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THE PREDIFFERENTIAL OF A PATH FIBRATION

N. BERIKASHVILI AND M. MIKIASHVILI

Abstract. For a simply connected space B the Hirsch model of path fibra-
tion is constructed in terms of B. In particular this means the calculation of
loop space cohomology. As an application, the Hirsch model of the fiber of
any fibration over B is given.
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1. Introduction

Let k be a commutative ring and

F → E
p→ B

be a Serre fibration. If Hn(F, k), n = 0, 1, 2, . . . , are free k-modules, then the
cohomological Hirsch model of the space E is the bigraded k-module

Y ∗,∗ = C∗(B,H∗(F, k))

with the twisted differential defined by some (not uniquely determined) twisting
cochain

a ∈ C∗(B, Hom∗(H∗(F, k), H∗(F, k)), dim a = +1, da = −aa.

There is a chain map of the Hirsch model to the double complex X∗∗ (cohomo-
logically equivalent to the cochain complex C∗(E, k))

C∗(B,H∗(F, k))a → X∗∗,

inducing an isomorphism of cohomology [5, 3]. If we assume B simply con-
nected, then a is of the form

a = a2,−1 + a3,−2 + a4,−3 + · · ·+ ai,−i+1 + · · · ,

an,−n+1 ∈ Cn(B, Hom−(n−1)(H∗(F, k), H∗(F, k))).

The condition

dAa = −aa
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in our case is equivalent to the sequence of equations

δBa2,−1 = 0,
δBa3,−2 = −a2,−1a2,−1,

δBa4,−3 = −a2,−1a3,−2 − a3,−2a2,−1,
δBa5,−4 = −a2,−1a4,−3 − a3,−2a3,−2 − a4,−3a2,−1,

...
δBaq+1,−q = −a2,−1aq,−q+1 − · · · − aq,−q+1a2,−1

(1.1)

and so on.
The twisted differential on Y ∗,∗ is defined by the formula

da(c) = δB(c) + a ^ c.

In details,

da(c
p,q) = δB(cp,q) + a2

q ^ cp,q + a3
q ^ cp,q

+ a4
q ^ cp,q + · · ·+ aq+1

q ^ cp,q

for cp,q ∈ Cp(B, Hq(F, k)), where an
q ∈ Cn(B, Hom(Hq, Hq−n+1)) is the com-

ponent of an,−n+1 acting on Hq. Clearly, the components an
q determine an,−n+1

uniquely. For the path fibration

ΩB → PB → B

PB is acyclic, so spectral sequence arguments immediately give H1(ΩB) =
H2(B), but H2(ΩB) already involves the differentials of spectral sequence.

The aim of this paper is to write inductively on q, q = 1, 2, . . . , the coho-
mology Hq(ΩB) and a∗q, the q-component of twisting cochain a, in terms of
space B. The procedure is simple and the result is formulated as Theorem 2 in
Section 4. Section 5 gives an application for the fiber of a fibration over B.

Adams cobar construction and Eilenberg–Moore spectral sequence are pre-
sently the most convenient tools in this area. We think an alternative approach
presented here deserves some attention.

2. Preliminaries

In this section, for convenience, we give the notions of the Hirsch model and
the predifferential of a fibration as in [1, 2].

We shall consider a Serre fibration

F → E → B (2.1)

with B simply connected.
Let k be a ring and G be a module over k and assume that all k-modules

H i(F,G) are free. Consider A = C∗(B, Hom∗
k(H

∗(F, G), H∗(F, G))) and Y =
C∗(B, H∗(F,G)). It is clear that A is a bigraded algebra since Hom∗(H∗, H∗) is
a graded ring, with the product being the composition. Furthermore, Y is a left
module over A: there is a pairing A⊗Y → Y, where the product is defined by the
^-product of B and the obvious pairing of coefficients: Hom∗(H∗, H∗)⊗H∗ →
H∗.
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Consider the filtration F p(A) of the bigraded algebra A by first degree and
let a ∈ A be such that dim a = +1, a ∈ F 2(A) (i.e., a = a2,−1 + a3,−2 + a4,−3 +
· · ·+ ai,−i+1 + · · · ) and dAa = −aa. Such elements are called twisting elements
of the algebra A. The set of all twisting elements is denoted by T (A). It turns
out that day = dY y + ay is a differential in Y (i.e., dada = 0). Denote the
complex (Y, da) by Ya.

Let

g = 1− u1,−1 − u2,−2 − u3,−3 − · · · ,

un,−n ∈ An,−n = Cn(B, Hom−n
k (H∗(F,G), H∗(F,G))).

The set of such g’s is a group with multiplication as in the algebra A. It is called
the group of units: G(A) = {g | g = 1− u, u ∈ F 1A, dim u = 0}. Clearly,

(1− u)−1 = 1 + u + uu + uuu + uuuu + · · ·+ ui + · · · .

The group G(A) acts on the set T (A) via the formula

g ∗ a = gag−1 − dgg−1.

It is easy to verify that the map fg : Y → Y defined by fg(y) = gy is an
isomorphism of complexes Ya → Yg∗a.

Definition 1. We define the set of predifferentials of fibrations with base B
and fiber cohomology H∗(F, G) as the set of orbits of the set T (A) under the
action of group G(A), D(A) = T (A)/G(A) = D(B, H∗(F, G)).

The set D(B, H∗) is a contravariant functor on the category of topological
spaces B, and if f : B1 → B induces an isomorphism of homology, then D(f)
is one-to-one ([1, 2]).

The basic fact we will use below is

Theorem 1 ([1, 2]). Fibration (2.1) defines uniquely an element d(E) ∈
D(B, H∗(F,G)), called the predifferential of fibration, such that:

1) for every a ∈ d(E) the twisted complex Ya = C∗(B, H∗(F,G))a is a model of
the cochain complex C∗(E, G) (i.e., there is a chain map Ya → X∗∗ ≡ C∗(E, G)
inducing an isomorphism of homology; we call Ya the Hirsch model of the
fibration);

2) for every two elements a, b ∈ d(E) such that b = g ∗ a, g ∈ G(A), the
diagram

Yb
// X∗∗

Ya

fg

OO =={{{{{{{{

commutes up to a chain homotopy;
3) d(E) is functorial: if φ : B1 → B is a map and F → E1 → B1 is the

induced fibration, then d(E1) = D(φ)[d(E)].

(The first assertion of the theorem is due to G. Hirsch [5] and E. H. Brown
[3].)
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Note that the Hirsch model is not multiplicative: it does not carry a multi-
plicative structure.

Remark 1. This theorem is also true for the general case where cohomologies
of fibers are not free k-modules and the base is not simply connected. In this
case

Y = C∗(B, R∗H∗(F,G)), A = C∗(B, Hom∗ ∗(R∗H∗(F,G), R∗H∗(F, G)))

with R∗Hq(F, G) being a free resolution of the module Hq(F,G). The differential
is that of local systems [1, 2].

The first filtration of Ya = C∗(B, H∗(F, G))a defined by

F p = F p(Ya) =
∑
i≥p

Ci(B, H∗(F, G)),

is decreasing:

Ya = F 0 ⊃ F 1 ⊃ · · · ⊃ F p−1 ⊃ F p ⊃ F p+1 ⊃ · · · .

For the corresponding spectral sequence one has

Ep,q
2 = Hp(B, Hq(F,G)) =⇒ Hp+q(Ya). (2.2)

This spectral sequence coincides with the Serre spectral sequence of fibration
(2.1). So the questions posed as regards the Serre spectral sequence are to be
redirected to the spectral sequence (2.2). All differentials of (2.2) are easy to
write in terms of the cochain a ([2]). Even partial knowledge of a gives some
information about differentials of (2.2). For example, the pair a2,−1 + a3,−2, the
beginning of a, determines the differentials d2 and d3 of the spectral sequence.
Moreover, the Hirsch model is more handy than the fibration.

3. More about the Hirsch Model

Let us pay more attention to Ya and let us forget for convenience that it
comes from fibration, i.e., consider the following algebraic case: let U∗ be a
free graded k-module with U i = 0, i < 0, U0 = k, and Y = C∗(B, U∗),
A = C∗(B, Hom(U∗, U∗)).

If a ∈ T (A), then we have Ya. Consider the natural imbedding

U q ⊂ Ya (3.1)

as (0, q)-cocycles in the differential module Y = C∗(B, U∗), which reflects the
fact that in the spectral sequence (2.2) U q = E0,q

2 .
The filtration of complex Ya by second degree (we call it the vertical filtration)

is increasing: by definition, F q = F q(Ya) =
∑

0≤i≤q

C∗(B,U i); it is a subcomplex

in Ya and

F 0 = C∗(B, k) ⊂ F 1 ⊂ · · · ⊂ F q−1 ⊂ F q ⊂ F q+1 ⊂ · · · .
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For each u in U q+1 the (q + 2)-dimensional element of F q :

a2
q+1(u)

+a3
q+1(u)

+a4
q+1(u)

. . .

+aq+1
q+1(u)

+aq+2
q+1(u)

(3.2)

is a(u) and if by (3.1) we regard u as an element of C0(B, U q+1) ⊂ Ya, it is au
and from the formula dYa(u) = dY (u) + au it follows that

dYa(u) = dY (u) + au = 0 + a(u) = a(u).

Hence it is a cocycle in Ya and belongs to F q.
Let

x2

+x3

+x4

. . .
+xq+1

+xq+2

be another (n + 2)-cocycle of F q homological to (3.2) in F q. Hence there is a
(q + 1)- cochain b(u) in F q, say,

b1(u)
+b2(u)

+b3(u)
. . .

+bq(u)
+bq+1(u)

such that dYab(u) = x− a(u).

Lemma 1. Assume that u is one of the basis elements of U q+1 and define
gi

q+1 ∈ Ci(B, Hom(U q+1, U q+1−i)) on the basis elements of U q+1 by gi
q+1(uk) = 0,

uk 6= u, and gi
q+1(u) = bi. Then, denoting gq+1 = g1

q+1 + g2
q+1 + · · · + gq+1

q+1, one
has:

i) a ≡ (1−gq+1)∗a coincides with a for U j, j < q+1, and for basis elements
ut of U q+1 others than u;

ii) a(u) ≡ ((1− gq+1) ∗ a)(u) =
∑

i x
i = x.

Proof. The proof is a straightforward application of the formula

(1− g) ∗ a = (1− g)a(1− g)−1 − d(1− g).(1− g)−1

recalling that in our case where g = gq+1, one has gg = 0, and hence

(1− g)−1 = 1 + g, dg.g = 0, gag = 0, ga(u) = 0.
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For example,

[(1− g) ∗ a](u) = [(1− g)a(1 + g) + dg](u) = (a− ga + ag + dg)(u)

= a(u) + ag(u) + dg(u) = a(u) + da(g(u)) = a(u) + dab(u) = x.

The lemma is proved. ¤

It is evident that

H i(Ya) = H i(F q), i ≤ q. (3.3)

Define

f : U q+1 → Hq+2(F q) (3.4)

as the composition

U q+1 → Zq+2(F q) → Hq+2(F q)

where the cycles are with respect to the differential da, U q+1 is considered as
imbedded in Ya as above in (3.1) and the first map is da.

For the first spectral sequence of Ya we have

Ep,q
2 = Hp(B, U q) =⇒ Hp+q(Ya). (3.5)

Lemma 2. If Ya is acyclic then for q > 0 one has:
i) U q+1 = Hq+2(F q). This isomorphism is (3.4) (induced by the differential

da on the subgroup U q+1 ⊂ Ya imbedded as (0, q + 1)-cocycles in the differential
module Ya = C∗(B,U q+1));

ii) H i(F q) = 0 if i ≤ q + 1.

Proof. For i ≤ q, assertion ii) follows from (3.3) and H∗(Ya) = 0; for i = q + 1,
it follows from simply connectedness of B by virtue of spectral sequence argu-
ments. As for assertion i), in our case the map f in (3.4) is a monomorphism:
if f(u) = 0 then da(u) = da(v), dim v = q + 1, v ∈ F q; and we see that all
differentials of the spectral sequence (3.5) vanish on the element u ∈ E0,q+1

2 ;
but from E0,q+1

∞ = 0 follows u = 0. On the other hand, f is an epimorphism: if
not, then for some p ≥ 2 it would be Ep,q−p+2

∞ 6= 0, which contradicts the fact
that Hq+2(Ya) = 0. ¤

The main fact is the uniqueness of acyclic models over the same space given
in the lemma below.

Lemma 3. Let Y =C∗(B, U∗) and Z =C∗(B, V ∗), A=C∗(B, hom∗(U∗, U∗)),
A1 = C∗(B, hom∗(V ∗, V ∗)). Let a ∈ T (A), b ∈ T (A1) be such that Ya and Zb

are acyclic complexes. Then there exist isomorphisms

U i → V i, i = 1, 2, . . . , (3.6)

and elements a′ ∼ a, b′ ∼ b such that the map Y → Z induced by (3.6) is an
isomorphism of complexes Ya′ → Zb′ ; hence U i-s and the predifferential a are
uniquely defined by the space B.
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Proof. We are going to prove that the following inductive assertion is valid.
(Pq) : there exist isomorphisms U i → V i, i ≤ q, and a and b coincide

in the range i ≤ q via these isomorphisms (then, of course, the induced map
F q(Ya) → F q(Zb) is an isomorphism of complexes).

The assertion (P0) is true: F 0Ya = C∗(B, k) = F 0Zb.
Assume that (Pq) is valid. Then we can write F q(Ya) = F q(Zb). By Lemma 2

we have two isomorphisms

U q+1 → Hq+2(F q) ← V q+1 (3.7)

induced by the differentials in F q+1(Ya) and F q+1(Zb), respectively. This defines
an isomorphism U q+1 → V q+1. Choose a basis for Hq+2(F q(Ya) = F q(Zb)), say,
h1, h2, . . . , hl, . . . and choose cocycles in each hl:∑

i+j=q+2

xij
l ∈ hl.

We have by isomorphism (3.7) that hl is in U q+1 and da(hl) is homological to∑
i x

ij
l , by Lemma 1 we can transform a to a assuming u = hl:

a(hl) =
∑

i

xij
l

In a similar way by Lemma 1 we can transform b to b assuming u = hl:

b(hl) =
∑

i

xij
l .

Recall that for F q the elements a and b are not changed and the new a and b
coincide for the range q + 1, too, via isomorphism (3.7) (and still Ya and Zb are
acyclic). Hence Pq+1 is valid. ¤

The equivalent formulation of this lemma is

Lemma 4. Let Y = C∗(B, U∗), a ∈ T (A), A = C∗(B, Hom(U∗, U∗)) and let
Ya be acyclic, then the predifferential d(Ya) ∈ D(B,U∗) with a ∈ d(Ya) is defined
uniquely in the sense that if Zb is another acyclic complex with Z = C∗(B, V ∗),
b ∈ T (A1), A1 = C∗(B, Hom(V ∗, V ∗)), then there are isomorphisms

U i → V i, i = 0, 1, . . . ,

such that, after identifying the algebras A and A1 via these isomorphisms the
predifferentials d(Ya) and d(Zb) coincide, i.e., a and b become equivalent twisting
elements: b = g ∗ a.

4. The Main Theorem

Lemma 2 gives a clue how to construct acyclic Ya for given B. It runs as
follows.

Let B be a simply connected space and k be a field. Let U(B)0 = k, then
F 0Ya = C∗(B, k). It consists of one row and the differential is the coboundary
operator δ of B. One has

H i(F 0Ya) = 0, i < 2. (4.1)
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Let U(B)1 be H2(F 0Ya). Choose a basis in H2(F 0Ya), say {uλ}, and for
every uλ choose a cocycle l(uλ) in it, l(uλ) ∈ uλ. Identify these basis elements
as basis elements of U1 and define a cochain a2

1 ∈ C2(B, Hom(U(B)1, U(B)0))
for a simplex σ2 ∈ B by

[a2
1(σ

2)](uλ) = l(uλ)(σ
2).

The constructed a2
1 ∈ C(B, Hom(U(B)1, U(B)0))) is a cocycle,

δBa2
1 = 0 (4.2)

(the first equation of (1.1)): from

[(δBa2
1)(σ

3)](uλ) =
∑

(−1)i[a2
1(σ

3
i )](uλ) =

∑
(−1)il(uλ)(σ

3
i ) = 0

follows (4.2). This constructs the twisted complex F 1Ya = C∗(B,U(B)i), i =
0, 1, with two rows. The differential for the new row is

dcp,1 = δcp,1 + a2
1c

p,1.

One has F 0Ya ⊂ F 1Ya and H i(F 1Ya) = 0, i < 3.
Let U(B)2 be H3(F 1Ya), choose a basis in H3(F 1Ya), say {uλ}, and for every

uλ choose a cocycle l(uλ) in it, l(uλ) ∈ uλ. Let its components be l2,1(uλ) and
l3,0(uλ). Identify these basis elements as basis elements of U2 and let cochain
a2

2 ∈ C2(B, Hom(U2, U1)) be defined for a simplex σ2 ∈ B by [a3
2(σ

2)](uλ) =
l2,1(uλ)(σ

2) and define the cochain a3
2 ∈ C3(B, Hom(U2, U0)) for a simplex

σ3 ∈ B by

[a2
2(σ

3)](uλ) = l3,0(uλ)(σ
3).

Evidently, the equation dal(uλ) = 0 is equivalent to the following two equations

δl2,1(uλ) = 0,
δl3,0(uλ) + a2

1l
2,1(uλ) = 0.

From the first equation it follows that

δa2
2 = 0

and from the second one that

δa3
2 = −a2

1a
2
2.

This constructs the twisted complex F 2Ya = C∗(B, U(B)i), i = 0, 1, 2, with
three rows. One has F 1Ya ⊂ F 2Ya. The differential for the new row is

dcp,2 = δcp,2 + a2
1c

p,2 + a3
2c

p,2.

It is obvious that

H i(F 2Ya) = 0, i < 4.

Suppose now that F qYa with q + 1 rows has already been constructed and let
us construct F q+1Ya as follows.
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Let U(B)q+1 be Hq+2(F qYa). Choose a basis in Hq+2(F qYa), say {uλ}, and
for every uλ choose a cocycle l(uλ) in it, l(uλ) ∈ uλ; let its components be

l2,q(uλ)
l3,q−1(uλ)

. . .
lq+1,1(uλ)

lq+2,0(uλ).

This means that the equations

δl2,q(uλ) = 0,
δl3,q−1(uλ) + a2

q−1l
2,q(uλ) = 0,

δl4,q(uλ) + a2
q−2l

3,q−1(uλ) + a3
q−2l

2,q(uλ) = 0,
...

δlq+1,1,(uλ) + a2
2l

q,2(uλ) + a3
3l

q−1,3(uλ) + · · ·+ aq
ql

2,q(uλ) = 0,
δlq+2,0,(uλ) + a2

1l
q+1,1(uλ) + a3

2l
q,2(uλ) + · · ·+ aq+1

q l2,q(uλ) = 0

are valid. From the first equation it follows that

δa2,−1
q+1 = 0;

from the second equation that

δa3,−2
q+1 = −a2,−1

q a2,−1
q+1 ;

from the third equation that

δa4,−3
q+1 = −a2,−1

q−1 a3,−2
q+1 − a3,−2

q a2,−1
q+1

and so on. From the last equation it follows that

δaq+2,−q−1
q+1 = −a2,−1

1 aq+1,−q
q+1 − · · · − aq,−q+1

q a2,−1
q+1 .

This constructs the twisted complex F q+1Ya = C∗(B,U(B)i), i = 0, 1, . . . , q+1,
with q + 2 rows. It is clear that

F qYa ⊂ F q+1Ya

and
H i(F q+1Ya) = 0, i < q + 3.

The differential for the new row is

dcp,q+1 = δcp,q+1 + a2,−1
q+1 cp,q+1 + a3,−2

q+1 cp,q+1 + · · ·+ aq+2,−q−1
q+1 cp,q+1.

This ends the inductive construction of Y a and a∗∗.
Denote the constructed U , a, Y by U(B), a(B), Y (B), respectively.
Now the first assertion of Theorem 1 in Section 2 and Lemma 3 in Section 3

immediately imply

Theorem 2. Let
ΩB → PB → B

be the path fibration of a simply connected space B and let Ya(B) =
C∗(B, U(B)∗))a(B) be some acyclic twisted complex constructed above. Then
H i(ΩB, k) = U(B)i and d(PB) = d(Ya).



424 N. BERIKASHVILI AND M. MIKIASHVILI

5. The Hirsch Model of Fiber

Let F → E
p→ B be a Serre fibration and ΩB → PB → B the path fibration

of the basis. If
ΩB → F ′ → E (5.1)

is the fibration induced from the path fibration by E → B, then F ′ is homotopy
equivalent to F . Hence the Hirsch model of fibration (5.1) is the Hirsch model
of F . So, by the theorem of the preceding section, the twisting cochain of the
model for F ′ is p∗(a(B)) ∈ A1 = C∗(E, Hom(U(B)∗, U(B)∗)), where

a(B) ∈ A = C∗(B, Hom(U(B)∗, U(B)∗))

is constructed in the preceding section. So one has

Theorem 3. Let F be the fiber of a Serre fibration

F → E
p→ B,

with π1(B) = 0 and (U(B), a(B)), a(B) ∈ A = C∗(B, Hom(U(B)∗, U(B)∗)), be
the pair constructed in the preceding section; then the twisted product

C∗(E, U∗(B))p∗(a(B)),

where

p∗ : A = C∗(B, Hom(U(B)∗, U(B)∗) → A1 = C∗(E, Hom(U(B)∗, U(B)∗))

is the induced homomorphism, is the Hirsch model of the fiber F .
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