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Abstract We introduce the concept of a connected logic (over S4) and show that
each connected logic with the finite model property is the logic of a subalgebra of the
closure algebra of all subsets of the real line R, thus generalizing the McKinsey-Tarski
theorem. As a consequence, we obtain that each intermediate logic with the finite model
property is the logic of a subalgebra of the Heyting algebra of all open subsets of R.
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1 Introduction

It is a fundamental result of McKinsey and Tarski [16] that if we interpret modal dia-
mond as the closure in a topological space, then S4 is the logic of the closure algebra
of all subsets of any dense-in-itself metrizable separable space. As a consequence, we
obtain that S4 is the logic of the closure algebra R+ = (℘ (R), cl) of all subsets of the
real line R. (We use ℘(R) to denote the powerset of R and cl to denote the closure
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in R.) This result was sharpened in [2], where it was shown that S4 is in fact the
logic of the closure algebra B(Cω(R)) of Boolean combinations of countable unions
of convex subsets of R. On the other hand, the logic of the closure algebra C<ω(R)
of finite unions of convex subsets of R is much stronger than S4 (see [1, Sect. 5.1]
or [20, Sect. 3]). There is a lot of room in between C<ω(R) and B(Cω(R)), and it is
only natural to seek a hierarchy of modal logics which can be obtained as logics of
closure algebras in the interval [C<ω(R), B(Cω(R))]. One obvious closure algebra
in this interval is the closure algebra B(Op(R)) of Boolean combinations of open
subsets of R. As follows from [2, Rem. 10], the logic of B(Op(R)) is S4.Grz—the
well-known logic of Grzegorczyk, which is the extension of S4 by the Grzegorczyk
axiom �(�(p → �p) → p) → p. It was left as an open problem in [2, Sect. 5] to
classify the logics of closure algebras in the above interval. More generally, it is an
open problem to classify the logics of subalgebras of B(Cω(R)), or more generally
yet, of subalgebras of R+. This paper is the first step in this direction. Based on the
fact that R and hence every subalgebra of R+ is connected, we introduce the con-
cept of a connected logic over S4 and show that each connected logic with the finite
model property (fmp for short) is the logic of a subalgebra of R+. Since S4 itself is
a connected logic with the fmp, the McKinsey-Tarski result follows. In fact, one way
to look at the McKinsey-Tarski result is that S4 is a connected logic with the fmp.
There are, of course, many other connected logics with the fmp. The list includes such
well-known modal systems as S4.1, S4.2, S4.1.2, S4.Grz.2, and S5. We describe the
subalgebras of R+ that give rise to these logics. In addition, we show that each logic
over S4.1 is a connected logic. It follows that there are continuum many connected
logics with the fmp and continuum many without the fmp. Our main result implies that
subalgebras of R+ give rise to continuum many different connected logics. It remains
an open problem whether there are subalgebras of R+ that give rise to connected logics
without the fmp.

It is a consequence of our results and the Blok-Esakia theorem that each interme-
diate logic is a connected logic, and that each intermediate logic with the fmp is the
logic of a subalgebra of the Heyting algebra Op(R) of all open subsets of R.

The McKinsey-Tarski theorem also implies that S4 is the logic of the closure alge-
bra Q+ = (℘ (Q), cl) of all subsets of the rational line Q, as well as the logic of the
closure algebra C+ = (℘ (C), cl) of all subsets of the Cantor space C. Unlike R, both
Q and C are highly disconnected. Based on this difference, as well as on the topolog-
ical structure of Q and C, we show that each logic over S4 with the fmp is the logic
of a subalgebra of Q+ and also the logic of a subalgebra of C+. Consequently, each
intermediate logic with the fmp is the logic of a subalgebra of the Heyting algebra
Op(Q) of all open subsets of Q and also the logic of a subalgebra of the Heyting
algebra Op(C) of all open subsets of C.

2 Preliminaries

We assume the reader’s familiarity with the basics of modal logic and its relational,
topological, and algebraic semantics. We use [6] and [5] as our main references on
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(a) (b) (c) (d)

Fig. 1 The 2-cluster, the 1-fork, the 2-fork, and the n-fork

modal logic and its relational and algebraic semantics, and [19] as our main reference
on the topological semantics of modal logic.

We recall that S4 is the least set of formulas containing all classical tautologies, the
axiom schemata: (1) �ϕ → ϕ, (2) �ϕ → ��ϕ, (3) �(ϕ → ψ) → (�ϕ → �ψ), and
closed under modus ponens (ϕ, ϕ → ψ/ψ) and necessitation (ϕ/�ϕ). The diamond
♦ is the usual abbreviation of ¬�¬.

We also recall that a closure algebra is a pair (B,♦) where B is a Boolean algebra
and ♦ : B → B is a unary function satisfying the following four Kuratowski axioms:
(i) a ≤ ♦a, (ii) ♦a = ♦♦a, (iii) ♦(a ∨ b) = ♦a ∨ ♦b, and (iv) ♦0 = 0. As usual, the
dual operator � : B → B is defined by �a = ¬♦¬a.

It is well known that closure algebras are algebraic models of S4. Typical examples
of closure algebras come from topology. If X is a topological space, then the powerset
℘(X) of X together with the closure operator cl forms a closure algebra. In fact, each
closure algebra is represented as a subalgebra of the closure algebra (℘ (X), cl) for
some topological space X [16, Thm. 2.4].

Another source of examples of closure algebras comes from the relational seman-
tics of S4. Given an S4-frame F = (W, R) (that is, a quasi-ordered set), the powerset
℘(W ) together with R−1 forms a closure algebra, where we recall that R−1[A] =
{w ∈ W : ∃a ∈ A with wRa}. Again, we have a representation theorem: each closure
algebra is represented as a subalgebra of the closure algebra (℘ (W ), R−1) for some
S4-frame F [15, Thms. 3.10, 3.14].

We will unify the relational and topological semantics of S4 by viewing each S4-
frame F = (W, R) as a topological space with the topology τR consisting of upsets of
W , where we recall that U ⊆ W is an upset of W if u ∈ U and u Rw imply w ∈ U .
From this point of view, S4-frames form a subclass of topological spaces, known as
Alexandroff spaces, and are characterized topologically by the property that the inter-
section of any family of open sets is again open. In such a space the closure of a subset
A is given by cl(A) = R−1[A] and the interior is given by int(A) = −R−1[−A],
where − denotes set-theoretic complement.

Let F = (W, R) be an S4-frame. As usual, we call a subset C of W a cluster
if wRv and vRw for each w, v ∈ C . A cluster C is simple if C = {w} for some
w ∈ W . A cluster containing a point w will be denoted by C[w]. The n-cluster is a
pair Cn = (Wn, Rn), where Wn = {w1, . . . , wn} and Rn = Wn × Wn . The 2-cluster
is shown in Fig. 1a.

A point w ∈ W is called quasi-maximal if R[w] = C[w], in which case C[w] is
called a maximal cluster. A maximal point is a quasi-maximal pointw such that C[w]
is a simple cluster. The notions of quasi-minimal point, minimal point, and minimal
cluster are dual.
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A frame F is called rooted if W = R[w] for some w ∈ W . In such a case w (and
indeed any v ∈ C[w]) is called a root of F. If C[r ] is simple, then r is called the root.
The n-fork is a pair Fn = (Vn, Qn), where Vn = {r, v, v1, . . . , vn}, r Qnw for each
w ∈ Vn, vQnv, and vi Qnv j for each i, j ≤ n. The 1-fork will simply be called the
fork. The fork, the 2-fork, and the n-fork are shown in Fig. 1b–d.

Note that the subframe Wn = {v1, . . . , vn} of the n-fork Fn is exactly the n-cluster.
It is a maximal cluster, all vi ∈ Wn are quasi-maximal points, v ∈ Vn is the only
maximal point, and r ∈ Vn is the root of Fn .

3 Connected closure algebras

Let A be a closure algebra. Following [16, Sect. 1], we call an element a of A closed
if a = ♦a and open if a = �a. Also, following the standard topological terminology,
we call a ∈ A clopen if �a = a = ♦a and regular open if a = �♦a. The next lemma
is a simple yet useful tool for our considerations. A proof of (i) and (ii) is an obvious
generalization of similar statements for topological spaces, and (iii) is a consequence
of [16, Cor. 1.8].

Lemma 3.1 Let A be a closure algebra and a, b ∈ A. Then:

(i) �♦�♦a = �♦a.
(ii) If a, b are regular open, then a ∧ b is regular open.

(iii) ♦a ∧ �b ≤ ♦(a ∧ �b).

Definition 3.2 [16, Def. 1.9] A closure algebra A is called connected if 0 and 1 are
the only clopen elements of A.

Clearly if A is a connected algebra, then each subalgebra S of A is also connected.

Theorem 3.3 A closure algebra is connected iff it is isomorphic to a subalgebra of
the closure algebra X+ = (℘ (X), cl) of all subsets of a connected space X.

Proof Clearly if X is connected, then X+ is connected and so each closure algebra
isomorphic to a subalgebra of X+ is also connected. Conversely, let A be connected.
It follows from [16, Thm. 2.4] that there is a topological space X such that A is iso-
morphic to a subalgebra of X+. We recall that X can be taken to be the set of all
ultrafilters of A and the topology on X is defined by the basis {ϕ(�a) : a ∈ A}, where
ϕ(a) = {x ∈ X : a ∈ x} is the Stone map. It follows that a subset U of X is open
if U = ⋃{ϕ(�a) : ϕ(�a) ⊆ U }. We show that X is connected. For this we observe
that X is compact, which is easy to see because the Stone topology on X , which has
{ϕ(a) : a ∈ A} as a basis, is a finer topology. Since the Stone topology is compact, so
is X (for details we refer to [1, Fact 3.6] or [3, Thm. 2.12]). To finish the proof, let U
be a clopen subset of X . Then U = ⋃{ϕ(�a) : ϕ(�a) ⊆ U } and also U is closed.
Since X is compact and U is closed, U is compact. Therefore, there exist a1, . . . , an

such that U = ϕ(�a1) ∪ · · · ∪ ϕ(�an). Let a = �a1 ∨ · · · ∨ �an . Then a is an open
element of A. As ϕ commutes with ∪, we obtain U = ϕ(a). Because ϕ(a) is closed,
ϕ(a) = cl(ϕ(a)) = ϕ(♦a). Therefore, a = ♦a, so �a = a = ♦a, and so a is clopen
in A. Since A is connected, either a = 0 or a = 1. Therefore, either U = ϕ(0) = ∅
or U = ϕ(1) = X , which implies that X is connected. ��
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Fig. 2 The descriptive
S4-frame F

Let F = (W, R) be an S4-frame and w, v ∈ W . We recall that a path between
w, v ∈ W is a finite sequence w0, . . . , wn ∈ W such that w0 = w,wn = v and
for all i < n either wi Rwi+1 or wi+1 Rwi . We call F path-connected if there is a
path between any two points of F. It turns out that viewing F as a topological space,
path-connectedness simply means connectedness. This is a well-known fact. We only
give a sketch of the proof.

Lemma 3.4 Let F = (W, R) be an S4-frame. Then (W, R) is path-connected iff
(W, τR) is a connected space.

Proof (⇐) Suppose that (W, R) is not path-connected. Then there exists no path
between some w, v ∈ W . Consider the set C of all points of W which are connected
by a path to v. Clearly C is an upset and a downset, thus C is clopen in τR . As C is
nonempty (because v ∈ C) and C �= X (because w �∈ C), we obtain that (W, τR)

is disconnected.
[⇒] Suppose that (W, τR) is disconnected. Then there exists a nonempty clopen

C � X . Therefore, C is an upset and a downset. Takew ∈ C and v �∈ C . Clearly there
is no path connecting w with v. Thus, (W, R) is not path-connected. ��

Let A be a closure algebra. We recall that the standard construction of the S4-frame
F = (W, R) such that A is isomorphic to a subalgebra of F+ = (℘ (W ), R−1) is as
follows: W is the set of ultrafilters of A and

wRv iff �a ∈ w implies a ∈ v for each a ∈ A.

The frame F is usually referred to as the ultrafilter frame of A. Based on Theorem 3.3
and Lemma 3.4, it is natural to expect that F is path-connected. However, this is not the
case in general. In order to give a counterexample, we recall Esakia duality between
closure algebras and descriptive S4-frames.

A descriptive S4-frame is a Stone (that is, compact, Hausdorff, and zero-dimen-
sional) space X together with a quasi-order R ⊆ X × X such that (a) R[x] is closed
for each x ∈ X and (b) R−1[A] is clopen for each clopen A ⊆ X . It follows from [8]
that the category of closure algebras is dually equivalent to the category of descriptive
S4-frames.

Let F = (V, S, P) be the descriptive S4-frame shown in Fig. 2, where P is the
Boolean algebra of finite subsets of V (without v∞) and cofinite subsets of V (with
v∞). Clearly (V, S) is not path-connected. On the other hand, it is easy to see that
(P, S−1) is a connected closure algebra. By Esakia duality, (V, S) is isomorphic to the
ultrafilter frame of (P, S−1). Consequently, the ultrafilter frame of a connected closure
algebra A may not be path-connected. Nevertheless, we can still embed (P, S−1) in
the closure algebra of all subsets of a path-connected frame. Let V0 = V − {v∞} and
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let S0 be the restriction of S to V0. Clearly F0 = (V0, S0) is path-connected. Moreover,
it is easy to see that f : P → ℘(V0), given by f (E) = E ∩ V0 for each E ∈ P , is a
closure algebra embedding. The following remains an open problem:

Open Problem 1: Is each connected closure algebra isomorphic to a subalgebra of
the closure algebra of all subsets of some path-connected S4-frame?

4 Connected logics

For a closure algebra A, we let L(A) denote the logic of A; that is, the set of formulas
valid in A. Clearly L(A) is a logic over S4. Similarly, for a topological space X , we
let L(X) denote the logic of X , and for an S4-frame F, we let L(F) denote the logic
of F. Clearly L(X) = L(X+) and L(F) = L(F+), so both L(X) and L(F) are logics
over S4.

Definition 4.1 We call a modal logic L over S4 connected if L = L(A) for some
connected closure algebra A.

Our main theorem can now be formulated as follows:

Main Theorem Let L be a modal logic over S4 with the fmp. Then the following
conditions are equivalent:

(1) L is connected.
(2) L = L(F) for some path-connected S4-frame F.
(3) L = L(X) for some connected space X.
(4) L = L(A) for some subalgebra A of R+.

In order to prove our main theorem, we will require a series of technical lemmas,
which uncover the structure of the rooted finite frames of connected logics (indepen-
dent of whether the logic is generated by its finite frames or not).

Before plunging into the technical details, we say a couple of words about the
technique we will use. We will rely heavily on the splitting technique, developed by
Jankov [14] for intermediate logics, and adapted by Rautenberg [17] to modal logics.
In particular, the splitting theorem implies that if a finite subdirectly irreducible clo-
sure algebra A belongs to the variety generated by a closure algebra B, then A is a
homomorphic image of a subalgebra of B. We will also use the Jankov-type frame for-
mulas for S4 developed by Fine [13] (and others), and Esakia duality between closure
algebras and descriptive S4-frames. This duality yields the dual equivalence between
the category of finite closure algebras and the category of finite S4-frames (see, e.g.,
[12]), which, of course, is isomorphic to the category of finite topological spaces. In
particular, a finite S4-frame F is rooted iff the corresponding closure algebra F+ is
subdirectly irreducible. Finally, the n-clusters and n-forks described in the preliminary
section will play a fundamental role in our considerations.

To aid the reader in following the proof of the first of our key lemmas, we con-
sider a guiding example. Consider the fork F1 = (V, S) where V = {r, v, v1}, the
two-cluster C2 = (C, T ) where C = {c1, c2}, and the two-fork F2 = (W, R) where
W = {w0, w1, w2, w3} (see Fig. 3).
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Fig. 3 The fork, the 2-cluster,
and the 2-fork

(a) (b) (c)

Given onto interior maps f : R → F1 and g : R → C2, we show how to construct
an onto interior map h : R → F2. To aid the imagination, the reader may consider a
more concrete example, where f is given by sending the interval (−∞, 0) to v, the
interval (0,∞) to v1, and 0 to r ; while g is given by sending all the rational numbers
to c1 and all the irrational numbers to c2. Let C1 = g−1(c1) and C2 = g−1(c2). Since
g is an interior map, it is clear that C1 and C2 are disjoint dense subsets of R, so
cl(C1) = cl(C2) = R. Let U = f −1(v1). Since f is interior, U is a regular open
subset of R. Now let B1 = C1 ∩ U and B2 = C2 ∩ U . It is easy to see that both B1
and B2 are dense in U , that B1 ∩ B2 = ∅, and that B1 ∪ B2 = U . Let B3 = int(−U ).
Since f is interior, it is clear that B3 = f −1(v). We let B0 = −(B3 ∪ U ). Obvi-
ously B0 = f −1(r). Since f is an interior map, B0 ⊆ cl(Bi ) and Bi ⊆ −cl(B0) for
1 ≤ i ≤ 3. We define h : R → F2 by sending all the points from Bi to the point
wi ∈ W (where 0 ≤ i ≤ 3). Then h is an onto interior map. This is easy to check for
our concrete choices of f and g because B0 = {0}, B1 is the set of all positive rational
numbers, B2 is the set of all positive irrational numbers, and B3 = (−∞, 0).

The next lemma generalizes this idea to connected closure algebras.

Lemma 4.2 Let L be a connected logic over S4. If F1 |� L and Cn |� L, then Fn |� L.

Proof Suppose that F1 |� L and Cn |� L . Since L is connected, L = L(A) for some
connected closure algebra A. Since F1 and Cn are rooted frames, the closure algebras
F+

1 and C+
n are subdirectly irreducible. Therefore, by the splitting theorem, F+

1 and C+
n

are homomorphic images of subalgebras of A. Thus, there exist subalgebras B and C
of A and onto homomorphisms g : B � F+

1 and h : C � C+
n . We show that F+

n is a
homomorphic image of a subalgebra of A.

Claim 1 There exist c1, . . . , cn, u ∈ C such that:

(i) ci ∧ c j = 0 whenever i �= j ,
(ii)

∨
ci = u > 0,

(iii) u ≤ ♦ci for each i ≤ n,
(iv) u is regular open.

Proof of claim: We recall that Cn = (Wn, Rn), where Wn = {w1, . . . , wn} and Rn =
Wn × Wn . Choose a1, . . . , an ∈ C such that h(ai ) = {wi }. Let i �= j . If ai ∧ a j �= 0,
then we take ai − ∨

i �= j
a j in place of ai . Since

h(ai −
∨

i �= j

a j ) = h(ai )−
∨

i �= j

h(a j ) = {wi } − {w j : j �= i} = {wi } = h(ai ),

we may assume without loss of generality that ai ∧ a j = 0.
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Set u = �
∧

♦ai and ci = ai ∧ u. Clearly ci ≤ u and ci ∧ c j = 0 if i �= j . Since
u = ∧

�♦ai , by Lemma 3.1(i,ii), u is regular open. We show that u ≤ ♦ci for each
i . By Lemma 3.1(iii), we have:

♦ci = ♦(ai ∧ �
∧

j

♦a j ) ≥ ♦ai ∧ �
∧

j

♦a j

≥ �♦ai ∧
∧

j

�♦a j =
∧

j

�♦a j = u.

We also have u > 0 since h(u) = �
∧

j
♦(h(a j )) = Wn . Finally, if

∨
ci < u, then

by replacing cn with c′
n = u −

n−1∨

i=1
ci , we ensure that

∨
ci = u. Clearly c′

n ≥ cn ,

and so ♦c′
n ≥ ♦cn ≥ u. Lastly, by construction of c′

n , we have c′
n ∧ ci = 0 for each

i �= n. ��
Our next task is to refine Claim 1 and show that u can be chosen so that u �= 1. For

this we have to go beyond C and use some elements of B as well. Suppose that u = 1.
Let w denote a maximal point of F1. Since g : B � F+

1 is onto, there is v1 ∈ B such
that g(v1) = {w}. We have

g(�♦v1) = �♦g(v1) = �♦{w} = {w}

as {w} is regular open in F1. This implies that �♦v1 �= 0. Set v = �♦v1. By Lemma
3.1(i), v is regular open. Let bi = ci ∧ v. Then b1, . . . , bn, v satisfy the conditions of
Claim 1. To see this observe that the only nontrivial clause to check is v ≤ ♦bi . But
since v is open, by Lemma 3.1(iii), we obtain

♦bi = ♦(ci ∧ v) ≥ ♦ci ∧ v = v

since ♦ci ≥ u = 1. Consequently, we have found b1, . . . , bn, v ∈ A such that they
satisfy the conditions of Claim 1 and in addition v < 1. Set bn+1 = �¬v and
b0 = ¬(v ∨ bn+1).

Claim 2 The elements b0, . . . , bn+1 ∈ A satisfy the following conditions:

(i) bi ∧ b j = 0 whenever i �= j ,
(ii)

∨
bi = 1,

(iii) 0 < b0 ≤ ♦bi for each i ≤ n + 1,
(iv) bi ≤ ♦b j for each 1 ≤ i, j ≤ n,
(v) bi ≤ ¬(♦b0 ∨ ♦bn+1) for each 1 ≤ i ≤ n and bn+1 ≤ ¬♦b0.

Proof of claim: By the choice of b0, . . . , bn+1, (i), (ii), and (iv) are easily seen to be
satisfied. We proceed to show (iii). It follows from the definition of b0 that b0 is closed.
Moreover,

b0 = ¬(v ∨ bn+1) = ¬v ∧ ¬�¬v = ¬�♦v ∧ ♦v = ♦�¬v ∧ ♦v = ♦bn+1 ∧ ♦v.
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Therefore, b0 ≤ ♦bn+1 and b0 ≤ ♦v. We also have v ≤ ♦bi for each 1 ≤ i ≤ n. Thus,
♦v ≤ ♦♦bi = ♦bi for each 1 ≤ i ≤ n. It follows that b0 ≤ ♦bi for each 1 ≤ i ≤ n.
Suppose that b0 = 0. Then v ∨ bn+1 = 1, so v ∨ �¬v = 1, and so ¬�¬v ≤ v.
Therefore, ♦v ≤ v, and so v = ♦v, which is impossible because A has no nontrivial
clopens. Consequently, 0 < b0 ≤ ♦bi for each i ≤ n + 1.

Finally, we show (v). Since b0 is closed and b0 ≤ ♦bn+1, for each 1 ≤ i ≤ n we
have:

¬(♦b0 ∨ ♦bn+1) = ¬(b0 ∨ ♦bn+1) = ¬♦bn+1 = ¬♦�¬v = �♦v = v ≥ bi .

Moreover, ¬♦b0 = ¬b0 = ¬¬(v∨bn+1) = (v∨bn+1) ≥ bn+1. Thus, bn+1 ≤ ¬♦b0
and bi ≤ ¬(♦b0 ∨ ♦bn+1) for each 1 ≤ i ≤ n. ��

We are now one step away from completing the proof of the lemma. Recall that the
n-fork is the frame Fn = (Vn, Qn), where Vn = {w0, w1, w2, . . . , wn+1}, w0 Qnw

for each w ∈ Vn, wi Qnw j for all 1 ≤ i, j ≤ n, and wn+1 Qnwn+1. Let
χ(Fn)(p0 . . . , pn+1) be the Fine formula of Fn ; that is,

χ(Fn)(p0, . . . , pn+1) = p0 ∧ �
∨

0≤i≤n+1

pi ∧ �
∧

i �= j

(pi → ¬p j ) ∧
∧

wi Rw j

�(pi → ♦p j ) ∧
∧

wi �Rw j

�(pi → ¬♦p j )

We show that χ(Fn)[b0, . . . , bn+1] = b0. By Claim 2(i, ii),
∧

i �= j
(bi → ¬b j ) = 1 and

∨

0≤i≤n+1
bi = 1. Since

R = {(w0, wi ) : 0 ≤ i ≤ n + 1} ∪ {(wi , w j ) : 1 ≤ i ≤ n} ∪ {(wn+1, wn+1)},

by Claim 2(iii, iv), wi Rw j implies bi ≤ ♦b j . Thus,
∧

wi Rw j

�(bi → ♦b j ) = 1. As

wn+1 R�wi for 0 ≤ i ≤ n and wi R�w j for 1 ≤ i ≤ n and j = 0, n + 1, by Claim 2(v),
bi ≤ ¬♦b j wheneverwi R�w j . Therefore,

∧

wi �Rw j

�(bi → ¬♦b j ) = 1, and so we have

χ(Fn)[b0, . . . , bn+1] = b0. Because b0 �= 0, the formula ¬χ(Fn) is refutable on A.
Therefore, by the Fine theorem, F+

n is a subalgebra of a homomorphic image of A.1

Consequently, Fn |� L . ��
Now we introduce the operation of “gluing” of the n-fork with an S4-frame that

has a maximal n-cluster.

Definition 4.3 Let F = (W, R) be an S4-frame with a maximal n-cluster C =
{w1, . . . , wn}. Define the frame F�Fn = (W1, R1) as follows (see Fig. 4): W1 = W ∪

1 Actually, Fine’s theorem in its original formulation applies to S4-frames. The version for descriptive
S4-frames can be found in [21, Lem. 3.9]. This together with the duality between descriptive S4-frames
and closure algebras yields the algebraic reformulation of Fine’s theorem used here.
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Fig. 4 The ‘gluing’ of F and Fn

Fig. 5 The ordered sum of F
and Cn

{r,m}, where r,m /∈ W, R1 ∩ (W × W ) = R, r R1r,m R1m, r R1m, and r R1wi for all
i ≤ n.

Lemma 4.4 Let L be a connected logic and F1 |� L. If F is an S4-frame with a
maximal n-cluster such that F |� L, then F�Fn |� L.

Proof Let C = {w1, . . . , wn} be a maximal n-cluster of F. Since C is a maximal clus-
ter, the S4-frame (C, RC ) is a generated subframe of F, where RC is the restriction of
R to C . But (C, RC ) is isomorphic to Cn . Therefore, Cn |� L . Thus, by Lemma 4.2,
Fn |� L . Let F � Fn denote the disjoint union of F and Fn . Then F � Fn |� L . Since
“gluing” the points of respective maximal n-clusters (see Fig. 4) produces an onto
p-morphism f : F � Fn � F�Fn , we obtain F�Fn |� L . ��

If F1 �|� L , then it is well-known (see, e.g., [22, Sect. 6.1]) that S4.2 ⊆ L , where
S4.2 = S4 + ♦�p → �♦p. The finite rooted S4.2-frames are precisely the finite
S4-frames with a unique maximal cluster (see, e.g., [6, Sect. 3.5]). We define another
operation on the S4-frames which will always produce an S4.2-frame.

Definition 4.5 Let F = (W, R) be an S4-frame and Cn = (Wn, Rn) the n-cluster.
Without loss of generality we assume that W ∩ Wn = ∅, and define the ordered sum
F�Cn = (W1, R1) as follows (see Fig. 5):

W1 = W ∪ Wn ,
R1 ∩ (W × W ) = R,
R1 ∩ (Wn × Wn) = Rn

wR1wi for each w ∈ W and wi ∈ Wn .

That is, F�Cn is obtained by putting the n-cluster Cn on top of F. Clearly F�Cn has
a unique maximal cluster which is isomorphic to Cn .

To aid the reader in following the proof of the second of our key lemmas, we again
consider a guiding example. Consider the frame G1 = (V, S) where V = {v0, v1},
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Fig. 6 Guiding example to
Lemma 4.6

(a) (b) (c)

the two-cluster C2 = (C, T ) where C = {c1, c2}, and the frame G2 = (W, R) where
W = {w0, w1, w2} (see Fig. 6).

Given onto interior maps f : R → G1 and g : R → C2, we show how to construct
an onto interior map h : R → G2. To aid the imagination, the reader may consider a
more concrete example, where f is given by sending 0 to v0 and R − {0} to v1; while
g is given by sending all the rational numbers to c1 and all the irrational numbers to
c2. Let C1 = g−1(c1) and C2 = g−1(c2). Since g is an interior map, it is clear that
C1 and C2 are dense subsets of R. Let B0 = f −1(v0) and B1 = f −1(v1). Since f
is interior, B1 is an open dense subset of R. Now let D0 = B0, D1 = C1 ∩ B1, and
D2 = C2 ∩ B1. It is easy to see that both D1 and D2 are dense in B1, that D1 ∩ D2 = ∅,
and that D1 ∪ D2 = B1. Since f is an interior map, D0 ⊆ cl(D1) and D0 ⊆ cl(D2).
We define h : R → F2 by sending all the points from Di to the point wi ∈ W (where
0 ≤ i ≤ 2). Then h is an onto interior map. This is easy to check for our concrete
choices of f and g because D0 = {0}, D1 is the set of all nonzero rational numbers,
and D2 is the set of all irrational numbers.

The next lemma generalizes this idea to connected closure algebras.

Lemma 4.6 Let L be a connected logic over S4.2 and let F be a rooted S4-frame. For
n, k < ω, if F�Cn |� L and Ck |� L, then F�Ck |� L.

Proof We first observe that F�C1 is a p-morphic image of F�Cn . Therefore, F�Cn |� L
implies F�C1 |� L . As L is connected, L = L(A) for some connected closure algebra
A. Because F�C1 |� L ,Ck |� L , and (F�C1)

+,C+
k are subdirectly irreducible alge-

bras, it follows from the splitting theorem that both (F�C1)
+ and C+

k are homomorphic
images of subalgebras of A. Therefore, there exist subalgebras B and C of A and onto
homomorphisms g : B � (F�C1)

+ and h : C � C+
k . We show that (F�Ck)

+ is also
a homomorphic image of a subalgebra of A.

An argument similar to the proof of Claim 1 of Lemma 4.2 produces c1, . . . , ck, u ∈
C such that:

(i) ci ∧ c j = 0 whenever i �= j ,
(ii)

∨
ci = u > 0,

(iii) u ≤ ♦ci for each i ≤ k,
(iv) u is regular open.

Since A is an S4.2-algebra, we have ♦�a ≤ �♦a for all a ∈ A. Therefore,

♦u = ♦�u ≤ �♦u = u

Consequently, u is closed. As u is also open, u > 0 is clopen, which by connectedness
of A implies u = 1. Thus, the conditions for c1, . . . , ck can be rewritten as follows:
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(i) ci ∧ c j = 0 whenever i �= j ,
(ii)

∨
ci = 1,

(iii) ♦ci = 1 for each i ≤ k.

Now consider the frame F�C1 = (W, R). Suppose W = {w0, . . . , wl , wl+1} wherew0
is a root andwl+1 is the maximal point coming from C1. Choose b0, . . . , bl , bl+1 ∈ B
so that g(bi ) = {wi } for each i ≤ l + 1 and bi ∧ b j = 0 if i �= j . We may also assume
that bl+1 = �bl+1 since g(�bl+1) = �g(bl+1) = �{wl+1} = {wl+1} = g(bl+1) and
�bl+1 ≤ bl+1. Let χ(F�C1)(p0, . . . , pl+1) be the Fine formula of F�C1. We have:

g[χ(F�C1)(b0, . . . , bl+1)] = χ(F�C1)(g(b0), . . . , g(bl+1))

= χ(F�C1)({w0}, . . . , {wl+1}) = {w0}

Therefore, χ(F�C1)[b0, . . . , bl+1] > 0.
Define d0, . . . , dl+k by di = bi for 0 ≤ i ≤ l and dl+ j = c j ∧ bl+1 for 1 ≤ j ≤ k.

Since
∨

ci = 1, the distributive law gives us
k∨

j=1
dl+ j = bl+1. Moreover, since bl+1

is open, by Lemma 3.1(iii), we have:

♦dl+ j = ♦(ci ∧ bl+1) ≥ ♦ci ∧ bl+1 = 1 ∧ bl+1 = bl+1.

Thus, ♦bl+1 ≤ ♦dl+ j for 1 ≤ j ≤ k.
Now we take a closer look at the formula χ(F�Ck)[d0, . . . , dl , dl+1, . . . , dl+k]. By

assuming that F�Ck = (W ′, R′), where W ′ = {w0, . . . , wl , wl+1, . . . , wl+k}, w0 is a
root, wl+1, . . . , wl+k are the points from the maximal cluster Ck, R′ coincides with
R on the points {w0, . . . , wl , wl+1}, and wl+i R′wl+ j for all i, j ≤ k, we can write
χ(F�Ck)[d0, . . . , dl , dl+1, . . . , dl+k] as the meet ϕ1 ∧ ϕ2 ∧ ϕ3, where:

ϕ1 = d0 ∧ �
∨

di ∧ �
∧

i �= j

(di → ¬d j )

ϕ2 =
∧

wi R′w j

�(di → ♦d j )

ϕ3 =
∧

wi �R′w j

�(di → ¬♦d j )

Since di ∧ d j = 0 for all i, j ≤ l + k, we obtain �
∧

i �= j
(di → ¬d j ) = �

∧
1 = 1.

Moreover,

∨
di =

l∨

i=1

di ∨
k∨

j=1

dl+ j =
l∨

i=1

bi ∨ bl+1 =
l+1∨

i=1

bi .

Thus, ϕ1 = b0 ∧ �
l+1∨

i=1
bi .
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For i, j ≤ l we have wi R′w j iff wi Rw j , and for j > l and i ≤ l + k we have
wi R′w j . Also, ♦d j ≥ ♦bl+1 for all j > l; di = bi for all i ≤ l; and (wi , w j ) �∈ R′
whenever i > l, j ≤ l. Consequently,

∧

wi R′w j

(di → ♦d j ) =
∧

wi R′w j
i, j≤l

(di → ♦d j ) ∧
∧

i≤l
j>l

(di → ♦d j ) ∧
∧

i, j>l

(di → ♦d j )

=
∧

wi Rw j
i, j≤l

(bi → ♦b j ) ∧
∧

i≤l
j>l

(bi → ♦d j ) ∧
∧

i, j>l

(di → ♦d j )

≥
∧

wi Rw j
i, j≤l

(bi → ♦b j ) ∧
∧

i≤l

(bi → ♦bl+1) ∧
∧

i>l

(di → ♦bl+1).

Since
k∨

j=1
dl+ j = bl+1, we have di ≤ bl+1 ≤ ♦bl+1 for each i > l. Therefore,

∧

i>l
(di → ♦bl+1) = 1. Further, as wi Rwl+1 for all i ≤ l and bl+1 → ♦bl+1 = 1, we

obtain
∧

wi Rw j

(bi → ♦b j ) = ∧

wi Rw j
i, j≤l

(bi → ♦b j )∧∧

i≤l
(bi → ♦bl+1). Thus,

∧

wi R′w j

(di →

♦d j ) ≥ ∧

wi Rw j

(bi → ♦b j ), and so ϕ2 ≥ �
∧

wi Rw j

(bi → ♦b j ).

Furthermore, for i, j ≤ l we have (wi , w j ) �∈ R′ iff (wi , w j ) �∈ R. In addition,
(wl+1, wi ) �∈ R for all i < l + 1; and wi Rw j whenever j > l. Therefore, taking into
account that di ≤ bl+1 for all i > l, we obtain:

∧

wi �R′w j

(di → ¬♦d j ) =
∧

wi �R′w j
i, j≤l

(di → ¬♦d j ) ∧
∧

i>l
j≤l

(di → ¬♦d j )

=
∧

wi �Rw j
i, j≤l

(bi → ¬♦b j ) ∧
∧

i>l
j≤l

(di → ¬♦b j )

≥
∧

wi �Rw j
i, j≤l

(bi → ¬♦b j ) ∧
∧

j≤l

(bl+1 → ¬♦b j )

=
∧

wi �Rw j

(bi → ¬♦b j ).

It follows that ϕ3 ≥ �
∧

wi �Rw j

(bi → ¬♦b j ). To sum up:

χ(F�Ck)[d0, . . . , dl+k] = ϕ1 ∧ ϕ2 ∧ ϕ3

≥ b0 ∧ �
l+1∨

i=1

bi∧�
∧

wi Rw j

(bi → ♦b j ) ∧ �
∧

wi �Rw j

(bi → ¬♦b j )

= χ(F�C1)[b0, . . . , bl+1] > 0.

By Fine’s theorem, (F�Ck)
+ is a homomorphic image of a subalgebra of A. ��
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We will require a slight generalization of the above lemma. Let Cω = (Wω, Rω)
denote the countable ω-cluster. Let P be a subset of the set of all propositional letters.
We will utilize the concept of P-bisimulation, which is a modification of the standard
notion of bisimulation (see, e.g., [5, Defn. 2.16]). Namely, a relation between two S4-
models is a P-bisimulation if it satisfies the back and forth conditions and if bisimilar
points satisfy the same propositional letters from P . It follows from the proof of [5,
Thm. 2.20] that modal formulas in P-variables are invariant under P-bisimulations.

Lemma 4.7 Let L be a connected logic over S4.2 and let F be a rooted S4-frame. If
F�Cn |� L for some n < ω and Ck |� L for all k < ω, then F�Cω |� L.

Proof Let F�Cn |� L for some n < ω and Ck |� L for all k < ω. Then it follows from
Lemma 4.6 that F�Ck |� L for all k < ω. Suppose that F�Cω �|� ϕ for some ϕ ∈ L .
Let Sub(ϕ) denote the set of subformulas of ϕ, and define an equivalence relation ≡
on Cω by w ≡ v iff (∀ψ ∈ Sub(ϕ))(w |� ψ ⇔ v |� ψ). Clearly ≡ has only finitely
many equivalence classes, which we denote by c1, . . . cm . Define f : F�Cω → F�Cm

by

f (w) =
{
w if w ∈ F
wi if w ∈ ci

It is easy to see that f is an onto p-morphism. Let P be the set of propositional let-
ters occurring in ϕ. We define |� on F�Cm by w |� p iff there exists v ∈ F�Cω with
f (v) = w and v |� p. Then f is a P-bisimulation between the models (F�Cω, |�) and
(F�Cm, |�). Since modal formulas in P-variables are invariant under P-bisimulations,
we obtain that F�Cm �|� ϕ. Therefore, F�Cm �|� L , a contradiction. Thus, F�Cω |� L .
��

Finally, we are ready to prove the main result of the paper.

Theorem 4.8 (Main Theorem) Let L be a modal logic over S4 with fmp. Then the
following conditions are equivalent:

(1) L is connected.
(2) L = L(F) for some path-connected S4-frame F.
(3) L = L(X) for some connected space X.
(4) L = L(A) for some subalgebra A of R+.

Proof The implications (2) ⇒ (3) ⇒ (1) and (4) ⇒ (1) are obvious. Therefore, it is
sufficient to show (1) ⇒ (2) ⇒ (4).
(1) ⇒ (2) ⇒ (4): Our strategy will be as follows. Firstly we build a path-connected

frame G such that L = L(G), thus establishing (1) ⇒ (2). Secondly, we show that
G, viewed as a topological space, is an interior image of R. This will show that G+ is
isomorphic to a subalgebra of R+, thus establishing (2) ⇒ (4).
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Fig. 7 A p-morphism from
⊔
(Gi �Fki ) onto G

Let G1,G2, . . . be the list of all finite rooted non-isomorphic L-frames. Then L is
the logic of {G1,G2, . . . }. We have two possible cases: either F1 |� L or F1 �|� L .

Case 1: Suppose that F1 |� L . For each i we choose a maximal cluster of Gi . Let
ki denote the size of this cluster. By Lemma 4.4, Gi �Fki is an L-frame. Let mi denote
the maximal point and ri denote the root of Fki in Gi �Fki . We let G be the p-morphic
image of the disjoint union

⊔
(Gi �Fki ) under the map that glues all the mi into a single

point m and is the identity on the rest of the points (see Fig. 7).
It follows that G |� L . Moreover, G = (W, R) is path-connected. To see this, let

w, v ∈ W . Thenw is from some Gi �Fki and v is from some G j �Fk j . Since both of these
frames are connected, there is a path w, x1, . . . , xk,mi and a path m j , y1, . . . , yl , v.
Then the sequence w, x1, . . . , xk,m, y1, . . . , yl , v is a path in G, and so G is path-
connected. Furthermore, since each Gi is a generated subframe of G, we obtain
L = L(G).

Case 2: Suppose that F1 �|� L . Then S4.2 ⊆ L . We associate α ≤ ω with L as
follows. If there exists n < ω such that Cn |� L and Cn+1 �|� L , then we set α = n.
Otherwise we set α = ω. Since S4.2 ⊆ L , each Gi has the form Hi�Cki , where ki ≤ α.
By Lemmas 4.6 and 4.7, for each i , we have Hi�Cα |� L . Let G be the p-morphic
image of the disjoint union

⊔
(Hi�Cα) that glues together all the maximal clusters

Cα (see Fig. 8). Then G |� L . Moreover, since G has a unique maximal cluster, G is
path-connected. Furthermore, as each Gi is a generated subframe of G, we obtain that
L = L(G). This establishes (1) ⇒ (2).
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Fig. 8 A p-morphism from
⊔
(Hi �Cα) onto G

Our final goal is to view G as a topological space and build an interior map from R
onto G. We will need the following claim. We point out that part (1) of the claim fol-
lows from [18, Lem. 17], where the setting is more general. Our proof below, however,
provides a more explicit construction of the map.

Claim 3 Let [a, b] be a closed interval of the real line R, let F be a finite rooted
S4-frame with a maximal n-cluster, let Fn be the n-fork with the root r , and let Cα =
(Wα, Rα) be the α-cluster, where α ≤ ω.

(1) There is an onto interior map f : [a, b] → F�Fn such that a, b ∈ f −1(r).
(2) There is an onto interior map g : [a, b] → F�Cα .

Proof of claim: (1) Since all closed intervals of the real line are homeomorphic,
we will prove the claim for a concrete interval [0, 5]. The general claim will
follow. The required map will be built using [2, Sect. 3] which provides an onto
interior map from any bounded interval of the real line onto any finite rooted
S4-frame. Thus, there exist onto interior maps g : [2, 3] → F, g1 : [0, 1] →
Fn, g2 : [4, 5] → Fn, h1 : (1, 2) → Cn , and h2 : (3, 4) → Cn . It follows
from the construction in [2, Sect. 3] that 0, 1 ∈ g−1

1 (r), 4, 5 ∈ g−1
2 (r), and

2, 3 ∈ g−1(Cr ), where Cr denotes the minimal cluster of F. We take f to be
the union g1 ∪ h1 ∪ g ∪ h2 ∪ g2, where F,Fn , and Cn are viewed as generated
subframes of F�Fn . It is clear that 0, 5 ∈ f −1(r). It is also easy to see that f
is a well-defined onto map. To see that f is open, consider any open interval
I ⊆ [4, 5]. Obviously, f (I ) is a union of upsets in F�Fn , hence f (I ) is an upset.
Therefore, f is an open map. It is left to be shown that f is continuous. Let U be
an upset of F�Fn . Then either Cn ⊆ U or Cn ∩U = ∅. Suppose that Cn ∩U = ∅.
Then U misses both r and Cr . Therefore, 0, 1, 2, 3, 4, 5 �∈ f −1(U ), and so
f −1(U ) = U1 ∪ U2 ∪ U3, where U1 is open in (0, 1),U2 is open in (2, 3), and
U3 is open in (4, 5). Thus, f −1(U ) is open in [0, 5]. Now suppose that Cn ⊆ U .
Then f −1(U ) = U1 ∪ (1, 2)∪ U2 ∪ (3, 4)∪ U3, where U1 is open in [0, 1],U2
is open in [2, 3], and U3 is open in [4, 5]. Therefore, f −1(U ) is open in [0, 5],
and so f is continuous. Consequently, f is an onto interior map.

(2) If α<ω, then we can apply [2, Cor. 14], by which F�Cα is an interior image of
[a, b]. In particular, let h denote an interior map from [a, b] onto F�C1, where
W1={w}. Suppose now that α=ω and let Wα={w1, w2, . . . }. Since h is an inte-
rior map, U=h−1(w) is an open dense subset of [a, b]. We divide U into count-
ably many disjoint dense subsets U1,U2, . . . and define g : [a, b]→F�Cα by

123



Connected modal logics 303

g(x) =
{

h(x) if x �∈ U,
wn if x ∈ Un for some n < ω.

It is straightforward to check that g is a well-defined onto map. To see that g is
continuous, let V be a nonempty upset of F�Cα . Then V = W ∪Wα , where W is
an upset of F. Clearly g−1(V ) = h−1(W ∪{w}), and so g−1(V ) is open in [a, b].
Therefore, g is continuous. It remains to be shown that g is open. Let I be a non-
empty open interval of [a, b]. Since U is open and dense in [a, b] and each Un

is dense in U , we have that I meets each Un . Moreover, h(I −U ) = h(I )−{w}
is an upset of F. Therefore, g(I ) = h(I − U ) ∪ Wα is an upset of F�Cα , and so
g is open. Consequently, g is an onto interior map. ��

Now we build an interior map from R onto G. We have that either F1 |� L or
F1 �|� L .

Case 1: First suppose that F1 |� L . We build an interior map from (0,∞) onto G.
Since (0,∞) is homeomorphic to R, the result follows. Note that if the number of the
Gi is finite, then G is finite and connected. Therefore, by [2, Cor. 20], there exists an
interior map from R onto G. Thus, without loss of generality we may assume that there
are infinitely manyGi . By Claim 3(1), for each finiteGi �Fki there exists an interior map
gi from the interval [2i + 1, 2i + 2] onto Gi �Fki such that g−1

i (ri ) ⊇ {2i + 1, 2i + 2}.
Define f : (0,∞) → G by

f (x) =
{

m if x ∈ (2i, 2i + 1) for some i < ω,

gi (x) if x ∈ [2i + 1, 2i + 2] for some i < ω.

It is straightforward that f is a well-defined onto map. To see that f is open, it
suffices to note that the restriction of f to the intervals (2i, 2i +1) and [2i +1, 2i +2]
is open by the construction, f commutes with arbitrary unions, and the union of opens
is open. The only nontrivial part to check is that f is continuous. Let U ⊆ W be an
upset of G and x ∈ f −1(U ). If there exists n such that n < x < n + 1, then, by
the construction, for sufficiently small ε, we have (x − ε, x + ε) ⊆ f −1(U ). Sup-
pose that x = n. Without loss of generality we may assume that n = 2i + 1. Then
f (x) = gi (x) and as gi is continuous, there exists a sufficiently small ε such that
[x, x + ε) ⊆ g−1

i (U ∩ [2i + 1, 2i + 2]). We also know that x = 2i + 1 ∈ g−1
i (ri ).

Therefore, f (x) = ri . As U is an upset and f (x) = ri ∈ U , we have m ∈ U . But then
(2i, 2i +1) ⊆ f −1(U ). Since we also have [2i +1, 2i +1+ ε) ⊆ f −1(U ), we obtain
(2i, 2i + 1 + ε) ⊆ f −1(U ). Thus, x = 2i + 1 has an open neighborhood contained
in f −1(U ). Consequently, f −1(U ) is open, and so f : R � G is an interior map.

Case 2: Next suppose that F1 �|� L . By Claim 3(2), each frame Gi�Cα is an interior
image of the interval [2i + 1, 2i + 2]. Let gi : [2i + 1, 2i + 2] � Gi�Cα denote the
corresponding interior map, and let fi : (2i, 2i + 1) � Cα denote the interior map
from (2i, 2i + 1) onto the α-cluster Cα . Define f : (0,∞) → G by
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f (x) =
{

fi (x) if x ∈ (2i, 2i + 1) for some i < ω,

gi (x) if x ∈ [2i + 1, 2i + 2] for some i < ω.

It is straightforward to check that f is a well-defined onto interior map, which
completes the proof of the theorem. ��
Remark 4.9 As follows from our Main Theorem, for each connected logic L with the
fmp, there is a subalgebra A of R+ such that L = L(A). In fact, by an argument
similar to [2, Thms. 15 and 21], it can be ensured that A is a subalgebra of B(Cω(R)).

Remark 4.10 The original McKinsey-Tarski theorem is concerned with an arbitrary
dense-in-itself metrizable separable space. It is natural to ask whether our Main The-
orem can be proved with the same generality. Most of the ingredients of the proof
can easily be seen to be generalizable to arbitrary connected dense-in-itself metriz-
able separable spaces using the ideas and constructions of [16] and [18]. The more
difficult part is building an interior map onto the infinite path-connected frame G. Our
construction easily generalizes to any Euclidean space, but it is not entirely clear how
to generalize it to an arbitrary connected dense-in-itself metrizable separable space.
We leave this as an open problem.

5 Logics over S4.1

Many logics over S4 are connected. We will show in the next section that some of the
most well-known extensions of S4 are connected logics. In fact, there are continuum
many connected logics, among them continuum many with the fmp and continuum
many without the fmp. It is the goal of this section to show that each logic over S4.1 is
connected. For this we will require the machinery of Esakia duality between closure
algebras and descriptive S4-frames.

Let (B,♦) be a closure algebra and (X, R) its dual descriptive S4-frame. By Esakia
duality, homomorphic images of (B,♦) correspond to closed upsets of (X, R) and sub-
algebras of (B,♦) correspond to correct partitions of (X, R). Here we recall that if ∼
is an equivalence relation on X , then [x] = {y ∈ X : x ∼ y}, [U ] = ⋃{[x] : x ∈ U },
and ∼ is a correct partition whenever (i) from x �∼ y it follows that there exists a
clopen subset U of X such that [U ] = U and U separates x and y and (ii) x ∼ y and
y Rz imply there exists u ∈ X such that x Ru and u ∼ z. We will also need that (B,♦)
is subdirectly irreducible iff X is rooted and the minimal cluster of X is clopen [9].

Given a descriptive S4-frame (X, R) and a valuation ν sending the propositional
letters to subsets of X , we call ν admissible if each ν(p) is a clopen subset of X . Let
L be a logic over S4. We say that (X, R) validates L (notation: (X, R) |� L) if each
theorem of L is true at every point of X under each admissible valuation.

For a family {(Xi , Ri ) : i ∈ I } of descriptive S4-frames, let (X, R) denote their
disjoint union

⊔

i∈I
(Xi , Ri ). Note that if I is infinite, then X is no longer compact.

However, X is clearly locally compact Hausdorff, hence X has the one-point compac-
tification αX = X ∪ {∞}. Let αR = R ∪ {(∞,∞)}. We claim that (αX, αR) is a
descriptive S4-frame. That αX is a Stone space and that αR is reflexive and transitive
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is obvious. Let x ∈ αX . Then x = ∞ or there is i ∈ I such that x ∈ Xi . If x = ∞, then
(αR)[x] = {x}, and if x ∈ Xi , then (αR)[x] = Ri [x] is closed. In either case (αR)[x]
is a closed subset of αX . Next let U be a clopen subset of αX . By the definition of the
topology on αX (see, e.g., [7, Thm. 3.5.11]), there exist i1, . . . , in and clopen subsets

Ui1 ⊆ Xi1 , . . . ,Uin ⊆ Xin such that U =
n⋃

k=1
Uik or U = αX − (

n⋃

k=1
Uik ). But then

(αR)−1(U ) has again the same form, hence is a clopen subset of αX . Consequently,
(αX, αR) is a descriptive S4-frame.

Lemma 5.1 Let L be a logic over S4, let {(Xi , Ri ) : i ∈ I } be a family of descriptive
S4-frames such that (Xi , Ri ) |� L for each i ∈ I , and let X = ⊔

i∈I
(Xi , Ri ). Then

(αX, αR) |� L.

Proof Suppose (αX, αR) �|� ϕ for some theorem ϕ of L . This means that under some
admissible valuation on (αX, αR), the clopen corresponding to ¬ϕ is nonempty. Since
all nonempty clopens of αX meet X , we obtain that ϕ can be refuted on some x ∈ X .
We have x ∈ Xi for some i ∈ I . Therefore, ϕ is refuted on (Xi , Ri ), which is impos-
sible since Xi |� L . The obtained contradiction proves that (αX, αR) |� L . ��

The next lemma is a straightforward generalization of the characterization of S4.1-
frames (see, e.g., [6, Prop. 3.46]).

Lemma 5.2 Let (X, R) be a descriptive S4-frame. Then (X, R) |� S4.1 iff for each
x ∈ X there exists a maximal y ∈ X with x Ry.

Note that each point in a descriptive S4-frame sees a quasi-maximal point, by [10,
Thm. 2.1]. Thus, the descriptive S4.1-frames can be characterized as those descrip-
tive S4-frames in which every quasi-maximal point is maximal (or, equivalently, each
maximal cluster is simple).

We now prove that each modal logic over S4.1 is connected.

Theorem 5.3 Let L be a logic over S4.1. Then L is connected.

Proof Let {(Bi ,♦i ) : i ∈ I } be the family of all non-isomorphic finitely generated sub-
directly irreducible closure algebras validating L . It is well-known that L is the logic of
{(Bi ,♦i ) : i ∈ I }. For each i let (Xi , Ri ) be the dual descriptive S4-frame of (Bi ,♦i ).
Then (Xi , Ri ) |� L . We let (X, R) denote the disjoint union of {(Xi , Ri ) : i ∈ I }.
By Lemma 5.1, (αX, αR) is a descriptive S4-frame such that (αX, αR) |� L . For
each i ∈ I , let mi denote a maximal point of (Xi , Ri ). It exists by Lemma 5.2 since
(Xi , Ri ) |� S4.1. Define a partition ∼ on αX by identifying all mi with ∞.

We show that ∼ is a correct partition. For this we first show that the set A = {mi :
i ∈ I }∪ {∞} is closed in αX . Let x /∈ A. Then there is i ∈ I such that x ∈ Xi −{mi }.
Since Xi is a Stone space, there exists a clopen subset U of Xi such that x ∈ U and
mi �∈ U . Clearly U ∩ A = ∅ and U is open in X , and hence in αX . Therefore, αX − A
is open and so A is closed in αX .

Now let x, y ∈ αX with x �∼ y. Without loss of generality we may assume that
x /∈ A. Therefore, there is a clopen subset U of αX such that x ∈ U and U ∩ A = ∅.
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Thus, [U ] = U . If y ∈ A, then we have found a clopen subset U of αX such that
[U ] = U and U separates x from y. Now suppose that y /∈ A. Then there exist i, j ∈ I
such that x ∈ Xi and y ∈ X j . We can clearly separate x from y by a clopen subset U
of Xi such that mi /∈ U . Since U ⊆ Xi and mi /∈ U , we have [U ] = U . Therefore,
in this case too, we have found a clopen subset U of αX such that [U ] = U and
U separates x from y. Since each mi and ∞ are maximal points of αX , it is also
obvious that from x ∼ y and y Rz it follows that y = z, and so there is u ∈ αX
(u = x) such that x Ru and u ∼ z. Consequently, ∼ is a correct partition, and so
(αX/∼, (αR)∼) is a descriptive S4-frame such that (αX/∼, (αR)∼) |� L (where we
recall that [x](αR)∼[y] iff there exist x ′ ∈ [x] and y′ ∈ [y] with x ′(αR)y′).

Moreover, it follows from the definition of ∼ that (αX/∼, (αR)∼) is path-
connected, and so the corresponding closure algebra (B,♦) is connected. It is also
clear that each Xi is (isomorphic to) a closed upset of (αX/∼, (αR)∼). Therefore,
each (Bi ,♦i ) is a homomorphic image of (B,♦). Thus, L is the logic of the connected
algebra (B,♦), hence is a connected logic. (In fact, (B,♦) is a subdirect product of
the family {(Bi ,♦i ) : i ∈ I }). ��

On the other hand, we give a simple example of a logic over S4.2 which is not
connected. Let L be the logic of the frame G1 � C2, where G1 and C2 are shown in
Fig. 6. Then it is easy to see that G2 is not an L-frame, where G2 is also shown in
Fig. 6. On the other hand, if L were connected, then by Lemma 4.6, G2 would also be
an L-frame. The obtained contradiction proves that L is not a connected logic.

Corollary 5.4 1. Each logic over S4.1 with the fmp is the logic of a subalgebra of
R+.

2. Each logic over S4.Grz is connected.
3. Each logic over S4.Grz with the fmp is the logic of a subalgebra of R+.
4. There are continuum many connected logics over S4, continuum many with the

fmp, and continuum many without the fmp.

Proof (1) follows from Theorems 4.8 and 5.3; since S4.1 is contained in S4.Grz, (2)
follows from Theorem 5.3 and (3) follows from (1); finally, (4) follows from (2) since
it is well-known that there are continuum many extensions of S4.Grz, continuum
many with the fmp, and continuum many without the fmp. ��
Open Problem 2: Which connected logics without the fmp can be obtained as the
logics of subalgebras of R+?

6 Examples

Clearly S4 is a connected logic because it is the logic of R+. In this section we list
specific subalgebras of R+ that generate well-known normal extensions of S4 such as
S5, S4.1, S4.2, S4.1.2, S4.Grz, and S4.Grz.2. Each of these systems is an extension
of S4 by finitely many axioms in one variable, hence has the fmp, by [6, Thm. 11.58].
It follows from Theorem 4.8 that each of these logics is connected. In the following
table we recall the syntactic and semantic characterizations of these systems.
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Logic Defining axioms Generating frame class
S5 ♦p → �♦p Finite clusters
S4.1 �♦p → ♦�p All finite rooted frames in which each

maximal cluster is simple
S4.2 ♦�p → �♦p All finite rooted frames with a unique

maximal cluster
S4.1.2 ♦�p ↔ �♦p All finite rooted frames with a unique

maximal cluster which is simple
S4.Grz �(�(p → �p) → p) → p All finite rooted partially

ordered frames
S4.Grz.2 �(�(p → �p) → p) → p

♦�p → �♦p
All finite rooted partially ordered

frames with a unique maximal point

6.1 S4.Grz

Let B(Op(R)) denote the Boolean subalgebra of R+ generated by the open subsets
of R. Since all open, and hence closed subsets of R are contained in B(Op(R)), it is
clear that B(Op(R)) is closed under cl. Therefore, B(Op(R)) is a subalgebra of R+.
By [2, Rem. 10], the logic of B(Op(R)) is S4.Grz.

6.2 S4.Grz.2

Let OD(R) denote the set of open dense subsets of R and let B(OD(R)) denote the
Boolean subalgebra of R+ generated by OD(R). We show that B(OD(R)) is closed
under cl, and so is a subalgebra of R+. Since OD(R) is closed with respect to finite
unions and intersections, OD(R)∪{∅} is a bounded sublattice of Op(R). Therefore, for

each A ∈ B(OD(R))we have A =
n⋂

i=1
(−Ui ∪ Vi ), where each Ui , Vi ∈ OD(R)∪{∅}.

Lemma 6.1 For each A ∈ B(OD(R)) we have cl(A) = R or int(A) = ∅.

Proof Let A ∈ B(OD(R)). Then A =
n⋂

i=1
(−Ui ∪Vi ) for some Ui , Vi ∈ OD(R)∪{∅}.

If each Vi �= ∅, then each Vi is open dense, and hence so is
n⋂

i=1
Vi . Therefore, cl(A) ⊇

cl(
n⋂

i=1
Vi ) = R, and so cl(A) = R. On the other hand, if at least one Vj = ∅, then

int(A) ⊆ int(−U j ) = −cl(U j ) = −R = ∅. ��
Corollary 6.2 1. B(OD(R)) is a subalgebra of R+.

2. B(OD(R)) is a S4.Grz.2-algebra.

Proof (1) It is sufficient to show that if A ∈ B(OD(R)), then cl(A) ∈ B(OD(R)).
But this follows from Lemma 6.1.

(2) Since B(OD(R)) is a subalgebra of B(Op(R)) and B(Op(R)) is a S4.Grz-
algebra, so is B(OD(R)). Also, by Lemma 6.1, for each A ∈ B(OD(R))
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we have cl(A) = R or int(A) = ∅. Therefore, cl(int(A)) ⊆ int(cl(A)),
and so B(OD(R)) is a S4.2-algebra. Consequently, B(OD(R)) is a S4.Grz.2-
algebra. ��

We show that each non-theorem of S4.Grz.2 can be refuted on B(OD(R)). Con-
sider F�C1, where F = (W, R) is a finite rooted partially ordered frame and C1 =
({w1}, {(w1, w1)}) is a one-point cluster. As follows from [16, Theorem 5.10] (see
also [1, Lemma 4.5] for a simplified proof), there exists an interior map g from the
Cantor space C onto F. Let f : R → F�C1 be given by

f (x) =
{

g(x) if x ∈ C,
w1 if x ∈ R − C.

It is easily seen that f is an onto interior map. Let F�C1 = (W1, R1). For eachw ∈ W1,
the set R1[w] is open and dense in F�C1; for each w ∈ W , the set R−1

1 [w] is closed
and has empty interior; and R−1

1 [w1] = W1. Therefore, for each w ∈ W1, we have
f −1 R1[w], f −1 R−1

1 [w] ∈ B(OD(R)). Thus, f −1(w) = f −1 R1[w]∩ f −1 R−1
1 [w] ∈

B(OD(R)). It follows that f −1 is a closure algebra homomorphism from (℘W1, R−1
1 )

into B(OD(R)). Consequently, each formula refutable on F�C1 is also refutable on
B(OD(R)). Now since S4.Grz.2 is complete with respect to the finite frames F�C1,
with F a rooted partially ordered frame and C1 a one-point cluster, we obtain that
S4.Grz.2 is the logic of B(OD(R)).

6.3 S4.1.2

We recall that a subset A of a topological space is nowhere dense if int(cl(A)) = ∅.
Let ND(R) denote the set of nowhere dense subsets of R and let B(ND(R)) denote the
Boolean subalgebra of R+ generated by ND(R). We show that B(ND(R)) is closed
under cl, and so is a subalgebra of R+.

Lemma 6.3 ND(R) is an ideal of R+.

Proof Clearly if A is nowhere dense and B ⊆ A, then B is also nowhere dense. Let A
and B be nowhere dense subsets of R. Then int(cl(A)) = ∅. Therefore, −cl−cl(A) =
∅, so cl − cl(A) = R, and so −cl(A) = int(−A) is a dense subset of R. Similarly
int(−B) is a dense subset of R.

If A ∪ B is not nowhere dense, then int(cl(A ∪ B)) �= ∅. As int(−A) is dense, we
have

int(−A) ∩ int(cl(A ∪ B)) �= ∅

This implies

int(int(−A)) ∩ int(cl(A ∪ B)) �= ∅
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Therefore,

int[int(−A) ∩ (−int(−A) ∪ cl(B))] �= ∅

Thus,

int(int(−A) ∩ cl(B)) �= ∅

Also, as int(−B) is dense, we have

int(−B) ∩ int(int(−A) ∩ cl(B)) �= ∅

Therefore,

int(int(−B)) ∩ int(int(−A) ∩ −int(−B)) �= ∅

Thus,

int[int(−B) ∩ int(−A) ∩ −int(−B)] �= ∅

The obtained contradiction proves that A∪ B is nowhere dense. Consequently, ND(R)
is an ideal of R+. ��

We call a subset A of a topological space X interior dense if it has a dense interior;
that is, cl(int(A)) = X . We denote the collection of all interior dense subsets of X by
ID(X). It is obvious that A ∈ ID(X) iff −A ∈ ND(X).

Lemma 6.4 B(ND(R)) = ND(R) ∪ ID(R).

Proof Clearly ND(R) ∪ ID(R) ⊆ B(ND(R)). Therefore, it is sufficient to show that
ND(R)∪ ID(R) is a Boolean subalgebra of R+. That ND(R)∪ ID(R) is closed under
− is obvious. We show that ND(R)∪ ID(R) is closed under ∪. By Lemma 6.3, ND(R)
is an ideal of R+. Therefore, ID(R) = {−A : A ∈ ND(R)} is a filter of R+. Thus, for
A, B ∈ ND(R)∪ ID(R), if both A, B ∈ ND(R), then A ∪ B ∈ ND(R), and if at least
one of A, B belongs to ID(R), then so does A ∪ B. Consequently, ND(R)∪ ID(R) is
a Boolean subalgebra of R+, and so B(ND(R)) = ND(R) ∪ ID(R). ��
Lemma 6.5 B(ND(R)) is a subalgebra of R+.

Proof Let A ∈ B(ND(R)). By Lemma 6.4, either A ∈ ND(R) or A ∈ ID(R). If
A ∈ ND(R), then

int(cl(cl(A))) = int(cl(A)) = ∅

Therefore, cl(A) ∈ ND(R). On the other hand, if A ∈ ID(R), then as A ⊆ cl(A)
and ID(R) is a filter of R+, we have cl(A) ∈ ID(R). In either case, A ∈ B(ND(R))
implies cl(A) ∈ B(ND(R)), and so B(ND(R)) is a subalgebra of R+. ��
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Lemma 6.6 B(ND(R)) is a S4.1.2-algebra.

Proof Let A ∈ B(ND(R)). By Lemma 6.4, A ∈ ND(R) or A ∈ ID(R). If A ∈
ND(R), then int(cl(A)) = ∅. Therefore, int(A) = ∅, so cl(int(A)) = ∅, and so
int(cl(A)) = cl(int(A)). On the other hand, if A ∈ ID(R), then cl(int(A)) = R.
This implies cl(A) = R. Thus, int(cl(A)) = R, and so int(cl(A)) = cl(int(A)).
Consequently, B(ND(R)) is a S4.1.2-algebra. ��

We show that S4.1.2 is the logic of B(ND(R)). We recall that a finite rooted S4.1.2-
frame is of the form F�C1 = (W1, R1), where F = (W, R) is a finite rooted S4-frame
and C1 = ({w1}, {(w1, w1)} is a one-point cluster. As follows from [16, Theorem
5.10] (see also [1, Lemma 4.5] for a simplified proof), there exists an interior map
g from C onto F. We extend g to the map f : R → F�C1 by sending all points of
R − C tow1. It is easy to see that f is onto and interior. Let A ⊆ W1. Thenw1 ∈ A or
w1 /∈ A. In the first case, w1 ∈ −R−1

1 [−A], so R−1 − R−1
1 [−A] = W1, and so A is

interior dense. In the second case, w1 /∈ R−1
1 [A], so −R−1

1 − R−1[A] = ∅, and so A
is nowhere dense. It follows that f −1[A] is in B(ND(R)). Therefore, f −1 is a closure
algebra homomorphism from (F�C1)

+ into B(ND(R)). Thus, each formula refutable
on F�C1 is also refutable on B(ND(R)), and so S4.1.2 is the logic of B(ND(R)).

6.4 S4.1

Let X be a topological space and let

AX = {A ⊆ X : int(cl(A)) ⊆ cl(int(A))}

We recall that the boundary of A ⊆ X is defined as

fr(A) = cl(A) ∩ cl(−A)

and that A has small boundary if int(fr(A)) = ∅. Note that since fr(A) is closed, A
has small boundary iff fr(A) is nowhere dense. We have:

A has small boundary iff int(fr(A)) = ∅
iff int(cl(A) ∩ cl(−A)) = ∅
iff int(cl(A)) ∩ int(cl(−A)) = ∅
iff int(cl(A)) ∩ −cl(int(A)) = ∅
iff int(cl(A)) ⊆ cl(int(A)).

Therefore, AX coincides with the set of subsets of X with small boundary.

Lemma 6.7 (Esakia [11]) AX is a subalgebra of X+.

Proof Clearly if A has small boundary, then so does −A. Therefore, A ∈ AX implies
−A ∈ AX , and so AX is closed under complementation. To see that AX is closed
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under cl, let A ∈ AX . Then int(fr(A)) = ∅. Therefore,

int(fr(cl(A))) = int[cl(cl(A)) ∩ cl(−cl(A))]
⊆ int[cl(A) ∩ cl(−A)]
= int(fr(A))

= ∅

Thus, cl(A) ∈ AX , and so AX is closed under cl. It is left to be shown that AX is
closed under union. Let A, B ∈ AX . Then fr(A) and fr(B) are nowhere dense. By
Lemma 6.3, fr(A)∪ fr(B) is also nowhere dense. Therefore, int(fr(A)∪ fr(B)) = ∅.
By [7, Thm. 1.3.2], fr(A ∪ B) ⊆ fr(A) ∪ fr(B). Thus, int(fr(A ∪ B)) = ∅, so
A ∪ B has small boundary, and so A ∪ B ∈ AX . Consequently, AX is a subalgebra of
X+. ��

We show that S4.1 is the logic of AR. It follows from the definition that AR is
an S4.1-algebra. In fact, AR is the largest subalgebra of R+ that is an S4.1-algebra.
Let F = (W, R) be a finite rooted S4.1-frame. As follows from [16, Theorem 5.10]
(see also [2, Corollary 14] for a simplified proof), there exists an interior map f from
R onto F. Therefore, f −1 is a closure algebra homomorphism from F+ into R+.
We claim that f −1(A) ∈ AR for each A ⊆ W . Since F is an S4.1-frame, we have
−R−1−R−1[A] ⊆ R−1−R−1[−A]. Applying f −1 and using the fact that f −1 is
a closure algebra homomorphism, we obtain int(cl( f −1(A))) ⊆ cl(int( f −1(A))).
Thus, f −1(A) ∈ AR. It follows that each formula refutable on F is also refutable on
AR. Now as S4.1 has the fmp, we obtain that S4.1 is the logic of AR.

6.5 S5

Let P = {Pi : i ∈ ω} be a partition of R into countably many dense subsets; that is,⋃
Pi = R, Pi ∩ Pj = ∅ whenever i �= j , and cl(Pi ) = R for each i . Clearly such

a partition exists. Let B(P) be the Boolean subalgebra of R+ generated by P . Then
each element of B(P) is a finite union of Pi ’s or the complement of a finite union of
Pi ’s. Since for each A �= ∅ in B(P) we have cl(A) = R, it is obvious that B(P) is a
subalgebra of R+. We show that S5 is the logic of B(P). Let A ∈ B(P). If A = ∅,
then cl(A) = ∅, and so int(cl(A)) = ∅ = cl(A). If A �= ∅, then cl(A) = R, and
so int(cl(A)) = R = cl(A). In either case, int(cl(A)) = cl(A), and so B(P) is an
S5-algebra.

We show that each finite cluster Cn = (Wn, Rn) is an onto interior image of R so
that the preimages of subsets of Cn are elements of B(P). Define h : R → Cn by

h(x) =
{
wi if i < n and x ∈ Pi ,

wn if i ≥ n and x ∈ Pi .

Then it is easy to see that h is onto, interior, and the h-preimages of subsets of Cn

belong to B(P). Therefore, h−1 is a closure algebra homomorphism from C+
n into
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B(P). Thus, each formula refutable on Cn is also refutable on B(P). Since S5 is
complete with respect to the class of finite clusters, it follows that S5 is the logic of
B(P).

6.6 S4.2

Now we can combine the approaches to S4.1.2 and S5 to obtain a subalgebra of R+
whose logic is S4.2. Let B be the Boolean subalgebra of R+ generated by B(ND(R))∪
B(P). We show that S4.2 is the logic of B.

Lemma 6.8 For each A ∈ B we have cl(A) = R or int(A) = ∅.

Proof Let A ∈ B. Then A =
n⋃

i=1
(Bi ∩ Ci ), where Bi ∈ B(ND(R)) and Ci is a

nonempty element of B(P). By Lemma 6.4, B(ND(R)) = ND(R) ∪ ID(R). First
suppose that Bi ∈ ND(R) for all i = 1, . . . , n. By Lemma 6.3, ND(R) is an ideal

of R+. Therefore, Bi ∩ Ci ∈ ND(R), and so A =
n⋃

i=1
(Bi ∩ Ci ) ∈ ND(R). Thus,

int(cl(A)) = ∅, which implies that int(A) = ∅. Now suppose that Bi ∈ ID(R) for
some i . Then cl(int(Bi )) = R, and so int(Bi ) is dense. As Ci �= ∅, we also have that
Ci is dense. But then int(Bi ) ∩ Ci is also dense as int(Bi ) is open and both int(Bi )

and Ci are dense. Therefore, cl(A) ⊇ cl(Bi ∩ Ci ) ⊇ cl(int(Bi ) ∩ Ci ) = R. Thus,
cl(A) = R. ��

It is an immediate corollary to Lemma 6.8 that B is a subalgebra of R+. Moreover,
for each A ∈ B, if int(A) = ∅, then cl(int(A)) = ∅, and so cl(int(A)) ⊆ int(cl(A));
and if cl(A) = R, then int(cl(A)) = R, and again cl(int(A)) ⊆ int(cl(A)). Conse-
quently, B is an S4.2-algebra.

It is left to be shown that each non-theorem of S4.2 can be refuted on B. Recall
that a finite rooted S4.2-frame has the form F�Cn , where F is a finite rooted S4-frame
and Cn is the n-cluster. Let g : C → F and h : R → Cn be the onto interior maps
described above. Define α : R → F�Cn by

α(x) =
{

g(x) if x ∈ C,
h(x) if x �∈ C.

Then α is an onto interior map, and so α−1 is a closure algebra homomorphism
from (F�Cn)

+ into B. Therefore, each formula refutable on F�Cn is also refut-
able on B. Now since S4.2 has the fmp, it follows that S4.2 is the logic of
B.

In the following table we list all the logics considered in this section together with
the corresponding subalgebras of R+ that generate them.
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Logic Subalgebra of R+ Description
S4.Grz B(Op(R)) Boolean combinations of open subsets of R
S4.Grz.2 B(OD(R)) Boolean combinations of open dense subsets of R
S4.1.2 ND(R) ∪ ID(R) Nowhere dense and interior dense subsets of R
S4.1 AR All subsets of R with small boundary
S5 B(P) Boolean combinations of a partition P of R

into countably many dense subsets of R
S4.2 B Boolean combinations of nowhere dense

subsets of R and a partition of R into
countably many dense subsets of R

7 Logics of subalgebras of Q+ and C+

In this section we show that each normal extension of S4 with the fmp is the logic of
a subalgebra of Q+ as well as of a subalgebra of C+. The argument for subalgebras
of Q+ is an easy consequence of the McKinsey-Tarski theorem [16, Theorem 5.10],
while the one for subalgebras of C+ requires a little more work.

Theorem 7.1 Let L be a normal extension of S4 with the fmp. Then L is the logic of
a subalgebra of Q+.

Proof Let F1,F2, . . . be an enumeration of finite rooted L-frames. It follows from
[16, Theorem 5.10] that each finite rooted S4-frame is an onto interior image of
Q. Therefore, for each i ∈ ω there is an onto interior map fi : Q → Fi .
But then

⊔

i∈ω
fi : ⊔

i∈ω
Q → ⊔

i∈ω
Fi is also an onto interior map. Clearly

⊔

i∈ω
Q is

a countable, dense-in-itself, metrizable space. Thus, by Sierpinski’s theorem (see,
e.g., [7, Exercise 6.2.A(d)]),

⊔

i∈ω
Q is homeomorphic to Q. Therefore, there is an

onto interior map f : Q → ⊔

i∈ω
Fi . This implies that f −1 is a closure algebra

homomorphism from (
⊔

i∈ω
Fi )

+ into Q+. Let A be the image of f −1 in Q+. Then

A is a subalgebra of Q+ isomorphic to (
⊔

i∈ω
Fi )

+. Therefore, A is an L-algebra.

Since each non-theorem of L is refuted on
⊔

i∈ω
Fi , it is also refuted on A. Thus, L

is the logic of A. ��
In order to prove that L is the logic of a subalgebra of C+, we need the following

Lemma 7.2 Let X be a countably infinite disjoint union of C. Then X is a noncompact
locally compact Hausdorff space and C is homeomorphic to the one-point compactif-
ication of X.

Proof Since X is a countably infinite disjoint union of C, it is obvious that X is a
noncompact locally compact Hausdorff space. Therefore, by [7, Theorem 3.5.11], X
has the one-point compactification αX . Clearly αX is a compact Hausdorff space.
Since C is zero-dimensional, by [7, Theorem 6.2.13], X is zero-dimensional. This, by
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[4, Corollary 3.16], implies that αX is also zero-dimensional, hence a Stone space.
Clearly X is dense-in-itself. Therefore, so is αX . Also, as X has a countable basis, so
does αX . Thus, αX is a dense-in-itself metrizable Stone space. By Brouwer’s theorem
(see, e.g., [7, Exercise 6.2.A(c)]), αX is homeomorphic to C. ��
Theorem 7.3 Let L be a normal extension of S4 with the fmp. Then L is the logic of
a subalgebra of C+.

Proof Let F1 = (W1, R1),F2 = (W2, R2), . . . be an enumeration of finite rooted L-
frames and let F = (W, R) be the disjoint union

⊔

i∈ω
Fi . As follows from [16, Theorem

5.10] (see also [1, Lemma 4.5] for a simplified proof), each finite rooted S4-frame is
an onto interior image of C. Therefore, for each i ∈ ω there is an onto interior map
fi : C → Fi . Let X denote the disjoint union

⊔

i∈ω
C. Then

⊔

i∈ω
fi : X → F is also an

onto interior map.
We view W as a topological space with the discrete topology. Then W is noncompact

locally compact Hausdorff, and so has the one-point compactificationαW = W ∪{∞}.
Let αR = R ∪ {(∞,∞)}. By the argument preceding Lemma 5.1, (αW, αR) is a
descriptive S4-frame.

Let αX be the one-point compactification of X with � being the point at infinity.
By Lemma 7.2, αX is homeomorphic to C. We extend

⊔

i∈ω
fi to a map f : αX � αW

by sending � to ∞. Let A be the closure algebra of clopen subsets of (αW, αR). We
claim that f −1 is a closure algebra homomorphism from A into [αX ]+. Since f is
onto, we have f −1 is 1-1. We show that f −1((αR)−1[U ]) = clαX ( f −1(U )) for each
clopen subset U of αW .

Let U be a clopen subset of αW . Then there exist i1, . . . , in and Ui1 ⊆
Wi1 , . . . ,Uin ⊆ Win such that U =

n⋃

k=1
Uik or U = αW − (

n⋃

k=1
Uik ). If U =

n⋃

k=1
Uik ,

then

f −1(αR)−1 [U ] = f −1(αR)−1

[
n⋃

k=1

Uik

]

=
n⋃

k=1

f −1(αR)−1 [
Uik

]

=
n⋃

k=1

f −1
ik

R−1
ik

[
Uik

]
.

Since each fik is an interior map from a copy of C onto Wik and each copy of C is a
clopen subset of αX , we have f −1

ik
R−1

ik
(Uik ) = clαX f −1

ik
(Uik ). Therefore,

f −1(αR)−1 [U ] =
n⋃

k=1

clαX f −1
ik
(Uik ) = clαX f −1

(
n⋃

k=1

Uik

)

= clαX f −1(U ).

If U = αW − (
n⋃

k=1
Uik ), then U = (W − (

n⋃

k=1
Uik )) ∪ {∞}. Let V = W − (

n⋃

k=1
Uik ).

We show that f −1 R−1[V ] = clX f −1(V ). Indeed,
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f −1 R−1 [V ] = f −1 R−1

[

W −
n⋃

k=1

Uik

]

= f −1 R−1

⎡

⎣
⋃

j �=ik

W j ∪
n⋃

k=1

(Wik − Uik )

⎤

⎦

=
⋃

j �=ik

f −1 R−1
j

[
W j

] ∪
n⋃

k=1

f −1
ik

R−1
ik

[
Wik − Uik

]
.

Note that R−1
j [W j ] = W j and f −1[W j ] is a copy of C. Therefore,

⋃

j �=ik

f −1 R−1
j [W j ] =

⋃

j �=ik

f −1(W j ) is a union of all but finitely many copies of C, hence is a clopen subset of

X . Furthermore, by the same argument as in the previous case, f −1
ik

R−1
ik

[Wik −Uik ] =
clX f −1

ik
(Wik − Uik ) = clX f −1(Wik − Uik ). Thus,

f −1 R−1 [V ] =
⋃

j �=ik

f −1(W j ) ∪
n⋃

k=1

clX f −1(Wik − Uik )

= clX f −1(
⋃

j �=ik

W j ∪
n⋃

k=1

(Wik − Uik ))

= clX f −1(V ).

Now,

f −1((αR)−1 [U ]) = f −1((αR)−1 [V ∪ {∞}])
= f −1(R−1 [V ] ∪ {∞})
= f −1 R−1 [V ] ∪ f −1({∞})
= clX ( f −1(V )) ∪ {�}
= clαX ( f −1(V )).

Consequently, f −1 is a closure algebra homomorphism from A into [αX ]+.
By Lemma 7.2, αX = α(

⊔

i∈ω
C) is homeomorphic to C. Therefore, A is isomorphic

to a subalgebra B of C+. Since each non-theorem of L can be refuted on one of the
Fi ’s, which are finite upsets (and downsets) of (αW, αR), each non-theorem of L can
be refuted on the descriptive S4-frame (αW, αR) with an admissible valuation that
sends propositional letters to finite (and thus clopen) subsets. This shows that each
non-theorem of L can be refuted on A. By Lemma 5.1, A is an L-algebra. Since A is
isomorphic to B, each non-theorem of L is refuted on an L-algebra B, and so L is
the logic of B. Consequently, L is the logic of a subalgebra of C+. ��
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8 Intermediate logics

Let CPC denote the classical propositional calculus and IPC the intuitionistic propo-
sitional calculus. It is well-known that IPC is properly contained in CPC and that there
are continuum many logics in between IPC and CPC, called intermediate logics. In
the domain of intermediate logics we can obtain even sharper results. Recall that the
algebraic semantics for intermediate logics is provided by Heyting algebras. In fact,
there is a dual isomorphism between the lattice of intermediate logics and the lattice
of non-degenerate varieties of Heyting algebras. We recall that a Heyting algebra A is
a bounded distributive lattice with a binary operation → such that for all a, b, c ∈ A
we have a ∧ c ≤ b iff c ≤ a → b. Let A be a Heyting algebra and let a ∈ A. As
usual, ¬a abbreviates a → 0. If a ∨ ¬a = 1, then we say that a is complemented. It
is always the case that 0 and 1 are complemented elements of A. We call A connected
if 0, 1 are the only complemented elements of A. We also call an intermediate logic
L connected if the corresponding variety VL of Heyting algebras is generated by a
connected Heyting algebra.

There is a close connection between intermediate logics and consistent normal
extensions of S4. Each intermediate logic can be viewed as a fragment of a consistent
normal extension of S4. There are different embeddings of the lattice of intermediate
logics into the lattice of normal extensions of S4. The celebrated Blok-Esakia theorem
states that the lattice of intermediate logics is isomorphic to the lattice of consistent
normal extensions of S4.Grz. This together with the technique developed in Sects. 4
and 5 provide us with the following strengthening of Theorem 4.8 for intermediate
logics.

Theorem 8.1 Let L be an intermediate logic. Then L is connected. Moreover, if L
has the fmp, then:

(1) L = L(F) for some path-connected partial order F.
(2) L = L(X) for some connected space X.
(3) L = L(A) for some Heyting subalgebra A of the Heyting algebra Op(R) of all

open subsets of R.
(4) L = L(A) for some Heyting subalgebra A of Op(Q).
(5) L = L(A) for some Heyting subalgebra A of Op(C).

Acknowledgments We would like to thank the referee for useful comments in general and for offering
an idea of a simplified proof of Lemma 4.7 in particular. The original proof of Lemma 4.7 was by means
of ultraproducts.
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