz ${ }_{n}$.

Combining Theorems 3.1, 3.4, and 3.7 yields:
Theorem 3.8 (Main Theorem). Let X be a metric space.

1. If X is not weakly scattered, then $L(X)=S 4$.
2. If X is weakly scattered but not scattered, then $L(X)=$ S4.1.
3. If X is scattered and has infinite rank, then $L(X)=$ S4.Grz.
4. If X is scattered and has rank $n \in \omega-\{0\}$, then $L(X)=S 4 . \mathrm{Grz}_{n}$.

Since each of these logics is finitely axiomatizable, has the finite model property, and hence is decidable, we obtain:

Corollary 3.9. The modal logic of an arbitrary metric space is finitely axiomatizable, has the finite model property, and hence is decidable.

REmARK 3.10. Our results have an immediate application in the setting of superintuitionistic logics. Let IPC be the intuitionistic propositional calculus and let IPC n be the superintuitionistic logics IPC $+\mathrm{ibd}_{n}$, where:

$$
\begin{aligned}
\mathrm{ibd}_{1} & =p_{1} \vee \neg p_{1} \\
\mathrm{ibd}_{n+1} & =p_{n+1} \vee\left(p_{n+1} \rightarrow \mathrm{ibd}_{n}\right) .
\end{aligned}
$$

The formula ibd_{n} is the intuitionistic version of the modal formula bd_{n}. The well-known Gödel translation associates with each superintuitionistic logic L a normal extension S of S4, called a modal companion of L. It is well known (see, e.g., Chagrov \& Zakharyaschev, 1997, sec. 9.6) that modal companions of IPC are the logics in the interval [S4, S4.Grz]. In particular, S4, S4.1, and S4.Grz are modal companions of IPC. Also, S4.Grz ${ }_{n}$ is a modal companion of IPC_{n} for each $n \geq 1$. Thus, our Main Theorem yields that the superintuitionistic logics of metric spaces form the following chain which is order-isomorphic (with respect to the \supset relation) to the ordinal $\omega+1$:

$$
\mathrm{IPC}_{1} \supset \mathrm{IPC}_{2} \supset \mathrm{IPC}_{3} \supset \cdots \mathrm{IPC}
$$

More precisely, the superintuitionistic logic of a metric space X is IPC_{n} iff X is a scattered metric space of rank n, and it is IPC otherwise.

Remark 3.11. Since Telgarsky's theorem holds for scattered paracompact spaces, it is natural to seek to generalize our results from metric spaces to paracompact spaces. For this, however, it is necessary to extend the MTRS-theorem to the paracompact setting.
§4. Acknowledgments. The work of the first two authors was partially supported by the Rustaveli National Science Foundation of Georgia grant \#FR/489/5-105/11.

BIBLIOGRAPHY

Bezhanishvili, G., \& Harding, J. (2012). Modal logics of Stone spaces. Order, 29, 271292.

Blackburn, P., de Rijke, M., \& Venema, Y. (2001). Modal Logic. Cambridge: Cambridge University Press, UK.
Chagrov, A., \& Zakharyaschev, M. (1997). Modal Logic. Oxford: Oxford University Press, UK.
Engelking, R. (1989). General Topology (second edition). Berlin: Heldermann Verlag.
Esakia, L. (1981). Diagonal constructions, Löb's formula and Cantor's scattered spaces. Studies in Logic and Semantics. Tbilisi: Metsniereba, pp. 128-143. (In Russian).
McKinsey, J. C. C., \& Tarski, A. (1944). The algebra of topology. Annals of Mathematics, 45, 141-191.
Rasiowa, H., \& Sikorski, R. (1963). The Mathematics of Metamathematics, Monografie Matematyczne, Tom 41. Warsaw: Państwowe Wydawnictwo Naukowe.
Stone, M. H. (1936). The theory of representations for Boolean algebras. Transactions of the American Mathematical Society, 40, 37-111.
Telgársky, R. (1968). Total paracompactness and paracompact dispersed spaces. Bulletin de l'Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques, 16, 567-572.
van Benthem, J., Bezhanishvili, G., \& Gehrke, M. (2003). Euclidean hierarchy in modal logic. Studia Logica, 75, 327-344.

GURAM BEZHANISHVILI

DEPARTMENT OF MATHEMATICAL SCIENCES NEW MEXICO STATE UNIVERSITY

LAS CRUCES NM 88003, USA
E-mail: guram@math.nmsu.edu
DAVID GABELAIA

A. RAZMADZE MATHEMATICAL INSTITUTE

 TBILISI STATE UNIVERSITY6 TAMARASHVILI STR., TBILISI 0177, GEORGIA
E-mail: gabelaia@gmail.com

```
JOEL LUCERO-BRYAN
DEPARTMENT OF APPLIED MATHEMATICS AND SCIENCES KHALIFA UNIVERSITY
ABU DHABI, UAE
E-mail: joel.lucero-bryan@kustar.ac.ae
```

