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Abstract. A functor responsible for second obstruction problems is defined
and investigated on the category of topological spaces. In terms of this
functor we formulate and prove a classification theorem for maps, which is the
reformulation of all known classification theorems for the second obstruction.
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1. Introduction

Homotopy problems concerned with the first obstruction are effectively solved
by a cohomology functor with coefficients in the first nontrivial homotopy group
of the target space. The investigation of obstruction problems concerned with
the second obstruction uses the first two nontrivial homotopy groups as well
the cohomology operation defined by the k-invariant of the target space. The
aim of the paper is to introduce and to study the new functor called the second
obstruction functor (the first one being the cohomology functor) responsible for
the problems of the second obstruction.

The functor in question OBp,q
op (X, πp, πq) is defined in Section 3 using a pair

of abelian groups (πp, πq) as coefficient groups and involves a unary cochain
operation

op : Zp(−, πp) → Zq+1(−, πq)

with op(0) = 0. More precisely, a ‘cocycle’ of a space X is a pair of cochains

(cp.cq), cp ∈ Cp(X, πp), cq ∈ Cq(X, πq), δcp = 0, δcq = op(cp),

Two ‘cocycles’ (cp.cq) and (cp.cq) are ‘cohomological’ if there is a pair (cp−1, cq−1)
such that cp = cp+δcp−1 and cq = cq+δcq−1+op2(c

p, cp−1). Here op2 is the binary
cochain operation Zp(−, πp)×Cp−1(−, πp) → Cq(−, πq) defined in terms of op.
The second cohomology OBop(X, πp, πq) is the set of classes of ’cohomological’
‘cocycles’ (cp.cq). It is a pointed set and in some cases carries an abelian group
structure. The functor is topologically invariant and the homotopic maps induce
the same map (Section 3).

The main application, the classification theorem in terms of the second ob-
struction functor, is given in Section 7. It asserts that if the first two nontrivial
homotopy groups of a space B are πp(B), πq(B) and its k-invariant is kq+1, then
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for the q-dimensional complex X, the set π(X,B) of homotopy classes of maps
of X into B is in one-to-one correspondence with the set

OBkq+1(X, πp(B), πq(B)).

If, moreover, the other homotopy groups of B vanish, then the restriction on
the dimension of X is superfluous. In particular, if B is a two stage Postnikov
complex, B = K(πp, p, k

q+1, πq), then

π(X, K(πp, p, k
q+1, πq)) = OBkq+1(X, πp(B), πq(B)).

This theorem reformulates the classification theorems of [5], [9], [13], [12],
[15], [10], [11], [14].

In the previous papers [1], [2], [3] we considered the second obstruction prob-
lems in fibrations.

2. The Needed Cochain Operations

All cochains considered here are normalized.
If ∆n = (b0b1 · · · bn) is a standard simplex, then the standard triangulation

of I ×∆n consists of simplexes

(b0b1 · · · bibi · · · bn), i = 0, 1, 2, . . . , n,

and its faces.
If σn : ∆n → B is a singular simplex, then

id×σn : I ×∆n → I ×B

is a singular (n + 1)-chain of I ×B . Denote by I × Sing(B) the union of all

id×σn : I ×∆n → I ×B, σn ∈ Sing(B).

Obviously, I × Sing(B) is a subcomplex of Sing(I ×B ). The projection

pr : I ×B → B

defines the projection

pr : I × Sing(B) → Sing(B).

Lemma 1. If zn ∈ Cn(I × Sing(B) , G), then

[δI×Bzn][I × σn] = zn(σn × 1)− zn(σn × 0)− [δBcn−1](σn),

where
cn−1(σn−1) = zn[I × σn−1].

Proof. One has

[δI×Bzn][I × σn] = zn[∂(I × σn)] = zn[∂I × σn]− zn[I × ∂σn]

= zn[1× σn]− zn[0× σn]− zn[
∑

(−1)i(I × σn
i )]

= zn[σn × 1]− zn[σn × 0]−
∑

(−1)izn[I × σn
i ]

= zn[1× σn]− zn[0× σn]− [δB{zn[(I × σn−1)]}][σn]. ¤
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For a cocycle uq+1 ∈ Zq+1(K(πp, p), πq) let

opuq+1 : Zp(B, πp) → Zq+1(B, πq)

be the unary cochain operation defined by it. We will write it as a function
opq+1

uq+1(z
p). Obviously opq+1

uq+1(0) = 0. Vice versa, each unary cochain operation
op : Zp(B, πp) → Zq+1(B, πq) with op(0) = 0 is represented uniquely by some
normalized cocycle uq+1 ∈ Zq+1(K(πp, p), πq).

Definition 1. For a unary cochain operation op : Zp(B, πp) → Zq+1(B, πq)
define the derived binary cochain operation

opq
2(z

p, cp−1) ∈ Cq(B, πq), zp ∈ Zp(B, πp), cp−1 ∈ Cp−1(B, πp), δzp = 0,

i.e.,

op2 : Zp(B, πp)× Cp−1(B, πp) → Cq(B, πq),

by

opq
2(z

p, cp−1)[σq] = opq+1(pr∗zp − δI×Bcp−1
0 )[I × σq], σq ∈ Sing(B),

where cp−1
0 is the cochain cp−1 embedded in 0×B. Since opq+1(zp) is a normalized

cocycle, evidently,

opq
2(z

p, 0) = 0.

Proposition 1. δ[opq
2(z

p, cp−1)] = opq+1(zp)−opq+1(zp−δcp−1), in particular,
δ[opq

2(0, c
p−1)] = − opq+1(−δcp−1); hence δ[opq

2(0, c
p−1)] = 0 when δcp−1 = 0.

Proof. Let zp ∈ Zp(B, πp) and cp−1 ∈ Cp−1(B, πp); then by Lemma 1 the (q+1)-
cocycle of I × Sing(B)

opq+1(pr∗zp − δI×Bcp−1
0 )

leads to the equality

0 = opq+1(pr∗zp − δI×Bcp−1
0 )[1× σq+1]

− opq+1(pr∗zp − δI×Bcp−1
0 )[0× σq+1]− [δBcq](σq+1),

where

cq(σq) = opq+1(pr∗zp − δI×Bcp−1
0 )[I × σq];

equivalently,

δB opq
2(z

p, cp−1)(σq+1) = opq+1(zp)(σq+1)− opq+1(zp − δBcp−1)(σq+1),

i.e.,

δB opq
2(z

p, cp−1) = opq+1(zp)− opq+1(zp − δBcp−1). ¤
Definition 2. Define a derived unary operation

op3 : Zp−1(X, πp) → Zq(X, πq)

as

opq
3(z

p−1) = opq
2(0, z

p−1).

One has opq
3(0) = 0.
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Example 1. op2 of the unary cochain operation op2p−i = zp ^i zp, i =
0, 1, 2, . . . , is the binary cochain operation

op2p−i−1
2 (zp, cp−1) = cp−1 ^i zp + zp ^i cp−1 + cp−1 ^i−1 cp−1,

where zp = zp + δcp−1. In particular, 0p3 of the unary cochain operation zp ^i

zp, i = 0, 1, 2, . . . , is the unary cochain operation cp−1 ^i−1 cp−1, δcp−1 = 0.

Proof. Let us prove the second assertion.

opq
3(z

p−1)(σq) = opq
2(0, z

p−1)(σq)

= opq+1(δI×Bzp−1
0 )(I × σq) = [δI×Bzp−1

0 ^i δI×Bzp−1
0 ][I × σq]

=
∑

(−1)i[δI×Bzp−1
0 ^i δI×Bzp−1

0 ][(b0b1 · · · bjbj · · · bq−1bq)].

Steenrod’s definition of ^i [13] considers the set of i + 1 vertices in the set
(b0b1b2 · · · bjbj · · · bq−1bq). In our case, the corresponding product is 0 if j is not

q and if the (i + 1)-th vertex is not bq. In the case where j = q and (i + 1)-

th vertex is bq, the product is equal to the corresponding product of zp−1 for
(b0b1 · · · bq) with the set of considered vertices without the (i+1)-th vertex, i.e.,
zp−1 ^i−1 zp−1. ¤

Example 2. Let op : Zp(B, Z) → Znp(B, Z) be the n-fold ^-product. Then
op2 : Zp(B, Z)× Cp−1(B, Z) → Cnp(B, Z) is

op2(z
p, cp−1) =

n∑
1

(−1)(i+1)p zp ^ · · · ^ zp︸ ︷︷ ︸
i−1

^ cp−1 ^ zp ^ · · · ^ zp︸ ︷︷ ︸
n−i

,

where zp = zp − δcp−1.

Proof. If ∆np−1 = (b0b1 · · · bnp−1) is the standard simplex, then

(−1)i(b0b1 · · · bibi · · · bnp−1) (2.1)

is the standard oriented np-simplex of I×∆np−1. The value of the n-fold product
of the cocycle

pr∗zp − δI×∆np−1cp−1
0

(here cp−1
0 is cp−1 embedded in 0×B) on (2.1) is 0 unless j = p− 1, 2p− 1, 3p−

1, . . . , np− 1. If j = ip− 1, then the value is

−(−1)p(−1)ip−1 zp ^ · · · ^ zp︸ ︷︷ ︸
i−1

^ cp−1 ^ zp ^ · · · ^ zp︸ ︷︷ ︸
n−i

;

adding these elements we obtain op2(z
p, cp−1). ¤

If ∆q = (b0b1 · · · bn) is a standard simplex, then the standard triangulation of
∆2 ×∆n is

b0b1b2 · · · bibi · · · bjbjbj+1 · · · bn−1bn), i ≤ j, i, j = 0, 1, 2, . . . , n.

If σn : ∆n → B is a singular simplex, then

id×σn : ∆2 ×∆n → ∆2 ×B
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is a singular (n + 2)-chain of ∆2 ×B. Denote by ∆2 × Sing(B) the union of all

id×σn : ∆2 ×∆n → ∆2 ×B, σn ∈ Sing(B).

Obviously, ∆2 × Sing(B) is a subcomplex of Sing(∆2 ×B).

Lemma 2. If zn+1 ∈ Cn+1(∆2 × Sing(B), G), then

[δ∆2×Bzn+1][∆2 × σn] = [δBcn−1
(0,1,2)][σ

n] + {cn
(1,2) − cn

(0,2) + cn
(0,1)}[σn],

where

cn−1
(0,1,2) = zn+1[(∆2 × σn−1)],

cn
(1,2) = zn+1[(1, 2)× σn],

cn
(0,2) = zn+1[(0, 2)× σn],

cn
(0,1) = zn+1[(0, 1)× σn].

Proof. One has

[δ∆2×Bzn+1][∆2 × σn] = zn+1[∂(∆2 × σn)]

= zn+1[∂∆2 × σn] + zn+1[∆2 × ∂σn]

= zn+1[(1, 2)× σn]− zn+1[(0, 2)× σn] + zn+1[(0, 1)× σn]

+ zn+1
[ ∑

(−1)i(∆2 × σn
i )

]

= cn
(1,2)[σ

n]− cn
(0,2)[σ

n] + cn
(0,1)[σ

n] +
∑

(−1)izn+1[(∆2 × σn
i )]

= cn
(1,2)[σ

n]− cn
(0,2)[σ

n] + cn
(0,1)[σ

n] + [δB{zn+1[(∆2 × σn−1)]}[σn]

= {cn
(1,2) − cn

(0,2) + cn
(0,1)}[σn] + [δB{cn−1

(012)][σ
n]. ¤

Consider ∆2 ×B and the projection

pr : ∆2 × Sing(B) → Sing(B).

Define

op4 : Zp(B, πp)× Cp−1(B, πp)× Cp−1(B, πp) → Cq−1(B, πq)

as

opq−1
4 (zp, cp−1, cp−1)[σq−1]=opq+1((pr∗zp + δ∆2×Bcp−1

01 + δ∆2×Bcp−1
0 )[∆2 × σq−1],

where cp−1
01 is pr∗cp−1 embedded in (01)×B, cp−1

0 is cp−1 embedded in 0×B.

Proposition 2.

δ opq−1
4 (zp, cp−1, cp−1) = opq

2(z
p, cp−1)

− opq
2(z

p, cp−1 + cp−1) + opq
2(z

p + δcp−1, cp−1),

in particular,

opq
2(z

p,−cp−1) + opq
2(z

p + δcp−1, cp−1) = −δ opq−1
4 (zp,−cp−1, cp−1).
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Proof. Use Lemma 2 for the cocycle zq+1 =opq+1(pr∗zp−δ∆2×Bcp−1
01 −δ∆2×Bcp−1

0 ).
One has

0 = [δB opq−1
4 (zp, cp−1, cp−1)[σq] + opq

2(z
p, cp−1)

− opq
2(z

p, cp−1 + cp−1) + opq
2(z

p + δcp−1, cp−1). ¤

Definition 3. The restriction of operation opq−1
4 on

0× Zp−1(B, πp)× Zp−1(B, πp) ⊂ Zp(B, πp)× Cp−1(B, πp)× Cp−1(B, πp)

is the operation

opq−1
5 : Zp−1(B, πp)× Zp−1(B, πp) → Cq−1(B, πq).

The following proposition is a corollary of Proposition 2.

Proposition 3.

δB[opq−1
5 (zp−1, zp−1)] = opq

3(z
p−1) + opq

3(z
p−1)− opq

3(z
p−1 + zp−1),

i.e., opq
3(z

p−1) is an additive operation.

Example 3. op5 of the unary cochain operation zp ^i zp is the binary
cochain operation zp−1 ^i−1 zp−1.

3. The Functor OB

Let X be a space, (πp, πq) be a pair of abelian groups and op : Zp(−, πp) →
Zq+1(−, πq) be a cochain operation. Consider pairs of normalized cochains

(zp, zq),

where zp ∈ Cp(X, πp), zq ∈ Cq(X, πq), such that

δzp = 0, δzq = op(zp).

Definition 4. (zp, zq) ∼ (zp, zq) if there are cp−1 ∈ Cp−1(X, πp) and cq−1 ∈
Cq−1(X, πq) such that zp + δcp−1 = zp and zq + δcq−1 + op2(z

p, cp−1) = zq.

Proposition 4. ∼ is an equivalence relation

Proof. (a) ∼ is reflexive: (zp, zq) ∼ (zp, zq): zp + δX0 = zp and zq = zq + δX0+
op2(z

p, 0); here op2(z
p, 0p−1) = 0 because it is a value of op on degenerated

simplexes.
(b) ∼ is transitive: Let zp + δXcp−1 = zp, zq + δXcq−1 + op2(z

p, cp−1) = zq

and zp + δXup−1 = z̃p, zq + δXuq−1 +op2(z̃
p, up−1) = z̃q. It follows zp + δXcp−1 +

δXup−1 = z̃p and [zq + δXcq−1 + op2(z
p, cp−1)] + δXuq−1 + op2(z̃

p, up−1) = z̃q.
On the other hand, by Proposition 2, op2(z̃

p − δcp−1, cp−1) − op2(z̃
p, cp−1 +

up−1) + op2(z̃
p, up−1) −δ[op4(z̃

p, cp−1, up−1)] = 0; so we have zq + δX [cq−1 −
op4(z̃

p, cp−1, up−1) + uq−1] + op2(z̃
p, cp−1 + up−1) = z̃q.

(c) ∼ is symmetric: If (zp, zq) ∼ (zp, zq), then zp + δXcp−1 = zp and
zq +δXcq−1+op2(z

p, cp−1) = zq; hence zp+δX(−cp−1) = zp and zq +δX(−cq−1)−
op2(z

p, cp−1) = zq. Here, by Proposition 2, − op2(z
p,−cp−1) = op2(z

p,−cp−1)−
δ op4(z

p,−cp−1, cp−1); hence zq + δX(−cq−1 − op4(z
p,−cp−1, cp−1)) +

op2(z
p,−cp−1) = zq. ¤
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Definition 5. The set of equivalence classes of pairs (zp, zq) is denoted by
OBkq+2(X, πp, πq). The element containing (0, 0) is denoted by 0.

OBkq+2(X, πp, πq) is a contravariant functor on the category of topological
spaces with values in the pointed sets.

Proposition 5. If i : X ⊂ Y is a homology isomorphism, then OB(i) is a
one-to-one map.

Proof. (a) Surjectivity: Consider (zp
X , zq

X). In our case Zi(Y,G) → Zi(X, G) is
epimorphfic. Then there is zp

Y such that zp
Y |X = zp

X . We have δXzq
X = op(zp

X);
it follows that op(zp

Y ) is a coboundary, i.e., there is zq
Y such that δY z̄q

Y = op(zp
Y );

then δX(zq
X − i∗zq

Y ) = 0. There is z
q
Y with δz

q
Y = 0 and i∗zq

Y = zq
X − i∗zq

Y , hence
zq

X = i∗(zq
Y + zq

Y ). On the other hand, δY (z
q
Y + zq

Y ) = δY zq
Y = op(zp

Y ); hence the
pair (zp

Y , z
q
Y + zq

Y ) covers (zp
X , zq

X)
(b) Injectivity: Let (zp

Y , zq
Y ) and (zp

Y , zq
Y ) be such that i∗(zp

Y , zq
Y ) ∼ i∗(zp

Y , zq
Y );

then i∗zp
Y −i∗zp

Y = δXcp−1
X and i∗zq

Y −i∗zq
Y = δXcq−1

X +op(cp−1
X , i∗zp

Y ). Then there

is cp−1
Y such that i∗cp−1

Y = cp−1
X and δY cp−1

Y = zp
Y −zp

Y , and i∗zq
Y −i∗zq

Y = δXcq−1
X +

op2(c
p−1
X , i∗zp

Y ); it follows that zq
Y − zq

Y − op2(c
p−1
Y , zp

Y ) is a coboundary. ¤
As easy corollaries one has the following two facts.

Theorem 1. If f, g : X → Y are homotopic maps, then OB(f) = OB(g).

Proof. The projection I × X → X and embeddings h0, h1 : X → I × X,
where h0(x) = (0, x) and h1(x) = (1, x), are homology isomorphisms. Hence
OB(X) → OB(I ×X) is a one-to-one map. ¤

Theorem 2 (Topological invariance). If L is a simplicial complex and |L|
is its realization, then OBkq+2(|L|, πp, πq) → OBkq+2(L, πp, πq) is a one-to-one
map.

Proposition 5 can be sharpened in form of

Theorem 3. If f : X → Y is a homology isomorphism, then OB(f) is a
one-to-one map.

Proof. In our case one has the homology isomorphisms

X ⊂ Z(f) and Y ⊂ Z(f),

(Z(f) being the cylinder of the map f). On the other hand, the triangle

X → Z(f)
↘ ↑

Y

is commutative up to homotopy. The assertion follows from Proposition 5 and
Theorem 1. ¤

Lemma 3. There is a functorial exact sequence of pointed sets

Hp−1(X, πp)
op3→ Hq(B, πq) → OBkq+1(X, πp, πq) → Hp(X, πp)

op→ Hq+1(X, πq).

Here op3 is a homomorphism.
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Proof. Proposition 3 shows that op3 is a homomorphism. The rest is checked
easily. ¤

Example 4. Assume that π2 = Z, π3 = Z and let k4 ∈ Z4(K(Z, 2), Z) be
ζ2 ^ ζ2, where ζ2 is the basic cocycle in C2(Z, 2, Z). Then the definition of
the functor OBk4(B, π2, π3) in terms of the cocycle k4 = ζ2 ^ ζ2 becomes as
follows: one considers pairs (z2, z3), such that δz2 = 0, δz3 = z2 ^ z2. The
transformation is z2 = z2 + δc1, z3 = z3 + δc2 + c1 ^ z2 + z2 ^ c1.

Example 5. Assume that p º 2, πp = Z, πp+1 = Z2 and let kp+2 ∈
Zp+2(K(Z, p), Z2) be ζp ^p−2 ζp, where ζp is the basic cocycle in K(Z, p).
Then the definition of the functor OBkp+2(B, πp, πp+1) in terms of the cocy-
cle kp+2 = ζp ^p−2 ζp is as follows: one considers pairs (zp, zp+1) such that
δzp = 0, δzp+1 = zp ^p−2 zp. The transformation is zp = zp + δcp−1, zp+1 =
zp+1 + δcp + zp ^p−2 cp−1 + cp−1 ^p−2 zp + cp−1 ^p−3 cp−1. Define the addition

in OBp, p+1
ζp^p−2ζp(B, Z, Z/2) as

(zp, zp+1) + (zp
1 , z

p+1
1 ) = (zp + zp

1 , z
p+1 + zp+1

1 + zp ^p−1 zp
1);

it is an abelian group.

Remark 1. The exact sequence of Lemma 3 for the functor

OBp,p+1
ζp^p−2ζp(X,Z, Z/2),

i.e.,

Hp−1(X, Z)
Sq2→ Hp+1(X, Z/2Z) → OBp,p+1

ζp^p−2ζp(X,Z,Z/2)

→ Hp(X,Z)
Sq2→ Hp+2(X,Z/2Z)

is the exact sequence of abelian groups.

Example 6. Assume that pº2, πp =Z, πnp =Z and let knp∈Znp(K(Z, p), Z)
be an n-fold ^-product of the basic cocycle ζp in K(Z, p). Then the definition
of the functor OBp,np−1

knp (B, Z, Z) in terms of the cocycle knp = ζp ^n ζp in view
of example 2 is as follows: one considers pairs (zp, znp−1) such that δzp = 0,
δznp−1 = zp ^ zp ^ (×n) ^ zp. The transformation is zp = zp + δcp−1,

znp−1 =znp−1 + δcnp−2 +
n∑
1

(−1)(i+1)p zp ^ · · · ^ zp︸ ︷︷ ︸
i−1

^ cp−1 ^ zp ^ · · · ^ zp︸ ︷︷ ︸
n−i

.

4. The k-Invariant of a Space

Let Y be a topological space and πp = πp(Y ) its homotopy group. For
each element α ∈ πp choose a map (∆p, ∂∆p) → (Y, ∗) representing it. Then
we have a map of the p-skeleton of K(πp,p) into the space Y which extends
to the (p + 1)-skeleton. If πi(Y ) = 0, p < i < q, then the first obstruction
for this map to be extended on the (q + 1)-skeleton of K(πp,p) is a cocycle
kq+1 ∈ Zq+1(K(πp,p), πq(Y )). Its class is an invariant of the space Y and is
called a k-invariant.
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Remark 2. We assume that the map K(πp, p)(q) → Y is fixed.

Here are some known k-invariants (written as unary cochain operations) (see
[5]);

1) Sn is the sphere, n = 2, 3, . . . : the k-invariant is the operation zn ^n−2 zn

(zn is the singular main n-cocycle).
2) PCn is the complex projective n-space: the k-invariant is the operation

z2 ^ · · · ^ z2︸ ︷︷ ︸
(n+1)-times

; here z2 is the main 2-cocycle (see [4]).

3) A space B is aspherical in dimensions less than n: there is a pairing

πn(B)⊗ πn(B) → πn+1(B)

and the k-invariant is the operation zn ^n−2 zn (zn is the singular main n-
cocycle) (see [10], [11]).

5. The Characteristic Class of a Map

Let B be a space, πi(B) = 0, i < q, i 6= p. Let kq+1 ∈ Z(K(πp, p), πq) be the
k-invariant of B and, as already assumed in Remark 2, the map

K(πp, p)(q) → B

be fixed. Assume the map
f : X → B

to be given. We are going to assign to it a pair

(zp
f , z

q
f ),

the second obstruction pair, as follows. Fix a point ∗ ∈ B. Consider the cylinder
I × Sing(X). Consider the map on the lower base as

f∗ : 0× Sing(X) → B

and on the p-skeleton of the upper base as the constant map

1× Sing(X)(p) → ∗ ∈ B.

Since πi(B) = 0, i < p, the map

[1× Sing(X)](p) ∪ [0× Sing(X)] → B

extends to a map

[I × Sing(X)](p) ∪ [0× Sing(X)] → B,

where [I×Sing( X)](p) is the p-skeleton. Hence an obstruction (cellular) (p+1)-
cocycle ζp+1 ∈ Zp+1(I × X , 0 × X) is defined. Let zp(σp)=ζp+1(I × σp). It
follows that δXzp = 0 (zp is called the first obstruction cocycle). Let us proceed
as follows. Change the map on the upper cell 1× σp (which is a constant map)

by zp(σp) (i.e., consider the map 1× Sing(X)(p) zp→ K(πp, p)(q) → B; the second
map has already been fixed above) and extend it to the q-skeleton of the top of
I × Sing(X) as

1× Sing(X)(q) zp→ K(πp, p)(q) → B.
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So we have the map

[I × Sing(X)](p) ∪ [1× Sing(X)](q) ∪ [0× Sing(X)] → B.

This map evidently extends to the (p + 1)-skeleton and, then extends – via
πi(B) = 0, p < i < q – to the q-skeleton of [I×Sing(X), 0×Sing(X)]. One has an
obstruction cocycle ζq+1 on (I×Sing( X), 0×Sing(X)). Let zq(σq)=ζq+1(I×σq).
It follows that

(δXzq)(σq+1) = kq+1(zp|σq+1),

where kq+1 is the obstruction cocycle of the already fixed map

K(πp, p)(q) → B

(i.e., the k-invariant of B), zp is the p-cocycle defined above and zp|σq+1 is the
restriction of cocycle zp on the singular (q + 1)-simplex σq+1, i.e., the (q + 1)-
simplex of complex K(πp, p). So the pair (zp, zq) ≡ (zp

f , z
q
f ), the second obstruc-

tion pair, is defined.

Remark 3. The procedure of constructing the obstruction pairs is such that
if the pair

(zp
f , z

q
f )

is defined on the subcomplex of Sing(X), then it extends (not uniquely) on the
Sing(X).

Definition 6. Let

d(f) ∈ OBkq+1(X, πp(B), πq(B))

be the class containing the second obstruction pair (zp
f , z

q
f ). d(f) is called the

characteristic class of the map f .

Theorem 4. d(f) is correctly defined.

Proof. Let us consider two embeddings

i0, i1 : Sing(X) → Sing(I ×X),

where i0(σ) = (0, σ) and i1(σ) = (1, σ). These maps are homotopic and hence,
by Theorem 1,

OB(i0) = OB(i1). (5.1)

Let (zp, zq) and (zp, zq) be two obstruction pairs assigned as above to the same
map f. Consider the identical homotopy

F : I ×X → B, F (x, t) = f(x).

As indicated in Remark 3, the procedure of constructing the pairs is such that
there exists a pair (zp

F , zq
F ) with

(zp
F , zq

F )|(0×X) = (zp, zq)

and
(zp

F , zq
F )|(1×X) = (zp, zq).

It follows by (5.1) that (zp, zq) ∼ (zp, zq). ¤
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We are interested in the set of all pairs (zp
f , z

q
f ) for given f . For this, consider

the homotopy
F : I ×X → B

and a pair
(zp

F , zq
F ),

then

Lemma 4. zp
f1

= zp
f0

+ δXcp−1 and zq
f1

(b0b1 · · · , bq) = zq
f0

(b0b1 · · · , bq) +

δXcq−1[(b0b1 · · · , bq)] +
∑

(−1)i[op(zp
F )][(b0b1 · · · bibi · · · bq)], where

f1(x) = F (1, x), f0(x) = F (0, x),

cp−1(b0b1 · · · bp−1) =
∑

(−1)izp
F [(b0b1 · · · bibi · · · bp−1)],

cq−1(b0b1 · · · bq−1) =
∑

(−1)izq
F [(b0b1 · · · bibi · · · bq−1)].

Proof. The first equality follows from Lemma 1 assuming zn to be zp
F . The

second equality follows from the same Lemma 1 assuming zn to be zq
F . ¤

Remark 4. This lemma holds no matter what extension (zp
F , zq

F ) is considered.
Hence, to use the above formulas it is advisable to consider simple extensions.

Theorem 5. For the given f the class d(f) consists of all possible pairs
(zp

f , z
q
f ).

Proof. Consider (zp, zq) ∼ (zp
f , z

q
f ), i.e.,

zp + δcp−1 = zp
f , zq + δcq−1 + op2(z

p
f , c

p−1) = zq
f . (5.2)

Consider the trivial homotopy

F : I ×X → B, F (t, x) = f(x).

Define the procedure of constructing second obstruction pairs on I ×X as the
image of this procedure on X via the projection

pr : I ×X → X.

Let us change the ‘cross-section’ on 0×σp−1 by−cp−1(σp−1) (i.e., change the map
I × 0× σp−1 → B by −cp−1(σp−1) ∈ πp(B)). It is obvious that the procedure of
constructing the second obstruction pair on I×X can be continued in such a way
that on the upper base it remains unchanged. Then we get a pair (z̃p

I×X , z̃q
I×X)

such that z̃p
F = pr∗(zp

f )− δ(cp−1
0 ), where cp−1

0 is cp−1 embedded in 0×X,

zp
f = zp + δcp−1, (z̃p

I×X z̃q
I×X)|X × 1 = (zf

p, zf
q)

and
(z̃p

I×X z̃q
I×X)|X × 0 = (z̃p

0×X , z̃q
0×X) = (zp, z̃q

0×X).

By Lemma 4,

zq
f (b0b1 · · · , bq) = z̃q

X×0(b0b1 · · · , bq) + δX c̃q−1[(b0b1 · · · , bq)]

+
∑

(−1)i[op(z̃p
F )][(b0b1 · · · bibi · · · bq)].
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In view of
z̃p

F = pr∗(zp
f )− δI×X(cp−1

0 )

the above equality becomes

zq
f = z̃q

0×X + δc̃q−1 + op2(z
p
f , c

p−1).

Change the cross section on 0× σq−1 by −(c̃q−1 − cq−1
1 )(σp−1). Then

z̃q
0×X + δc̃q−1 = ˜̃zq

0×X + δ(−c̃q−1 + cq−1) + δc̃q−1 = ˜̃zq

0×X + δcq−1.

Hence
zq

f = ˜̃zq

0×X + δcq−1 + op2(z
p
f , c

p−1).

It follows by 5.2 that ˜̃zq

X×0 = zq and hence (zp, zq) is a obstruction pair assigned
to f . ¤

6. The Characteristic Class of a Space

Let B be a space, πi(B) = 0, i < q, i 6= p. Let kq+1 ∈ Zq+1(K(πp, p), πq) be
the k-invariant of B.

Definition 7. We define the characteristic class of the space B

d(B) ∈ OBkq+1(B, πp(B), πq(B)),

as the characteristic class of the identity map

id : B → B,

i.e.,
d(B) = d(id : B → B) ∈ OBkq+1(B, πp(B), πq(B)).

Lemma 5. If f : X → B, then

OB(f)[d(B)] = d(f).

Proof is obvious. ¤

7. The Homotopy Classification of Maps

Let B be a space, πi(B) = 0, i < q, i 6= p, and let

kq+1 ∈ Zq+1(K(πp(B), p), πq(B))

be the k-invariant of B. If X is a space and (zp
X , zq

X) is a pair for

OBKq+1(X, πp(B), πq(B)),

then a map
u(zp

X ,,zq
X) : X(q) → B

is defined in obvious way.

Lemma 6. If X is a complex and f : X → B is a map, then the maps

f, u(zp
f ,,zq

f ) : X(q) → B

are homotopic. In particular, if (zp
f , z

q
f ) = (0, 0), then f is homotopic to 0.



THE SECOND OBSTRUCTION FUNCTOR 431

Proof follows immediately from the procedure of constructing of the pair
(zp

f , z
q
f ). ¤

Theorem 6. If B is a space, πi = 0, i 6= p, i < q, kq+1 is the k-invariant of
B and X is a complex of dimension q and f, g : X → B, then by considering
the functor OBkq+1(Y, πp(B), πq(B)) one has D(f)[d(B)] = D(g)[d(B)] if and
only if f is homotopic to g. In particular, f is null homotopic if and only if
D(f)[d(B)]=0.

Proof. Let D(f)[d(B)] = D(g)[d(B)] and (zB, zB) ∈ d(B), then by Theorem 5
we have (zf , zf ) = (zg, zg); from Lemma 6 it follows that f and g are homotopic.

¤
Theorem 7 (Steenrod’s classification theorem). If X is a complex of dimen-

sion q and B is as in Theorem 6, then

OBkq+1(X, πp(B), πq(B))

is in one-to-one correspondence with π(X, B), the set of homotopy classes of
maps of X into B.

Proof. Follows from preceding theorem and Lemma 6. ¤

8. Hopf Invariant

Let X and B be simplicial complexes. Then by Theorem 4 we can use a
simplicial version of OB and the above theorem can be formulated for simplicial
maps. In particular,

Theorem 8. Let f : Sn+1 → Sn be a simplicial map in some subdivisions
of the spheres. Let zn be the main simplicial cocycle of Sn and let cn−1 ∈
Cn−1(Sn+1, Z) be such that δcn−1 = f ∗zn, then f is an essential map if and only
if the cocycle of Sn+1, cn−1 ^n−3 cn−1 + cn−1 ^n−2 f ∗zn, is not a coboundary.

Proof. The k-invariant of Sn is zn ^n−2 zn. Hence one must use the functor of
Example 4 if n = 2 and that of Example 5 if n > 2. It follows that (zn, 0) ∈
d(Sn) (simplicial (n + 1)-cochains are 0). Transforming f ∗(zn, 0) = (f ∗zn, 0)
using the pair (−cn−1, 0), δcn−1 = f ∗zn, we obtain the pair (0, cn−1 ^n−3 cn−1+
cn−1 ^n−2 f ∗zn). ¤
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