Connected modal logics

Guram Bezhanishvili • David Gabelaia

Received: 30 August 2009 / Accepted: 12 October 2010 / Published online: 31 October 2010
© Springer-Verlag 2010

Abstract

We introduce the concept of a connected logic (over S4) and show that each connected logic with the finite model property is the logic of a subalgebra of the closure algebra of all subsets of the real line \mathbf{R}, thus generalizing the McKinsey-Tarski theorem. As a consequence, we obtain that each intermediate logic with the finite model property is the logic of a subalgebra of the Heyting algebra of all open subsets of \mathbf{R}.

Keywords Modal logic • Topology • Closure algebra • Connectedness
Mathematics Subject Classification (2000) 03B45 03B55

1 Introduction

It is a fundamental result of McKinsey and Tarski [16] that if we interpret modal diamond as the closure in a topological space, then $\mathbf{S} \mathbf{4}$ is the logic of the closure algebra of all subsets of any dense-in-itself metrizable separable space. As a consequence, we obtain that $\mathbf{S 4}$ is the logic of the closure algebra $\mathbf{R}^{+}=(\wp(\mathbf{R}), \mathbf{c l})$ of all subsets of the real line \mathbf{R}. (We use $\wp(\mathbf{R})$ to denote the powerset of \mathbf{R} and $\mathbf{c l}$ to denote the closure

[^0]in \mathbf{R}.) This result was sharpened in [2], where it was shown that $\mathbf{S 4}$ is in fact the logic of the closure algebra $B\left(C^{\omega}(\mathbf{R})\right)$ of Boolean combinations of countable unions of convex subsets of \mathbf{R}. On the other hand, the logic of the closure algebra $C^{<\omega}(\mathbf{R})$ of finite unions of convex subsets of \mathbf{R} is much stronger than $\mathbf{S 4}$ (see [1, Sect. 5.1] or [20, Sect. 3]). There is a lot of room in between $C^{<\omega}(\mathbf{R})$ and $B\left(C^{\omega}(\mathbf{R})\right)$, and it is only natural to seek a hierarchy of modal logics which can be obtained as logics of closure algebras in the interval $\left[C^{<\omega}(\mathbf{R}), B\left(C^{\omega}(\mathbf{R})\right)\right]$. One obvious closure algebra in this interval is the closure algebra $B(\mathrm{Op}(\mathbf{R}))$ of Boolean combinations of open subsets of \mathbf{R}. As follows from [2, Rem. 10], the logic of $B(\operatorname{Op}(\mathbf{R}))$ is $\mathbf{S 4 . G r z}$-the well-known logic of Grzegorczyk, which is the extension of $\mathbf{S 4}$ by the Grzegorczyk axiom $\square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p$. It was left as an open problem in [2, Sect. 5] to classify the logics of closure algebras in the above interval. More generally, it is an open problem to classify the logics of subalgebras of $B\left(C^{\omega}(\mathbf{R})\right)$, or more generally yet, of subalgebras of \mathbf{R}^{+}. This paper is the first step in this direction. Based on the fact that \mathbf{R} and hence every subalgebra of \mathbf{R}^{+}is connected, we introduce the concept of a connected logic over $\mathbf{S 4}$ and show that each connected logic with the finite model property (fmp for short) is the logic of a subalgebra of \mathbf{R}^{+}. Since $\mathbf{S 4}$ itself is a connected logic with the fmp, the McKinsey-Tarski result follows. In fact, one way to look at the McKinsey-Tarski result is that $\mathbf{S 4}$ is a connected logic with the fmp. There are, of course, many other connected logics with the fmp. The list includes such well-known modal systems as $\mathbf{S 4 . 1}, \mathbf{S 4 . 2}, \mathbf{S 4 . 1 . 2}, \mathbf{S 4} . G r z .2$, and $\mathbf{S 5}$. We describe the subalgebras of \mathbf{R}^{+}that give rise to these logics. In addition, we show that each logic over S4.1 is a connected logic. It follows that there are continuum many connected logics with the fmp and continuum many without the fmp. Our main result implies that subalgebras of \mathbf{R}^{+}give rise to continuum many different connected logics. It remains an open problem whether there are subalgebras of \mathbf{R}^{+}that give rise to connected logics without the fmp.

It is a consequence of our results and the Blok-Esakia theorem that each intermediate logic is a connected logic, and that each intermediate logic with the fmp is the logic of a subalgebra of the Heyting algebra $\operatorname{Op}(\mathbf{R})$ of all open subsets of \mathbf{R}.

The McKinsey-Tarski theorem also implies that $\mathbf{S 4}$ is the logic of the closure algebra $\mathbf{Q}^{+}=(\wp(\mathbf{Q}), \mathbf{c l})$ of all subsets of the rational line \mathbf{Q}, as well as the logic of the closure algebra $\mathbf{C}^{+}=(\wp(\mathbf{C}), \mathbf{c l})$ of all subsets of the Cantor space \mathbf{C}. Unlike \mathbf{R}, both \mathbf{Q} and \mathbf{C} are highly disconnected. Based on this difference, as well as on the topological structure of \mathbf{Q} and \mathbf{C}, we show that each logic over $\mathbf{S 4}$ with the fmp is the logic of a subalgebra of \mathbf{Q}^{+}and also the logic of a subalgebra of \mathbf{C}^{+}. Consequently, each intermediate logic with the fmp is the logic of a subalgebra of the Heyting algebra $\mathrm{Op}(\mathbf{Q})$ of all open subsets of \mathbf{Q} and also the logic of a subalgebra of the Heyting algebra $\mathrm{Op}(\mathbf{C})$ of all open subsets of \mathbf{C}.

2 Preliminaries

We assume the reader's familiarity with the basics of modal logic and its relational, topological, and algebraic semantics. We use [6] and [5] as our main references on

(a) \mathfrak{C}_{2}

(b) \mathfrak{F}_{1}

(c) \mathfrak{F}_{2}

(d) \mathfrak{F}_{n}

Fig. 1 The 2-cluster, the 1-fork, the 2-fork, and the n-fork
modal logic and its relational and algebraic semantics, and [19] as our main reference on the topological semantics of modal logic.

We recall that $\mathbf{S 4}$ is the least set of formulas containing all classical tautologies, the axiom schemata: (1) $\square \varphi \rightarrow \varphi$, (2) $\square \varphi \rightarrow \square \square \varphi$, (3) $\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$, and closed under modus ponens $(\varphi, \varphi \rightarrow \psi / \psi)$ and necessitation $(\varphi / \square \varphi)$. The diamond \diamond is the usual abbreviation of $\neg \square \neg$.

We also recall that a closure algebra is a pair (B, \diamond) where B is a Boolean algebra and $\diamond: B \rightarrow B$ is a unary function satisfying the following four Kuratowski axioms: (i) $a \leq \diamond a$, (ii) $\diamond a=\diamond \diamond a$, (iii) $\diamond(a \vee b)=\diamond a \vee \diamond b$, and (iv) $\diamond 0=0$. As usual, the dual operator $\square: B \rightarrow B$ is defined by $\square a=\neg \diamond \neg a$.

It is well known that closure algebras are algebraic models of $\mathbf{S 4}$. Typical examples of closure algebras come from topology. If X is a topological space, then the powerset $\wp(X)$ of X together with the closure operator $\mathbf{c l}$ forms a closure algebra. In fact, each closure algebra is represented as a subalgebra of the closure algebra ($\wp(X), \mathbf{c l})$ for some topological space X [16, Thm. 2.4].

Another source of examples of closure algebras comes from the relational semantics of $\mathbf{S 4}$. Given an $\mathbf{S 4}$-frame $\mathfrak{F}=(W, R)$ (that is, a quasi-ordered set), the powerset $\wp(W)$ together with R^{-1} forms a closure algebra, where we recall that $R^{-1}[A]=$ $\{w \in W: \exists a \in A$ with $w R a\}$. Again, we have a representation theorem: each closure algebra is represented as a subalgebra of the closure algebra ($\wp(W), R^{-1}$) for some S4-frame \mathfrak{F} [15, Thms. 3.10, 3.14].

We will unify the relational and topological semantics of $\mathbf{S} 4$ by viewing each $\mathbf{S 4}$ frame $\mathfrak{F}=(W, R)$ as a topological space with the topology τ_{R} consisting of upsets of W, where we recall that $U \subseteq W$ is an upset of W if $u \in U$ and $u R w$ imply $w \in U$. From this point of view, S4-frames form a subclass of topological spaces, known as Alexandroff spaces, and are characterized topologically by the property that the intersection of any family of open sets is again open. In such a space the closure of a subset A is given by $\mathbf{c l}(A)=R^{-1}[A]$ and the interior is given by $\operatorname{int}(A)=-R^{-1}[-A]$, where - denotes set-theoretic complement.

Let $\mathfrak{F}=(W, R)$ be an $\mathbf{S 4}$-frame. As usual, we call a subset C of W a cluster if $w R v$ and $v R w$ for each $w, v \in C$. A cluster C is simple if $C=\{w\}$ for some $w \in W$. A cluster containing a point w will be denoted by $C[w]$. The n-cluster is a pair $\mathfrak{C}_{n}=\left(W_{n}, R_{n}\right)$, where $W_{n}=\left\{w_{1}, \ldots, w_{n}\right\}$ and $R_{n}=W_{n} \times W_{n}$. The 2-cluster is shown in Fig. 1a.

A point $w \in W$ is called quasi-maximal if $R[w]=C[w]$, in which case $C[w]$ is called a maximal cluster. A maximal point is a quasi-maximal point w such that $C[w]$ is a simple cluster. The notions of quasi-minimal point, minimal point, and minimal cluster are dual.

A frame \mathfrak{F} is called rooted if $W=R[w]$ for some $w \in W$. In such a case w (and indeed any $v \in C[w])$ is called a root of \mathfrak{F}. If $C[r]$ is simple, then r is called the root. The n-fork is a pair $\mathfrak{F}_{n}=\left(V_{n}, Q_{n}\right)$, where $V_{n}=\left\{r, v, v_{1}, \ldots, v_{n}\right\}, r Q_{n} w$ for each $w \in V_{n}, v Q_{n} v$, and $v_{i} Q_{n} v_{j}$ for each $i, j \leq n$. The 1 -fork will simply be called the fork. The fork, the 2 -fork, and the n-fork are shown in Fig. 1b-d.

Note that the subframe $W_{n}=\left\{v_{1}, \ldots, v_{n}\right\}$ of the n -fork \mathfrak{F}_{n} is exactly the n-cluster. It is a maximal cluster, all $v_{i} \in W_{n}$ are quasi-maximal points, $v \in V_{n}$ is the only maximal point, and $r \in V_{n}$ is the root of \mathfrak{F}_{n}.

3 Connected closure algebras

Let A be a closure algebra. Following [16, Sect. 1], we call an element a of A closed if $a=\diamond a$ and open if $a=\square a$. Also, following the standard topological terminology, we call $a \in A$ clopen if $\square a=a=\diamond a$ and regular open if $a=\square \diamond a$. The next lemma is a simple yet useful tool for our considerations. A proof of (i) and (ii) is an obvious generalization of similar statements for topological spaces, and (iii) is a consequence of [16, Cor. 1.8].

Lemma 3.1 Let A be a closure algebra and $a, b \in A$. Then:
(i) $\square \diamond \square \diamond a=\square \diamond a$.
(ii) If a, b are regular open, then $a \wedge b$ is regular open.
(iii) $\forall a \wedge \square b \leq \diamond(a \wedge \square b)$.

Definition 3.2 [16, Def. 1.9] A closure algebra A is called connected if 0 and 1 are the only clopen elements of A.

Clearly if A is a connected algebra, then each subalgebra S of A is also connected.
Theorem 3.3 A closure algebra is connected iff it is isomorphic to a subalgebra of the closure algebra $X^{+}=(\wp(X), \mathbf{c l})$ of all subsets of a connected space X.

Proof Clearly if X is connected, then X^{+}is connected and so each closure algebra isomorphic to a subalgebra of X^{+}is also connected. Conversely, let A be connected. It follows from [16, Thm. 2.4] that there is a topological space X such that A is isomorphic to a subalgebra of X^{+}. We recall that X can be taken to be the set of all ultrafilters of A and the topology on X is defined by the basis $\{\varphi(\square a): a \in A\}$, where $\varphi(a)=\{x \in X: a \in x\}$ is the Stone map. It follows that a subset U of X is open if $U=\bigcup\{\varphi(\square a): \varphi(\square a) \subseteq U\}$. We show that X is connected. For this we observe that X is compact, which is easy to see because the Stone topology on X, which has $\{\varphi(a): a \in A\}$ as a basis, is a finer topology. Since the Stone topology is compact, so is X (for details we refer to [1, Fact 3.6] or [3, Thm. 2.12]). To finish the proof, let U be a clopen subset of X. Then $U=\bigcup\{\varphi(\square a): \varphi(\square a) \subseteq U\}$ and also U is closed. Since X is compact and U is closed, U is compact. Therefore, there exist a_{1}, \ldots, a_{n} such that $U=\varphi\left(\square a_{1}\right) \cup \cdots \cup \varphi\left(\square a_{n}\right)$. Let $a=\square a_{1} \vee \cdots \vee \square a_{n}$. Then a is an open element of A. As φ commutes with \cup, we obtain $U=\varphi(a)$. Because $\varphi(a)$ is closed, $\varphi(a)=\mathbf{c l}(\varphi(a))=\varphi(\diamond a)$. Therefore, $a=\diamond a$, so $\square a=a=\diamond a$, and so a is clopen in A. Since A is connected, either $a=0$ or $a=1$. Therefore, either $U=\varphi(0)=\emptyset$ or $U=\varphi(1)=X$, which implies that X is connected.

Fig. 2 The descriptive S4-frame \mathfrak{F}

Let $\mathfrak{F}=(W, R)$ be an $\mathbf{S} 4$-frame and $w, v \in W$. We recall that a path between $w, v \in W$ is a finite sequence $w_{0}, \ldots, w_{n} \in W$ such that $w_{0}=w, w_{n}=v$ and for all $i<n$ either $w_{i} R w_{i+1}$ or $w_{i+1} R w_{i}$. We call \mathfrak{F} path-connected if there is a path between any two points of \mathfrak{F}. It turns out that viewing \mathfrak{F} as a topological space, path-connectedness simply means connectedness. This is a well-known fact. We only give a sketch of the proof.

Lemma 3.4 Let $\mathfrak{F}=(W, R)$ be an $\mathbf{S 4}$-frame. Then (W, R) is path-connected iff $\left(W, \tau_{R}\right)$ is a connected space.

Proof (\Leftarrow) Suppose that (W, R) is not path-connected. Then there exists no path between some $w, v \in W$. Consider the set C of all points of W which are connected by a path to v. Clearly C is an upset and a downset, thus C is clopen in τ_{R}. As C is nonempty (because $v \in C$) and $C \neq X$ (because $w \notin C$), we obtain that (W, τ_{R}) is disconnected.
$\left[\Rightarrow\right.$] Suppose that $\left(W, \tau_{R}\right)$ is disconnected. Then there exists a nonempty clopen $C \subsetneq X$. Therefore, C is an upset and a downset. Take $w \in C$ and $v \notin C$. Clearly there is no path connecting w with v. Thus, (W, R) is not path-connected.

Let A be a closure algebra. We recall that the standard construction of the $\mathbf{S 4}$-frame $\mathfrak{F}=(W, R)$ such that A is isomorphic to a subalgebra of $\mathfrak{F}^{+}=\left(\wp(W), R^{-1}\right)$ is as follows: W is the set of ultrafilters of A and

$$
w R v \text { iff } \square a \in w \text { implies } a \in v \text { for each } a \in A
$$

The frame \mathfrak{F} is usually referred to as the ultrafilter frame of A. Based on Theorem 3.3 and Lemma 3.4, it is natural to expect that \mathfrak{F} is path-connected. However, this is not the case in general. In order to give a counterexample, we recall Esakia duality between closure algebras and descriptive $\mathbf{S 4}$-frames.

A descriptive $\boldsymbol{S 4}$-frame is a Stone (that is, compact, Hausdorff, and zero-dimensional) space X together with a quasi-order $R \subseteq X \times X$ such that (a) $R[x]$ is closed for each $x \in X$ and (b) $R^{-1}[A]$ is clopen for each clopen $A \subseteq X$. It follows from [8] that the category of closure algebras is dually equivalent to the category of descriptive S4-frames.

Let $\mathfrak{F}=(V, S, P)$ be the descriptive $\mathbf{S} 4$-frame shown in Fig. 2, where P is the Boolean algebra of finite subsets of V (without v_{∞}) and cofinite subsets of V (with v_{∞}). Clearly (V, S) is not path-connected. On the other hand, it is easy to see that $\left(P, S^{-1}\right)$ is a connected closure algebra. By Esakia duality, (V, S) is isomorphic to the ultrafilter frame of (P, S^{-1}). Consequently, the ultrafilter frame of a connected closure algebra A may not be path-connected. Nevertheless, we can still embed (P, S^{-1}) in the closure algebra of all subsets of a path-connected frame. Let $V_{0}=V-\left\{v_{\infty}\right\}$ and
let S_{0} be the restriction of S to V_{0}. Clearly $\mathfrak{F}_{0}=\left(V_{0}, S_{0}\right)$ is path-connected. Moreover, it is easy to see that $f: P \rightarrow \wp\left(V_{0}\right)$, given by $f(E)=E \cap V_{0}$ for each $E \in P$, is a closure algebra embedding. The following remains an open problem:

Open Problem 1: Is each connected closure algebra isomorphic to a subalgebra of the closure algebra of all subsets of some path-connected $\mathbf{S} 4$-frame?

4 Connected logics

For a closure algebra A, we let $L(A)$ denote the logic of A; that is, the set of formulas valid in A. Clearly $L(A)$ is a logic over $\mathbf{S 4}$. Similarly, for a topological space X, we let $L(X)$ denote the logic of X, and for an $\mathbf{S 4}$-frame \mathfrak{F}, we let $L(\mathfrak{F})$ denote the logic of \mathfrak{F}. Clearly $L(X)=L\left(X^{+}\right)$and $L(\mathfrak{F})=L\left(\mathfrak{F}^{+}\right)$, so both $L(X)$ and $L(\mathfrak{F})$ are logics over S4.

Definition 4.1 We call a modal logic L over $\mathbf{S 4}$ connected if $L=L(A)$ for some connected closure algebra A.

Our main theorem can now be formulated as follows:
Main Theorem Let L be a modal logic over $\mathbf{S} 4$ with the fmp. Then the following conditions are equivalent:
(1) L is connected.
(2) $L=L(\mathfrak{F})$ for some path-connected $\mathbf{S} \mathbf{4}$-frame \mathfrak{F}.
(3) $L=L(X)$ for some connected space X.
(4) $L=L(A)$ for some subalgebra A of \mathbf{R}^{+}.

In order to prove our main theorem, we will require a series of technical lemmas, which uncover the structure of the rooted finite frames of connected logics (independent of whether the logic is generated by its finite frames or not).

Before plunging into the technical details, we say a couple of words about the technique we will use. We will rely heavily on the splitting technique, developed by Jankov [14] for intermediate logics, and adapted by Rautenberg [17] to modal logics. In particular, the splitting theorem implies that if a finite subdirectly irreducible closure algebra A belongs to the variety generated by a closure algebra B, then A is a homomorphic image of a subalgebra of B. We will also use the Jankov-type frame formulas for $\mathbf{S 4}$ developed by Fine [13] (and others), and Esakia duality between closure algebras and descriptive $\mathbf{S 4}$-frames. This duality yields the dual equivalence between the category of finite closure algebras and the category of finite $\mathbf{S} 4$-frames (see, e.g., [12]), which, of course, is isomorphic to the category of finite topological spaces. In particular, a finite $\mathbf{S 4}$-frame \mathfrak{F} is rooted iff the corresponding closure algebra \mathfrak{F}^{+}is subdirectly irreducible. Finally, the n-clusters and n-forks described in the preliminary section will play a fundamental role in our considerations.

To aid the reader in following the proof of the first of our key lemmas, we consider a guiding example. Consider the fork $\mathfrak{F}_{1}=(V, S)$ where $V=\left\{r, v, v_{1}\right\}$, the two-cluster $\mathfrak{C}_{2}=(C, T)$ where $C=\left\{c_{1}, c_{2}\right\}$, and the two-fork $\mathfrak{F}_{2}=(W, R)$ where $W=\left\{w_{0}, w_{1}, w_{2}, w_{3}\right\}$ (see Fig. 3).

Fig. 3 The fork, the 2-cluster, and the 2 -fork

(a) \mathfrak{F}_{1}

(b) \mathfrak{C}_{2}

(c) \mathfrak{F}_{2}

Given onto interior maps $f: \mathbf{R} \rightarrow \mathfrak{F}_{1}$ and $g: \mathbf{R} \rightarrow \mathfrak{C}_{2}$, we show how to construct an onto interior map $h: \mathbf{R} \rightarrow \mathfrak{F}_{2}$. To aid the imagination, the reader may consider a more concrete example, where f is given by sending the interval $(-\infty, 0)$ to v, the interval $(0, \infty)$ to v_{1}, and 0 to r; while g is given by sending all the rational numbers to c_{1} and all the irrational numbers to c_{2}. Let $C_{1}=g^{-1}\left(c_{1}\right)$ and $C_{2}=g^{-1}\left(c_{2}\right)$. Since g is an interior map, it is clear that C_{1} and C_{2} are disjoint dense subsets of \mathbf{R}, so $\mathbf{c l}\left(C_{1}\right)=\mathbf{c l}\left(C_{2}\right)=\mathbf{R}$. Let $U=f^{-1}\left(v_{1}\right)$. Since f is interior, U is a regular open subset of \mathbf{R}. Now let $B_{1}=C_{1} \cap U$ and $B_{2}=C_{2} \cap U$. It is easy to see that both B_{1} and B_{2} are dense in U, that $B_{1} \cap B_{2}=\emptyset$, and that $B_{1} \cup B_{2}=U$. Let $B_{3}=\operatorname{int}(-U)$. Since f is interior, it is clear that $B_{3}=f^{-1}(v)$. We let $B_{0}=-\left(B_{3} \cup U\right)$. Obviously $B_{0}=f^{-1}(r)$. Since f is an interior map, $B_{0} \subseteq \mathbf{c l}\left(B_{i}\right)$ and $B_{i} \subseteq-\mathbf{c l}\left(B_{0}\right)$ for $1 \leq i \leq 3$. We define $h: \mathbf{R} \rightarrow \mathfrak{F}_{2}$ by sending all the points from B_{i} to the point $w_{i} \in W$ (where $0 \leq i \leq 3$). Then h is an onto interior map. This is easy to check for our concrete choices of f and g because $B_{0}=\{0\}, B_{1}$ is the set of all positive rational numbers, B_{2} is the set of all positive irrational numbers, and $B_{3}=(-\infty, 0)$.

The next lemma generalizes this idea to connected closure algebras.
Lemma 4.2 Let L be a connected logic over $\mathbf{S 4}$. If $\mathfrak{F}_{1} \models L$ and $\mathfrak{C}_{n} \models L$, then $\mathfrak{F}_{n} \models L$.
Proof Suppose that $\mathfrak{F}_{1} \models L$ and $\mathfrak{C}_{n} \models L$. Since L is connected, $L=L(A)$ for some connected closure algebra A. Since \mathfrak{F}_{1} and \mathfrak{C}_{n} are rooted frames, the closure algebras \mathfrak{F}_{1}^{+}and \mathfrak{C}_{n}^{+}are subdirectly irreducible. Therefore, by the splitting theorem, \mathfrak{F}_{1}^{+}and \mathfrak{C}_{n}^{+} are homomorphic images of subalgebras of A. Thus, there exist subalgebras B and C of A and onto homomorphisms $g: B \rightarrow \mathfrak{F}_{1}^{+}$and $h: C \rightarrow \mathfrak{C}_{n}^{+}$. We show that \mathfrak{F}_{n}^{+}is a homomorphic image of a subalgebra of A.

Claim 1 There exist $c_{1}, \ldots, c_{n}, u \in C$ such that:
(i) $c_{i} \wedge c_{j}=0$ whenever $i \neq j$,
(ii) $\bigvee c_{i}=u>0$,
(iii) $u \leq \diamond c_{i}$ for each $i \leq n$,
(iv) u is regular open.

Proof of claim: We recall that $\mathfrak{C}_{n}=\left(W_{n}, R_{n}\right)$, where $W_{n}=\left\{w_{1}, \ldots, w_{n}\right\}$ and $R_{n}=$ $W_{n} \times W_{n}$. Choose $a_{1}, \ldots, a_{n} \in C$ such that $h\left(a_{i}\right)=\left\{w_{i}\right\}$. Let $i \neq j$. If $a_{i} \wedge a_{j} \neq 0$, then we take $a_{i}-\bigvee_{i \neq j} a_{j}$ in place of a_{i}. Since

$$
h\left(a_{i}-\bigvee_{i \neq j} a_{j}\right)=h\left(a_{i}\right)-\bigvee_{i \neq j} h\left(a_{j}\right)=\left\{w_{i}\right\}-\left\{w_{j}: j \neq i\right\}=\left\{w_{i}\right\}=h\left(a_{i}\right),
$$

we may assume without loss of generality that $a_{i} \wedge a_{j}=0$.

Set $u=\square \bigwedge \diamond a_{i}$ and $c_{i}=a_{i} \wedge u$. Clearly $c_{i} \leq u$ and $c_{i} \wedge c_{j}=0$ if $i \neq j$. Since $u=\bigwedge \square \diamond a_{i}$, by Lemma 3.1(i,ii), u is regular open. We show that $u \leq \diamond c_{i}$ for each i. By Lemma 3.1(iii), we have:

$$
\begin{aligned}
\diamond c_{i} & =\diamond\left(a_{i} \wedge \square \bigwedge_{j} \diamond a_{j}\right) \geq \diamond a_{i} \wedge \square \bigwedge_{j} \diamond a_{j} \\
& \geq \square \diamond a_{i} \wedge \bigwedge_{j} \square \diamond a_{j}=\bigwedge_{j} \square \diamond a_{j}=u .
\end{aligned}
$$

We also have $u>0$ since $h(u)=\square \bigwedge_{j} \diamond\left(h\left(a_{j}\right)\right)=W_{n}$. Finally, if $\bigvee c_{i}<u$, then by replacing c_{n} with $c_{n}^{\prime}=u-\bigvee_{i=1}^{n-1} c_{i}$, we ensure that $\bigvee c_{i}=u$. Clearly $c_{n}^{\prime} \geq c_{n}$, and so $\forall c_{n}^{\prime} \geq \diamond c_{n} \geq u$. Lastly, by construction of c_{n}^{\prime}, we have $c_{n}^{\prime} \wedge c_{i}=0$ for each $i \neq n$.

Our next task is to refine Claim 1 and show that u can be chosen so that $u \neq 1$. For this we have to go beyond C and use some elements of B as well. Suppose that $u=1$. Let w denote a maximal point of \mathfrak{F}_{1}. Since $g: B \rightarrow \mathfrak{F}_{1}^{+}$is onto, there is $v_{1} \in B$ such that $g\left(v_{1}\right)=\{w\}$. We have

$$
g\left(\square \diamond v_{1}\right)=\square \diamond g\left(v_{1}\right)=\square \diamond\{w\}=\{w\}
$$

as $\{w\}$ is regular open in \mathfrak{F}_{1}. This implies that $\square \diamond v_{1} \neq 0$. Set $v=\square \diamond v_{1}$. By Lemma 3.1(i), v is regular open. Let $b_{i}=c_{i} \wedge v$. Then b_{1}, \ldots, b_{n}, v satisfy the conditions of Claim 1. To see this observe that the only nontrivial clause to check is $v \leq \diamond b_{i}$. But since v is open, by Lemma 3.1(iii), we obtain

$$
\diamond b_{i}=\diamond\left(c_{i} \wedge v\right) \geq \diamond c_{i} \wedge v=v
$$

since $\forall c_{i} \geq u=1$. Consequently, we have found $b_{1}, \ldots, b_{n}, v \in A$ such that they satisfy the conditions of Claim 1 and in addition $v<1$. Set $b_{n+1}=\square \neg v$ and $b_{0}=\neg\left(v \vee b_{n+1}\right)$.

Claim 2 The elements $b_{0}, \ldots, b_{n+1} \in A$ satisfy the following conditions:
(i) $b_{i} \wedge b_{j}=0$ whenever $i \neq j$,
(ii) $\vee b_{i}=1$,
(iii) $0<b_{0} \leq \Delta b_{i}$ for each $i \leq n+1$,
(iv) $b_{i} \leq \diamond b_{j}$ for each $1 \leq i, j \leq n$,
(v) $b_{i} \leq \neg\left(\diamond b_{0} \vee \diamond b_{n+1}\right)$ for each $1 \leq i \leq n$ and $b_{n+1} \leq \neg \diamond b_{0}$.

Proof of claim: By the choice of b_{0}, \ldots, b_{n+1}, (i), (ii), and (iv) are easily seen to be satisfied. We proceed to show (iii). It follows from the definition of b_{0} that b_{0} is closed. Moreover,
$b_{0}=\neg\left(v \vee b_{n+1}\right)=\neg v \wedge \neg \square \neg v=\neg \square \diamond v \wedge \diamond v=\diamond \square \neg v \wedge \diamond v=\diamond b_{n+1} \wedge \diamond v$.

Therefore, $b_{0} \leq \diamond b_{n+1}$ and $b_{0} \leq \diamond v$. We also have $v \leq \diamond b_{i}$ for each $1 \leq i \leq n$. Thus, $\diamond v \leq \diamond \diamond b_{i}=\diamond b_{i}$ for each $1 \leq i \leq n$. It follows that $b_{0} \leq \diamond b_{i}$ for each $1 \leq i \leq n$. Suppose that $b_{0}=0$. Then $v \vee b_{n+1}=1$, so $v \vee \square \neg v=1$, and so $\neg \square \neg v \leq v$. Therefore, $\diamond v \leq v$, and so $v=\diamond v$, which is impossible because A has no nontrivial clopens. Consequently, $0<b_{0} \leq \diamond b_{i}$ for each $i \leq n+1$.

Finally, we show (v). Since b_{0} is closed and $b_{0} \leq \diamond b_{n+1}$, for each $1 \leq i \leq n$ we have:

$$
\neg\left(\diamond b_{0} \vee \diamond b_{n+1}\right)=\neg\left(b_{0} \vee \diamond b_{n+1}\right)=\neg \diamond b_{n+1}=\neg \diamond \square \neg v=\square \diamond v=v \geq b_{i}
$$

Moreover, $\neg \diamond b_{0}=\neg b_{0}=\neg \neg\left(v \vee b_{n+1}\right)=\left(v \vee b_{n+1}\right) \geq b_{n+1}$. Thus, $b_{n+1} \leq \neg \diamond b_{0}$ and $b_{i} \leq \neg\left(\diamond b_{0} \vee \diamond b_{n+1}\right)$ for each $1 \leq i \leq n$.

We are now one step away from completing the proof of the lemma. Recall that the n-fork is the frame $\mathfrak{F}_{n}=\left(V_{n}, Q_{n}\right)$, where $V_{n}=\left\{w_{0}, w_{1}, w_{2}, \ldots, w_{n+1}\right\}, w_{0} Q_{n} w$ for each $w \in V_{n}, w_{i} Q_{n} w_{j}$ for all $1 \leq i, j \leq n$, and $w_{n+1} Q_{n} w_{n+1}$. Let $\chi\left(\mathfrak{F}_{n}\right)\left(p_{0} \ldots, p_{n+1}\right)$ be the Fine formula of \mathfrak{F}_{n}; that is,

$$
\begin{aligned}
& \chi\left(\mathfrak{F}_{n}\right)\left(p_{0}, \ldots, p_{n+1}\right)= p_{0} \wedge \square \bigvee_{0 \leq i \leq n+1} p_{i} \wedge \square \bigwedge_{i \neq j}\left(p_{i} \rightarrow \neg p_{j}\right) \wedge \\
& \bigwedge_{w_{i} R w_{j}} \square\left(p_{i} \rightarrow \diamond p_{j}\right) \wedge \bigwedge_{w_{i} R w_{j}} \square\left(p_{i} \rightarrow \neg \diamond p_{j}\right)
\end{aligned}
$$

We show that $\chi\left(\mathfrak{F}_{n}\right)\left[b_{0}, \ldots, b_{n+1}\right]=b_{0}$. By Claim 2(i, ii), $\bigwedge_{i \neq j}\left(b_{i} \rightarrow \neg b_{j}\right)=1$ and $\underset{0 \leq i \leq n+1}{\bigvee} b_{i}=1$. Since
$R=\left\{\left(w_{0}, w_{i}\right): 0 \leq i \leq n+1\right\} \cup\left\{\left(w_{i}, w_{j}\right): 1 \leq i \leq n\right\} \cup\left\{\left(w_{n+1}, w_{n+1}\right)\right\}$,
by Claim 2(iii, iv), $w_{i} R w_{j}$ implies $b_{i} \leq \diamond b_{j}$. Thus, $\bigwedge_{w_{i} R w_{j}} \square\left(b_{i} \rightarrow \diamond b_{j}\right)=1$. As $w_{n+1} R w_{i}$ for $0 \leq i \leq n$ and $w_{i} R w_{j}$ for $1 \leq i \leq n$ and $j=0, n+1$, by Claim 2(v), $b_{i} \leq \neg \diamond b_{j}$ whenever $w_{i} R w_{j}$. Therefore, $\bigwedge_{w_{i} R w_{j}} \square\left(b_{i} \rightarrow \neg \diamond b_{j}\right)=1$, and so we have $\chi\left(\mathfrak{F}_{n}\right)\left[b_{0}, \ldots, b_{n+1}\right]=b_{0}$. Because $b_{0} \neq 0$, the formula $\neg \chi\left(\mathfrak{F}_{n}\right)$ is refutable on A. Therefore, by the Fine theorem, \mathfrak{F}_{n}^{+}is a subalgebra of a homomorphic image of $A .{ }^{1}$ Consequently, $\mathfrak{F}_{n} \models L$.

Now we introduce the operation of "gluing" of the n-fork with an S4-frame that has a maximal n-cluster.

Definition 4.3 Let $\mathfrak{F}=(W, R)$ be an $\mathbf{S 4}$-frame with a maximal n-cluster $C=$ $\left\{w_{1}, \ldots, w_{n}\right\}$. Define the frame \mathfrak{F} 疎 $=\left(W_{1}, R_{1}\right)$ as follows (see Fig. 4): $W_{1}=W \cup$

[^1]Fig. 4 The 'gluing' of \mathfrak{F} and \mathfrak{F}_{n}

Fig. 5 The ordered sum of \mathfrak{F} and \mathfrak{C}_{n}

$\{r, m\}$, where $r, m \notin W, R_{1} \cap(W \times W)=R, r R_{1} r, m R_{1} m, r R_{1} m$, and $r R_{1} w_{i}$ for all $i \leq n$.

Lemma 4.4 Let L be a connected logic and $\mathfrak{F}_{1} \models$ L. If \mathfrak{F} is an $\mathbf{S} 4$-frame with a maximal n-cluster such that $\mathfrak{F} \models L$, then $\mathfrak{F} \bigsqcup \mathfrak{F}_{n} \models L$.

Proof Let $C=\left\{w_{1}, \ldots, w_{n}\right\}$ be a maximal n-cluster of \mathfrak{F}. Since C is a maximal cluster, the $\mathbf{S} 4$-frame $\left(C, R_{C}\right)$ is a generated subframe of \mathfrak{F}, where R_{C} is the restriction of R to C. But $\left(C, R_{C}\right)$ is isomorphic to \mathfrak{C}_{n}. Therefore, $\mathfrak{C}_{n} \models L$. Thus, by Lemma 4.2, $\mathfrak{F}_{n} \models L$. Let $\mathfrak{F} \sqcup \mathfrak{F}_{n}$ denote the disjoint union of \mathfrak{F} and \mathfrak{F}_{n}. Then $\mathfrak{F} \sqcup \mathfrak{F}_{n} \models L$. Since "gluing" the points of respective maximal n-clusters (see Fig. 4) produces an onto p-morphism $f: \mathfrak{F} \sqcup \mathfrak{F}_{n} \rightarrow \mathfrak{F}$ 疎 , we obtain \mathfrak{F} 趾 $\models L$.

If $\mathfrak{F}_{1} \not \models L$, then it is well-known (see, e.g., [22, Sect. 6.1]) that $\mathbf{S 4 . 2} \subseteq L$, where $\mathbf{S 4 . 2}=\mathbf{S 4}+\diamond \square p \rightarrow \square \diamond p$. The finite rooted $\mathbf{S 4 . 2}$-frames are precisely the finite $\mathbf{S 4}$-frames with a unique maximal cluster (see, e.g., [6, Sect. 3.5]). We define another operation on the $\mathbf{S 4}$-frames which will always produce an $\mathbf{S 4}$.2-frame.

Definition 4.5 Let $\mathfrak{F}=(W, R)$ be an $\mathbf{S 4}$-frame and $\mathfrak{C}_{n}=\left(W_{n}, R_{n}\right)$ the n-cluster. Without loss of generality we assume that $W \cap W_{n}=\emptyset$, and define the ordered sum $\mathfrak{F} \mathfrak{C} \mathfrak{C}_{n}=\left(W_{1}, R_{1}\right)$ as follows (see Fig. 5):

$$
\begin{aligned}
& W_{1}=W \cup W_{n}, \\
& R_{1} \cap(W \times W)=R, \\
& R_{1} \cap\left(W_{n} \times W_{n}\right)=R_{n} \\
& w R_{1} w_{i} \text { for each } w \in W \text { and } w_{i} \in W_{n} .
\end{aligned}
$$

That is, $\mathfrak{F}\urcorner \mathfrak{C}_{n}$ is obtained by putting the n-cluster \mathfrak{C}_{n} on top of \mathfrak{F}. Clearly $\left.\mathfrak{F}\right\urcorner \mathfrak{C}_{n}$ has a unique maximal cluster which is isomorphic to \mathfrak{C}_{n}.

To aid the reader in following the proof of the second of our key lemmas, we again consider a guiding example. Consider the frame $\mathfrak{G}_{1}=(V, S)$ where $V=\left\{v_{0}, v_{1}\right\}$,

Fig. 6 Guiding example to Lemma 4.6

the two-cluster $\mathfrak{C}_{2}=(C, T)$ where $C=\left\{c_{1}, c_{2}\right\}$, and the frame $\mathfrak{G}_{2}=(W, R)$ where $W=\left\{w_{0}, w_{1}, w_{2}\right\}$ (see Fig. 6).

Given onto interior maps $f: \mathbf{R} \rightarrow \mathfrak{G}_{1}$ and $g: \mathbf{R} \rightarrow \mathfrak{C}_{2}$, we show how to construct an onto interior map $h: \mathbf{R} \rightarrow \mathfrak{G}_{2}$. To aid the imagination, the reader may consider a more concrete example, where f is given by sending 0 to v_{0} and $\mathbf{R}-\{0\}$ to v_{1}; while g is given by sending all the rational numbers to c_{1} and all the irrational numbers to c_{2}. Let $C_{1}=g^{-1}\left(c_{1}\right)$ and $C_{2}=g^{-1}\left(c_{2}\right)$. Since g is an interior map, it is clear that C_{1} and C_{2} are dense subsets of \mathbf{R}. Let $B_{0}=f^{-1}\left(v_{0}\right)$ and $B_{1}=f^{-1}\left(v_{1}\right)$. Since f is interior, B_{1} is an open dense subset of \mathbf{R}. Now let $D_{0}=B_{0}, D_{1}=C_{1} \cap B_{1}$, and $D_{2}=C_{2} \cap B_{1}$. It is easy to see that both D_{1} and D_{2} are dense in B_{1}, that $D_{1} \cap D_{2}=\emptyset$, and that $D_{1} \cup D_{2}=B_{1}$. Since f is an interior map, $D_{0} \subseteq \mathbf{c l}\left(D_{1}\right)$ and $D_{0} \subseteq \mathbf{c l}\left(D_{2}\right)$. We define $h: \mathbf{R} \rightarrow \mathfrak{F}_{2}$ by sending all the points from D_{i} to the point $w_{i} \in W$ (where $0 \leq i \leq 2$). Then h is an onto interior map. This is easy to check for our concrete choices of f and g because $D_{0}=\{0\}, D_{1}$ is the set of all nonzero rational numbers, and D_{2} is the set of all irrational numbers.

The next lemma generalizes this idea to connected closure algebras.
Lemma 4.6 Let L be a connected logic over $\mathbf{S 4 . 2}$ and let \mathfrak{F} be a rooted $\mathbf{S 4} 4$-frame. For $n, k<\omega$, if $\mathfrak{F}\urcorner \mathfrak{C}_{n} \models L$ and $\mathfrak{C}_{k} \models L$, then $\left.\mathfrak{F}\right\urcorner \mathfrak{C}_{k} \models L$.

Proof We first observe that $\mathfrak{F} \mathfrak{\mathfrak { C } _ { 1 }}$ is a p-morphic image of $\left.\mathfrak{F}\right\urcorner \mathfrak{C}_{n}$. Therefore, $\left.\mathfrak{F}\right\urcorner \mathfrak{C}_{n} \vDash L$ implies $\mathfrak{F}\urcorner \mathfrak{C}_{1} \models L$. As L is connected, $L=L(A)$ for some connected closure algebra A. Because $\mathfrak{F}\urcorner \mathfrak{C}_{1} \models L, \mathfrak{C}_{k} \models L$, and $\left.(\mathfrak{F}\urcorner \mathfrak{C}_{1}\right)^{+}, \mathfrak{C}_{k}^{+}$are subdirectly irreducible algebras, it follows from the splitting theorem that both $\left.(\mathfrak{F}\urcorner \mathfrak{C}_{1}\right)^{+}$and \mathfrak{C}_{k}^{+}are homomorphic images of subalgebras of A. Therefore, there exist subalgebras B and C of A and onto homomorphisms $\left.g: B \rightarrow(\mathfrak{F}\urcorner \mathfrak{C}_{1}\right)^{+}$and $h: C \rightarrow \mathfrak{C}_{k}^{+}$. We show that $\left.(\mathfrak{F}\urcorner \mathfrak{C}_{k}\right)^{+}$is also a homomorphic image of a subalgebra of A.

An argument similar to the proof of Claim 1 of Lemma 4.2 produces $c_{1}, \ldots, c_{k}, u \in$ C such that:
(i) $c_{i} \wedge c_{j}=0$ whenever $i \neq j$,
(ii) $\bigvee c_{i}=u>0$,
(iii) $u \leq \diamond c_{i}$ for each $i \leq k$,
(iv) u is regular open.

Since A is an S4.2-algebra, we have $\diamond \square a \leq \square \diamond a$ for all $a \in A$. Therefore,

$$
\diamond u=\diamond \square u \leq \square \diamond u=u
$$

Consequently, u is closed. As u is also open, $u>0$ is clopen, which by connectedness of A implies $u=1$. Thus, the conditions for c_{1}, \ldots, c_{k} can be rewritten as follows:
(i) $c_{i} \wedge c_{j}=0$ whenever $i \neq j$,
(ii) $\bigvee c_{i}=1$,
(iii) $\forall c_{i}=1$ for each $i \leq k$.

Now consider the frame $\mathfrak{F}\urcorner \mathfrak{C}_{1}=(W, R)$. Suppose $W=\left\{w_{0}, \ldots, w_{l}, w_{l+1}\right\}$ where w_{0} is a root and w_{l+1} is the maximal point coming from \mathfrak{C}_{1}. Choose $b_{0}, \ldots, b_{l}, b_{l+1} \in B$ so that $g\left(b_{i}\right)=\left\{w_{i}\right\}$ for each $i \leq l+1$ and $b_{i} \wedge b_{j}=0$ if $i \neq j$. We may also assume that $b_{l+1}=\square b_{l+1}$ since $g\left(\square b_{l+1}\right)=\square g\left(b_{l+1}\right)=\square\left\{w_{l+1}\right\}=\left\{w_{l+1}\right\}=g\left(b_{l+1}\right)$ and $\square b_{l+1} \leq b_{l+1}$. Let $\left.\chi(\mathfrak{F}\urcorner \mathfrak{C}_{1}\right)\left(p_{0}, \ldots, p_{l+1}\right)$ be the Fine formula of $\mathfrak{F} \mathfrak{C} \mathfrak{C}_{1}$. We have:

$$
\begin{aligned}
\left.g\left[\chi(\mathfrak{F}\urcorner \mathfrak{C}_{1}\right)\left(b_{0}, \ldots, b_{l+1}\right)\right] & \left.=\chi(\mathfrak{F}\urcorner \mathfrak{C}_{1}\right)\left(g\left(b_{0}\right), \ldots, g\left(b_{l+1}\right)\right) \\
& \left.=\chi(\mathfrak{F}\urcorner \mathfrak{C}_{1}\right)\left(\left\{w_{0}\right\}, \ldots,\left\{w_{l+1}\right\}\right)=\left\{w_{0}\right\}
\end{aligned}
$$

Therefore, $\chi\left(\mathfrak{F} \mathfrak{f} \mathfrak{C}_{1}\right)\left[b_{0}, \ldots, b_{l+1}\right]>0$.
Define d_{0}, \ldots, d_{l+k} by $d_{i}=b_{i}$ for $0 \leq i \leq l$ and $d_{l+j}=c_{j} \wedge b_{l+1}$ for $1 \leq j \leq k$.
Since $\bigvee c_{i}=1$, the distributive law gives us $\bigvee_{j=1}^{k} d_{l+j}=b_{l+1}$. Moreover, since b_{l+1} is open, by Lemma 3.1(iii), we have:

$$
\diamond d_{l+j}=\diamond\left(c_{i} \wedge b_{l+1}\right) \geq \diamond c_{i} \wedge b_{l+1}=1 \wedge b_{l+1}=b_{l+1}
$$

Thus, $\diamond b_{l+1} \leq \diamond d_{l+j}$ for $1 \leq j \leq k$.
Now we take a closer look at the formula $\left.\chi(\mathfrak{F}\urcorner \mathfrak{C}_{k}\right)\left[d_{0}, \ldots, d_{l}, d_{l+1}, \ldots, d_{l+k}\right]$. By assuming that $\mathfrak{F}\urcorner \mathfrak{C}_{k}=\left(W^{\prime}, R^{\prime}\right)$, where $W^{\prime}=\left\{w_{0}, \ldots, w_{l}, w_{l+1}, \ldots, w_{l+k}\right\}, w_{0}$ is a root, w_{l+1}, \ldots, w_{l+k} are the points from the maximal cluster $\mathfrak{C}_{k}, R^{\prime}$ coincides with R on the points $\left\{w_{0}, \ldots, w_{l}, w_{l+1}\right\}$, and $w_{l+i} R^{\prime} w_{l+j}$ for all $i, j \leq k$, we can write $\left.\chi(\mathfrak{F}\urcorner \mathfrak{C}_{k}\right)\left[d_{0}, \ldots, d_{l}, d_{l+1}, \ldots, d_{l+k}\right]$ as the meet $\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}$, where:

$$
\begin{aligned}
& \varphi_{1}=d_{0} \wedge \square \bigvee d_{i} \wedge \square \bigwedge_{i \neq j}\left(d_{i} \rightarrow \neg d_{j}\right) \\
& \varphi_{2}=\bigwedge_{w_{i} R^{\prime} w_{j}} \square\left(d_{i} \rightarrow \diamond d_{j}\right) \\
& \varphi_{3}=\bigwedge_{w_{i} \mathbb{R}^{\prime} w_{j}} \square\left(d_{i} \rightarrow \neg \diamond d_{j}\right)
\end{aligned}
$$

Since $d_{i} \wedge d_{j}=0$ for all $i, j \leq l+k$, we obtain $\square \bigwedge_{i \neq j}\left(d_{i} \rightarrow \neg d_{j}\right)=\square \bigwedge 1=1$. Moreover,

$$
\bigvee d_{i}=\bigvee_{i=1}^{l} d_{i} \vee \bigvee_{j=1}^{k} d_{l+j}=\bigvee_{i=1}^{l} b_{i} \vee b_{l+1}=\bigvee_{i=1}^{l+1} b_{i}
$$

Thus, $\varphi_{1}=b_{0} \wedge \square \bigvee_{i=1}^{l+1} b_{i}$.

For $i, j \leq l$ we have $w_{i} R^{\prime} w_{j}$ iff $w_{i} R w_{j}$, and for $j>l$ and $i \leq l+k$ we have $w_{i} R^{\prime} w_{j}$. Also, $\Delta d_{j} \geq \diamond b_{l+1}$ for all $j>l ; d_{i}=b_{i}$ for all $i \leq l$; and $\left(w_{i}, w_{j}\right) \notin R^{\prime}$ whenever $i>l, j \leq l$. Consequently,

$$
\begin{aligned}
\bigwedge_{w_{i} R^{\prime} w_{j}}\left(d_{i} \rightarrow \diamond d_{j}\right) & =\bigwedge_{\substack{w_{i} R^{\prime} w_{j} \\
i, j \leq l}}\left(d_{i} \rightarrow \diamond d_{j}\right) \wedge \bigwedge_{\substack{i \leq l \\
j>l}}\left(d_{i} \rightarrow \diamond d_{j}\right) \wedge \bigwedge_{i, j>l}\left(d_{i} \rightarrow \diamond d_{j}\right) \\
& =\bigwedge_{\substack{w_{i} R w_{j} \\
i, j \leq l}}\left(b_{i} \rightarrow \diamond b_{j}\right) \wedge \bigwedge_{\substack{i \leq l \\
j>l}}\left(b_{i} \rightarrow \diamond d_{j}\right) \wedge \bigwedge_{i, j>l}\left(d_{i} \rightarrow \diamond d_{j}\right) \\
& \geq \bigwedge_{\substack{w_{i} R w_{j} \\
i, j \leq l}}\left(b_{i} \rightarrow \diamond b_{j}\right) \wedge \bigwedge_{i \leq l}\left(b_{i} \rightarrow \diamond b_{l+1}\right) \wedge \bigwedge_{i>l}\left(d_{i} \rightarrow \diamond b_{l+1}\right) .
\end{aligned}
$$

Since $\bigvee_{j=1}^{k} d_{l+j}=b_{l+1}$, we have $d_{i} \leq b_{l+1} \leq \diamond b_{l+1}$ for each $i>l$. Therefore, $\bigwedge_{i>1}\left(d_{i} \rightarrow \diamond b_{l+1}\right)=1$. Further, as $w_{i} R w_{l+1}$ for all $i \leq l$ and $b_{l+1} \rightarrow \diamond b_{l+1}=1$, we obtain $\bigwedge_{w_{i} R w_{j}}\left(b_{i} \rightarrow \diamond b_{j}\right)=\bigwedge_{w_{i} R w_{j}}\left(b_{i} \rightarrow \diamond b_{j}\right) \wedge \bigwedge_{i \leq l}\left(b_{i} \rightarrow \diamond b_{l+1}\right)$. Thus, $\bigwedge_{w_{i} R^{\prime} w_{j}}\left(d_{i} \rightarrow\right.$ $\left.\forall d_{j}\right) \geq \bigwedge_{w_{i} R w_{j}}\left(b_{i} \rightarrow \diamond b_{j}\right)$, and so $\varphi_{2} \geq \square \bigwedge_{w_{i} R w_{j}}\left(b_{i} \rightarrow \diamond b_{j}\right)$.

Furthermore, for $i, j \leq l$ we have $\left(w_{i}, w_{j}\right) \notin R^{\prime}$ iff $\left(w_{i}, w_{j}\right) \notin R$. In addition, $\left(w_{l+1}, w_{i}\right) \notin R$ for all $i<l+1$; and $w_{i} R w_{j}$ whenever $j>l$. Therefore, taking into account that $d_{i} \leq b_{l+1}$ for all $i>l$, we obtain:

$$
\begin{aligned}
\bigwedge_{w_{i} \mathbb{R}^{\prime} w_{j}}\left(d_{i} \rightarrow \neg \forall d_{j}\right) & =\bigwedge_{\substack{w_{i}, \mathbb{R}^{\prime} w_{j} \\
i, j \leq l}}\left(d_{i} \rightarrow \neg \diamond d_{j}\right) \wedge \bigwedge_{\substack{i>l \\
j \leq l}}\left(d_{i} \rightarrow \neg \diamond d_{j}\right) \\
& =\bigwedge_{\substack{w_{i} R w_{j} \\
i, j \leq l}}\left(b_{i} \rightarrow \neg \diamond b_{j}\right) \wedge \bigwedge_{\substack{i>l \\
j \leq l}}\left(d_{i} \rightarrow \neg \diamond b_{j}\right) \\
& \geq \bigwedge_{\substack{w_{i} \mathbb{R} w_{j} \\
i, j \leq l}}\left(b_{i} \rightarrow \neg \diamond b_{j}\right) \wedge \bigwedge_{j \leq l}\left(b_{l+1} \rightarrow \neg \diamond b_{j}\right) \\
& =\bigwedge_{w_{i} \mathbb{R} w_{j}}\left(b_{i} \rightarrow \neg \diamond b_{j}\right) .
\end{aligned}
$$

It follows that $\varphi_{3} \geq \square \bigwedge_{w_{i} R w_{j}}\left(b_{i} \rightarrow \neg \diamond b_{j}\right)$. To sum up:
$\chi\left(\mathfrak{F} \neg \mathfrak{C}_{k}\right)\left[d_{0}, \ldots, d_{l+k}\right]=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3}$

$$
\begin{aligned}
& \geq b_{0} \wedge \square \bigvee_{i=1}^{l+1} b_{i} \wedge \square \bigwedge_{w_{i} R w_{j}}\left(b_{i} \rightarrow \diamond b_{j}\right) \wedge \square \bigwedge_{w_{i} \mathbb{R} w_{j}}\left(b_{i} \rightarrow \neg \diamond b_{j}\right) \\
& \left.=\chi(\mathfrak{F}\urcorner \mathfrak{C}_{1}\right)\left[b_{0}, \ldots, b_{l+1}\right]>0 .
\end{aligned}
$$

By Fine's theorem, $\left.(\mathfrak{F}\urcorner \mathfrak{C}_{k}\right)^{+}$is a homomorphic image of a subalgebra of A.

We will require a slight generalization of the above lemma. Let $\mathfrak{C}_{\omega}=\left(W_{\omega}, R_{\omega}\right)$ denote the countable ω-cluster. Let P be a subset of the set of all propositional letters. We will utilize the concept of P-bisimulation, which is a modification of the standard notion of bisimulation (see, e.g., [5, Defn. 2.16]). Namely, a relation between two S4models is a P-bisimulation if it satisfies the back and forth conditions and if bisimilar points satisfy the same propositional letters from P. It follows from the proof of [5, Thm. 2.20] that modal formulas in P-variables are invariant under P-bisimulations.

Lemma 4.7 Let L be a connected logic over $\mathbf{S 4 . 2}$ and let \mathfrak{F} be a rooted $\mathbf{S} 4$-frame. If $\mathfrak{F}\urcorner \mathfrak{C}_{n} \models L$ for some $n<\omega$ and $\mathfrak{C}_{k} \models L$ for all $k<\omega$, then $\mathfrak{F} \mathfrak{C} \mathfrak{C}_{\omega} \models L$.

Proof Let $\mathfrak{F} \mathfrak{C} \mathfrak{C}_{n} \models L$ for some $n<\omega$ and $\mathfrak{C}_{k} \models L$ for all $k<\omega$. Then it follows from Lemma 4.6 that $\mathfrak{F} \backslash \mathfrak{C}_{k} \vDash L$ for all $k<\omega$. Suppose that $\mathfrak{F} \backslash \mathfrak{C}_{\omega} \not \models \varphi$ for some $\varphi \in L$. Let $\operatorname{Sub}(\varphi)$ denote the set of subformulas of φ, and define an equivalence relation \equiv on \mathfrak{C}_{ω} by $w \equiv v$ iff $(\forall \psi \in \operatorname{Sub}(\varphi))(w \models \psi \Leftrightarrow v \models \psi)$. Clearly \equiv has only finitely many equivalence classes, which we denote by $c_{1}, \ldots c_{m}$. Define $\left.\left.f: \mathfrak{F}\right\urcorner \mathfrak{C}_{\omega} \rightarrow \mathfrak{F}\right\urcorner \mathfrak{C}_{m}$ by

$$
f(w)= \begin{cases}w & \text { if } w \in \mathfrak{F} \\ w_{i} & \text { if } w \in c_{i}\end{cases}
$$

It is easy to see that f is an onto p-morphism. Let P be the set of propositional letters occurring in φ. We define \models on $\mathfrak{F}\urcorner \mathfrak{C}_{m}$ by $w \models p$ iff there exists $\left.v \in \mathfrak{F}\right\urcorner \mathfrak{C}_{\omega}$ with $f(v)=w$ and $v \models p$. Then f is a P-bisimulation between the models $\left(\mathfrak{F} \backslash \mathfrak{C}_{\omega}, \models\right)$ and ($\mathfrak{F} \subset \mathfrak{C}_{m}, \models$). Since modal formulas in P-variables are invariant under P-bisimulations, we obtain that $\mathfrak{F}\urcorner \mathfrak{C}_{m} \not \models \varphi$. Therefore, $\left.\mathfrak{F}\right\urcorner \mathfrak{C}_{m} \not \models L$, a contradiction. Thus, $\left.\mathfrak{F}\right\urcorner \mathfrak{C}_{\omega} \models L$.

Finally, we are ready to prove the main result of the paper.

Theorem 4.8 (Main Theorem) Let L be a modal logic over $\mathbf{S} 4$ with fmp. Then the following conditions are equivalent:
(1) L is connected.
(2) $L=L(\mathfrak{F})$ for some path-connected $\mathbf{S} \mathbf{4}$-frame \mathfrak{F}.
(3) $L=L(X)$ for some connected space X.
(4) $L=L(A)$ for some subalgebra A of \mathbf{R}^{+}.

Proof The implications $(2) \Rightarrow(3) \Rightarrow(1)$ and $(4) \Rightarrow(1)$ are obvious. Therefore, it is sufficient to show (1) $\Rightarrow(2) \Rightarrow(4)$.
$(1) \Rightarrow(2) \Rightarrow(4)$: Our strategy will be as follows. Firstly we build a path-connected frame \mathfrak{G} such that $L=L(\mathfrak{G})$, thus establishing $(1) \Rightarrow(2)$. Secondly, we show that \mathfrak{G}, viewed as a topological space, is an interior image of \mathbf{R}. This will show that \mathfrak{G}^{+}is isomorphic to a subalgebra of \mathbf{R}^{+}, thus establishing (2) \Rightarrow (4).

Fig. 7 A p-morphism from $\bigsqcup\left(\mathfrak{G}_{i} \downharpoonright \mathfrak{F}_{k_{i}}\right)$ onto \mathfrak{G}

Let $\mathfrak{G}_{1}, \mathfrak{G}_{2}, \ldots$ be the list of all finite rooted non-isomorphic L-frames. Then L is the logic of $\left\{\mathfrak{G}_{1}, \mathfrak{G}_{2}, \ldots\right\}$. We have two possible cases: either $\mathfrak{F}_{1} \vDash L$ or $\mathfrak{F}_{1} \not \models L$.

Case 1: Suppose that $\mathfrak{F}_{1} \models L$. For each i we choose a maximal cluster of \mathfrak{G}_{i}. Let k_{i} denote the size of this cluster. By Lemma 4.4, $\mathfrak{G}_{i} \downharpoonright \mathfrak{F}_{k_{i}}$ is an L-frame. Let m_{i} denote the maximal point and r_{i} denote the root of $\mathfrak{F}_{k_{i}}$ in \mathfrak{G}_{i} 政 . We let \mathfrak{G} be the p-morphic image of the disjoint union $\bigsqcup\left(\mathfrak{G}_{i} \downharpoonright \mathfrak{F}_{k_{i}}\right)$ under the map that glues all the m_{i} into a single point m and is the identity on the rest of the points (see Fig. 7).

It follows that $\mathfrak{G} \vDash L$. Moreover, $\mathfrak{G}=(W, R)$ is path-connected. To see this, let $w, v \in W$. Then w is from some $\mathfrak{G}_{i} \downharpoonright \mathfrak{F}_{k_{i}}$ and v is from some $\mathfrak{G}_{j} \downharpoonright \mathfrak{F}_{k_{j}}$. Since both of these frames are connected, there is a path $w, x_{1}, \ldots, x_{k}, m_{i}$ and a path $m_{j}, y_{1}, \ldots, y_{l}, v$. Then the sequence $w, x_{1}, \ldots, x_{k}, m, y_{1}, \ldots, y_{l}, v$ is a path in \mathfrak{G}, and so \mathfrak{G} is pathconnected. Furthermore, since each \mathfrak{G}_{i} is a generated subframe of \mathfrak{G}, we obtain $L=L(\mathfrak{G})$.

Case 2: Suppose that $\mathfrak{F}_{1} \notin L$. Then $\mathbf{S 4 . 2} \subseteq L$. We associate $\alpha \leq \omega$ with L as follows. If there exists $n<\omega$ such that $\mathfrak{C}_{n} \models L$ and $\mathfrak{C}_{n+1} \not \models L$, then we set $\alpha=n$. Otherwise we set $\alpha=\omega$. Since $\mathbf{S 4 . 2} \subseteq L$, each \mathfrak{G}_{i} has the form $\mathfrak{H}_{i} \upharpoonleft \mathfrak{C}_{k_{i}}$, where $k_{i} \leq \alpha$. By Lemmas 4.6 and 4.7, for each i, we have $\mathfrak{H}_{i} \not \mathfrak{C}_{\alpha} \models L$. Let \mathfrak{G} be the p-morphic image of the disjoint union $\bigsqcup\left(\mathfrak{H}_{i} \neg \mathfrak{C}_{\alpha}\right)$ that glues together all the maximal clusters \mathfrak{C}_{α} (see Fig. 8). Then $\mathfrak{G} \models L$. Moreover, since \mathfrak{G} has a unique maximal cluster, \mathfrak{G} is path-connected. Furthermore, as each \mathfrak{G}_{i} is a generated subframe of \mathfrak{G}, we obtain that $L=L(\mathfrak{G})$. This establishes (1) \Rightarrow (2).

Fig. 8 A p-morphism from $\bigsqcup\left(\mathfrak{H}_{i} \not \mathfrak{\mathfrak { C }} \alpha\right)$ onto \mathfrak{G}
Our final goal is to view \mathfrak{G} as a topological space and build an interior map from \mathbf{R} onto \mathfrak{G}. We will need the following claim. We point out that part (1) of the claim follows from [18, Lem. 17], where the setting is more general. Our proof below, however, provides a more explicit construction of the map.

Claim 3 Let $[a, b]$ be a closed interval of the real line \mathbf{R}, let \mathfrak{F} be a finite rooted S4-frame with a maximal n-cluster, let \mathfrak{F}_{n} be the n-fork with the root r, and let $\mathfrak{C}_{\alpha}=$ (W_{α}, R_{α}) be the α-cluster, where $\alpha \leq \omega$.
(1) There is an onto interior map $f:[a, b] \rightarrow \mathfrak{F} \bigsqcup \mathfrak{F}_{n}$ such that $a, b \in f^{-1}(r)$.
(2) There is an onto interior map $g:[a, b] \rightarrow \mathfrak{F} \not \mathfrak{C}_{\alpha}$.

Proof of claim: (1) Since all closed intervals of the real line are homeomorphic, we will prove the claim for a concrete interval $[0,5]$. The general claim will follow. The required map will be built using [2, Sect. 3] which provides an onto interior map from any bounded interval of the real line onto any finite rooted S4-frame. Thus, there exist onto interior maps $g:[2,3] \rightarrow \mathfrak{F}, g_{1}:[0,1] \rightarrow$ $\mathfrak{F}_{n}, g_{2}:[4,5] \rightarrow \mathfrak{F}_{n}, h_{1}:(1,2) \rightarrow \mathfrak{C}_{n}$, and $h_{2}:(3,4) \rightarrow \mathfrak{C}_{n}$. It follows from the construction in $\left[2\right.$, Sect. 3] that $0,1 \in g_{1}^{-1}(r), 4,5 \in g_{2}^{-1}(r)$, and $2,3 \in g^{-1}\left(C_{r}\right)$, where C_{r} denotes the minimal cluster of \mathfrak{F}. We take f to be the union $g_{1} \cup h_{1} \cup g \cup h_{2} \cup g_{2}$, where \mathfrak{F}, \mathfrak{F}_{n}, and \mathfrak{C}_{n} are viewed as generated subframes of $\mathfrak{F} \mathfrak{F} \mathfrak{F}_{n}$. It is clear that $0,5 \in f^{-1}(r)$. It is also easy to see that f is a well-defined onto map. To see that f is open, consider any open interval $I \subseteq[4,5]$. Obviously, $f(I)$ is a union of upsets in $\mathfrak{F} \ddagger \mathfrak{F}_{n}$, hence $f(I)$ is an upset. Therefore, f is an open map. It is left to be shown that f is continuous. Let U be an upset of $\mathfrak{F} \natural \mathfrak{F}_{n}$. Then either $\mathfrak{C}_{n} \subseteq U$ or $\mathfrak{C}_{n} \cap U=\emptyset$. Suppose that $\mathfrak{C}_{n} \cap U=\emptyset$. Then U misses both r and C_{r}. Therefore, $0,1,2,3,4,5 \notin f^{-1}(U)$, and so $f^{-1}(U)=U_{1} \cup U_{2} \cup U_{3}$, where U_{1} is open in $(0,1), U_{2}$ is open in $(2,3)$, and U_{3} is open in $(4,5)$. Thus, $f^{-1}(U)$ is open in $[0,5]$. Now suppose that $\mathfrak{C}_{n} \subseteq U$. Then $f^{-1}(U)=U_{1} \cup(1,2) \cup U_{2} \cup(3,4) \cup U_{3}$, where U_{1} is open in $[0,1], U_{2}$ is open in [2,3], and U_{3} is open in [4,5]. Therefore, $f^{-1}(U)$ is open in [0, 5], and so f is continuous. Consequently, f is an onto interior map.
(2) If $\alpha<\omega$, then we can apply [2, Cor. 14], by which $\mathfrak{F} \mathfrak{C} \mathfrak{C}_{\alpha}$ is an interior image of $[a, b]$. In particular, let h denote an interior map from $[a, b]$ onto $\mathfrak{F}\urcorner \mathfrak{C}_{1}$, where $W_{1}=\{w\}$. Suppose now that $\alpha=\omega$ and let $W_{\alpha}=\left\{w_{1}, w_{2}, \ldots\right\}$. Since h is an interior map, $U=h^{-1}(w)$ is an open dense subset of $[a, b]$. We divide U into countably many disjoint dense subsets U_{1}, U_{2}, \ldots and define $\left.g:[a, b] \rightarrow \mathfrak{F}\right\urcorner \mathfrak{C}_{\alpha}$ by

$$
g(x)= \begin{cases}h(x) & \text { if } x \notin U, \\ w_{n} & \text { if } x \in U_{n} \text { for some } n<\omega .\end{cases}
$$

It is straightforward to check that g is a well-defined onto map. To see that g is continuous, let V be a nonempty upset of $\mathfrak{F}\urcorner \mathfrak{C}_{\alpha}$. Then $V=W \cup W_{\alpha}$, where W is an upset of \mathfrak{F}. Clearly $g^{-1}(V)=h^{-1}(W \cup\{w\})$, and so $g^{-1}(V)$ is open in $[a, b]$. Therefore, g is continuous. It remains to be shown that g is open. Let I be a nonempty open interval of $[a, b]$. Since U is open and dense in $[a, b]$ and each U_{n} is dense in U, we have that I meets each U_{n}. Moreover, $h(I-U)=h(I)-\{w\}$ is an upset of \mathfrak{F}. Therefore, $g(I)=h(I-U) \cup W_{\alpha}$ is an upset of $\left.\mathfrak{F}\right\urcorner \mathfrak{C}_{\alpha}$, and so g is open. Consequently, g is an onto interior map.

Now we build an interior map from \mathbf{R} onto \mathfrak{G}. We have that either $\mathfrak{F}_{1} \models L$ or $\mathfrak{F}_{1} \not \vDash L$.

Case 1: First suppose that $\mathfrak{F}_{1} \models L$. We build an interior map from $(0, \infty)$ onto \mathfrak{G}. Since $(0, \infty)$ is homeomorphic to \mathbf{R}, the result follows. Note that if the number of the \mathfrak{G}_{i} is finite, then \mathfrak{G} is finite and connected. Therefore, by [2, Cor. 20], there exists an interior map from \mathbf{R} onto \mathfrak{G}. Thus, without loss of generality we may assume that there are infinitely many \mathfrak{G}_{i}. By Claim 3(1), for each finite $\mathfrak{G}_{i} \downharpoonright \mathfrak{F}_{k_{i}}$ there exists an interior map g_{i} from the interval $[2 i+1,2 i+2]$ onto $\mathfrak{G}_{i} \downharpoonright \mathfrak{F}_{k_{i}}$ such that $g_{i}^{-1}\left(r_{i}\right) \supseteq\{2 i+1,2 i+2\}$. Define $f:(0, \infty) \rightarrow \mathfrak{G}$ by

$$
f(x)= \begin{cases}m & \text { if } x \in(2 i, 2 i+1) \text { for some } i<\omega, \\ g_{i}(x) & \text { if } x \in[2 i+1,2 i+2] \text { for some } i<\omega .\end{cases}
$$

It is straightforward that f is a well-defined onto map. To see that f is open, it suffices to note that the restriction of f to the intervals $(2 i, 2 i+1)$ and $[2 i+1,2 i+2]$ is open by the construction, f commutes with arbitrary unions, and the union of opens is open. The only nontrivial part to check is that f is continuous. Let $U \subseteq W$ be an upset of \mathfrak{G} and $x \in f^{-1}(U)$. If there exists n such that $n<x<n+1$, then, by the construction, for sufficiently small ε, we have $(x-\varepsilon, x+\varepsilon) \subseteq f^{-1}(U)$. Suppose that $x=n$. Without loss of generality we may assume that $n=2 i+1$. Then $f(x)=g_{i}(x)$ and as g_{i} is continuous, there exists a sufficiently small ε such that $[x, x+\varepsilon) \subseteq g_{i}^{-1}(U \cap[2 i+1,2 i+2])$. We also know that $x=2 i+1 \in g_{i}^{-1}\left(r_{i}\right)$. Therefore, $f(x)=r_{i}$. As U is an upset and $f(x)=r_{i} \in U$, we have $m \in U$. But then $(2 i, 2 i+1) \subseteq f^{-1}(U)$. Since we also have $[2 i+1,2 i+1+\varepsilon) \subseteq f^{-1}(U)$, we obtain $(2 i, 2 i+1+\varepsilon) \subseteq f^{-1}(U)$. Thus, $x=2 i+1$ has an open neighborhood contained in $f^{-1}(U)$. Consequently, $f^{-1}(U)$ is open, and so $f: \mathbf{R} \rightarrow \mathfrak{G}$ is an interior map.

Case 2: Next suppose that $\mathfrak{F}_{1} \notin L$. By Claim 3(2), each frame $\mathfrak{G}_{i} \neg \mathfrak{C}_{\alpha}$ is an interior image of the interval $[2 i+1,2 i+2]$. Let $g_{i}:[2 i+1,2 i+2] \rightarrow \mathfrak{G}_{i} \not \subset \mathfrak{C}_{\alpha}$ denote the corresponding interior map, and let $f_{i}:(2 i, 2 i+1) \rightarrow \mathfrak{C}_{\alpha}$ denote the interior map from $(2 i, 2 i+1)$ onto the α-cluster \mathfrak{C}_{α}. Define $f:(0, \infty) \rightarrow \mathfrak{G}$ by

$$
f(x)= \begin{cases}f_{i}(x) & \text { if } x \in(2 i, 2 i+1) \text { for some } i<\omega, \\ g_{i}(x) & \text { if } x \in[2 i+1,2 i+2] \text { for some } i<\omega\end{cases}
$$

It is straightforward to check that f is a well-defined onto interior map, which completes the proof of the theorem.

Remark 4.9 As follows from our Main Theorem, for each connected logic L with the fmp, there is a subalgebra A of \mathbf{R}^{+}such that $L=L(A)$. In fact, by an argument similar to [2, Thms. 15 and 21], it can be ensured that A is a subalgebra of $B\left(C^{\omega}(\mathbf{R})\right)$.

Remark 4.10 The original McKinsey-Tarski theorem is concerned with an arbitrary dense-in-itself metrizable separable space. It is natural to ask whether our Main Theorem can be proved with the same generality. Most of the ingredients of the proof can easily be seen to be generalizable to arbitrary connected dense-in-itself metrizable separable spaces using the ideas and constructions of [16] and [18]. The more difficult part is building an interior map onto the infinite path-connected frame \mathfrak{G}. Our construction easily generalizes to any Euclidean space, but it is not entirely clear how to generalize it to an arbitrary connected dense-in-itself metrizable separable space. We leave this as an open problem.

5 Logics over S4.1

Many logics over S4 are connected. We will show in the next section that some of the most well-known extensions of $\mathbf{S 4}$ are connected logics. In fact, there are continuum many connected logics, among them continuum many with the fmp and continuum many without the fmp. It is the goal of this section to show that each logic over $\mathbf{S 4 . 1}$ is connected. For this we will require the machinery of Esakia duality between closure algebras and descriptive $\mathbf{S 4}$-frames.

Let (B, \diamond) be a closure algebra and (X, R) its dual descriptive $\mathbf{S 4}$-frame. By Esakia duality, homomorphic images of (B, \diamond) correspond to closed upsets of (X, R) and subalgebras of (B, \diamond) correspond to correct partitions of (X, R). Here we recall that if \sim is an equivalence relation on X, then $[x]=\{y \in X: x \sim y\},[U]=\bigcup\{[x]: x \in U\}$, and \sim is a correct partition whenever (i) from $x \nsim y$ it follows that there exists a clopen subset U of X such that $[U]=U$ and U separates x and y and (ii) $x \sim y$ and $y R z$ imply there exists $u \in X$ such that $x R u$ and $u \sim z$. We will also need that (B, \diamond) is subdirectly irreducible iff X is rooted and the minimal cluster of X is clopen [9].

Given a descriptive $\mathbf{S 4}$-frame (X, R) and a valuation v sending the propositional letters to subsets of X, we call v admissible if each $v(p)$ is a clopen subset of X. Let L be a logic over S4. We say that (X, R) validates L (notation: $(X, R) \models L$) if each theorem of L is true at every point of X under each admissible valuation.

For a family $\left\{\left(X_{i}, R_{i}\right): i \in I\right\}$ of descriptive $\mathbf{S 4}$-frames, let (X, R) denote their disjoint union $\bigsqcup_{i \in I}\left(X_{i}, R_{i}\right)$. Note that if I is infinite, then X is no longer compact. However, X is clearly locally compact Hausdorff, hence X has the one-point compactification $\alpha X=X \cup\{\infty\}$. Let $\alpha R=R \cup\{(\infty, \infty)\}$. We claim that $(\alpha X, \alpha R)$ is a descriptive $\mathbf{S 4}$-frame. That αX is a Stone space and that αR is reflexive and transitive
is obvious. Let $x \in \alpha X$. Then $x=\infty$ or there is $i \in I$ such that $x \in X_{i}$. If $x=\infty$, then $(\alpha R)[x]=\{x\}$, and if $x \in X_{i}$, then $(\alpha R)[x]=R_{i}[x]$ is closed. In either case $(\alpha R)[x]$ is a closed subset of αX. Next let U be a clopen subset of αX. By the definition of the topology on αX (see, e.g., [7, Thm. 3.5.11]), there exist i_{1}, \ldots, i_{n} and clopen subsets $U_{i_{1}} \subseteq X_{i_{1}}, \ldots, U_{i_{n}} \subseteq X_{i_{n}}$ such that $U=\bigcup_{k=1}^{n} U_{i_{k}}$ or $U=\alpha X-\left(\bigcup_{k=1}^{n} U_{i_{k}}\right)$. But then $(\alpha R)^{-1}(U)$ has again the same form, hence is a clopen subset of αX. Consequently, $(\alpha X, \alpha R)$ is a descriptive $\mathbf{S 4}$-frame.

Lemma 5.1 Let L be a logic over $\boldsymbol{S 4}$, let $\left\{\left(X_{i}, R_{i}\right): i \in I\right\}$ be a family of descriptive S4-frames such that $\left(X_{i}, R_{i}\right) \models L$ for each $i \in I$, and let $X=\bigsqcup_{i \in I}\left(X_{i}, R_{i}\right)$. Then $(\alpha X, \alpha R) \models L$.

Proof Suppose $(\alpha X, \alpha R) \not \models \varphi$ for some theorem φ of L. This means that under some admissible valuation on ($\alpha X, \alpha R$), the clopen corresponding to $\neg \varphi$ is nonempty. Since all nonempty clopens of αX meet X, we obtain that φ can be refuted on some $x \in X$. We have $x \in X_{i}$ for some $i \in I$. Therefore, φ is refuted on (X_{i}, R_{i}), which is impossible since $X_{i} \models L$. The obtained contradiction proves that $(\alpha X, \alpha R) \models L$.

The next lemma is a straightforward generalization of the characterization of $\mathbf{S 4 . 1 -}$ frames (see, e.g., [6, Prop. 3.46]).

Lemma 5.2 Let (X, R) be a descriptive $\mathbf{S 4}$-frame. Then $(X, R) \models S 4.1$ iff for each $x \in X$ there exists a maximal $y \in X$ with $x R y$.

Note that each point in a descriptive $\mathbf{S} 4$-frame sees a quasi-maximal point, by [10, Thm. 2.1]. Thus, the descriptive $\mathbf{S 4}$.1-frames can be characterized as those descriptive $\mathbf{S 4}$-frames in which every quasi-maximal point is maximal (or, equivalently, each maximal cluster is simple).

We now prove that each modal logic over $\mathbf{S 4 . 1}$ is connected.
Theorem 5.3 Let L be a logic over S4.1. Then L is connected.
Proof Let $\left\{\left(B_{i}, \diamond_{i}\right): i \in I\right\}$ be the family of all non-isomorphic finitely generated subdirectly irreducible closure algebras validating L. It is well-known that L is the logic of $\left\{\left(B_{i}, \diamond_{i}\right): i \in I\right\}$. For each i let $\left(X_{i}, R_{i}\right)$ be the dual descriptive $\mathbf{S 4}$-frame of $\left(B_{i}, \diamond_{i}\right)$. Then $\left(X_{i}, R_{i}\right) \models L$. We let (X, R) denote the disjoint union of $\left\{\left(X_{i}, R_{i}\right): i \in I\right\}$. By Lemma 5.1, $(\alpha X, \alpha R)$ is a descriptive $\mathbf{S 4}$-frame such that $(\alpha X, \alpha R) \models L$. For each $i \in I$, let m_{i} denote a maximal point of $\left(X_{i}, R_{i}\right)$. It exists by Lemma 5.2 since $\left(X_{i}, R_{i}\right) \models \mathbf{S 4 . 1}$. Define a partition \sim on αX by identifying all m_{i} with ∞.

We show that \sim is a correct partition. For this we first show that the set $A=\left\{m_{i}\right.$: $i \in I\} \cup\{\infty\}$ is closed in αX. Let $x \notin A$. Then there is $i \in I$ such that $x \in X_{i}-\left\{m_{i}\right\}$. Since X_{i} is a Stone space, there exists a clopen subset U of X_{i} such that $x \in U$ and $m_{i} \notin U$. Clearly $U \cap A=\emptyset$ and U is open in X, and hence in αX. Therefore, $\alpha X-A$ is open and so A is closed in αX.

Now let $x, y \in \alpha X$ with $x \nsim y$. Without loss of generality we may assume that $x \notin A$. Therefore, there is a clopen subset U of αX such that $x \in U$ and $U \cap A=\emptyset$.

Thus, $[U]=U$. If $y \in A$, then we have found a clopen subset U of αX such that $[U]=U$ and U separates x from y. Now suppose that $y \notin A$. Then there exist $i, j \in I$ such that $x \in X_{i}$ and $y \in X_{j}$. We can clearly separate x from y by a clopen subset U of X_{i} such that $m_{i} \notin U$. Since $U \subseteq X_{i}$ and $m_{i} \notin U$, we have $[U]=U$. Therefore, in this case too, we have found a clopen subset U of αX such that $[U]=U$ and U separates x from y. Since each m_{i} and ∞ are maximal points of αX, it is also obvious that from $x \sim y$ and $y R z$ it follows that $y=z$, and so there is $u \in \alpha X$ ($u=x$) such that $x R u$ and $u \sim z$. Consequently, \sim is a correct partition, and so $\left(\alpha X / \sim,(\alpha R)_{\sim}\right)$ is a descriptive $\mathbf{S 4}$-frame such that $\left(\alpha X / \sim,(\alpha R)_{\sim}\right) \models L$ (where we recall that $[x](\alpha R)_{\sim}[y]$ iff there exist $x^{\prime} \in[x]$ and $y^{\prime} \in[y]$ with $\left.x^{\prime}(\alpha R) y^{\prime}\right)$.

Moreover, it follows from the definition of \sim that $(\alpha X / \sim,(\alpha R) \sim)$ is pathconnected, and so the corresponding closure algebra (B, \diamond) is connected. It is also clear that each X_{i} is (isomorphic to) a closed upset of ($\alpha X / \sim,(\alpha R) \sim$). Therefore, each $\left(B_{i}, \diamond_{i}\right)$ is a homomorphic image of (B, \diamond). Thus, L is the logic of the connected algebra (B, \diamond), hence is a connected logic. (In fact, (B, \diamond) is a subdirect product of the family $\left.\left\{\left(B_{i}, \diamond_{i}\right): i \in I\right\}\right)$.

On the other hand, we give a simple example of a logic over $\mathbf{S 4 . 2}$ which is not connected. Let L be the logic of the frame $\mathfrak{G}_{1} \sqcup \mathfrak{C}_{2}$, where \mathfrak{G}_{1} and \mathfrak{C}_{2} are shown in Fig. 6. Then it is easy to see that \mathfrak{G}_{2} is not an L-frame, where \mathfrak{G}_{2} is also shown in Fig. 6. On the other hand, if L were connected, then by Lemma 4.6, \mathfrak{G}_{2} would also be an L-frame. The obtained contradiction proves that L is not a connected logic.

Corollary 5.4 1. Each logic over $\mathbf{S 4 . 1}$ with the fmp is the logic of a subalgebra of \mathbf{R}^{+}.

2. Each logic over $\mathbf{S 4 . G r z}$ is connected.
3. Each logic over $\mathbf{S 4 . G r z}$ with the fmp is the logic of a subalgebra of \mathbf{R}^{+}.
4. There are continuum many connected logics over S4, continuum many with the fipp, and continuum many without the fmp.

Proof (1) follows from Theorems 4.8 and 5.3; since $\mathbf{S 4 . 1}$ is contained in $\mathbf{S 4 . G r z}$, (2) follows from Theorem 5.3 and (3) follows from (1); finally, (4) follows from (2) since it is well-known that there are continuum many extensions of $\mathbf{S 4 . G r z}$, continuum many with the fmp, and continuum many without the fmp.

Open Problem 2: Which connected logics without the fmp can be obtained as the logics of subalgebras of \mathbf{R}^{+}?

6 Examples

Clearly $\mathbf{S 4}$ is a connected logic because it is the logic of \mathbf{R}^{+}. In this section we list specific subalgebras of \mathbf{R}^{+}that generate well-known normal extensions of $\mathbf{S 4}$ such as S5, S4.1, S4.2, S4.1.2, S4.Grz, and S4.Grz.2. Each of these systems is an extension of $\mathbf{S 4}$ by finitely many axioms in one variable, hence has the fmp, by [6, Thm. 11.58]. It follows from Theorem 4.8 that each of these logics is connected. In the following table we recall the syntactic and semantic characterizations of these systems.

Logic	Defining axioms	Generating frame class
S5	$\diamond p \rightarrow \square \diamond p$	Finite clusters
S4.1	$\square \diamond p \rightarrow \diamond \square p$	All finite rooted frames in which each maximal cluster is simple
S4.2	$\diamond \square p \rightarrow \square \diamond p$	All finite rooted frames with a unique maximal cluster
S4.1.2	$\diamond \square p \leftrightarrow \square \diamond p$	All finite rooted frames with a unique maximal cluster which is simple
S4.Grz	$\square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p$	All finite rooted partially ordered frames
S4.Grz. 2	$\begin{aligned} & \square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p \\ & \diamond \square p \rightarrow \square \diamond p \end{aligned}$	All finite rooted partially ordered frames with a unique maximal point

6.1 S4.Grz

Let $B(\mathrm{Op}(\mathbf{R}))$ denote the Boolean subalgebra of \mathbf{R}^{+}generated by the open subsets of \mathbf{R}. Since all open, and hence closed subsets of \mathbf{R} are contained in $B(\operatorname{Op}(\mathbf{R}))$, it is clear that $B(\operatorname{Op}(\mathbf{R}))$ is closed under $\mathbf{c l}$. Therefore, $B(\operatorname{Op}(\mathbf{R}))$ is a subalgebra of \mathbf{R}^{+}. By [2, Rem. 10], the logic of $B(\mathrm{Op}(\mathbf{R}))$ is $\mathbf{S 4 . G r z}$.

6.2 S4.Grz. 2

Let $\mathrm{OD}(\mathbf{R})$ denote the set of open dense subsets of \mathbf{R} and let $B(\mathrm{OD}(\mathbf{R}))$ denote the Boolean subalgebra of \mathbf{R}^{+}generated by $\operatorname{OD}(\mathbf{R})$. We show that $B(\mathrm{OD}(\mathbf{R}))$ is closed under $\mathbf{c l}$, and so is a subalgebra of \mathbf{R}^{+}. Since $\operatorname{OD}(\mathbf{R})$ is closed with respect to finite unions and intersections, $\mathrm{OD}(\mathbf{R}) \cup\{\emptyset\}$ is a bounded sublattice of $\mathrm{Op}(\mathbf{R})$. Therefore, for each $A \in B(\mathrm{OD}(\mathbf{R}))$ we have $A=\bigcap_{i=1}^{n}\left(-U_{i} \cup V_{i}\right)$, where each $U_{i}, V_{i} \in \mathrm{OD}(\mathbf{R}) \cup\{\emptyset\}$.

Lemma 6.1 For each $A \in B(\mathrm{OD}(\mathbf{R}))$ we have $\mathbf{c l}(A)=\mathbf{R}$ or $\operatorname{int}(A)=\emptyset$.
Proof Let $A \in B(\mathrm{OD}(\mathbf{R}))$. Then $A=\bigcap_{i=1}^{n}\left(-U_{i} \cup V_{i}\right)$ for some $U_{i}, V_{i} \in \mathrm{OD}(\mathbf{R}) \cup\{\emptyset\}$. If each $V_{i} \neq \emptyset$, then each V_{i} is open dense, and hence so is $\bigcap_{i=1}^{n} V_{i}$. Therefore, $\mathbf{c l}(A) \supseteq$ $\mathbf{c l}\left(\bigcap_{i=1}^{n} V_{i}\right)=\mathbf{R}$, and so $\mathbf{c l}(A)=\mathbf{R}$. On the other hand, if at least one $V_{j}=\emptyset$, then $\operatorname{int}(A) \subseteq \operatorname{int}\left(-U_{j}\right)=-\mathbf{c l}\left(U_{j}\right)=-\mathbf{R}=\emptyset$.

Corollary 6.2 1. $B\left(\mathrm{OD}(\mathbf{R})\right.$) is a subalgebra of \mathbf{R}^{+}.
2. $B(\mathrm{OD}(\mathbf{R})$) is a $\mathbf{S 4 . G r z . 2 - a l g e b r a . ~}$

Proof (1) It is sufficient to show that if $A \in B(\mathrm{OD}(\mathbf{R}))$, then $\mathbf{c l}(A) \in B(\mathrm{OD}(\mathbf{R}))$. But this follows from Lemma 6.1.
(2) Since $B(\mathrm{OD}(\mathbf{R}))$ is a subalgebra of $B(\mathrm{Op}(\mathbf{R}))$ and $B(\mathrm{Op}(\mathbf{R}))$ is a S4.Grzalgebra, so is $B(\mathrm{OD}(\mathbf{R}))$. Also, by Lemma 6.1, for each $A \in B(\mathrm{OD}(\mathbf{R}))$
we have $\mathbf{c l}(A)=\mathbf{R}$ or $\operatorname{int}(A)=\emptyset$. Therefore, $\mathbf{c l}(\operatorname{int}(A)) \subseteq \operatorname{int}(\mathbf{c l}(A))$, and so $B(\mathrm{OD}(\mathbf{R}))$ is a $\mathbf{S 4 . 2}$-algebra. Consequently, $B(\mathrm{OD}(\mathbf{R}))$ is a S4.Grz.2algebra.

We show that each non-theorem of S4.Grz. 2 can be refuted on $B(\mathrm{OD}(\mathbf{R}))$. Consider $\mathfrak{F}\urcorner \mathfrak{C}_{1}$, where $\mathfrak{F}=(W, R)$ is a finite rooted partially ordered frame and $\mathfrak{C}_{1}=$ $\left(\left\{w_{1}\right\},\left\{\left(w_{1}, w_{1}\right)\right\}\right)$ is a one-point cluster. As follows from [16, Theorem 5.10] (see also [1, Lemma 4.5] for a simplified proof), there exists an interior map g from the Cantor space \mathbf{C} onto \mathfrak{F}. Let $f: \mathbf{R} \rightarrow \mathfrak{F} \not \mathfrak{C}_{1}$ be given by

$$
f(x)= \begin{cases}g(x) & \text { if } x \in \mathbf{C} \\ w_{1} & \text { if } x \in \mathbf{R}-\mathbf{C}\end{cases}
$$

It is easily seen that f is an onto interior map. Let $\mathfrak{F} \mathfrak{C} \mathfrak{C}_{1}=\left(W_{1}, R_{1}\right)$. For each $w \in W_{1}$, the set $R_{1}[w]$ is open and dense in $\left.\mathfrak{F}\right\urcorner \mathfrak{C}_{1}$; for each $w \in W$, the set $R_{1}^{-1}[w]$ is closed and has empty interior; and $R_{1}^{-1}\left[w_{1}\right]=W_{1}$. Therefore, for each $w \in W_{1}$, we have $f^{-1} R_{1}[w], f^{-1} R_{1}^{-1}[w] \in B(\mathrm{OD}(\mathbf{R}))$. Thus, $f^{-1}(w)=f^{-1} R_{1}[w] \cap f^{-1} R_{1}^{-1}[w] \in$ $B(\mathrm{OD}(\mathbf{R}))$. It follows that f^{-1} is a closure algebra homomorphism from ($\left.\wp W_{1}, R_{1}^{-1}\right)$ into $B(\mathrm{OD}(\mathbf{R}))$. Consequently, each formula refutable on $\mathfrak{F}\urcorner \mathfrak{C}_{1}$ is also refutable on $B(\operatorname{OD}(\mathbf{R}))$. Now since $\mathbf{S 4 . G r z . ~} \mathbf{2}$ is complete with respect to the finite frames $\mathfrak{F} \mathfrak{C} \mathfrak{C}_{1}$, with \mathfrak{F} a rooted partially ordered frame and \mathfrak{C}_{1} a one-point cluster, we obtain that S4.Grz. 2 is the logic of $B(\operatorname{OD}(\mathbf{R}))$.

6.3 S4.1.2

We recall that a subset A of a topological space is nowhere dense if $\operatorname{int}(\mathbf{c l}(A))=\emptyset$. Let $\mathrm{ND}(\mathbf{R})$ denote the set of nowhere dense subsets of \mathbf{R} and let $B(\mathrm{ND}(\mathbf{R}))$ denote the Boolean subalgebra of \mathbf{R}^{+}generated by $\mathrm{ND}(\mathbf{R})$. We show that $B(\mathrm{ND}(\mathbf{R}))$ is closed under $\mathbf{c l}$, and so is a subalgebra of \mathbf{R}^{+}.

Lemma 6.3 $\mathrm{ND}(\mathbf{R})$ is an ideal of \mathbf{R}^{+}.
Proof Clearly if A is nowhere dense and $B \subseteq A$, then B is also nowhere dense. Let A and B be nowhere dense subsets of \mathbf{R}. Then $\operatorname{int}(\mathbf{c l}(A))=\emptyset$. Therefore, $-\mathbf{c l}-\mathbf{c l}(A)=$ \emptyset, so $\mathbf{c l}-\mathbf{c l}(A)=\mathbf{R}$, and so $-\mathbf{c l}(A)=\boldsymbol{\operatorname { i n t }}(-A)$ is a dense subset of \mathbf{R}. Similarly $\operatorname{int}(-B)$ is a dense subset of \mathbf{R}.

If $A \cup B$ is not nowhere dense, then $\operatorname{int}(\mathbf{c l}(A \cup B)) \neq \emptyset$. As $\operatorname{int}(-A)$ is dense, we have

$$
\operatorname{int}(-A) \cap \operatorname{int}(\mathbf{c l}(A \cup B)) \neq \emptyset
$$

This implies

$$
\operatorname{int}(\operatorname{int}(-A)) \cap \operatorname{int}(\mathbf{c l}(A \cup B)) \neq \emptyset
$$

Therefore,

$$
\operatorname{int}[\operatorname{int}(-A) \cap(-\operatorname{int}(-A) \cup \mathbf{c l}(B))] \neq \emptyset
$$

Thus,

$$
\operatorname{int}(\operatorname{int}(-A) \cap \operatorname{cl}(B)) \neq \emptyset
$$

Also, as $\operatorname{int}(-B)$ is dense, we have

$$
\operatorname{int}(-B) \cap \operatorname{int}(\operatorname{int}(-A) \cap \operatorname{cl}(B)) \neq \emptyset
$$

Therefore,

$$
\operatorname{int}(\operatorname{int}(-B)) \cap \operatorname{int}(\operatorname{int}(-A) \cap-\operatorname{int}(-B)) \neq \emptyset
$$

Thus,

$$
\operatorname{int}[\operatorname{int}(-B) \cap \operatorname{int}(-A) \cap-\operatorname{int}(-B)] \neq \emptyset
$$

The obtained contradiction proves that $A \cup B$ is nowhere dense. Consequently, $\mathrm{ND}(\mathbf{R})$ is an ideal of \mathbf{R}^{+}.

We call a subset A of a topological space X interior dense if it has a dense interior; that is, $\mathbf{c l}(\operatorname{int}(A))=X$. We denote the collection of all interior dense subsets of X by $\operatorname{ID}(X)$. It is obvious that $A \in \operatorname{ID}(X)$ iff $-A \in \mathrm{ND}(X)$.

Lemma 6.4 $B(\mathrm{ND}(\mathbf{R}))=\mathrm{ND}(\mathbf{R}) \cup \operatorname{ID}(\mathbf{R})$.
Proof Clearly $\mathrm{ND}(\mathbf{R}) \cup \mathrm{ID}(\mathbf{R}) \subseteq B(\mathrm{ND}(\mathbf{R}))$. Therefore, it is sufficient to show that $\mathrm{ND}(\mathbf{R}) \cup \operatorname{ID}(\mathbf{R})$ is a Boolean subalgebra of \mathbf{R}^{+}. That $\operatorname{ND}(\mathbf{R}) \cup \operatorname{ID}(\mathbf{R})$ is closed under - is obvious. We show that $\operatorname{ND}(\mathbf{R}) \cup \operatorname{ID}(\mathbf{R})$ is closed under \cup. By Lemma 6.3, ND(R) is an ideal of \mathbf{R}^{+}. Therefore, $\operatorname{ID}(\mathbf{R})=\{-A: A \in \operatorname{ND}(\mathbf{R})\}$ is a filter of \mathbf{R}^{+}. Thus, for $A, B \in \mathrm{ND}(\mathbf{R}) \cup \operatorname{ID}(\mathbf{R})$, if both $A, B \in \mathrm{ND}(\mathbf{R})$, then $A \cup B \in \mathrm{ND}(\mathbf{R})$, and if at least one of A, B belongs to $\operatorname{ID}(\mathbf{R})$, then so does $A \cup B$. Consequently, $\operatorname{ND}(\mathbf{R}) \cup \operatorname{ID}(\mathbf{R})$ is a Boolean subalgebra of \mathbf{R}^{+}, and so $B(\mathrm{ND}(\mathbf{R}))=\mathrm{ND}(\mathbf{R}) \cup \operatorname{ID}(\mathbf{R})$.

Lemma 6.5 $B\left(\mathrm{ND}(\mathbf{R})\right.$) is a subalgebra of \mathbf{R}^{+}.
Proof Let $A \in B(\mathrm{ND}(\mathbf{R}))$. By Lemma 6.4, either $A \in \mathrm{ND}(\mathbf{R})$ or $A \in \operatorname{ID}(\mathbf{R})$. If $A \in \operatorname{ND}(\mathbf{R})$, then

$$
\operatorname{int}(\mathbf{c l}(\mathbf{c l}(A)))=\operatorname{int}(\mathbf{c}(A))=\emptyset
$$

Therefore, $\mathbf{c l}(A) \in \operatorname{ND}(\mathbf{R})$. On the other hand, if $A \in \operatorname{ID}(\mathbf{R})$, then as $A \subseteq \mathbf{c l}(A)$ and $\operatorname{ID}(\mathbf{R})$ is a filter of \mathbf{R}^{+}, we have $\mathbf{c l}(A) \in \operatorname{ID}(\mathbf{R})$. In either case, $A \in B(\operatorname{ND}(\mathbf{R}))$ implies $\mathbf{c l}(A) \in B(\mathrm{ND}(\mathbf{R}))$, and so $B(\mathrm{ND}(\mathbf{R}))$ is a subalgebra of \mathbf{R}^{+}.

Lemma 6.6 $B(\mathrm{ND}(\mathrm{R}))$ is a S4.1.2-algebra.
Proof Let $A \in B(\mathrm{ND}(\mathbf{R}))$. By Lemma 6.4, $A \in \mathrm{ND}(\mathbf{R})$ or $A \in \operatorname{ID}(\mathbf{R})$. If $A \in$ $\mathrm{ND}(\mathbf{R})$, then $\operatorname{int}(\mathbf{c l}(A))=\emptyset$. Therefore, $\boldsymbol{\operatorname { i n t }}(A)=\emptyset$, so $\mathbf{c l}(\boldsymbol{\operatorname { i n t }}(A))=\emptyset$, and so $\operatorname{int}(\mathbf{c l}(A))=\mathbf{c l}(\operatorname{int}(A))$. On the other hand, if $A \in \operatorname{ID}(\mathbf{R})$, then $\mathbf{c l}(\operatorname{int}(A))=\mathbf{R}$. This implies $\mathbf{c l}(A)=\mathbf{R}$. Thus, $\boldsymbol{\operatorname { i n t }}(\mathbf{c l}(A))=\mathbf{R}$, and so $\operatorname{int}(\mathbf{c l}(A))=\mathbf{c l}(\operatorname{int}(A))$. Consequently, $B(\mathrm{ND}(\mathbf{R}))$ is a $\mathbf{S 4 . 1 . 2}$-algebra.

We show that $\mathbf{S 4 . 1 . 2}$ is the logic of $B(\mathrm{ND}(\mathbf{R}))$. We recall that a finite rooted $\mathbf{S 4 . 1 . 2}$ frame is of the form $\mathfrak{F} \mathfrak{C _ { 1 }}=\left(W_{1}, R_{1}\right)$, where $\mathfrak{F}=(W, R)$ is a finite rooted $\mathbf{S 4}$-frame and $\mathfrak{C}_{1}=\left(\left\{w_{1}\right\},\left\{\left(w_{1}, w_{1}\right)\right\}\right.$ is a one-point cluster. As follows from [16, Theorem 5.10] (see also [1, Lemma 4.5] for a simplified proof), there exists an interior map g from \mathbf{C} onto \mathfrak{F}. We extend g to the map $f: \mathbf{R} \rightarrow \mathfrak{F} \mathfrak{C} \mathfrak{C}_{1}$ by sending all points of $\mathbf{R}-\mathbf{C}$ to w_{1}. It is easy to see that f is onto and interior. Let $A \subseteq W_{1}$. Then $w_{1} \in A$ or $w_{1} \notin A$. In the first case, $w_{1} \in-R_{1}^{-1}[-A]$, so $R^{-1}-R_{1}^{-1}[-A]=W_{1}$, and so A is interior dense. In the second case, $w_{1} \notin R_{1}^{-1}[A]$, so $-R_{1}^{-1}-R^{-1}[A]=\emptyset$, and so A is nowhere dense. It follows that $f^{-1}[A]$ is in $B(\mathrm{ND}(\mathbf{R}))$. Therefore, f^{-1} is a closure algebra homomorphism from $\left.(\mathfrak{F}\urcorner \mathfrak{C}_{1}\right)^{+}$into $B(\mathrm{ND}(\mathbf{R}))$. Thus, each formula refutable on $\mathfrak{F} \not \mathfrak{C}_{1}$ is also refutable on $B(\mathrm{ND}(\mathbf{R}))$, and so $\mathbf{S 4 . 1 . 2}$ is the logic of $B(\mathrm{ND}(\mathbf{R}))$.

6.4 S4.1

Let X be a topological space and let

$$
\mathfrak{A}_{X}=\{A \subseteq X: \operatorname{int}(\mathbf{c l}(A)) \subseteq \mathbf{c l}(\operatorname{int}(A))\}
$$

We recall that the boundary of $A \subseteq X$ is defined as

$$
\mathbf{f r}(A)=\mathbf{c l}(A) \cap \mathbf{c l}(-A)
$$

and that A has small boundary if $\operatorname{int}(\mathbf{f r}(A))=\emptyset$. Note that since $\mathbf{f r}(A)$ is closed, A has small boundary iff $\operatorname{fr}(A)$ is nowhere dense. We have:

$$
\begin{array}{ll}
A \text { has small boundary } & \text { iff } \operatorname{int}(\mathbf{f r}(A))=\emptyset \\
& \text { iff } \operatorname{int}(\mathbf{c l}(A) \cap \operatorname{cl}(-A))=\emptyset \\
& \operatorname{iff} \operatorname{int}(\mathbf{c l}(A)) \cap \operatorname{int}(\mathbf{c l}(-A))=\emptyset \\
& \operatorname{iff} \operatorname{int}(\mathbf{c l}(A)) \cap-\operatorname{cl}(\operatorname{int}(A))=\emptyset \\
& \text { iff } \operatorname{int}(\mathbf{c l}(A)) \subseteq \mathbf{c l}(\operatorname{int}(A)) .
\end{array}
$$

Therefore, \mathfrak{A}_{X} coincides with the set of subsets of X with small boundary.
Lemma 6.7 (Esakia [11]) \mathfrak{A}_{X} is a subalgebra of X^{+}.
Proof Clearly if A has small boundary, then so does $-A$. Therefore, $A \in \mathfrak{A}_{X}$ implies $-A \in \mathfrak{A}_{X}$, and so \mathfrak{A}_{X} is closed under complementation. To see that \mathfrak{A}_{X} is closed
under $\mathbf{c l}$, let $A \in \mathfrak{A}_{X}$. Then $\operatorname{int}(\mathbf{f r}(A))=\emptyset$. Therefore,

$$
\begin{aligned}
\operatorname{int}(\mathbf{f r}(\mathbf{c l}(A))) & =\operatorname{int}[\mathbf{c l}(\mathbf{c l}(A)) \cap \mathbf{c l}(-\mathbf{c l}(A))] \\
& \subseteq \operatorname{int}[\mathbf{c l}(A) \cap \mathbf{c l}(-A)] \\
& =\operatorname{int}(\mathbf{f r}(A)) \\
& =\emptyset
\end{aligned}
$$

Thus, $\mathbf{c l}(A) \in \mathfrak{A}_{X}$, and so \mathfrak{A}_{X} is closed under cl. It is left to be shown that \mathfrak{A}_{X} is closed under union. Let $A, B \in \mathfrak{A}_{X}$. Then $\mathbf{f r}(A)$ and $\mathbf{f r}(B)$ are nowhere dense. By Lemma 6.3, $\mathbf{f r}(A) \cup \mathbf{f r}(B)$ is also nowhere dense. Therefore, $\operatorname{int}(\mathbf{f r}(A) \cup \mathbf{f r}(B))=\emptyset$. By [7, Thm. 1.3.2], $\mathbf{f r}(A \cup B) \subseteq \mathbf{f r}(A) \cup \mathbf{f r}(B)$. Thus, $\operatorname{int}(\mathbf{f r}(A \cup B))=\emptyset$, so $A \cup B$ has small boundary, and so $A \cup B \in \mathfrak{A}_{X}$. Consequently, \mathfrak{A}_{X} is a subalgebra of X^{+}.

We show that $\mathbf{S 4 . 1}$ is the logic of $\mathfrak{A}_{\mathbf{R}}$. It follows from the definition that $\mathfrak{A}_{\mathbf{R}}$ is an $\mathbf{S 4 . 1}$-algebra. In fact, $\mathfrak{A}_{\mathbf{R}}$ is the largest subalgebra of \mathbf{R}^{+}that is an $\mathbf{S 4 . 1}$-algebra. Let $\mathfrak{F}=(W, R)$ be a finite rooted $\mathbf{S} 4.1$-frame. As follows from [16, Theorem 5.10] (see also [2, Corollary 14] for a simplified proof), there exists an interior map f from \mathbf{R} onto \mathfrak{F}. Therefore, f^{-1} is a closure algebra homomorphism from \mathfrak{F}^{+}into \mathbf{R}^{+}. We claim that $f^{-1}(A) \in \mathfrak{A}_{\mathbf{R}}$ for each $A \subseteq W$. Since \mathfrak{F} is an S4.1-frame, we have $-R^{-1}-R^{-1}[A] \subseteq R^{-1}-R^{-1}[-A]$. Applying f^{-1} and using the fact that f^{-1} is a closure algebra homomorphism, we obtain $\operatorname{int}\left(\mathbf{c l}\left(f^{-1}(A)\right)\right) \subseteq \mathbf{c l}\left(\operatorname{int}\left(f^{-1}(A)\right)\right)$. Thus, $f^{-1}(A) \in \mathfrak{A}_{\mathbf{R}}$. It follows that each formula refutable on \mathfrak{F} is also refutable on $\mathfrak{A}_{\mathbf{R}}$. Now as $\mathbf{S 4 . 1}$ has the fmp, we obtain that $\mathbf{S 4 . 1}$ is the logic of $\mathfrak{A}_{\mathbf{R}}$.

6.5 S5

Let $P=\left\{P_{i}: i \in \omega\right\}$ be a partition of \mathbf{R} into countably many dense subsets; that is, $\bigcup P_{i}=\mathbf{R}, P_{i} \cap P_{j}=\emptyset$ whenever $i \neq j$, and $\mathbf{c l}\left(P_{i}\right)=\mathbf{R}$ for each i. Clearly such a partition exists. Let $B(P)$ be the Boolean subalgebra of \mathbf{R}^{+}generated by P. Then each element of $B(P)$ is a finite union of P_{i} 's or the complement of a finite union of P_{i} 's. Since for each $A \neq \emptyset$ in $B(P)$ we have $\mathbf{c l}(A)=\mathbf{R}$, it is obvious that $B(P)$ is a subalgebra of \mathbf{R}^{+}. We show that $\mathbf{S 5}$ is the logic of $B(P)$. Let $A \in B(P)$. If $A=\emptyset$, then $\mathbf{c l}(A)=\emptyset$, and so $\operatorname{int}(\mathbf{c l}(A))=\emptyset=\mathbf{c l}(A)$. If $A \neq \emptyset$, then $\mathbf{c l}(A)=\mathbf{R}$, and so $\operatorname{int}(\mathbf{c l}(A))=\mathbf{R}=\mathbf{c l}(A)$. In either case, $\boldsymbol{\operatorname { i n t }}(\mathbf{c l}(A))=\mathbf{c l}(A)$, and so $B(P)$ is an S5-algebra.

We show that each finite cluster $\mathfrak{C}_{n}=\left(W_{n}, R_{n}\right)$ is an onto interior image of \mathbf{R} so that the preimages of subsets of \mathfrak{C}_{n} are elements of $B(P)$. Define $h: \mathbf{R} \rightarrow \mathfrak{C}_{n}$ by

$$
h(x)= \begin{cases}w_{i} & \text { if } i<n \quad \text { and } \quad x \in P_{i}, \\ w_{n} & \text { if } i \geq n \quad \text { and } \quad x \in P_{i} .\end{cases}
$$

Then it is easy to see that h is onto, interior, and the h-preimages of subsets of \mathfrak{C}_{n} belong to $B(P)$. Therefore, h^{-1} is a closure algebra homomorphism from \mathfrak{C}_{n}^{+}into
$B(P)$. Thus, each formula refutable on \mathfrak{C}_{n} is also refutable on $B(P)$. Since $\mathbf{S 5}$ is complete with respect to the class of finite clusters, it follows that $\mathbf{S 5}$ is the logic of $B(P)$.

6.6 S4.2

Now we can combine the approaches to $\mathbf{S 4 . 1 . 2}$ and $\mathbf{S 5}$ to obtain a subalgebra of \mathbf{R}^{+} whose logic is $\mathbf{S 4 . 2}$. Let \mathfrak{B} be the Boolean subalgebra of R^{+}generated by $B(\mathrm{ND}(\mathbf{R})) \cup$ $B(P)$. We show that $\mathbf{S} 4.2$ is the logic of \mathfrak{B}.

Lemma 6.8 For each $A \in \mathfrak{B}$ we have $\mathbf{c l}(A)=\mathbf{R}$ or $\operatorname{int}(A)=\emptyset$.

Proof Let $A \in \mathfrak{B}$. Then $A=\bigcup_{i=1}^{n}\left(B_{i} \cap C_{i}\right)$, where $B_{i} \in B(\mathrm{ND}(\mathbf{R}))$ and C_{i} is a nonempty element of $B(P)$. By Lemma $6.4, B(\mathrm{ND}(\mathbf{R}))=\mathrm{ND}(\mathbf{R}) \cup \operatorname{ID}(\mathbf{R})$. First suppose that $B_{i} \in \mathrm{ND}(\mathbf{R})$ for all $i=1, \ldots, n$. By Lemma 6.3, $\mathrm{ND}(\mathbf{R})$ is an ideal of \mathbf{R}^{+}. Therefore, $B_{i} \cap C_{i} \in \mathrm{ND}(\mathbf{R})$, and so $A=\bigcup_{i=1}^{n}\left(B_{i} \cap C_{i}\right) \in \mathrm{ND}(\mathbf{R})$. Thus, $\operatorname{int}(\mathbf{c l}(A))=\emptyset$, which implies that $\operatorname{int}(A)=\emptyset$. Now suppose that $B_{i} \in \operatorname{ID}(\mathbf{R})$ for some i. Then $\mathbf{c l}\left(\operatorname{int}\left(B_{i}\right)\right)=\mathbf{R}$, and so $\operatorname{int}\left(B_{i}\right)$ is dense. As $C_{i} \neq \emptyset$, we also have that C_{i} is dense. But then $\operatorname{int}\left(B_{i}\right) \cap C_{i}$ is also dense as $\operatorname{int}\left(B_{i}\right)$ is open and both $\operatorname{int}\left(B_{i}\right)$ and C_{i} are dense. Therefore, $\mathbf{c l}(A) \supseteq \mathbf{c l}\left(B_{i} \cap C_{i}\right) \supseteq \mathbf{c l}\left(\operatorname{int}\left(B_{i}\right) \cap C_{i}\right)=\mathbf{R}$. Thus, $\mathbf{c l}(A)=\mathbf{R}$.

It is an immediate corollary to Lemma 6.8 that \mathfrak{B} is a subalgebra of \mathbf{R}^{+}. Moreover, for each $A \in \mathfrak{B}$, if $\operatorname{int}(A)=\emptyset$, then $\mathbf{c l}(\operatorname{int}(A))=\emptyset$, and so $\mathbf{c l}(\operatorname{int}(A)) \subseteq \operatorname{int}(\mathbf{c l}(A))$; and if $\mathbf{c l}(A)=\mathbf{R}$, then $\operatorname{int}(\mathbf{c l}(A))=\mathbf{R}$, and again $\mathbf{c l}(\operatorname{int}(A)) \subseteq \operatorname{int}(\mathbf{c l}(A))$. Consequently, \mathfrak{B} is an $\mathbf{S 4 . 2}$-algebra.

It is left to be shown that each non-theorem of $\mathbf{S 4 . 2}$ can be refuted on \mathfrak{B}. Recall that a finite rooted $\mathbf{S} 4.2$-frame has the form \mathfrak{F} Һ \mathfrak{C}_{n}, where \mathfrak{F} is a finite rooted $\mathbf{S} 4$-frame and \mathfrak{C}_{n} is the n-cluster. Let $g: \mathbf{C} \rightarrow \mathfrak{F}$ and $h: \mathbf{R} \rightarrow \mathfrak{C}_{n}$ be the onto interior maps described above. Define $\alpha: \mathbf{R} \rightarrow \mathfrak{F}\urcorner \mathfrak{C}_{n}$ by

$$
\alpha(x)= \begin{cases}g(x) & \text { if } x \in \mathbf{C}, \\ h(x) & \text { if } x \notin \mathbf{C} .\end{cases}
$$

Then α is an onto interior map, and so α^{-1} is a closure algebra homomorphism from $\left.(\mathfrak{F}\urcorner \mathfrak{C}_{n}\right)^{+}$into \mathfrak{B}. Therefore, each formula refutable on $\left.\mathfrak{F}\right\urcorner \mathfrak{C}_{n}$ is also refutable on \mathfrak{B}. Now since $\mathbf{S 4 . 2}$ has the fmp, it follows that $\mathbf{S 4 . 2}$ is the logic of \mathfrak{B}.

In the following table we list all the logics considered in this section together with the corresponding subalgebras of \mathbf{R}^{+}that generate them.

Logic	Subalgebra of \mathbf{R}^{+}	Description
S4.Grz	$B(\mathrm{Op}(\mathbf{R}))$	Boolean combinations of open subsets of \mathbf{R}
S4.Grz.2	$B(\mathrm{OD}(\mathbf{R}))$	Boolean combinations of open dense subsets of \mathbf{R}
S4.1.2	$\mathrm{ND}_{\mathrm{R}}(\mathbf{R}) \cup \mathrm{ID}(\mathbf{R})$	Nowhere dense and interior dense subsets of \mathbf{R}
S4.1	$\mathfrak{A}_{\mathbf{R}}$	All subsets of \mathbf{R} with small boundary Boolean combinations of a partition P of \mathbf{R} S5
$B(P)$	into countably many dense subsets of \mathbf{R}	
S4.2	\mathfrak{B}	Boolean combinations of nowhere dense subsets of \mathbf{R} and a partition of \mathbf{R} into countably many dense subsets of \mathbf{R}

7 Logics of subalgebras of Q^{+}and C^{+}

In this section we show that each normal extension of $\mathbf{S} 4$ with the fmp is the logic of a subalgebra of \mathbf{Q}^{+}as well as of a subalgebra of \mathbf{C}^{+}. The argument for subalgebras of \mathbf{Q}^{+}is an easy consequence of the McKinsey-Tarski theorem [16, Theorem 5.10], while the one for subalgebras of \mathbf{C}^{+}requires a little more work.

Theorem 7.1 Let L be a normal extension of $\mathbf{S} \mathbf{4}$ with the fmp. Then L is the logic of a subalgebra of \mathbf{Q}^{+}.

Proof Let $\mathfrak{F}_{1}, \mathfrak{F}_{2}, \ldots$ be an enumeration of finite rooted L-frames. It follows from [16, Theorem 5.10] that each finite rooted $\mathbf{S 4}$-frame is an onto interior image of Q. Therefore, for each $i \in \omega$ there is an onto interior map $f_{i}: \mathbf{Q} \rightarrow \mathfrak{F}_{i}$. But then $\bigsqcup_{i \in \omega} f_{i}: \bigsqcup_{i \in \omega} \mathbf{Q} \rightarrow \bigsqcup_{i \in \omega} \mathfrak{F}_{i}$ is also an onto interior map. Clearly $\bigsqcup_{i \in \omega} \mathbf{Q}$ is a countable, dense-in-itself, metrizable space. Thus, by Sierpinski's theorem (see, e.g., [7, Exercise 6.2.A(d)]), $\bigsqcup_{i \in \omega} \mathbf{Q}$ is homeomorphic to \mathbf{Q}. Therefore, there is an onto interior map $f: \mathbf{Q} \rightarrow \bigsqcup_{i \in \omega} \mathfrak{F}_{i}$. This implies that f^{-1} is a closure algebra homomorphism from $\left(\bigsqcup_{i \in \omega} \mathfrak{F}_{i}\right)^{+}$into \mathbf{Q}^{+}. Let A be the image of f^{-1} in \mathbf{Q}^{+}. Then A is a subalgebra of \mathbf{Q}^{+}isomorphic to $\left(\bigsqcup \mathfrak{F}_{i \in \omega}\right)^{+}$. Therefore, A is an L-algebra. Since each non-theorem of L is refuted on $\bigsqcup_{i \in \omega} \mathfrak{F}_{i}$, it is also refuted on A. Thus, L is the logic of A.

In order to prove that L is the logic of a subalgebra of \mathbf{C}^{+}, we need the following
Lemma 7.2 Let X be a countably infinite disjoint union of \mathbf{C}. Then X is a noncompact locally compact Hausdorff space and \mathbf{C} is homeomorphic to the one-point compactification of X.

Proof Since X is a countably infinite disjoint union of \mathbf{C}, it is obvious that X is a noncompact locally compact Hausdorff space. Therefore, by [7, Theorem 3.5.11], X has the one-point compactification αX. Clearly αX is a compact Hausdorff space. Since \mathbf{C} is zero-dimensional, by [7, Theorem 6.2.13], X is zero-dimensional. This, by
[4, Corollary 3.16], implies that αX is also zero-dimensional, hence a Stone space. Clearly X is dense-in-itself. Therefore, so is αX. Also, as X has a countable basis, so does αX. Thus, αX is a dense-in-itself metrizable Stone space. By Brouwer's theorem (see, e.g., [7, Exercise 6.2.A(c)]), αX is homeomorphic to \mathbf{C}.

Theorem 7.3 Let L be a normal extension of $\mathbf{S} \mathbf{4}$ with the fmp. Then L is the logic of a subalgebra of \mathbf{C}^{+}.

Proof Let $\mathfrak{F}_{1}=\left(W_{1}, R_{1}\right), \mathfrak{F}_{2}=\left(W_{2}, R_{2}\right), \ldots$ be an enumeration of finite rooted L frames and let $\mathfrak{F}=(W, R)$ be the disjoint union $\bigsqcup_{i \in \omega} \mathfrak{F}_{i}$. As follows from [16, Theorem 5.10] (see also [1, Lemma 4.5] for a simplified proof), each finite rooted $\mathbf{S 4}$-frame is an onto interior image of \mathbf{C}. Therefore, for each $i \in \omega$ there is an onto interior map $f_{i}: \mathbf{C} \rightarrow \mathfrak{F}_{i}$. Let X denote the disjoint union $\bigsqcup_{i \in \omega} \mathbf{C}$. Then $\bigsqcup_{i \in \omega} f_{i}: X \rightarrow \mathfrak{F}$ is also an onto interior map.

We view W as a topological space with the discrete topology. Then W is noncompact locally compact Hausdorff, and so has the one-point compactification $\alpha W=W \cup\{\infty\}$. Let $\alpha R=R \cup\{(\infty, \infty)\}$. By the argument preceding Lemma 5.1, $(\alpha W, \alpha R)$ is a descriptive $\mathbf{S 4}$-frame.

Let αX be the one-point compactification of X with Ω being the point at infinity. By Lemma 7.2, αX is homeomorphic to \mathbf{C}. We extend $\bigsqcup_{i \in \omega} f_{i}$ to a map $f: \alpha X \rightarrow \alpha W$ by sending Ω to ∞. Let \mathfrak{A} be the closure algebra of clopen subsets of $(\alpha W, \alpha R)$. We claim that f^{-1} is a closure algebra homomorphism from \mathfrak{A} into $[\alpha X]^{+}$. Since f is onto, we have f^{-1} is $1-1$. We show that $f^{-1}\left((\alpha R)^{-1}[U]\right)=\mathbf{c l}_{\alpha X}\left(f^{-1}(U)\right)$ for each clopen subset U of αW.

Let U be a clopen subset of αW. Then there exist i_{1}, \ldots, i_{n} and $U_{i_{1}} \subseteq$ $W_{i_{1}}, \ldots, U_{i_{n}} \subseteq W_{i_{n}}$ such that $U=\bigcup_{k=1}^{n} U_{i_{k}}$ or $U=\alpha W-\left(\bigcup_{k=1}^{n} U_{i_{k}}\right)$. If $U=\bigcup_{k=1}^{n} U_{i_{k}}$, then

$$
\begin{aligned}
f^{-1}(\alpha R)^{-1}[U]=f^{-1}(\alpha R)^{-1}\left[\bigcup_{k=1}^{n} U_{i_{k}}\right]= & \bigcup_{k=1}^{n} f^{-1}(\alpha R)^{-1}\left[U_{i_{k}}\right] \\
& =\bigcup_{k=1}^{n} f_{i_{k}}^{-1} R_{i_{k}}^{-1}\left[U_{i_{k}}\right]
\end{aligned}
$$

Since each $f_{i_{k}}$ is an interior map from a copy of \mathbf{C} onto $W_{i_{k}}$ and each copy of \mathbf{C} is a clopen subset of αX, we have $f_{i_{k}}^{-1} R_{i_{k}}^{-1}\left(U_{i_{k}}\right)=\mathbf{c l}_{\alpha X} f_{i_{k}}^{-1}\left(U_{i_{k}}\right)$. Therefore,

$$
f^{-1}(\alpha R)^{-1}[U]=\bigcup_{k=1}^{n} \mathbf{c l}_{\alpha X} f_{i_{k}}^{-1}\left(U_{i_{k}}\right)=\mathbf{c l}_{\alpha X} f^{-1}\left(\bigcup_{k=1}^{n} U_{i_{k}}\right)=\mathbf{c l}_{\alpha X} f^{-1}(U)
$$

If $U=\alpha W-\left(\bigcup_{k=1}^{n} U_{i_{k}}\right)$, then $U=\left(W-\left(\bigcup_{k=1}^{n} U_{i_{k}}\right)\right) \cup\{\infty\}$. Let $V=W-\left(\bigcup_{k=1}^{n} U_{i_{k}}\right)$.
We show that $f^{-1} R^{-1}[V]=\mathbf{c l}_{X} f^{-1}(V)$. Indeed,

$$
\begin{aligned}
f^{-1} R^{-1}[V] & =f^{-1} R^{-1}\left[W-\bigcup_{k=1}^{n} U_{i_{k}}\right] \\
& =f^{-1} R^{-1}\left[\bigcup_{j \neq i_{k}} W_{j} \cup \bigcup_{k=1}^{n}\left(W_{i_{k}}-U_{i_{k}}\right)\right] \\
& =\bigcup_{j \neq i_{k}} f^{-1} R_{j}^{-1}\left[W_{j}\right] \cup \bigcup_{k=1}^{n} f_{i_{k}}^{-1} R_{i_{k}}^{-1}\left[W_{i_{k}}-U_{i_{k}}\right]
\end{aligned}
$$

Note that $R_{j}^{-1}\left[W_{j}\right]=W_{j}$ and $f^{-1}\left[W_{j}\right]$ is a copy of \mathbf{C}. Therefore, $\bigcup_{j \neq i_{k}} f^{-1} R_{j}^{-1}\left[W_{j}\right]=$ $\bigcup_{j \neq i_{k}} f^{-1}\left(W_{j}\right)$ is a union of all but finitely many copies of \mathbf{C}, hence is a clopen subset of X. Furthermore, by the same argument as in the previous case, $f_{i_{k}}^{-1} R_{i_{k}}^{-1}\left[W_{i_{k}}-U_{i_{k}}\right]=$ $\mathbf{c l}_{X} f_{i_{k}}^{-1}\left(W_{i_{k}}-U_{i_{k}}\right)=\mathbf{c l}_{X} f^{-1}\left(W_{i_{k}}-U_{i_{k}}\right)$. Thus,

$$
\begin{aligned}
f^{-1} R^{-1}[V] & =\bigcup_{j \neq i_{k}} f^{-1}\left(W_{j}\right) \cup \bigcup_{k=1}^{n} \mathbf{c}_{X} f^{-1}\left(W_{i_{k}}-U_{i_{k}}\right) \\
& =\mathbf{c l}_{X} f^{-1}\left(\bigcup_{j \neq i_{k}} W_{j} \cup \bigcup_{k=1}^{n}\left(W_{i_{k}}-U_{i_{k}}\right)\right) \\
& =\mathbf{c l}_{X} f^{-1}(V) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
f^{-1}\left((\alpha R)^{-1}[U]\right) & =f^{-1}\left((\alpha R)^{-1}[V \cup\{\infty\}]\right) \\
& =f^{-1}\left(R^{-1}[V] \cup\{\infty\}\right) \\
& =f^{-1} R^{-1}[V] \cup f^{-1}(\{\infty\}) \\
& =\mathbf{c l}_{X}\left(f^{-1}(V)\right) \cup\{\Omega\} \\
& =\mathbf{c l}_{\alpha X}\left(f^{-1}(V)\right) .
\end{aligned}
$$

Consequently, f^{-1} is a closure algebra homomorphism from \mathfrak{A} into $[\alpha X]^{+}$.
By Lemma 7.2, $\alpha X=\alpha\left(\bigsqcup_{i \in \omega} \mathbf{C}\right)$ is homeomorphic to \mathbf{C}. Therefore, \mathfrak{A} is isomorphic to a subalgebra \mathfrak{B} of \mathbf{C}^{+}. Since each non-theorem of L can be refuted on one of the \mathfrak{F}_{i} 's, which are finite upsets (and downsets) of ($\alpha W, \alpha R$), each non-theorem of L can be refuted on the descriptive $\mathbf{S 4}$-frame ($\alpha W, \alpha R$) with an admissible valuation that sends propositional letters to finite (and thus clopen) subsets. This shows that each non-theorem of L can be refuted on \mathfrak{A}. By Lemma 5.1, \mathfrak{A} is an L-algebra. Since \mathfrak{A} is isomorphic to \mathfrak{B}, each non-theorem of L is refuted on an L-algebra \mathfrak{B}, and so L is the logic of \mathfrak{B}. Consequently, L is the logic of a subalgebra of \mathbf{C}^{+}.

8 Intermediate logics

Let CPC denote the classical propositional calculus and IPC the intuitionistic propositional calculus. It is well-known that IPC is properly contained in CPC and that there are continuum many logics in between IPC and CPC, called intermediate logics. In the domain of intermediate logics we can obtain even sharper results. Recall that the algebraic semantics for intermediate logics is provided by Heyting algebras. In fact, there is a dual isomorphism between the lattice of intermediate logics and the lattice of non-degenerate varieties of Heyting algebras. We recall that a Heyting algebra A is a bounded distributive lattice with a binary operation \rightarrow such that for all $a, b, c \in A$ we have $a \wedge c \leq b$ iff $c \leq a \rightarrow b$. Let A be a Heyting algebra and let $a \in A$. As usual, $\neg a$ abbreviates $a \rightarrow 0$. If $a \vee \neg a=1$, then we say that a is complemented. It is always the case that 0 and 1 are complemented elements of A. We call A connected if 0,1 are the only complemented elements of A. We also call an intermediate logic L connected if the corresponding variety \mathcal{V}_{L} of Heyting algebras is generated by a connected Heyting algebra.

There is a close connection between intermediate logics and consistent normal extensions of $\mathbf{S 4}$. Each intermediate logic can be viewed as a fragment of a consistent normal extension of $\mathbf{S 4}$. There are different embeddings of the lattice of intermediate logics into the lattice of normal extensions of $\mathbf{S 4}$. The celebrated Blok-Esakia theorem states that the lattice of intermediate logics is isomorphic to the lattice of consistent normal extensions of $\mathbf{S 4 . G r z}$. This together with the technique developed in Sects. 4 and 5 provide us with the following strengthening of Theorem 4.8 for intermediate logics.

Theorem 8.1 Let L be an intermediate logic. Then L is connected. Moreover, if L has the fmp, then:
(1) $L=L(\mathfrak{F})$ for some path-connected partial order \mathfrak{F}.
(2) $L=L(X)$ for some connected space X.
(3) $L=L(A)$ for some Heyting subalgebra A of the Heyting algebra $\mathrm{Op}(\mathbf{R})$ of all open subsets of \mathbf{R}.
(4) $L=L(A)$ for some Heyting subalgebra A of $\mathrm{Op}(\mathbf{Q})$.
(5) $L=L(A)$ for some Heyting subalgebra A of $\mathrm{Op}(\mathbf{C})$.

Acknowledgments We would like to thank the referee for useful comments in general and for offering an idea of a simplified proof of Lemma 4.7 in particular. The original proof of Lemma 4.7 was by means of ultraproducts.

References

1. Aiello, M., van Benthem, J., Bezhanishvili, G.: Reasoning about space: the modal way. J. Logic Comput. 13(6), 889-920 (2003)
2. Bezhanishvili, G., Gehrke, M.: Completeness of $S 4$ with respect to the real line: revisited. Ann. Pure Appl. Logic 131(1-3), 287-301 (2005)
3. Bezhanishvili, G., Mines, R., Morandi, P.J.: Topo-canonical completions of closure algebras and Heyting algebras. Algebra Universalis 58(1), 1-34 (2008)
4. Bezhanishvili, G., Morandi, P.J.: One-point order-compactifications. Houston J. Math. (2011). To appear
5. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. Cambridge University Press, Cambridge (2001)
6. Chagrov, A., Zakharyaschev, M.: Modal logic, volume 35 of Oxford Logic Guides. The Clarendon Press Oxford University Press, New York (1997)
7. Engelking, R.: General topology. PWN—Polish Scientific Publishers, Warsaw (1977)
8. Esakia, L.: Topological Kripke models. Soviet Math. Dokl. 15, 147-151 (1974)
9. Esakia, L.: On the theory of modal and superintuitionistic systems (Russian). In: Logical inference (Moscow, 1974), pp. 147-172. "Nauka", Moscow (1979)
10. Esakia L.: Heyting Algebras I. Duality theory (Russian). "Metsniereba", Tbilisi (1985)
11. Esakia, L.: McKinsey's modal system half a century later (Russian). In: Methodology and philosophy of science, vol. II, pp. 95-98, Moscow-Obninsk. RGNF Press (1995)
12. Esakia, L., Meskhi, V.: Five critical modal systems. Theoria 43(1), 52-60 (1977)
13. Fine, K.: An ascending chain of $\mathbf{S} 4$ logics. Theoria $\mathbf{4 0}(2), 110-116$ (1974)
14. Jankov, V.: On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures (Russian). Dokl. Akad. Nauk SSSR 151, 1293-1294 (1963)
15. Jónsson, B., Tarski, A.: Boolean algebras with operators. I. Am. J. Math. 73, 891-939 (1951)
16. McKinsey, J., Tarski, A.: The algebra of topology. Ann. Math. 45, 141-191 (1944)
17. Rautenberg, W.: Splitting lattices of logics. Arch. Math. Logik Grundlag. 20(3-4), 155-159 (1980)
18. Shehtman, V.: Everywhere" and "here". J. Appl. Non-Classic. Logics Issue Memory George Gargov 9(2-3), 369-379 (1999)
19. van Benthem, J., Bezhanishvili, G.: Modal logics of space. In: Handbook of spatial logics, pp. 217-298. Springer, Dordrecht (2007)
20. van Benthem, J., Bezhanishvili, G., Gehrke, M.: Euclidean hierarchy in modal logic. Studia Logica 75(3), 327-344 (2003)
21. Wolter, F.: The structure of lattices of subframe logics. Ann. Pure Appl. Logic 86(1), 47-100 (1997)
22. Zakharyaschev, M., Wolter, F., Chagrov, A.: Advanced modal logic. In: Handbook of philosophical logic, vol. 3, pp. 83-266. Kluwer Acad. Publ., Dordrecht (2001)

[^0]: Dedicated to Leo Esakia on his 75th birthday. David Gabelaia's research was supported by the Georgian National Science Foundation Grant for Young Researchers \# 148.
 G. Bezhanishvili (\boxtimes)

 Department of Mathematical Sciences, New Mexico State University, Las Cruces, NM 88003, USA
 e-mail: gbezhani@nmsu.edu
 D. Gabelaia

 Department of Mathematical Logic, Razmadze Mathematical Institute, M. Aleksidze Str. 1, 0193 Tbilisi, Georgia
 e-mail: gabelaia@gmail.com

[^1]: ${ }^{1}$ Actually, Fine's theorem in its original formulation applies to $\mathbf{S 4}$-frames. The version for descriptive $\mathbf{S 4}$-frames can be found in [21, Lem. 3.9]. This together with the duality between descriptive $\mathbf{S 4}$-frames and closure algebras yields the algebraic reformulation of Fine's theorem used here.

