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Abstract. We show that if we interpret modal diamond as the derived set operator of a topo-
logical space, then the modal logic of Stone spaces is K4 and the modal logic of weakly scattered
Stone spaces is K4G. As a corollary, we obtain that K4 is also the modal logic of compact Hausdorff
spaces and K4G is the modal logic of weakly scattered compact Hausdorff spaces.

§1. Introduction. Topological semantics of modal logic was first developed by
McKinsey & Tarski (1944), who suggested two interpretations of modal diamond 3:
one as the closure operator and another as the derived set operator of a topological space.
They showed that if we interpret 3 as the closure operator, then the modal logic of all
topological spaces is Lewis’ well-known modal system S4. The main result of McKinsey &
Tarski (1944) states that S4 is in fact the modal logic of any dense-in-itself metrizable
space.

On the other hand, if we interpret 3 as the derived set operator, then the modal logic
of all topological spaces is wK4—weak K4—which is obtained from the basic normal
modal logic K by adding 33p → (p ∨ 3p) as a new axiom (Esakia, 2004). Moreover,
K4 = K + 33p → 3p is the modal logic of all TD-spaces (Esakia, 2004) and GL =
K +2(2p → p) → 2p is the modal logic of all scattered spaces (Esakia, 1981). Further
results in this direction can be found in Shehtman (1990), Bezhanishvili et al. (2005), and
Gabelaia (2004).

In this paper we are interested in the modal logic of compact Hausdorff zero-dimensional
spaces, also known as Stone spaces. The interest in Stone spaces stems from the celebrated
Stone duality, which establishes duality (dual equivalence) between the category of
Boolean algebras and Boolean algebra homomorphisms and the category of Stone spaces
and continuous maps. Under Stone duality atomless Boolean algebras correspond to dense-
in-itself Stone spaces, atomic Boolean algebras correspond to weakly scattered Stone
spaces, and superatomic Boolean algebras correspond to scattered Stone spaces. It follows
from Abashidze (1988) that the modal logic of scattered Stone spaces is GL. In Shehtman
(1990), the McKinsey–Tarski technique was adopted to show that K4D = K4 + 3� is
the modal logic of any dense-in-itself zero-dimensional metrizable space. It follows that
K4D is the modal logic of dense-in-itself Stone spaces. To this we add that the modal
logic of all Stone spaces is K4 and the modal logic of weakly scattered Stone spaces
is K4G = K4 + ¬2⊥ → ¬2¬2⊥. As a corollary, we obtain that the modal logic
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of compact Hausdorff spaces is K4 and the modal logic of weakly scattered compact
Hausdorff spaces is K4G.

§2. Preliminaries. In this paper we will be interested in the following modal logics:

1. K4 = K +33p → 3p;

2. K4D = K4 +3�;

3. K4G = K4 + ¬2⊥ → ¬2¬2⊥; and

4. GL = K +2(2p → p) → 2p.

These logics are related to each other by the following diagram:

It is well known that K4 is the modal logic of transitive frames, that K4D is the
modal logic of transitive serial frames, and that GL is the modal logic of dually well-
founded frames. These three logical systems are well known in the literature (see, e.g.,
Chagrov & Zakharyaschev, 1997). On the other hand, K4G is a relatively new system
introduced in Esakia (2002). Its main importance lies in its capability to express modally
Gödel’s second incompleteness theorem (a consistent logical system cannot prove its own
consistency).

Each of the four modal logics is complete with respect to its relational semantics. We
briefly recall some basic facts about relational semantics which will be used subsequently.
Let F = (W, R) be a K4-frame; that is, F is transitive (wRv and v Ru imply wRu). Then
F is a K4D-frame if in addition it is serial (i.e., for each w ∈ W there exists v ∈ W such
that wRv). We call w ∈ W a reflexive point if wRw; otherwise we call w an irreflexive
point. Let

C(w) = {w} ∪ {v ∈ W : wRv and v Rw}.
We call C(w) the cluster generated by w; we also call a subset C of W a cluster if C =
C(w) for some w ∈ W . Let C be a cluster of W . We call C proper if it consists of more than
one element, simple if it consists of a single reflexive point, and degenerate if it consists
of a single irreflexive point. We call w ∈ W a maximal point if wRv implies w = v , and
a quasimaximal point if wRv implies v Rw. Clearly each maximal point is quasimaximal,
but not vice versa.

Now, F is a GL-frame iff F is dually well founded (i.e., for each nonempty subset V
of W there exists v ∈ V such that v Ru for no u ∈ V ); and F is a K4G-frame iff F is a
K4-frame and for each w ∈ W , either w is an irreflexive maximal point or there exists an
irreflexive maximal point v ∈ W such that wRv .

We say that w ∈ W is a root of F if wRv for each v ∈ W − {w}, and that F is rooted if
there exists a root in F. Note that a root may not be unique. In fact, if w is a root, then each
element of C(w) is also a root.

The next proposition states that all four modal logics of our interest have the finite model
property.
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PROPOSITION 2.1.

1. K4 is the modal logic of finite rooted transitive frames.

2. K4D is the modal logic of finite rooted transitive serial frames.

3. GL is the modal logic of finite rooted transitive irreflexive frames.

4. K4G is the modal logic of finite rooted K4G-frames.

Proof. For (1) and (2) see, for example, Chagrov & Zakharyaschev (1997, corollary
5.3.2); and for (3) see, for example, Chagrov & Zakharyaschev (1997, theorem 5.46).
We sketch a proof that K4G is the modal logic of finite rooted K4G-frames, using the
standard filtration argument through a well-chosen set of formulas. If K4G 	
 ϕ, then
ϕ is refuted on the canonical model MK4G of K4G. Since K4 is a canonical logic and
the formula ¬2⊥ → ¬2¬2⊥ contains no propositional letters, the underlying frame of
MK4G is a K4G-frame. Consider the standard transitive filtration (see, e.g., Chagrov &
Zakharyaschev, 1997, pp. 141–145) ofMK4G through the set

� = {ψ : ψ is a subformula of ϕ ∧ (¬2⊥ → ¬2¬2⊥)}.
Since the underlying frame ofMK4G is a K4G-frame, it is not difficult to see that the finite
refutation frame obtained by such a filtration has all quasimaximal clusters degenerate.
Indeed, let x be an arbitrary element in the filtrated model. Then x can be identified with
a maximal consistent subset of �. Suppose x is not an irreflexive maximal point. Then
x must contain ¬2⊥. We also have that ¬2⊥ → ¬2¬2⊥ ∈ x . Therefore, by Modus
Ponens, ¬2¬2⊥ ∈ x . But then x is related to some y in the filtrated model with 2⊥ ∈
y. This implies that y is an irreflexive maximal point of the filtrated model. Thus, the
underlying frame of the filtrated model is a finite K4G-frame. That ϕ can be refuted on a
finite rooted K4G-frame is now straightforward. �

Let X be a topological space and A ⊆ X . We recall that x ∈ X is a limit point of A if
for each open neighborhood U of x we have A ∩ (U − {x}) 	= ∅. Let d(A) denote the set
of limit points of A; d(A) is called the derived set of A. It is obvious that the closure of A
is A union d(A); that is, cl(A) = A ∪ d(A).

We also recall that a valuation of the basic modal language in a topological space X is a
map ν from the set of propositional letters into the powerset of X . Given a valuation ν and
x ∈ X , we define the satisfaction relation by induction:

1. x |�ν p iff x ∈ ν(p);

2. x |�ν ϕ ∧ ψ iff x |�ν ϕ and x |�ν ψ ;

3. x |�ν ¬ϕ iff not x |�ν ϕ; and

4. x |�ν 3ϕ iff for each open neighborhood U of x there exists y ∈ U − {x} such that
y |�ν ϕ.

It follows that

2a. x |�ν ϕ ∨ ψ iff x |�ν ϕ or x |�ν ψ

and that

4a. x |�ν 2ϕ iff there exists an open neighborhood U of x such that y |�ν ϕ for each
y ∈ U − {x}.

Given a topological space X , a valuation ν, and a formula ϕ, we say that ϕ is true in X
if x |�ν ϕ for each x ∈ X and that ϕ is valid if ϕ is true under any valuation. If ϕ is valid
in X , then we write X |� ϕ.
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Let L(X) = {ϕ : X |� ϕ}. Then it is well known (and easy to verify) that L(X) is
a modal logic, called the modal logic of X . Given a class K of topological spaces, let
L(K ) = ⋂{L(X) : X ∈ K }. Obviously L(K ) is a modal logic, called the modal logic
of K .

Let X be a topological space. We recall that X is a TD-space if each point of X is the
intersection of an open subset and a closed subset of X . Alternatively, X is a TD-space iff
dd(A) ⊆ d(A) for each A ⊆ X . We also recall that x ∈ X is an isolated point if {x} is
an open subset of X . Let iso(X) denote the set of isolated points of X . Then X is called
dense-in-itself if iso(X) = ∅. Alternatively, X is dense-in-itself iff d(X) = X .

We say that a subset A of X is dense if cl(A) = X , that X is weakly scattered if iso(X)
is dense in X , and that X is scattered if each subspace of X is weakly scattered.

The next proposition is well known. It shows that three of the four logics we are inter-
ested in are all modal logics of natural classes of topological spaces.

PROPOSITION 2.2.

1. Esakia (2004) K4 is the modal logic of TD-spaces.

2. Shehtman (1990) K4D is the modal logic of dense-in-itself TD-spaces.

3. Esakia (1981) GL is the modal logic of scattered spaces.

On the other hand, it will follow from our results that K4G is the modal logic of weakly
scattered TD-spaces.

A particularly important class of topological spaces is that of compact Hausdorff spaces.
Since each Hausdorff space is TD , it follows that the modal logic of compact Hausdorff
spaces contains K4.

We recall that a subset A of a topological space is clopen if it is both closed and open, and
that X is zero-dimensional if clopen subsets of X form a basis for the topology. Compact
Hausdorff zero-dimensional spaces are often called Stone spaces. They play an important
role in the theory of Boolean algebras as it follows from Stone duality that the category of
Boolean algebras and Boolean algebra homomorphisms is dually equivalent to the category
of Stone spaces and continuous maps. Under Stone duality, atomless Boolean algebras
correspond to dense-in-itself Stone spaces, atomic Boolean algebras correspond to weakly
scattered Stone spaces, and superatomic Boolean algebras correspond to scattered Stone
spaces.

It follows from Shehtman (1990) that K4D is the modal logic of any dense-in-itself zero-
dimensional metrizable space. In particular, K4D is the modal logic of the Cantor space C.
Since C is a dense-in-itself Stone space, it follows that the modal logic of dense-in-itself
Stone spaces is K4D. In addition, it follows from Abashidze (1988) that GL is the modal
logic of any ordinal α ≥ ωω (viewed as a topological space in the interval topology). In
particular, GL is the modal logic of ωω + 1. Since ωω + 1 is a scattered Stone space, it
follows that GL is the modal logic of scattered Stone spaces.

In this paper we show that K4 is the modal logic of all Stone spaces and K4G is the
modal logic of weakly scattered Stone spaces. As a consequence, we obtain that K4 is also
the modal logic of all compact Hausdorff spaces and K4G is the modal logic of weakly
scattered compact Hausdorff spaces. Consequently, K4G is also the modal logic of weakly
scattered TD-spaces. Thus, we obtain the following picture:

1. K4 = the modal logic of TD-spaces = the modal logic of compact Hausdorff spaces
= the modal logic of Stone spaces;
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2. K4D = the modal logic of dense-in-itself TD-spaces = the modal logic of dense-in-
itself compact Hausdorff spaces = the modal logic of dense-in-itself Stone spaces;

3. K4G = the modal logic of weakly scattered TD-spaces = the modal logic of weakly
scattered compact Hausdorff spaces = the modal logic of weakly scattered Stone
spaces; and

4. GL = the modal logic of scattered spaces = the modal logic of scattered compact
Hausdorff spaces = the modal logic of scattered Stone spaces.

§3. Modal logic of dense-in-itself Stone spaces: a new proof. As we pointed out in
the previous section, K4D is the modal logic of the Cantor space. In this section we give
a new and simplified proof of this result by adopting the technique developed in Aiello
et al. (2003) for proving completeness of S4 with respect to the Cantor space (when 3 is
interpreted as the closure operator).

We proceed as follows. By Proposition 2.1(2), K4D is complete with respect to finite
rooted K4D-frames. Therefore, if K4D 	
 ϕ, then there exists a finite rooted K4D-frame
F = (W, R) such that F 	|� ϕ. Since F is a K4D-frame, each quasimaximal point of F is
reflexive. Figuratively speaking, F is top-reflexive.

We recall that U ⊆ W is an upset of W if w ∈ U and wRv imply v ∈ U , and that the
collection of upsets of W forms a topology τR on W, called an Alexandroff topology (in
which the intersection of any family of open subsets is again open). We also recall from
Bezhanishvili et al. (2005) that a map f from a topological space (X, τ ) into (W, R) is a
d-morphism if:

(i) f is continuous (V ∈ τR implies f −1(V ) ∈ τ ),

(ii) f is open (U ∈ τ implies f (U ) ∈ τR),

(iii) f is i-discrete (w an irreflexive point of W implies f −1(w) is a discrete subspace
of X ), and

(iv) f is r-dense (w a reflexive point of W implies f −1(w) is a dense-in-itself subspace
of X ),

and that onto d-morphisms preserve validity of formulas; or put differently, they reflect
refutation. Therefore, in order to refute ϕ on the Cantor space C, it is sufficient to construct
a d-morphism from C onto W .

LEMMA 3.1. For each finite rooted K4D-frame F, there exists a d-morphism f : C� F
from the Cantor space C onto F.

Proof. We view C as the collection of infinite paths of the infinite binary tree T2.

The topology on C is defined as follows. For each finite path X of T2, let

BX = {σ ∈ C : X is an initial segment of σ }.
Then {BX : X is a finite path of T2} is a basis for the topology on C.
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Now we label T2 by nodes of F as follows. First let us fix some enumeration of W =
{w1, . . . , wn}. Let w ∈ W , R(w) = {v ∈ W : wRv}, and R+(w) = {w} ∪ R(w). Since
F is a K4D-frame, R(w) 	= ∅. We label the root of T2 by a root of F; if a node t of
T2 is labeled by w ∈ W, then we label the whole left path of T2 starting at t by w, and
we label the right-son of t by the first unused node of R(w) in the enumeration of W (if
all nodes were already used, we start over at the least node in R(w) in the enumeration
of W ).

Let σ be an infinite path of T2. If σ is going infinitely to the left, then there is a w ∈ W
such that each node of σ is labeled by w starting from some node on. In this case we say
that w stabilizes σ. Else there exists a cluster C of W such that every node of σ is labeled by
an element of C starting from some node on. In this case we say that σ keeps cycling in C .
We pick any wC ∈ C and define f : C → W as follows:

f (σ ) =
⎧⎨
⎩

w if w stabilizes σ,

wC if σ keeps cycling in C.

It is left to be shown that f is an onto d-morphism. That f is onto is obvious from the
definition of f . To see that f is open, let X be a finite path of T2 and the end of X be
labeled by w. Then, by the definition of f , we have f (BX ) ⊆ R+(w). Conversely, if
v ∈ R+(w), then there exists a finite path Y extending X whose end is labeled by v . Let
σ = (Y, 0, 0, . . .). Then σ ∈ BY ⊆ BX and f (σ ) = v . Thus, f (BX ) = R+(w), and so f
is open.

To see that f is continuous, let w ∈ W . We let

U =
⋃

{BX : X is a finite path of T2 whose end is labeled by v ∈ R+(w)},

and show that f −1(R+(w)) = U . We have σ ∈ f −1(R+(w)) iff f (σ ) ∈ R+(w), and
σ ∈ U iff there exists a finite path X of T2 whose end is labeled by v ∈ R+(w). It is easily
seen that if σ ∈ U , then f (σ ) ∈ R+(w), and so U ⊆ f −1(R+(w)). For the converse
inclusion, note that f (σ ) ∈ R+(w) iff there is a v ∈ R+(w) such that either v stabilizes
σ or σ keeps cycling in C(v). In either case we can find a finite path X of T2 whose end
is labeled by v ∈ R+(w). Thus, f −1(R+(w)) ⊆ U , and so f −1(R+(w)) = U . It follows
that f is continuous.

To see that f is i-discrete, let w be an irreflexive point of W and σ ∈ f −1(w). Then
f (σ ) = w and there exists a finite initial segment X of σ whose end is labeled by w. Note
that all finite paths Y = (X, . . . , 1, . . .) have ends labeled with some v ∈ R(w). Since w is
irreflexive, w 	∈ R(w). Therefore, the only infinite path in BX that contains infinitely many
points labeled with w is (X, 0, 0, . . .). Thus, BX ∩ f −1(w) = {σ } = {(X, 0, 0, . . .)}, and
so f −1(w) is a discrete subspace of C.

To see that f is r-dense, let w be a reflexive point of W and σ ∈ f −1(w). Suppose
σ ∈ BX for some finite initial segment X of σ whose end is labeled by v . Then v Rw and
so we can find a finite initial segment Y of σ such that Y contains X as an initial segment
and whose end is labeled by w. But w is reflexive, hence w ∈ R(w). Therefore, there
are at least two infinite paths having Y as an initial segment that belong to f −1(w): One
is (Y, 0, 0, . . .) and the other is of the form (Y, 0, 0, . . . , 1, 0, 0, . . .), where the number
of 0s after Y is precisely the number required for w to come up again as a label in the
enumeration of R(w). It follows that BX ∩ f −1(w) contains at least one infinite path
other than σ. Thus, there are no isolated points in the subspace f −1(w) of C, and so
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f −1(w) is a dense-in-itself subspace of C. Consequently, f : C � W is an onto
d-morphism. �

COROLLARY 3.2. K4D is the modal logic of the Cantor space, hence K4D is the modal
logic of dense-in-itself Stone spaces.

Proof. Since C is a dense-in-itself TD-space, K4D is sound with respect to C. To see
completeness, let K4D 	
 ϕ. By Proposition 2.1(2), there exists a finite rooted K4D-frame
F = (W, R) such that F 	|� ϕ. By Lemma 3.1, there exists a d-morphism from C onto W .
Therefore, C 	|� ϕ, and so K4D = L(C). Thus, K4D is the modal logic of dense-in-itself
Stone spaces. �

§4. Trees, ordinals, and compactifications. In this section we discuss connections
between trees, ordinals, and compactifications, thus providing the necessary background
for our main results, which will be discussed in the next section.

Let F = (W, R) be a K4-frame. For w ∈ W we recall that

R−1(w) = {v ∈ W : v Rw} and R(w) = {v ∈ W : wRv}.
Also, for U ⊆ W let

R−1(U ) =
⋃

{R−1(w) : w ∈ U } and R(U ) =
⋃

{R(w) : w ∈ U }.
For w, v ∈ W we write w �Rv whenever wRv and v 	R w. We say that w is of depth n if there
exists a sequence w0 �R, . . . , �Rwn with w = w0 and for each other sequence v0 �R, . . . , �Rvk

with w = v0 we have k ≤ n. We also say that F is of depth n if there is w ∈ W of depth n
and no other element of F has greater depth.

Let F = (W, R) be a rooted K4-frame. We call F a quasitree if for each u, v ∈ R−1(w)
we have that u 	= v implies u Rv or v Ru. If in addition F has no proper clusters, then we
call F a tree. We call a tree T reflexive if each element of T is reflexive, and irreflexive if
each element of T is irreflexive. In addition, we call a finite quasitree F top-irreflexive if
each quasimaximal element of F is irreflexive. Then we have the following strengthening
of Proposition 2.1:

THEOREM 4.1.

1. K4 is the modal logic of finite quasitrees.

2. K4D is the modal logic of finite top-reflexive quasitrees.

3. GL is the modal logic of finite irreflexive trees.

4. K4G is the modal logic of finite top-irreflexive quasitrees.

Proof. Parts of Theorem 4.1 are well known. We sketch a uniform construction akin
to the standard finite unraveling argument to treat all four cases. Suppose F = (W, R) is
a finite rooted transitive frame. Let C = {C1, . . . , Cn} be the set of clusters of F. We set
Ci ≤ C j if i = j or there exist w ∈ Ci and v ∈ C j with wRv . Then C = (C, ≤) is a finite
partially ordered set. By the standard unraveling of C (see, e.g., Chagrov & Zakharyaschev,
1997, theorem 2.19), we obtain a finite tree T of clusters. The points of T are finite paths
(x1, . . . , xk) of C, where xi ∈ C and xi < x j whenever i < j , ordered by the relation
“is an initial segment of.” We substitute each point (x1, . . . , xk) of T by the cluster xk to
obtain a finite quasitree G. Then it can be easily checked that:

• G maps p-morphically onto F,
• G is top-reflexive whenever F is top-reflexive,
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• G is top-irreflexive whenever F is top-irreflexive,
• G is irreflexive whenever F is irreflexive.

The theorem follows as p-morphisms reflect refutation. �
Now we proceed to link trees with appropriate spaces.

LEMMA 4.2. For each finite irreflexive tree T with the root r there exists a limit ordinal
ωn+1 and an onto d-morphism g : ωn+1 � T such that g−1(r) = {ωn · k : 0 < k < ω}.

Proof. Let T be a finite irreflexive tree with the root r , and let n be the depth of T. We
build a tree T∗ by adjoining a new root to T; that is, if T = (T, R), then T∗ = (T ∗, R∗),
where T ∗ = T � {∗} and R∗ = R ∪ {(∗, t) : t ∈ T }. Then T∗ is of depth n + 1. By
Bezhanishvili & Morandi (2010, lemma 3.4), each finite tree of depth n + 1 is a d-morphic
image of ωn+1 + 1. Therefore, there exists an onto d-morphism f : ωn+1 + 1 � T ∗.
It follows from the proof of Bezhanishvili & Morandi (2010, lemma 3.4) that f −1(∗) =
{ωn+1} and f −1(r) = {ωn · k : 0 < k < ω}. Thus, f −1(T ) = ωn+1. Let g be the
restriction of f to ωn+1. Then g is clearly an onto d-morphism from the limit ordinal ωn+1

onto the initial tree T with g−1(r) = {ωn · k : 0 < k < ω}. �
Let X be a completely regular space. We recall that a compactification of X is a compact

Hausdorff space Y such that X is homeomorphic to a dense subspace of Y . Without loss of
generality we identify X with the dense subspace of Y which is homeomorphic to X . Let
Y ∗ = Y − X . As usual, we call Y ∗ the remainder of Y.

Let X be a topological space and Y a subspace of X . We recall that Y is a retract of X
if there is a continuous onto map f : X → Y such that f (y) = y for each y ∈ Y . In
this case we call f a retraction; if in addition the f inverse image of each compact subset
of Y is compact in X , then we call f a compact retraction.

LEMMA 4.3. Let X be a noncompact locally compact zero-dimensional Hausdorff
space, S a noncompact locally compact subspace of X, f : X → S a compact retrac-
tion, and Y a zero-dimensional compactification of S. Then there is a zero-dimensional
compactification Z of X such that Z∗ is homeomorphic to Y ∗ and Z∗ ⊆ cl(S).

Proof. Since X is locally compact and zero dimensional, there is a basis BX of compact
clopen subsets of X . As S is a subspace of a zero-dimensional Hausdorff space, S is
also zero-dimensional Hausdorff. Therefore, S is a noncompact locally compact zero-
dimensional Hausdorff space, and so it is an open subset of Y . Let Cp(Y ) denote the basis
of all clopen subsets of Y. We set Z to be the disjoint union of X and Y ∗, and define a
topology on Z by letting BZ = BX ∪ BY be the basis for the topology, where

BY = {(U ∩ Y ∗) ∪ f −1(U ∩ S) : U ∈ Cp(Y )}.
To see that BZ is a basis, it is obvious that the union of the elements of BZ is Z . We
show that BZ is closed under finite intersections. That BX and BY are closed under fi-
nite intersections is obvious. On the other hand, if U ∈ BX and V ∈ BY , then U ∩
V = U ∩ f −1(W ∩ S) for some W ∈ Cp(Y ). We clearly have that W ∩ S is clopen
in S, and so f −1(W ∩ S) is clopen in X . Therefore, U ∩ f −1(W ∩ S) is a clopen sub-
set of U , which is compact. Thus, U ∩ V is a compact clopen of X , and so belongs
to BX .

Note that if we extend f : X → S to f : Z → Y by setting f (x) = x for each x ∈ Y ∗,
then the topology on Z given by the basis BZ is the least topology on Z containing all the
open subsets of X and making f continuous.
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We show that Z is Hausdorff. Let x, y ∈ Z with x 	= y. If x, y ∈ X , then since BX is a
basis of X and X is Hausdorff, there exist disjoint U, V ∈ BX separating x and y. If x, y ∈
Y ∗, then as Y is Hausdorff, there exist disjoint U, V ∈ Cp(Y ) separating x and y. But then
(U ∩Y ∗)∪ f −1(U ∩ S) and (V ∩Y ∗)∪ f −1(V ∩ S) are disjoint elements of BY separating
x and y. Finally, let x ∈ X and y ∈ Y ∗. Then there exists a compact clopen U of X
containing x . Therefore, f (U ) is a compact subset of S, and hence a compact subset of Y .
Thus, Y − f (U ) is an open subset of Y containing y. Since Y is zero dimensional, there
exists a clopen subset V of Y such that y ∈ V ⊆ Y − f (U ). But then (V ∩Y ∗)∪ f −1(V ∩S)
is an open subset of Z containing y and disjoint from U . Thus, Z is Hausdorff.

Next we show that Z is compact. Let U ⊆ BZ be a cover of Z . We let UY = {U ∈
Cp(Y ) : (U∩Y ∗)∪ f −1(U∩S) ∈ U}. Then UY is an open cover of Y ∗. Since Y ∗ is compact,
there exist U1, . . . , Un ∈ UY such that Y ∗ ⊆ U1 ∪ · · · ∪ Un . Let F = Y − (U1 ∪ · · · ∪ Un).
Then F ⊆ S is a compact subset of Y and as S is an open subset of Y , F is also compact
in S. Since f is a compact retraction, f −1(F) is a compact subset of X , and so a compact
subset of Z . Therefore, there exist V1, . . . , Vm ∈ U such that f −1(F) ⊆ V1 ∪ · · · ∪ Vm .
Thus, Z = V1 ∪ · · · ∪ Vm ∪ [(U1 ∩ Y ∗)∪ f −1(U1 ∩ S)] ∪ · · · ∪ [(Un ∩ Y ∗)∪ f −1(Un ∩ S)],
and so Z is compact.

To see that Z is zero-dimensional, let U ∈ BX . Then U is a compact clopen subset of X .
Since X is an open subset of Z , U is compact open in Z ; and as Z is compact Hausdorff,
U is a clopen subset of Z . Now let U ∈ BY . Then U = (V ∩ Y ∗) ∪ f −1(V ∩ S) for
some V ∈ Cp(Y ). Therefore, Z − U = Z − [(V ∩ Y ∗) ∪ f −1(V ∩ S)] = [Z − (V ∩
Y ∗)] ∩ [Z − f −1(V ∩ S)] = [X ∪ (Y ∗ ∩ (Y − V ))] ∩ [Y ∗ ∪ f −1((Y − V ) ∩ S)] =
f −1((Y − V )∩ S)∪ (Y ∗ ∩ (Y − V )); and as Y − V ∈ Cp(Y ), we obtain that Z − U ∈ BY .
Thus, each element of BZ is a clopen subset of Z , and so Z is zero-dimensional.

We show that Z∗ ⊆ cl(S). Let x ∈ Z∗ and U ∈ BZ be a neighborhood of x . Then
there exists V ∈ Cp(Y ) such that U = (V ∩ Y ∗) ∪ f −1(V ∩ S). Since clY (S) = Y ,
we have V ∩ S 	= ∅. Therefore, f −1(V ∩ S) 	= ∅, and as f is a retraction, we obtain
S ∩ f −1(V ∩ S) 	= ∅. Thus, S ∩ U 	= ∅, and so Z∗ ⊆ cl(S).

It follows that Z is a compact Hausdorff zero-dimensional space such that Z∗ ⊆ cl(S).
Therefore, cl(X) = Z , and so Z is a zero-dimensional compactification of X . Finally, that
the identity map from Z∗ to Y ∗ is continuous follows from the definition of BY . Thus, there
is a continuous bijection between compact Hausdorff spaces Z∗ and Y ∗, which means that
Z∗ and Y ∗ are homeomorphic. �

LEMMA 4.4. For a limit ordinal ωn+1 and a closed subset X of the Cantor space C,
there exists a compactification Z of ωn+1 such that:

1. Z is a Stone space;

2. The remainder Z∗ is homeomorphic to X; and

3. Z∗ ⊆ cl({ωn · k : 0 < k < ω}).
Proof. Let X be a closed subset of C. Then X is a compact Hausdorff metrizable space.

Therefore, by Terasawa (1997, theorem 1), there is a compactification Y of ω such that
the remainder Y ∗ is homeomorphic to X . In fact, the proof of Terasawa (1997, theorem 1)
implies that Y can be chosen to be zero-dimensional.1 Now consider the following partition

1 Indeed, since X is a subspace of C, it is zero-dimensional; therefore, in the proof of Terasawa
(1997, theorem 1) we can choose the basis {Un : n < ω} to consist of clopen subsets of X , which
makes each element Hn,m of the basis of Y clopen.
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of ωn+1 into ω-many pairwise disjoint clopen intervals:

[0, ωn], (ωn, ωn · 2], . . . , (ωn · (k − 1), ωn · k], . . . .

Using this partition, we define a retraction f : ωn+1 � {ωn · k : k < ω} by sending all the
points in (ωn · (k −1), ωn ·k] ⊆ ωn+1 to ωn ·k. It is easy to see that f is an onto continuous
map and that {ωn · k : k < ω} ⊆ ωn+1 with its subspace topology is homeomorphic to
ω. Since compact subsets of ω are finite, it follows that the f inverse image of a compact
subset of {ωn · k : k < ω} is a finite union of intervals of the form (ωn · (k − 1), ωn · k].
Since each of these is compact, so is their finite union. Consequently, f is a compact
retraction.

Now ωn+1 is a noncompact locally compact zero-dimensional Hausdorff space, {ωn · k :
k < ω} is a noncompact locally compact subspace of ωn+1, f : ωn+1 � {ωn ·k : k < ω} is
a compact retraction, and Y is a zero-dimensional compactification of {ωn ·k : k < ω} such
that Y ∗ is homeomorphic to X . Thus, we are in a position to apply Lemma 4.3, by which
we obtain a zero-dimensional compactification Z of ωn+1 such that Z∗ is homeomorphic
to X and Z∗ ⊆ cl({ωn · k : 0 < k < ω}). �

§5. Main results. In this section we prove our main results, that the modal logic of
Stone spaces is K4, and that the modal logic of weakly scattered Stone spaces is K4G. As
a corollary, we obtain that the modal logic of compact Hausdorff spaces is also K4 and that
the modal logic of weakly scattered compact Hausdorff spaces is K4G.

The key observation in establishing our main results is that each finite quasitree F =
(W, R) is a d-morphic image of an appropriately chosen Stone space. Our strategy will be
as follows:

1. Represent F as the disjoint union of two finite framesD and T in such a way that:

– D is a top-reflexive quasitree, hence a K4D-frame;

– T is the disjoint union of irreflexive trees T1, . . . ,Tn , hence a GL-frame.

2. Use Lemma 3.1 to build a d-morphism f from the Cantor space C onto D.

3. Use Lemma 4.2 to build d-morphisms gi from limit ordinals ωki +1 onto the
trees Ti .

4. Combine C and ωk1+1, . . . , ωkn+1 to obtain a Stone space X .

5. Combine f and g1, . . . , gn to obtain a d-morphism from X onto F.

For Step (1) we employ a method reminiscent of the Cantor–Bendixson theorem which
represents each space X as the disjoint union of an open subspace U and a closed subspace
F so that U is scattered and F is dense-in-itself.

LEMMA 5.1. Let F = (W, R) be a finite quasitree. Then there exist finite (possibly
empty) frames D = (D, RD) and T = (T, RT ) such that:

(i) W = D ∪ T , D ∩ T = ∅, RD is the restriction of R to D, and RT is the restriction
of R to T ;

(ii) D is a top-reflexive quasitree; and

(iii) T is the disjoint union of irreflexive trees T1, . . . ,Tn.

Proof. We first build D by applying repeatedly the operator R−1 to W until we reach the
(largest) fixpoint. More precisely, let D0 = W and Di+1 = R−1(Di ). Clearly Di+1 ⊆ Di .
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Fig. 1. Bisecting a quasitree into top-reflexive and irreflexive parts.

Since W is finite, at some stage k < ω we obtain Dk+1 = Dk . Set D = Dk and
D = (D, RD). It follows from the construction thatD is a top-reflexive quasitree. Now set
T = W − D and T = (T, RT ). Clearly W = D ∪ T and D ∩ T = ∅. Moreover, T consists
of irreflexive points, and so there are no nondegenerate clusters in T. Let r1, . . . , rn be the
minimal points of T . We set Ti = R(ri ) ∪ {ri } and Ti = (Ti , RTi ). Since F is a quasitree,
it is obvious that each Ti is an irreflexive tree, that T = ⋃n

i=1 Ti , and that the trees Ti are
disjoint. Therefore, T is the disjoint union of irreflexive trees T1, . . . ,Tn . �

The construction described in Lemma 5.1 is shown in Figure 1, where r denotes a root
of F. For each i≤n let Di=R−1(ri ). It is clear that Di ⊆ D and that for each u, v ∈ Di such
that u 	= v we have u Rv or v Ru. It is also clear that R−1(D) = D and that D = ⋃n

i=1 Di

iff each quasimaximal point of F is irreflexive (in which case it is a maximal point of F).
For Step (2) we use Lemma 3.1 to obtain a d-morphism f : C � D. For each i ≤ n

let Ci = f −1(Di ). It is readily seen that each Ci is a closed subspace of C, hence a Stone
space.

For Step (3) note that by Lemma 4.2, for each i ≤ n, there exists a limit ordinal ωki +1

and a d-morphism gi : ωki +1 � Ti .
Next we concentrate on Step (4). Fix i ≤ n and consider the limit ordinal ωki +1 and

the Stone space Ci ⊆ C. By Lemma 4.4, there exists a Stone space Yi such that Yi is a
compactification of ωki +1 and the remainder Y ∗

i is homeomorphic to Ci . We look at Yi as
the disjoint union of ωki +1 and Y ∗

i , where ωki +1 is an open dense subspace of Yi , Y ∗
i is a

closed subspace of Yi homeomorphic to Ci , and Y ∗
i ⊆ cl({ωki · k : k < ω}). The space Yi

is shown in Figure 2.

Fig. 2. The compactification of ωki +1 with the remainder Ci .

To build X we employ the following lemma:

LEMMA 5.2. Let X, Y, Z be Stone spaces and i : Z ↪→ X, j : Z ↪→ Y continuous
injections. Then there exists a Stone space Z ′ and closed subspaces X ′, Y ′ of Z ′ such that
X ′ is homeomorphic to X, Y ′ is homeomorphic to Y , and Z ′ = X ′ ∪ Y ′.
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Proof. This follows easily from the well-known fact that the category Stone of Stone
spaces and continuous maps is closed under pushouts. In fact, Z ′ is the pushout of the
diagram X ←↩ Z ↪→ Y in the category Stone. More precisely, Z ′ is the factor space of the
topological sum X ⊕ Y by the equivalence relation {(i(z), j (z)) : z ∈ Z}. �

We denote the pushout of the diagram X ←↩ Z ↪→ Y by X ⊕Z Y and point out
that since we are working with compact Hausdorff spaces, continuous injections are in
fact topological (homeomorphic) embeddings. We consider an example which will be the
starting point in the construction of the space X to follow.

Suppose we are given an ordinal ωk1+1 and its compactification Y1 such that Y ∗
1 is

homeomorphic to a closed subspace C1 of C. Then using Lemma 5.2 we can identify
the copies of C1 present in both C and Y1 to obtain the space X2 = C ⊕C1 Y1 such
that:

(a) X2 is a Stone space based on the disjoint union of ωk1+1 and C,

(b) ωk1+1 is homeomorphic to an open subspace of X2,
(c) C is homeomorphic to a closed subspace of X2, and

(d) Y ∗
1 ⊆ cl({ωk1 · k : k < ω}).

This situation is depicted in Figure 3 below.

Fig. 3. Glueing of Y1 and C along the shared closed subspace C1.

Since C is a closed subspace of X2, and C2 is a closed subspace of C, it follows that
C2 is (homeomorphic to) a closed subspace of X2. This enables us to iterate the procedure
and now adjoin ωk2+1 to X2 along C2. A formal definition of the procedure is obtained by
putting:

X1 = C;
X2 = X1 ⊕Y ∗

1
Y1;

...
Xn+1 = Xn ⊕Y ∗

n
Yn .

By identifying each Y ∗
i with Ci , we can write each Xi+1 as Xi+1 = Xi ⊕Ci Yi . Finally,

we set X = Xn+1. We clearly have that X is a Stone space, which concludes our Step (4).
Pictorially X can be represented as in Figure 4.

We point out that since the constructed X is a metrizable Stone space, it is in fact
homeomorphic to a closed subspace of C (see, e.g., Engelking, 1977, theorem 6.2.16).
Moreover, since the topological sum of ωk1+1, . . . , ωkn+1 is homeomorphic to a limit
ordinal ωk+1, we can think of the scattered part of X as a limit ordinal.
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Fig. 4. The Stone space X .

For our final Step (5), we need to construct an onto d-morphism h : X → F. For this we
observe that X is the disjoint union of C and ωk1+1, . . . , ωkn+1. Now let x ∈ X . We set

h(x) =
{

f (x), x ∈ C

gi (x), x ∈ ωki +1.

That h is a well defined onto map is obvious. It is left to be shown that h is a d-morphism.
We first show that the restriction of h to each Yi , which we denote by hi , is a d-morphism.
Let T+

i denote the range of hi , which is a subframe of F based on the set Ti ∪ Di . Let also
fi denote the restriction of f to Ci .

LEMMA 5.3. The map hi : Yi → T+
i is a d-morphism.

Proof. To see that hi is continuous, let U be an upset of T+
i . If U ⊆ Ti , then h−1

i (U ) =
g−1

i (U ), which is open in Yi since gi is continuous and ωki +1 is an open subset of Yi . If
U ∩ Di 	= ∅, then U = (U ∩ Di ) ∪ Ti and h−1

i (U ) = f −1
i (U ) ∪ ωki +1, which is open in

Yi because f −1
i (U ) is open in Y ∗

i and ωki +1 is open and dense in Yi .
To see that hi is open, let U be an open subset of Yi . If U ⊆ ωki +1, then hi (U ) = gi (U ),

which is an upset of Ti since gi is open. Therefore, hi (U ) is also an upset of T+
i . Suppose

now that U ∩ Y ∗
i 	= ∅. Then f (U ) = gi (U ∩ ωki +1) ∪ fi (U ∩ Y ∗

i ). By Lemma 4.4,
ωki · k ∈ U ∩ ωki +1 for some k < ω; and by Lemma 4.2, gi (ω

ki · k) = ri . Since gi is open,
gi (U ∩ ωki +1) = Ti . Thus, as fi is open, Ti ∪ fi (U ∩ Y ∗

i ) is an upset of T+
i .

That hi is r-dense is obvious because there are no reflexive points in Ti and fi is r-dense.
Similarly, as both fi and gi are i-discrete, it is easy to see that hi is i-discrete. Consequently,
hi : Yi → T+

i is a d-morphism. �
Now we show that h is a d-morphism. Since F is finite, by Bezhanishvili et al. (2005,

corollary 2.8), it is sufficient to show that d(h−1(w)) = h−1(R−1(w)) for each w ∈ W ,
where d denotes the derived set operator of X .

LEMMA 5.4. For each w ∈ W we have d(h−1(w)) = h−1(R−1(w)).

Proof. First we recall that if Y is a closed subspace of X and A ⊆ Y , then dX (A) =
dY (A). Now let w ∈ W . If w ∈ D, then R−1(w) ⊆ D. Therefore, h−1(w) = f −1(w) and
h−1(R−1(w)) = f −1(R−1(w)). Since f is a d-morphism, we have:

dX (h−1(w)) = dC( f −1(w)) = f −1(R−1(w)) = h−1(R−1(w)).

Next suppose that w ∈ Ti for some i ≤ n. Then h−1(w) = h−1
i (w) and h−1(R−1(w)) =

h−1
i (R−1

T +
i

(w)). By Lemma 5.3, hi is a d-morphism. Now as Yi is a closed subspace of X ,
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we have:

dX (h−1(w)) = dYi (h
−1
i (w)) = h−1

i (R−1
T +

i
(w)) = h−1(R−1(w)).

Thus, d(h−1(w)) = h−1(R−1(w)). �
As a result, we obtain that for each quasitree F, there exists a (metrizable) Stone space X

such that F is a d-morphic image of X . In addition, if F is top-irreflexive, then X is weakly
scattered. Indeed, since h is open, continuous, and i-discrete, the h inverse image of the
set of maximal points of F is precisely the set of isolated points of X , which is dense in
X because the set of maximal points of F is dense in the Alexandroff topology of F. This
immediately leads to our main theorem.

THEOREM 5.5. K4 is the modal logic of Stone spaces and K4G is the modal logic
of weakly scattered Stone spaces.

Proof. That K4 is sound with respect to the class of Stone spaces follows from Proposi-
tion 2.2(1) because each Stone space is Hausdorff, hence a TD-space. To prove complete-
ness, let K4 	
 ϕ. By Theorem 4.1(1), K4 is complete with respect to finite quasitrees.
Therefore, there exists a finite quasitree F such that F 	|� ϕ. By our construction, there
exists a Stone space X and an onto d-morphism f : X � F. By Bezhanishvili et al. (2005,
corollary 2.9), onto d-morphisms preserve validity of formulas. Therefore, X 	|� ϕ, and so
K4 is sound and complete with respect to the class of Stone spaces.

That K4G is sound with respect to the class of weakly scattered Stone spaces follows
from Proposition 2.2(1) and an easily verifiable fact that if X is weakly scattered, then
X |� G. To prove completeness, let K4G 	
 ϕ. By Theorem 4.1(4), K4G is complete with
respect to finite top-irreflexive quasitrees. Therefore, there exists a finite top-irreflexive
quasitree F such that F 	|� ϕ. By our construction, there exists a weakly scattered Stone
space X and an onto d-morphism f : X � F. Now since onto d-morphisms preserve
validity of formulas, we obtain X 	|� ϕ, and so K4G is sound and complete with respect to
the class of weakly scattered Stone spaces. �

Since the class of Stone spaces is contained in the class of compact Hausdorff spaces
and the class of weakly scattered Stone spaces is contained in the class of weakly scattered
compact Hausdorff spaces, the following is an immediate corollary to Theorem 5.5:

COROLLARY 5.6. K4 is the modal logic of compact Hausdorff spaces and K4G is the
modal logic of weakly scattered compact Hausdorff spaces.
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