ON THE OBSTRUCTION FUNCTOR

N. BERIKASHVILI, TH. KADEISHVILI, S. KHAZHOMIA, D. MAKALATIA AND M. MIKIASHVILI

Abstract

An obstruction functor in terms of Postnikov towers is introduced and studied.

1. Introduction

Let $\pi_{*}=\left\{\pi_{1}, \pi_{2}, \ldots, \pi_{i}, \ldots\right\}$ be a graded abelian group. According to [1] the obstruction functor $D O\left(-, \pi_{*}\right)$ is a contravariant functor from the category Top of topological spaces B into the category of sets with distinguished subset and element $* \in \overline{D O}\left(B, \pi_{*}\right) \subset D O\left(B, \pi_{*}\right)$, with the following properties.

Property 1.1. If f is homotopic to g then $D O(f)=D O(g)$.
Property 1.2. For any Serre fibration $F \rightarrow E \rightarrow B$ with suitable assumption on the fiber, there is defined a functorial (with respect to induced fibrations) element $d o(E) \in D O\left(B, \pi_{*}\right)$, where $\pi_{*}=\pi_{*}(F)$ is the sequence of homotopy groups of the fiber, and E has a cross section if and only if $d o(E) \in \overline{D O}\left(B, \pi_{*}\right)$.

Property 1.3. If $\pi_{i}=0$ for all $i \neq n$ then $D O$ is the singular cohomology group $H^{n+1}\left(-, \pi_{n}\right), \overline{D O}=0$ and $d o(E)$ is the classical first obstruction class.

Property 1.4. Functor $D O$ is constructed in terms of cochains of space B and groups π_{i}. There is a reasonable criterion to define whether two cochain representations give the same element of $D O\left(B, \pi_{*}\right)$ or not.

The construction of the obstruction functor in first nontrivial case when $\pi_{k}=0, k \neq p, k \neq q$ is given (in terms of twisted tensor product) and investigated in [1].

[^0]Here we construct the obstruction functor in general case in terms of Moore-Postnikov towers with the Property 1.4 somewhat weakened: $D O$ is constructed in terms of cochains of complexes of tower not only of B.

In sections 2-4 we construct the functor $D O$ and obstruction element $d o(E)$ and establish their general properties (Properties 1,1-1,3). In section 5 we give a criterion of equivalence of two towers (Property 1.4).

Main results of this paper (partially in slightly different form) was announced in [2].

2. Preliminaries

Below, throughout this paper, all simplicial sets and topological spaces will be connected and arcwise connected respectively.

Let N be a simplicial set and π be an abelian group. Below we use only normalized cochains $c^{n} \in C^{n}(N, \pi)$. Let $Z^{n}(N, \pi)$ be the group of n-dimensional cocycles.

Recall the definition of Postnikov construction $P=P\left(N, \pi, z^{n}\right), \quad z^{n} \in$ $Z^{n}(N, \pi)$ (see for details [3]). Let $E(\pi, n)$ be the complex whose q-simplexes are cochains $u \in C^{n}(\Delta[q], \pi)$ and face and degeneracy operators ∂_{i} and s_{i} are defined by

$$
\partial_{i} u=e_{i}^{\#} u, s_{i} u=d_{i}^{\#} u ; u \in C^{n}\left(\Delta_{q}, \pi\right), 0 \leq i \leq q
$$

where $\Delta[q]$ is the standard simplicial q-simplex, $e_{i}: \Delta[q-1] \rightarrow \Delta[q]$ and $d_{i}: \Delta[q+1] \rightarrow \Delta[q]$ are the standard maps.

The Eilenberg-MacLane complex $K(\pi, n)$ is defined as the subcomplex of $E(\pi, n)$ whose simplexes $u \in C^{n}(\Delta[q], \pi)$ are cocycles $u \in Z^{n}(\Delta[q] ; \pi)$. For a simplicial set N the following bijections are well know:

$$
C^{n}(N, \pi)=\operatorname{Hom}(N, E(\pi, n)) ; Z^{n}(N, \pi)=\operatorname{Hom}(N, K(\pi, n)) .
$$

If $c^{n} \in C^{n}(N, \pi)$ then the simplicial map $\hat{c}^{n}: N \rightarrow E(\pi, n)$ is defined as follows. For a given simplex $\sigma^{q} \in N$ let $t_{\sigma^{q}}: \Delta[q] \rightarrow N$ be the standard map for σ^{q}. Let

$$
\hat{c}^{n}\left(\sigma^{q}\right)=t_{\sigma^{q}}^{\#}\left(c^{n}\right)
$$

One verifies that \hat{c}^{n} is a simplicial map. Observe also that for t_{σ} we have $t_{f(\sigma)}=f \circ t_{\sigma}$, where f is a simplicial map.

If $c^{n}=z^{n} \in Z^{n}(N, \pi)$ then $\hat{z}^{n}(N) \subset K(\pi, n)$ and hence there is a simplicial map $\hat{z}^{n}: N \rightarrow K(\pi, n)$. We use also the standard map

$$
\delta: E(\pi, n-1) \rightarrow K(\pi, n) .
$$

The complex $E(\pi, n)$ is acyclic and the homotopy groups of realization $|K(\pi, n)|$ are zero except $\pi_{n}(|K(\pi, n)|)=\pi$.

Definition 1. The Postnikov construction $P=P\left(N, \pi, z^{n}\right), z^{n} \in$ $Z^{n}(N, \pi)$, is defined as the subcomplex of $N \times E(\pi, n-1)$ consisting of all simplexes $(s, u), s \in N, \quad u \in E(\pi, n-1)$, such that $t_{s}^{\#}\left(z^{n}\right)=\delta u$. The
projection $N \times E(\pi, n-1) \rightarrow N$ defines the projection $P\left(N, \pi, z^{n}\right) \xrightarrow{p} N$. There is a standard $(n-1)$-cochain $c^{n-1} \in C^{n-1}(P, \pi)$, in the sequel called P-cochain, defined by $c^{n-1}\left(\left(\sigma^{n-1}, g\right)\right)=g$, for $\sigma^{n-1} \in N$ and $g \in \pi$, where g on the left side is looked up as an $(n-1)$-cochain of $\Delta[n-1]$.

Obviously the P-cochain is functorial and $p^{\#}\left(z^{n}\right)=\delta c^{n-1}$. Note that, for a simplicial map $f: N \rightarrow M$ and $z^{n} \in Z^{n}(M, \pi)$, we have the induced map

$$
P(f): P\left(N, \pi, f^{\#}\left(z^{n}\right)\right) \rightarrow P\left(M, \pi, z^{n}\right)
$$

of P-constructions, with $P(f)(s, u)=(f(s), u)$.
Lemma 1. If $f: N \rightarrow M$ induces an isomorphism of homology groups then $P(f): P\left(N, \pi, f^{\#}\left(z^{n}\right)\right) \rightarrow P\left(M, \pi, z^{n}\right)$ induces an isomorphism of homology groups as well, where $z^{n} \in Z^{n}(M, \pi)$.

Proof. Spectral sequence arguments.
Let $F \rightarrow E \rightarrow|N|$ be a Serre fibration over the Milnor realization of simplicial set N and s^{n-1} be a cross section over the $(n-1)$-skeleton of $|N|$. Then it is defined an obstruction cocycle $z\left(s^{n-1}\right) \in Z^{n}\left(N, \pi_{n-1}(F)\right)$. If s_{1}^{n-1} is another cross section over the ($n-1$)-skeleton which coincides with s^{n-1} on the $(n-2)$-skeleton then it is defined a difference cochain $d\left(s^{n-1}, s_{1}^{n-1}\right)=c^{n-1} \in C^{n-1}\left(N, \pi_{n-1}(F)\right)$ and $z\left(s^{n-1}\right)-z\left(s_{1}^{n-1}\right)=\delta c^{n-1}$. For a cochain $c^{n-1} \in C^{n-1}\left(N, \pi_{n-1}(F)\right)$ there exists a cross section s_{1}^{n-1} coinciding with s^{n-1} on the $(n-2)$-skeleton such that $d\left(s^{n-1}, s_{1}^{n-1}\right)=c^{n-1}$. We have the following almost evident

Lemma 2. Let $F \rightarrow E \rightarrow|N|$ be a Serre fibration over the Milnor realization of a simplicial set N and let s^{n-1} be a cross section over the ($n-1$)-skeleton of $|N|$. Consider the Postnikov construction

$$
P=P\left(N, \pi_{n-1}(F), z\left(s^{n-1}\right)\right)
$$

for obstruction cocycle $z\left(s^{n-1}\right) \in Z^{n}(N, \pi)$. Consider the fibration over $|P|$ induced from given fibration by the projection $|P| \rightarrow|N|$. Consider the induced cross section over $(n-1)$-skeleton of $|P|$ defined by $s^{n-1}: ~ p r \#\left(s^{n-1}\right)$. Consider the cross section s_{1}^{n-1}, which coincides with the latter cross section over $(n-2)$-skeleton such that (perturb the cross section $p r^{\#}\left(s^{n-1}\right)$ by P-cochain $\left.c^{n-1}\right)$

$$
z\left(p r^{\#}\left(s^{n-1}\right)\right)-z\left(s_{1}^{n-1}\right)=\delta c^{n-1},
$$

then the cross section s_{1}^{n-1} extends over the n-skeleton of $|P|$.
Definition 2. In the conditions of preceding Lemma 2 every extension of the cross section s_{1}^{n-1} over n-skeleton of $|P|$ we will call P-extension of the cross section s^{n-1}.

3. Definition of Functor $D O\left(-, \pi_{*}\right)$

Let N be a simplicial set and $\pi_{*}=\left\{\pi_{1}, \pi_{2}, \pi_{3}, \ldots\right\}$ be a sequence of abelian groups.

Definition 3. A tower $t\left(N ; z^{2}, z^{3}, z^{4}, \ldots\right)$ over N is a sequence of simplicial sets and their projections

$$
N=K_{0} \leftarrow K_{1} \leftarrow K_{2} \leftarrow \cdots
$$

together with a sequence of cocycles $z^{2}, z^{3}, z^{4}, \ldots, z^{i+2} \in Z^{i+2}\left(K_{i}, \pi_{i+1}\right)$, $i \geq 0$, such that

$$
K_{i+1}=P\left(K_{i}, \pi_{i+1}, z^{i+2}\right)
$$

Let $f: M \rightarrow N$ be a simplicial map and t be a tower over N. Then, in obvious way, we define the induced tower $\bar{t}=f^{\#}(t)$ over M by taking $\bar{z}^{i+2}=f_{i}^{\#}\left(z^{i+2}\right), i \geq 0$, where $f_{0}=f$ and $f_{i+1}=P\left(f_{i}\right)$. Hence one has a map $T(f): T\left(N, \pi_{*}\right) \rightarrow T\left(M, \pi_{*}\right)$. Thus the set of all towers $T\left(N, \pi_{*}\right)$ defines a contravariant functor $T\left(-, \pi_{*}\right)$ from the category of simplicial sets to the category of sets.

Definition 4. A tower $t\left(N ; z^{2}, z^{3}, \ldots\right)$ is said to be zero on N if $z^{2}=0$ (then $N \subset K_{1}$ by standard manner), $z^{3} \mid N=0$ (then $N \subset K_{2}$), $z^{4} \mid N=0$, (then $\left.N \subset K_{3}\right)$, and so on. Denote by $\tilde{T}\left(N, \pi_{*}\right)$ the set of all towers zero on $N . \tilde{T}$ is also a contravariant functor.

Lemma 3. If a chain map $f: C \rightarrow C_{1}$ is an epimorphism and induces an epimorphism of homology, then $\left.f\right|_{Z(C)}: Z(C) \rightarrow Z\left(C_{1}\right)$ is an epimorphism as well (here $Z(C)$ is the group of cycles).
Proof. Is trivial.
Corollary 1. For a pair $i: N_{1} \subset N$, if i induces an isomorphism of the integral homology groups, then

$$
T(i): T\left(N, \pi_{*}\right) \rightarrow T\left(N_{1}, \pi_{*}\right) \text { and } \tilde{T}(i): \tilde{T}\left(N, \pi_{*}\right) \rightarrow \tilde{T}\left(N_{1}, \pi_{*}\right)
$$

are surjective.
Proof. Let $t_{1}\left(N_{1}, z_{1}^{2}, z_{1}^{3}, \ldots\right) \in T\left(N_{1}, \pi_{*}\right)$. By Lemma 3 there is a cocycle $z^{2} \in Z^{2}\left(N, \pi_{1}\right)$ with $z^{2} \mid N_{1}=z_{1}^{2}$. Hence $P\left(N_{1}, \pi_{1}, z_{1}^{2}\right) \subset P\left(N, \pi_{1}, z^{2}\right)$ and by Lemma 1 they have isomorphic homology groups. By Lemma 3 there is a cocycle $z^{3} \in P\left(N, \pi_{1}, z^{2}\right)$ with $z^{3} \mid P\left(N_{1}, \pi_{1}, z_{1}^{2}\right)=z_{1}^{3}$. So one inductively constructs the tower $t\left(N, \pi_{*}\right)$ such that $T(i)(t)=t_{1}$. Now let t_{1} be a tower zero on N_{1}. Then we can construct t as follows. Since $z_{1}^{2}=0$ we can select $\bar{z}^{2}=0$. For $z^{3} \in P\left(N, \pi_{1}, \bar{z}^{2}\right)$ with $z^{3} \mid P\left(N_{1}, \pi_{1}, z_{1}^{2}\right)=z_{1}^{3}$ let $\bar{z}^{3}=z^{3}-p^{\#}\left(z^{3} \mid N\right)$, where $p: P \rightarrow N$ is the projection. Then $\bar{z}^{3} \mid P\left(N_{1}, \pi_{1}, z_{1}^{2}\right)=z_{1}^{3}$ too and $\bar{z}^{3} \mid N=0$. And so on. This completes the proof.

Definition 5. Two towers, $t\left(N ; z^{2}, z^{3}, \ldots\right)$ and $t_{1}\left(N ; z_{1}^{2}, z_{1}^{3}, \ldots\right)$, are equivalent (notation $t \sim t_{1}$), if there is a tower $t_{2}\left(N \times I ; z_{2}^{2}, z_{2}^{3}, \ldots\right)$, where $I=\Delta[1]$ is the unit interval, such that

$$
\begin{gathered}
t\left(N ; z^{2}, z^{3}, \ldots\right)=t_{2}\left(N \times I ; z_{2}^{2}, z_{2}^{3}, \ldots\right) \mid N \times 0, \\
t_{1}\left(N ; z_{1}^{2}, z_{1}^{3}, \ldots\right)=t_{2}\left(N \times I ; z_{2}^{2}, z_{2}^{3}, \ldots\right) \mid N \times 1 .
\end{gathered}
$$

Theorem 1. \sim is an equivalence relation.
Proof. Let t, t_{1} and t_{2} be towers over a simplicial set N and let $t \sim t_{1}$, $t_{1} \sim t_{2}$. Then one has two towers \bar{t} and \tilde{t} over $N \times I$ such that

$$
t=\bar{t}\left|N \times 0, \quad t_{1}=\bar{t}\right| N \times 1, t_{1}=\widetilde{t}\left|N \times 0, \quad t_{2}=\widetilde{t}\right| N \times 1
$$

Consider the product $N \times \Delta[2]$. Then t and t_{1} define the sum tower on the $N \times(01) \bigcup N \times(12)$. By the Corollary 1, this tower extends from $N \times(01) \bigcup N \times(12)$ on $N \times \Delta[2]$. The restriction of obtained tower on $N \times(02)$ provides the transitivity $t \sim t_{2}$. Reflexivity $t \sim t$ we obtain considering the tower $t \times I=T(p r)(t)$, where $p r: N \times I \rightarrow N$ is the projection. Symmetricity: consider $\operatorname{Sing}([01])$ and two imbeddings

$$
\begin{aligned}
i_{0}, i_{1} & : N \times I \rightarrow N \times \operatorname{Sing}([01]) \\
i_{0}(\sigma \times 0) & =\sigma \times 0, \quad i_{0}(\sigma \times 1)=\sigma \times 1, \\
i_{1}(\sigma \times 0) & =\sigma \times 1, \quad i_{1}(\sigma \times 1)=\sigma \times 0
\end{aligned}
$$

from $t \sim t_{1}$ follows by Corollary 1 there is an extension of the tower on $i_{0}(N \times I)$ to a tower on $N \times \operatorname{Sing}([01])$. Its restriction on the subcomplex $i_{1}(N \times I)$ provides the equivalence $t_{1} \sim t$.

Now we can define the obstruction functor.
Definition 6. For a simplicial set N, let

$$
D O\left(N, \pi_{*}\right)=T\left(N, \pi_{*}\right) / \sim .
$$

Definition 7. $\overline{D O}\left(N, \pi_{*}\right)$ is a subset of elements of $D O\left(N, \pi_{*}\right)$ containing at least one tower zero on N. Besides, by condition $z^{i}=0$ for all $i \geq 2$, we define distinguished element $* \in \overline{D O}\left(N, \pi_{*}\right)$.

Theorem 2. If $f: N_{1} \subset N$ induce an isomorphism of homology then $D O(f): D O\left(N, \pi_{*}\right) \rightarrow D O\left(N_{1}, \pi_{*}\right)$ and $\overline{D O}(f): \overline{D O}\left(N, \pi_{*}\right) \rightarrow \overline{D O}\left(N_{1}, \pi_{*}\right)$ are 1-1 maps.
Proof. Surjectivity of $D O(i)$ and $\overline{D O}(i)$. In virtue of Corollary $1 T(i)$ and $\tilde{T}(i)$ are surjective. Hence $D O(i)$ and $\overline{D O}(i)$ are surjective as well. Injectivity of $\mathrm{DO}(\mathrm{i})$: Let t and \bar{t} be towers over N such that

$$
t\left|N_{1} \sim \bar{t}\right| N_{1} .
$$

Hence there exists a tower t_{I} over $N_{1} \times I$ which provides this equivalence. Consider $N \times I$ and it's three subcomplexes $N \times 0, N \times 1, N_{1} \times I$. The
union of these subcomplexes U has the same homology as $N \times I$. Consider the tower \tilde{t} on U given by

$$
\tilde{t}|N \times 0=t, \quad \tilde{t}| N \times 1=\bar{t}, \tilde{t} \mid N_{1} \times I=t_{I} .
$$

By virtue of Corollary 1 of Lemma 3, there is an extension of \tilde{t} on the $N \times I$. It gives the equivalence $t \sim \bar{t}$. This completes the proof of injectivity of $D O(i)$. Injectivity for $\overline{D O}(i)$ follows from injectivity for $D O(i)$.

Definition 8. Let for topological space B

$$
\begin{aligned}
& D O\left(B, \pi_{*}\right)=D O\left(\operatorname{Sing}(B), \pi_{*}\right) \\
& \overline{D O}\left(B, \pi_{*}\right)=\overline{D O}\left(\operatorname{Sing}(B), \pi_{*}\right)
\end{aligned}
$$

Lemma 4. The inclusion

$$
N \subset \operatorname{Sing}(|N|)
$$

induce the equalities

$$
\begin{aligned}
& D O\left(N, \pi_{*}\right)=D O\left(\operatorname{Sing}(|N|), \pi_{*}\right) \\
& \overline{D O}\left(N, \pi_{*}\right)=\overline{D O}\left(\operatorname{Sing}(|N|), \pi_{*}\right)
\end{aligned}
$$

Proof. Follows from Theorem 2.
Lemma 5. If B is a topological space and i_{0} and i_{1} are imbeddings as upper and lower base of $B \times I$ then $D O\left(i_{0}\right)=D O\left(i_{1}\right)$.

Proof. From Theorem 2 follows that $D O\left(i_{0}\right)$ and $D O\left(i_{1}\right)$ are $1-1$ maps. Hence for the projection

$$
p r: B \times I \rightarrow B
$$

$D O(p r)$ is 1-1 map. It follows $D O\left(i_{0}\right)=D O\left(i_{1}\right)$.
As a Corollary we have
Theorem 3. If a map of topological spaces f is homotopic to g then $D O(f)=D O(g)$ and $\overline{D O}(f)=\overline{D O}(g)$.

Jet we can prove
Theorem 4. If a map of topological spaces

$$
f: B_{1} \rightarrow B
$$

induce an isomorphism of homology then
$D O(f): D O\left(B, \pi_{*}\right) \rightarrow D O\left(B_{1}, \pi_{*}\right)$ and $\overline{D O}(f): \overline{D O}\left(B, \pi_{*}\right) \rightarrow \overline{D O}\left(B_{1}, \pi_{*}\right)$
are 1-1 maps.

Proof. Let $C(f)$ be the cylinder of the map f. One has a homotopy commutative triangle

with k and q being the standard imbeddings. By virtue of above results one has the commutative triangle

with $D O(k)$ and $D O(q) 1-1$ maps in virtue of Theorem 2 . Then it follows that $D O(f)$ is $1-1$ map too. Analogously one has that $\overline{D O}(f)$ is $1-1$ map.

4. Definition of Obstruction Element do (E)

Let $F \rightarrow E \rightarrow B$ be a Serre fibration. Here we assign to this fibration an element

$$
d o(E) \in D O\left(B, \pi_{*}(F)\right)
$$

with the following properties:
(i) $d o(E)$ is functorial.
(ii) the fibration E has a cross section if and only if $d o(E) \in \overline{D O}\left(B, \pi_{*}(F)\right)$.

Consider first the case $B=|N|$. Let $K_{0}=N$. Consider a cross section s^{1} on the 1-skeleton of $|N|=\left|K_{0}\right|$. Let $z^{2} \in Z^{2}\left(K_{0}, \pi_{1}(F)\right)$ be its obstruction cocycle, $z^{2}=z\left(s^{1}\right)$. Then we obtain $K_{1}=P\left(K_{0}, \pi_{1}(F), z^{2}\right)$ and a fibration $K_{1} \rightarrow K_{0}$. Let s^{2} be a cross section over 2-skeleton of $\left|K_{1}\right|$, which is the P extension of s^{1} in the sense of Definition 2. Let $z^{3}=z\left(s^{2}\right) \in Z^{3}\left(K_{1}, \pi_{2}(F)\right)$ and $K_{2}=P\left(K_{1}, \pi_{2}(F), z^{3}\right)$. Let s^{3} be a cross section over 3-skeleton of $\left|K_{2}\right|$, i.e. the P-extension of s_{1}, and $z^{4}=z\left(s^{3}\right) \in Z^{4}\left(K_{2}, \pi_{3}(F)\right)$, etc. Proceeding inductively we construct the needed tower.

In general case let $S(B)$ be the singular complex of $B, \omega:|S(B)| \rightarrow B$ be the standard map and let $\bar{E} \rightarrow|S(B)|$ be a fibration induced by ω. Then, by above way, we construct a tower for E using the fibration \bar{E}.

Definition 9. The constructed tower we call a P-tower of a fibration E or a geometric tower.

Lemma 6. If t is a P-tower of a fibration over B and f is a map $B_{1} \rightarrow B$ then $T(f) t$ is a P-tower of the induced fibration over B_{1}
Proof. is an easy checking.

Lemma 7. If $F \rightarrow E \rightarrow B$ is a fibration, $B_{1} \subset B$ and t is a P-tower of the restricted fibration over B_{1} then t extends to a P-tower over B.

Proof. is an easy one.
Definition 10. We define $d o(E) \in D O\left(B, \pi_{*}(F)\right)$ as the class of any P-tower (over $\operatorname{Sing}(B)$) of the fibration E.

Theorem 5. The class do $(E) \in D O\left(B, \pi_{*}(F)\right)$ is uniquely defined.
Proof. Obviously it is enough to consider the case $F \rightarrow E \rightarrow|N|$. Let

$$
t=\left(K_{0}, z^{2} ; K_{1}, z^{3} ; K_{2}, z^{4} ; \ldots\right)
$$

and

$$
\bar{t}=\left(K_{0}, \bar{z}^{2} ; \bar{K}_{1}, \bar{z}_{3} ; \bar{K}_{2}, \bar{z}^{4} ; \ldots\right)
$$

be two P-towers of E. Consider the projection

$$
p r:|N| \times I \rightarrow|N|
$$

and let $E \times I$ be the fibration induced by $p r$. By Lemma 7 there is a P-tower for this fibration whose restriction on $N \times 0$ is t and on $N \times 1$ is \bar{t}.

Theorem 6. $d o(E)$ is functorial.
Proof. Follows from Lemma 6.
Theorem 7. Any tower from do (E) is a P-tower of E
Proof. For a fibration $E \rightarrow|N|$ (the general case is trivial after this one) let us consider a tower t over $N \times I$ such that its restriction on $N \times 0$ (we denote it by $\left.t_{N}\right)$ is geometric, i.e. it is a P-tower of E. It is enough to show that t is a P-tower of induced fibration. There exists a cochain $c^{1}=c_{N \times I}^{1}$ such that

$$
z_{N \times I}^{2}-p r^{\#}\left(z_{N}^{2}\right)=\delta c_{N \times I}^{1}, c^{1} \in C^{1}\left(N \times I, \pi_{1}\right)
$$

Indeed, the left side is zero over $N \times 0$ and $H^{*}(N \times I, N \times O)=0$. Besides, $p r^{\#}\left(z_{N}^{2}\right)$ is geometric since z_{N}^{2} is geometric. By classical fact $p r{ }^{\#}\left(z_{N}^{2}\right)+$ δc^{1} is geometric as well (theorem about difference cochain). Hence $z_{N \times I}^{2}$ is geometric. Knowing $z_{K_{N \times 0}}^{2}$ to be geometric, consider one of geometric $\bar{z}_{K_{N \times I}}^{3}$ cocycles extending geometric $z_{K_{N \times 0}^{1}}^{3}$. By $H^{*}\left(K_{N \times I}^{1}, K_{N \times 0}^{1}\right)=0$ there is $c^{2}=c_{K_{N \times I}^{1}}^{2}$ such that

$$
z_{K_{N \times I}}^{3}-p r^{\#}\left(z_{K_{N}^{1}}^{3}\right)=\delta c_{K_{N \times I}^{1}}^{2}, c^{2} \in C^{1}\left(K_{N \times I}^{1}, \pi_{2}\right)
$$

it follows $z_{K_{N \times I}^{1}}^{3}$ is geometric. The same proof is valid for $z_{K_{N \times I}^{2}}^{4} z_{K_{N \times I}^{3}}^{3} z_{K_{N \times I}^{4}}^{6}$ and so on.

Theorem 8. For a fibration $F \rightarrow E \rightarrow|N|$ one has do $(E) \in \overline{D O}(|N|$, $\left.\pi_{*}(F)\right)$ if and only if there exists a cross section for E.

Proof. Sufficiency: Let $d o(E) \in \overline{D O}\left(N, \pi_{*}(F)\right)$. This means that there is a tower in $d o(E)$ which is zero over N. By preceding theorem this tower is geometric. From this it is not hard to deduce that the procedure of constructing of geometric sequence gives a cross section over the whole | $N \mid$.Necessity: Let $s:|N| \rightarrow E$ be a cross section. Construct the P tower by using this cross section as follows. Let s_{1} be the restriction of cross section s on 1 -skeleton of $|N|=\left|K_{0}\right|$. The cocycle $z^{2}=z\left(s_{1}\right)$, as obstruction cocycle of s_{1} which is extendable over 2 -skeleton of $\left|K_{0}\right|$, is zero, $z^{2}=0$ and hence $N \subset K_{1}$. In constructing z^{3}, having the freedom of extension, extend, perturbed by P-cochain c^{1}, cross section $\operatorname{pr}\left(s_{1}\right)$ on 2-simplexes of $|N| \subset\left|K_{1}\right|$ by s (see Lemma 2 and take in consideration that $c^{1} \mid N=0$). We became $z^{3}=0$ over N and so on.

About the property 1.3. If the graded group π_{*} have only one nontrivial component, say π_{n}, and $F \rightarrow E \rightarrow|N|$ is a Serre fibration with $\pi_{*}(F)=\pi_{n}$, then towers from $T\left(N, \pi_{*}\right)$ reduce to fibration $K_{n}=P\left(N, \pi_{n}, z^{n+1}\right)$. Then we have: $T\left(N, \pi_{n}\right)=Z^{n+1}\left(N, \pi_{n}\right)$, there is only one tower $P\left(N, \pi_{n}, 0\right)=$ $N \times K\left(\pi_{n}, n\right)$ zero on N and $P\left(N, \pi_{n}, z^{n+1}\right) \sim P\left(N, \pi_{n}, \bar{z}^{n+1}\right)$ if and only if $\left[z^{n+1}\right]=\left[\bar{z}^{n+1}\right]$. Hence $D O\left(N, \pi_{n}\right)=H^{n+1}\left(N, \pi_{n}\right)$ and $d o(E)$ is the classical first obstruction class of E.

5. Criterion of Equivalence of Towers

Our aim in this section is to formulate a criterion of equivalence of two towers (Theorem 10 below). A tool for this is a notion of maps of towers which leads actually to an alternative definition of functor $D O\left(B, \pi_{*}\right)$ as a set of towers on B modulo isomorphism of towers. Below we denote by the same symbols maps and induced homomorphisms. We denote cochains and corresponding maps by the same symbols as well: for example $C^{n}(N, \pi)=$ $\operatorname{Hom}(N, E(\pi, n))$.

5.1. Maps of P-constructions.

Definition 11. A map of P-constructions is a couple of maps

$$
(f, F)=\left(f: K \rightarrow L ; F: P\left(K, \pi, z^{n}\right) \rightarrow P\left(L, \pi, \bar{z}^{n}\right)\right)
$$

such that $f p=p F$ and F is a $K(\pi, n-1)$-map: $F(k, c+z)=F(k, c) \circ z$, where the operation \circ is the standard action of Eilenberg-MacLane complex on the total complex P.

Lemma 8. Let $P\left(K, \pi, z^{n}\right)$ and $P\left(L, \pi, \bar{z}^{n}\right)$ be P-constructions and let $f: K \rightarrow L$ be a map. Then there exists a map of P-constructions

$$
(f, F)=\left(f: K \rightarrow L ; F: P\left(K, \pi, z^{n}\right) \rightarrow P\left(L, \pi, \bar{z}^{n}\right)\right)
$$

if and only if there exists a cochain $a^{n-1}: K \rightarrow E(\pi, n-1)$ such that

$$
\delta a^{n-1}=\bar{z}^{n} \circ f-z^{n} .
$$

One has $F=F_{a^{n-1}}$, where $F_{a^{n-1}}(k, c)=\left(f(k), c+a^{n-1}(k)\right)$. The cochain a^{n-1} is uniquely determined by the map (f, F).
Proof. Easy to show that for a given a^{n-1} with $\delta a^{n-1}=\bar{z}^{n} \circ f-z^{n}$ the map $F_{a^{n-1}}$ satisfies the needed conditions. Suppose now that a map of P constructions (f, F) is given. We have to construct a cochain a^{n-1} satisfying the conditions $\delta a^{n-1}=\bar{z}^{n} \circ f-z^{n}$ and $F=F_{a^{n-1}}$. Since $f p=p F$, one has $F(k, c)=(f(k), \varphi(k, c))$, where

$$
\varphi: P\left(K, \pi, z^{n}\right) \rightarrow E(\pi, n-1)
$$

Let us introduce the map

$$
\psi: P\left(K, \pi, z^{n}\right) \rightarrow E(\pi, n-1)
$$

given by $\psi(k, c)=\varphi(k, c)-c$. This map does not depend on the second argument $c \in E(\pi, n-1)$. Indeed, suppose $(k, c),(k, c) \in P\left(K, \pi, z^{n}\right)$. Thus $\delta c=z^{n}(k)=\delta c^{*}$, i.e. $c-c^{*} \in K(\pi, n-1)$. Then

$$
\begin{aligned}
& \psi\left(k, c^{\prime}\right)=\psi\left(k, c+c^{\prime}-c\right)=\varphi\left(k, c+c^{\prime}-c\right)-c^{\prime}= \\
& =\varphi(k, c)+\left(c^{\prime}-c\right)-c^{c}=\varphi(k, c)-c=\psi(k, c)
\end{aligned}
$$

This fact implies that there exists the unique cochain $a^{n-1}: K \rightarrow E(\pi, n-1)$ such that $\psi=a^{n-1} \circ p$. It remains to show that $F=F_{a^{n-1}}$ and $\delta a^{n-1}=$ $\bar{z}^{n} \circ f-z^{n}$. Indeed

$$
\begin{gathered}
F(k, c)=(f(k), \varphi(k, c))=(f(k), c+\psi(k, c))= \\
=\left(f(k), c+\left(a^{n-1} \circ p\right)(k, c)\right)=\left(f(k), c+a^{n-1}(k)\right)=F_{a^{n-1}}(k, c) .
\end{gathered}
$$

Now look at δa^{n-1}. Since

$$
F(k, c)=\left(f(k), c+a^{n-1}(k)\right) \in P\left(L, \pi, \bar{z}^{n}\right),
$$

we have $\delta\left(c+a^{n-1}(k)\right)=\bar{z}^{n}(f(k))$. Thus $z^{n}(k)+\delta\left(a^{n-1}(k)\right)=\bar{z}^{n}(f(k))$.
Note that for $P(f)$ in Lemma 1 we have $P(f)=F_{a^{n-1}}$ with $a^{n-1}=0$.
Proposition 1. Let $\left(f, F_{a^{n-1}}\right)$ and $\left(g, F_{b^{n-1}}\right)$ be maps of P-constructions

$$
P\left(K, \pi, z^{n}\right) \xrightarrow{\left(f, F_{a^{n-1}}\right)} P\left(L, \pi, \bar{z}^{n}\right) \xrightarrow{\left(g, F_{b} n-1\right)} P\left(S, \pi, \widetilde{z}^{n}\right),
$$

then the composition again is a map $\left(g f, F_{c^{n-1}}\right)$ of P-constructions, where

$$
c^{n-1}=a^{n-1}+b^{n-1} \circ f .
$$

Proof. We have

$$
\begin{gathered}
\left(F_{b^{n-1}} \circ F_{a^{n-1}}\right)(k, c)=F_{b^{n-1}}\left(f(k), c+a^{n-1}(k)\right)= \\
=\left(g(f(k)), c+a^{n-1}(k)+b^{n-1}(f(k))\right)=\left(g(f(k)), c+c^{n-1}(k)\right)=F_{c^{n-1}}(k, c) .
\end{gathered}
$$

Proposition 2. If (f, F) is a morphism of P-constructions and f is an isomorphism [monomorphism], then F is an isomorphism [monomorphism] too.

Proof. By Lemma $8 F=F_{a^{n-1}}$ for some a^{n-1}. Let

$$
\left(f\left(k_{1}\right), c_{1}+a^{n-1}\left(k_{1}\right)\right)=\left(f\left(k_{2}\right), c_{2}+a^{n-1}\left(k_{2}\right)\right)
$$

Then $\left.k_{1}=k_{2}, c_{1}+a^{n-1}\left(k_{1}\right)\right)=c_{2}+a^{n-1}\left(k_{2}\right)$ and hence $c_{1}=c_{2}$. Suppose now that f is an isomorphism. Then the opposite map will be $F_{b^{n-1}}$, where $b^{n-1}=-a^{n-1} \circ f^{-1}$. Indeed, to the composition $F_{b^{n-1}} \circ F_{a^{n-1}}$ corresponds the zero cochain:

$$
c^{n-1}=a^{n-1}+b^{n-1} \circ f=a^{n-1}-a^{n-1} \circ f^{-1} \circ f=0 .
$$

Thus $F_{b^{n-1}} \circ F_{a^{n-1}}=F_{c^{n-1}}=F_{0}$. Since $f^{-1} \circ f=i d$ one has $F_{0}=i d$.
Let $P\left(K, \pi, z^{n}\right)$ be a P-construction and L be a simplicial set. Then the total complex $P\left(K \times L, \pi, \bar{z}^{n}\right)$, where

$$
\bar{z}^{n}=z^{n} \circ p r: K \times L \rightarrow K \rightarrow K(\pi, n)
$$

we can identify with $P\left(K, \pi, z^{n}\right) \times L$
Let $I=\Delta[1]$ and let, for a simplicial set $M, i_{\varepsilon}: M \rightarrow M \times I, \varepsilon=0,1$, be the standard imbeddings. Obviously the standard maps $i_{\epsilon}=\left(i_{\epsilon}, i_{\epsilon}\right): P \rightarrow$ $P \times I$, where $\epsilon=0,1$, are maps of P-constructions. By this, in obvious way, we introduce the notion of homotopy of maps of P-constructions.

Definition 12. Two maps of P-constructions

$$
(f, F),\left(f^{\star}, F^{\prime}\right): P\left(K, \pi, z^{n}\right) \rightarrow P\left(L, \pi, \bar{z}^{n}\right)
$$

we call homotopic, if there exists a map of P-constructions

$$
(h, H): P\left(K, \pi, z^{n}\right) \times I \rightarrow P\left(L, \pi, \bar{z}^{n}\right)
$$

such that $h i_{0}=f, h i_{1}=f^{\star}, H i_{0}=F, H i_{1}=F^{\prime}$.
Proposition 3. Two maps of P-constructions $\left(f, F_{a^{n-1}}\right)$ and $\left(f^{\iota}, F_{a^{〔 n-1}}\right)$ are homotopic if and only if $f \sim f^{\star}$ by some homotopy $h: K \times I \rightarrow L$ for which there exists a cochain $b^{n-1}: K \times I \rightarrow E(\pi, n-1)$ such that

$$
\delta b^{n-1}=\bar{z}^{n} \circ h-z^{n} \circ p r, \quad b^{n-1} \circ i_{0}=a^{n-1}, b^{n-1} \circ i_{1}=a^{‘ n-1}
$$

Proof. Suppose there exists a map (h, H) with suitable properties. Then by Lemma 8 , there exists a cochain $b^{n-1}: K \times I \rightarrow E(\pi, n-1)$ such that $\delta b^{n-1}=\bar{z}^{n} \circ h-z^{n} \circ p r$. Let us show that $b^{n-1} \circ i_{0}=a^{n-1}$. Consider the composition $\left(h i_{0}, H i_{0}\right)$ which coincides with the map (f, F). To this map corresponds the cochain a^{n-1}, to $i_{0^{-}}$the zero cochain, and to (h, H) corresponds the cochain b^{n-1}. Then by Proposition 1 we have $a^{n-1}=0+$ $b^{n-1} \circ i_{0}$. In a similar way we have $b^{n-1} \circ i_{1}=a^{\text {‘n-1 }}$. Suppose now that a homotopy h and a cochain b^{n-1}, satisfying the suitable conditions, are given. Then by Lemma 8 there exists a map of P-constructions (h, H). It remains to show that $H i_{0}=F, H i_{1}=F^{\star}$. Again, consider the composition $(h, H) \circ\left(i_{0}, i_{0}\right)=\left(f, H i_{0}\right)$. Then by Proposition 1 to this map corresponds
the cochain $0+b^{n-1} \circ i_{0}=a^{n-1}$. Thus by Lemma 8 we get $H \circ i_{0}=F$. In similar way $H \circ i_{1}=F^{*}$.
5.2. Map of towers. In definition of towers we restrict ourselves to towers of height n i. e. instead of Definition 3 consider the notion of n-towers:
Definition 13. An n-tower $t^{(n)}\left(N ; z^{2}, \ldots, z^{n+1}\right)$ over N with coefficients in $\pi_{*}=\left(\pi_{1}, \ldots, \pi_{n}\right)$ is a sequence of simplicial sets and standard projections $N=K_{0} \stackrel{p}{\leftarrow} K_{1} \stackrel{p}{\leftarrow} K_{2} \stackrel{p}{\leftarrow} \cdots \stackrel{p}{\leftarrow} K_{n}$, where $K_{i+1}=P\left(K_{i}, \pi_{i+1}, z^{n+1}\right)$, $z^{i+2} \in Z^{i+2}\left(K_{i}, \pi_{i+1}\right), 0 \leq i \leq n$.

The set $T^{(n)}\left(N, \pi_{*}\right)$ of n-towers defines a contravariant functor and there is an equivalence relation on $T^{(n)}\left(N, \pi_{*}\right)$ similar to that of in Definition 5. The obvious changes in Definitions $4,5,6,7,8$ leads to functors $D O^{(n)}\left(B, \pi_{*}\right)$, $\overline{D O}^{(n)}\left(B, \pi_{*}\right)$.

Definition 14. A map of n-towers $t^{(n)} \rightarrow \bar{t}^{(n)}$ is defined as a sequence of simplicial maps $f_{i}: K_{i} \rightarrow \bar{K}_{i}$ where $i=0,1,2, \ldots, n$ such that each $\left(f_{i}, f_{i+1}\right)$ is a map of P -constructions.

It follows from Lemma 8 that a map $t^{(n)} \rightarrow \bar{t}^{(n)}$ exists if and only if there exists a sequence of cochains $a=\left(a^{1}, a^{2}, \ldots, a^{n}\right), a^{i} \in C^{i}\left(K_{i-1}, \pi_{i}\right)$, such that $f_{i-2}^{\#}\left(\bar{z}^{i}\right)-z^{i}=\delta a^{i-1}$, where $f_{i-2}=F_{a^{i-2}}, 2 \leq i \leq n+1$.

Proposition 4. Two towers $t^{(n)}, \bar{t}^{(n)} \in T^{n}\left(N, \pi_{*}\right)$ are equivalent if and only if there exists an isomorphism of towers $\left\{f_{i}\right\}: t^{(n)} \rightarrow \bar{t}^{(n)}$, with $f_{0}=i d_{N}$.
Proof. Let

$$
\begin{gathered}
t^{(n)}=t^{(n)}\left(N ; z^{2}, z^{3}, \ldots\right), \bar{t}^{(n)}=\bar{t}^{(n)}\left(N ; \bar{z}^{2}, \bar{z}^{3}, \ldots\right), \\
\widetilde{t^{(n)}}=\widetilde{t}^{(n)}\left(N \times I ; \widetilde{z}^{2} \widetilde{z}^{3}, \ldots\right), \\
T^{(n)}\left(i_{0}\right)\left(\widetilde{t^{(n)}}\right)=t^{(n)}, T^{(n)}\left(i_{1}\right)\left(\widetilde{t^{(n)}}\right)=\bar{t}^{(n)},
\end{gathered}
$$

where, for an arbitrary $M, i_{\epsilon}: M \rightarrow M \times I, \epsilon=0,1$ are the standard inclusions. Below maps and corresponding homomorphisms for cochains we denote by same symbols. Let, now,

$$
\varphi=\left\{\varphi_{i}\right\}: t^{(n)} \rightarrow \widetilde{t}^{(n)} \quad \text { and } \quad \bar{\varphi}=\left\{\bar{\varphi}_{i}\right\}: \bar{t}^{(n)} \rightarrow \widetilde{t}^{(n)}
$$

be maps of n-towers, corresponding to $\varphi_{0}=i_{0}, \bar{\varphi}_{0}=i_{1}$. For $F_{a^{n-1}}$ we below use more explicit notation $F_{\left(f, a^{n-1}\right)}$. Let $f_{0}=i d_{N}: K_{0}=N \rightarrow \bar{K}_{0}=N$. Then, $\varphi_{0} \sim \bar{\varphi}_{0} \circ f_{0}$ by homotopy

$$
h_{0}=i d: K_{0} \times I=N \times I \rightarrow \widetilde{K}_{0}=N \times I .
$$

Since

$$
i_{0}\left(h_{0}\left(\tilde{z}^{2}\right)-p r\left(z^{2}\right)\right)=\varphi_{0}\left(\tilde{z}^{2}\right)-z^{2}=z^{2}-z^{2}=0
$$

there exists a cochain $\bar{b}^{1} \in C^{1}\left(K_{0} \times I, \pi_{1}\right)$ such that $h_{0}\left(\tilde{z}^{2}\right)-\operatorname{pr}\left(z^{2}\right)=\delta \bar{b}^{1}$.
Let

$$
b^{1}=\bar{b}^{-1}-p r\left(i_{0}\left(\bar{b}^{-1}\right)\right),
$$

where, for an arbitrary $M, p r: M \times I \rightarrow M$ is the standard projection. Then, since $\delta i_{0}\left(\bar{b}^{-1}\right)=i_{0}\left(\delta \bar{b}^{-1}\right)=0$, we have

$$
i_{0}\left(b^{1}\right)=0, h_{0}\left(\tilde{z}^{2}\right)-p r\left(z^{2}\right)=\delta b^{1} .
$$

Let $a^{1}=i_{1}\left(b^{1}\right)$. Then

$$
\delta a^{1}=i_{1}\left(\delta b^{1}\right)=i_{1}\left(h_{0}\left(\tilde{z}^{2}\right)\right)-i_{1}\left(\operatorname{pr}\left(z^{2}\right)\right)=\left(\bar{\varphi}_{0} \circ f_{0}\right)\left(\widetilde{z}^{2}\right)-z^{2}=f_{0}\left(\bar{z}^{2}\right)-z^{2} .
$$

Now we consider the map $f_{1}=F_{\left(f_{0}, a^{1}\right)}$ and homotopy

$$
h_{1}=F_{\left(h_{0}, b^{1}\right)}: K_{1} \times I \rightarrow \widetilde{K}_{1}
$$

from Lemma 8 and proposition 3. Since $i_{0}\left(b^{1}\right)=0$ we have $h_{1} \circ i_{0}=$ $F_{\left(\varphi_{0}, 0\right)}=\varphi_{1}$ and

$$
h_{1} \circ i_{1}=F_{\left(\bar{\varphi}_{0} \circ f_{0}, i_{1}\left(b^{1}\right)\right)}=F_{\left(\bar{\varphi}_{0}, 0\right)} \circ F_{\left(f_{0}, a^{1}\right)}=\bar{\varphi}_{1} \circ f_{1} .
$$

So, by h_{1}, we have $\varphi_{1} \sim \bar{\varphi}_{1} \circ f_{1}$ and so on. Thus we can construct a morphism

$$
\left\{f_{i}\right\}: t^{(n)} \rightarrow \bar{t}^{(n)} \text { with } f_{0}=i d_{N}
$$

Now let $\left\{f_{i}\right\}: t^{(n)} \rightarrow \bar{t}^{(n)}$ be a morphism with $f_{0}=i d_{N}$. Let $\left(a^{1}, a^{2}, \ldots\right)$ be a corresponding sequence: $f_{i}^{\#}\left(\bar{z}^{i+2}\right)-z^{i+2}=\delta a^{i+1}$. For an inclusion $f: M \rightarrow M_{1}$ and $c^{i} \in C^{i}(M)$ define $\underline{c}^{i}=\underline{c}^{i}(f) \in C^{i}\left(M_{1}\right)$ as follows. If $\tau^{i}=f\left(\sigma^{i}\right)$, then $\underline{c}^{i}\left(\tau^{i}\right)=c^{i}\left(\sigma^{i}\right)$ and $\underline{c}^{i}\left(\tau^{i}\right)=0$ otherwise. Let $\varphi_{0}=i_{0}$, $\bar{\varphi}_{0}=i_{1}, \widetilde{K}_{0}=N \times I$ and $\widetilde{z}^{2}=\operatorname{pr}\left(z^{2}\right)+\delta \underline{a}^{1}$, where $\underline{a}^{1}=\underline{a}^{1}\left(\bar{\varphi}_{0} f_{0}\right)$. Then

$$
\begin{gathered}
i_{0}\left(\widetilde{z}^{2}\right)=i_{0}\left(\operatorname{pr}\left(z^{2}\right)\right)+\delta i_{0}\left(\underline{a}^{1}\right)=z^{2}+0=z^{2} \\
i_{1}\left(\widetilde{z}^{2}\right)=i_{1}\left(\operatorname{pr}\left(z^{2}\right)\right)+\delta i_{1}\left(\underline{a}^{1}\right)=z^{2}+\delta a^{1}=\bar{z}^{2}
\end{gathered}
$$

Let

$$
\begin{gathered}
\widetilde{K}_{1}=P\left(\widetilde{K}_{0}, \pi_{1}, \widetilde{z}^{2}\right), \varphi_{1}=F_{\left(i_{0}, 0\right)}: K_{1} \rightarrow \widetilde{K}_{1}, \bar{\varphi}_{1}=F_{\left(i_{1}, 0\right)}: \bar{K}_{1} \rightarrow \widetilde{K}_{1}, \\
p r_{1}=F_{\left(p r,-\underline{a}^{1}\right)}: \widetilde{K}_{1} \rightarrow K_{1}, \widetilde{z}^{3}=r_{1}\left(z^{3}\right)+\delta \underline{a}^{2},
\end{gathered}
$$

where $\underline{a}^{2}=\underline{a}^{2}\left(\bar{\varphi}_{1} f_{1}\right)=\underline{f_{1}^{-1}\left(a^{2}\right)}\left(\bar{\varphi}_{1}\right)$. It is clear (see Proposition 2) that φ_{1} and $\bar{\varphi}_{1}$ are inclusions and, moreover, $\operatorname{Im} \varphi_{1} \cap \operatorname{Im} \bar{\varphi}_{1}=\emptyset$. Then, using Proposition 1 we have

$$
\begin{aligned}
\varphi_{1}\left(\widetilde{z}^{3}\right) & =\varphi_{1}\left(p r_{1}\left(z^{3}\right)\right)+\delta \varphi_{1}\left(\underline{a}^{2}\right)=\left(F_{\left(p r,-\underline{a}^{1}\right)} \circ F_{\left(i_{0}, 0\right)}\right)\left(z^{3}\right)+0= \\
& =F_{\left(i d, 0+i_{0}\left(-\underline{a}^{1}\right)\right)}\left(z^{3}\right)=F_{(i d, 0)}\left(z^{3}\right)=i d_{K_{1}}\left(z^{3}\right)=z^{3}
\end{aligned}
$$

and

$$
\begin{gathered}
\bar{\varphi}_{1}\left(\widetilde{z}^{3}\right)=\bar{\varphi}_{1}\left(p r_{1}\left(z^{3}\right)\right)+\delta \bar{\varphi}_{1}\left(\underline{a}^{2}\right)=\left(F_{\left(p r,-a^{1}\right)} \circ F_{\left(i_{1}, 0\right)}\right)\left(z^{3}\right)+\delta f_{1}^{-1}\left(a^{2}\right)= \\
=F_{\left(i d, 0+i_{1}\left(-a^{1}\right)\right)}\left(z^{3}\right)+f_{1}^{-1}\left(\delta a^{2}\right)=F_{\left(i d,-a^{1}\right)}\left(z^{3}\right)+f_{1}^{-1}\left(\delta a^{2}\right)= \\
=f_{1}^{-1}\left(z^{3}\right)+f_{1}^{-1}\left(\delta a^{2}\right)=f_{1}^{-1}\left(z^{3}+\delta a^{2}\right)=\bar{z}^{3} .
\end{gathered}
$$

Let $\widetilde{K}_{2}=P\left(\widetilde{K}_{1}, \pi_{2}, \widetilde{z}^{3}\right)$ and so on we construct a desired tower $\widetilde{t}^{(n)}$.
Remark 1. Let $t=t\left(N ; z^{2}, z^{3}, \ldots\right)$ be a tower and $c^{p} \in C^{p}\left(K_{p-1}, \pi_{p}\right), p \geq$ 1. Consider a new tower $\bar{t}=\bar{t}\left(N ; \bar{z}^{2}, \bar{z}^{3}, \ldots\right)$ and a map (isomorphism) of towers $f=\left\{f_{i}\right\}: \bar{t} \rightarrow t$, where $\bar{z}^{i}=z^{i}$ for $i \leq p, f_{i}=i d$ for $i \leq p-1, \bar{z}^{p+1}=$ $z^{p+1}-\delta c^{p}, f_{p}=F_{\left(i d, c^{p}\right)}$ (see Lemma 2) and the rest of the $\left\{\bar{K}^{i}\right\}$ and $\left\{f_{i}\right\}$ are induced from t (beginning with f_{p}). Then, by Proposition 4 we have $\bar{t} \sim t$ and this is a particular case of perturbation of a representative tower of an element of $D O\left(N, \pi_{*}\right)$.

An obvious corollary is
Theorem 9. $D O^{(n)}\left(B, \pi_{*}\right)$ is equal to the set $T^{(n)}\left(N, \pi_{*}\right)$ of n-towers modulo isomorphism of towers.

We shall use the following notion of homotopy of n-towers. Two morphisms of towers $f, g: t^{(n)} \rightarrow \bar{t}^{(n)}$ we call homotopic if there exists a morphism (homotopy) of towers $F: t^{(n)} \times I \rightarrow \bar{t}^{(n)}$ such that $F i_{0}=f$ and $F i_{1}=g$, where

$$
i_{\epsilon}: t^{(n)}=T^{(n)}\left(i_{\epsilon}\right)\left(t^{(n)} \times I\right) \rightarrow t^{(n)} \times I, \epsilon=0,1
$$

Note that we have $f \sim f(F=p r)$ and this notion is compatible with compositions. This follows from the diagram

$$
M \times I \xrightarrow{i d \times \Delta} M \times I \times I \xrightarrow{F \times i d} K \times I \xrightarrow{\Phi} L
$$

where $F: M \times I \rightarrow K$ and $\Phi: K \times I \rightarrow L$ are some homotopies and Δ is the diagonal map.

From Proposition 3 we have the following
Corollary 2. Two maps of towers $f=\left\{a^{i}\right\}$ and $f=\left\{\bar{a}^{i}\right\}$ are homotopic if and only if $f_{0} \sim f_{0}$ by some homotopy F_{0} for which there exists a sequence of cochains

$$
b=\left(b^{1}, \cdots, b^{i}, \cdots, b^{n}\right), b^{i} \in C^{i}\left(K_{i-1} \times I, \pi_{i}\right), 1 \leq i \leq n,
$$

which satisfies the following conditions (i) $i_{0}\left(b^{i}\right)=a^{i}, i_{1}\left(b^{i}\right)=\bar{a}^{i}$, (ii) $\delta b^{i-1}=F_{b^{i-2}}\left(\bar{z}^{i}\right)-\operatorname{pr}\left(z^{i}\right)$, where $F_{b^{0}}=F_{0} \quad$ and $F_{b^{i}}: K_{i} \times I \rightarrow K_{i}$ are maps given by

$$
\left.F_{b^{i}}((k, c) \times \xi)=F_{b^{i-1}}((k, c) \times \xi), c+t_{k \times \xi} b^{i}\right), 1 \leq i \leq n
$$

5.3. Criterion of equivalence of towers. For a simplicial set N, let us fix a tower $t \in T\left(N, \pi_{*}\right)$ and let $t^{(n)} \in T^{(n)}\left(N, \pi_{*}\right)$ be the restrictions of t up to n-stage. Denote by $A^{(n)}=A_{t^{(n)}}$ the set of automorphisms of the n-tower $t^{(n)}$ with $f_{0}=i d$:

$$
\left\{f_{0}=i d, f_{1}, \ldots, f_{n}\right\}: t^{(n)} \rightarrow t^{(n)}
$$

The composition turns $A^{(n)}$ into a group. According to Lemma 8 each element $\left\{f_{k}\right\} \in A^{(n)}$ can be interpreted as a sequence of cochains

$$
a^{(n)}=\left\{a^{k}\right\}, a^{k} \in C^{k}\left(K_{k-1}, \pi_{k}\right), k=1,2, \ldots, n ; \delta a^{k-1}=f_{a^{k-2}}\left(z^{k}\right)-z^{k}
$$

Remark that if $a^{i}=0$ for all i with $1 \leq i \leq p \leq n-1$, then $f_{i}=i d$ for all $0 \leq i \leq p$ and $\delta a^{p+1}=z^{p+2}-z^{p+2}=0$.

By Proposition 1 to the composition $\left\{f_{\bar{a}^{k}}\right\} \circ\left\{f_{a^{k}}\right\}: t^{(n)} \rightarrow t^{(n)}$ corresponds the sequence $\left\{a^{k}+f_{a^{k-1}}\left(\bar{a}^{k}\right)\right\}$, thus the operation of the group $A^{(n)}$ in terms of cochains is given by

$$
\bar{a}^{(n)} * a^{(n)}=\left\{a^{k}+f_{a^{k-1}}\left(\bar{a}^{k}\right)\right\} .
$$

Then it follows from Proposition 1 and above formula for the group operation of $A^{(n)}$ that there are the restriction epimorphisms $i_{\varepsilon}: A_{t^{(n) \times I}} \rightarrow$ $A^{(n)}, \varepsilon=0,1$, given by $i_{\varepsilon}\left(\left\{b^{i}\right\}\right)=\left\{i_{\varepsilon}^{\#}\left(b^{i}\right)\right\}$. For example, if $a^{(n)} \in A_{t^{(n)}}$, we have $i_{\varepsilon}\left(\operatorname{pr}\left\{a^{(n)}\right\}\right)=a^{(n)}$, where $\operatorname{pr}\left(\left\{a^{i}\right\}\right)=\left\{\operatorname{pr}^{\#}\left(a^{i}\right)\right\} \in A_{t^{(n) \times I}}$. Let

$$
A_{t^{(n)} \times I}^{0}=\operatorname{Keri}_{0}=\left\{b^{(n)} \mid b^{(n)}=\left(b^{1}, \ldots, b^{n}\right) \in A_{t^{(n)} \times I}, i_{0}\left(b^{i}\right)=0\right\} .
$$

We introduce also the restriction homomorphisms $\bar{q}_{n}: A^{(n+1)} \rightarrow A^{(n)}$ given by

$$
\bar{q}_{n}\left(a^{1}, \ldots, a^{n}, a^{n+1}\right)=\left(a^{1}, \ldots, a^{n}\right), n \geq 1
$$

Define now $B^{(n)}=\operatorname{Im}\left(i_{1} \mid A_{t^{(n)} \times I}^{0}\right)$. Then it follows from above that $B^{(n)} \subset A^{(n)}$ is a normal subgroup of $A^{(n)}$ and we can define the factorgroup

$$
G^{(n)}=A^{(n)} \not B^{(n)} .
$$

As above for $A^{(n)}$, the subgroup $B^{(n)}$ and consequently $G^{(n)}$ also have a description in terms of cochains, which we now give.

Proposition 5. A sequence of cochains $a^{(n)}=\left(a^{1}, a^{2}, \cdots, a^{n}\right) \in A^{(n)}=$ $A_{t^{(n)}} \quad$ belongs to subgroup $B^{(n)}$ if and only if there is exists a sequence of cochains

$$
b^{(n)}=\left(b^{1}, b^{2}, \cdots, b^{n}\right) \in C\left(K_{n-1} \times I, \pi_{i}\right), 1 \leq i \leq n
$$

which satisfies the following conditions $(i) i_{0}\left(b^{i}\right)=a^{i}, i_{1}\left(b^{i}\right)=\bar{a}^{i}$, (ii) $\delta b^{i-1}=$ $F_{b^{i-2}}\left(\bar{z}^{i}\right)-\operatorname{pr}\left(z^{i}\right)$, where $F_{b^{0}}=F_{0}$ and $F_{b^{i}}: K_{i} \times I \rightarrow K_{i}$ are maps given by

$$
\left.F_{b^{i}}((k, c) \times \xi)=F_{b^{i-1}}((k, c) \times \xi), c+t_{k \times \xi} b^{i}\right), 1 \leq i \leq n .
$$

Proof. Let $i_{1}\left(b^{(n)}\right)=a^{(n)}$, where $b^{(n)} \in A_{t^{(n) \times I}}^{0}$. Applying Lemma 8 for $p r \circ b^{(n)}$ one can show that conditions of the proposition hold for $\left\{b^{i}\right\}$. Suppose now that conditions (i) and (ii) hold. Then

$$
\delta b^{1}=F_{0}\left(z^{2}\right)-p r\left(z^{2}\right)=\bar{F}_{0}\left(p r\left(z^{2}\right)\right)-p r\left(z^{2}\right),
$$

where $\bar{F}_{0}=i d: N \times I \rightarrow N \times I$. Let $\bar{F}_{b^{1}}=F_{\left(\bar{F}_{0}, b^{1}\right)}$. Then, by Proposition $1 p r \circ \bar{F}_{b^{1}}=F_{b^{1}}$ and we have

$$
\delta b^{2}=F_{b^{1}}\left(z^{3}\right)-p r\left(z^{3}\right)=\left(p r \circ \bar{F}_{b^{1}}\right)\left(z^{3}\right)-p r\left(z^{3}\right)=\bar{F}_{b^{1}}\left(p r\left(z^{3}\right)\right)-p r\left(z^{3}\right) .
$$

And so on we show that $b^{(n)}=\left\{b^{i}\right\} \in A_{t^{(n)} \times I}^{0}$. Finally, it is clear that $i_{1}\left(b^{(n)}\right)=a^{(n)}$.

There is the following immediate corollary of Proposition 5 and Corollary 2.

Corollary 3. An element $a \in A^{(n)}$ belongs to subgroup $B^{(n)}$ if and only if $1 \sim a$ by some homotopy F for which $F_{0}=p r$, where $1=i d \in A^{(n)}$.

Now we are going to describe some special elements of the subgroup $B^{(n)}$.
Lemma 9. For a fixed tower t it is possible to define a functorial map

$$
C^{p}\left(K_{p}, \pi_{p+1}\right) \rightarrow B^{(n)}, p \leq n-1
$$

which assigns to c^{p} a collection $a_{c^{p}}=\left\{a_{c^{p}}^{k}\right\}, k=1,2, \cdots, n$ with

$$
a_{c^{p}}^{k}=0 \text { for } k \leq p \text { and } a_{c^{p}}^{p+1}=\delta c^{p} .
$$

Proof. Let (0) and (1) be two 0 -simplices of $I=\Delta[1]$. We denote by same symbols all corresponding degenerate simplices as well. Let $c^{p} \in$ $C^{p}\left(K_{p}, \pi_{p+1}\right)$ and $I^{q}=I \times I \times \cdots \times I$ (q factors). For $q \geq 0$ define the cochain $c_{q}^{p} \in C^{p}\left(K_{p} \times I^{q}, \pi_{p+1}\right)$ as follows. For $\xi=(1) \times \cdots \times(1)$ let $c_{q}^{p}(\tau \times \xi)=c^{p}(\tau)$ and $c_{q}^{p}(\tau \times \xi)=0$ otherwise. In particular $c_{0}^{p}=c^{p}$. For an arbitrary L, we denote by

$$
\widetilde{i}_{\epsilon}: L \times I^{q} \rightarrow L \times I^{q+1}, \epsilon=0,1
$$

all maps given by $\tilde{i}_{\epsilon}\left(\tau \times \xi_{1} \times \cdots \times \xi_{q}\right)=\tau \times \xi_{1} \times \cdots \times(\epsilon) \times \cdots \times \xi_{q}$. Then we have

$$
\widetilde{i}_{1}\left(c_{q+1}^{p}\right)=c_{q}^{p} \text { and } \widetilde{i}_{0}\left(c_{q+1}^{p}\right)=0
$$

Let, besides, $F: M \times I \rightarrow L$ be a homotopy. Below we will use the standard cochain homotopy

$$
d_{F}: C^{*}(L, G) \rightarrow C^{*-1}(M, G)
$$

given by

$$
d\left(c^{n}\right)\left(m^{n-1}\right)=c^{n}\left(\sum_{i=0}^{n-1}(-1)^{i} F\left(s_{i} m^{n-1} \times s_{n-1} \ldots s_{i+1} s_{i-1} \ldots s_{0} \xi^{1}\right)\right)
$$

where $c^{n} \in C^{n}(L, G), m^{n-1} \in M, \xi^{1}=(0,1) \in \Delta[1]$ and G is an abelian group. Let, now, $F_{q}: K_{p+1} \times I^{q} \rightarrow K_{p+1}$ be a map given by

$$
F_{q}((\sigma, c) \times \xi)=\left(\sigma, c+t_{\sigma \times \xi}\left(\delta c_{q}^{p}\right)\right)
$$

where $q \geq 0$ and $\xi \in I^{q}$. Then we have $F_{0}=F_{\left(i d, \delta c^{p}\right)}$ and, for $q \geq 1$,

$$
F_{q} \circ \widetilde{i}_{0}=p r^{(q-1)} \text { and } F_{q} \circ \widetilde{i}_{1}=F_{q-1}
$$

where, for an arbitrary $L, p r^{(n)}: L \times I^{n} \rightarrow L$ is the projection and $p r^{(0)}=$ $i d$. For $q \geq 1$ we consider F_{q} as a homotopy by last coordinate. Then F_{q} defines a functorial (for induced maps of P -constructions) cochain homotopy

$$
d_{F_{q}}: C^{*}\left(K_{p+1}, \pi_{p+2}\right) \rightarrow C^{*-1}\left(K_{p+1} \times I^{q-1}, \pi_{p+2}\right)
$$

Inspection shows that for $q \geq 2$ we have

$$
\widetilde{i}_{1}^{\#} \circ d_{F_{q}}=d_{F_{q-1}} \text { and } \widetilde{i}_{0}^{\#} \circ d_{F_{q}}=0
$$

Consider now $K_{p+2}=P\left(K_{p+1}, \pi_{p+2}, z^{p+3}\right)$ and the maps

$$
\Phi_{q}: K_{p+2} \times I^{q} \rightarrow K_{p+2}, q \geq 0
$$

given by

$$
\Phi_{q}((\sigma, c) \times \xi)=\left(F_{q}(\sigma \times \xi), c+t_{\sigma \times \xi}\left(d_{F_{q+1}}\left(z^{p+3}\right)\right)\right)
$$

Then it follows from above that Φ_{q} is well defined, $\Phi_{0}=F_{\left(F_{0}, d_{F_{1}}\left(z^{p+3}\right)\right)}$ and

$$
\begin{gathered}
\Phi_{q} \circ \widetilde{i}_{1}=\Phi_{q-1}, \Phi_{q} \circ \widetilde{i}_{0}=p r^{(q-1)}, q \geq 1 \\
\widetilde{i}_{1}^{\#} \circ d_{\Phi_{q}}=d_{\Phi_{q-1}}, \widetilde{i}_{0}^{\#} \circ d_{\Phi_{q}}=0, q \geq 2
\end{gathered}
$$

Then, by and analogously to Φ_{q}, we define $\Theta_{q}: K_{p+3} \times I^{q} \rightarrow K_{p+3}$ and so on. Define now a map $F: t^{(n)} \times I \rightarrow t^{(n)}$ by taking $F=\left(p r, \ldots, p r, F_{1}, \Phi_{1}, \Theta_{1}, \ldots\right)$. Then it follows from above that $F \circ i_{0}=i d$ and $F \circ i_{1}=a_{c^{p}}$, where

$$
a_{c^{p}}=\left(0, \ldots, 0, \delta c^{p}, d_{F_{1}}\left(z^{p+3}\right), d_{\Phi_{1}}\left(z^{p+4}\right), d_{\Theta_{1}}\left(z^{p+5}\right), \ldots\right) \in A_{t^{(n)}}
$$

Finally, it follows from Corollary 3 that $a_{c^{p}} \in B^{(n)}$ and we define a functorial $\operatorname{map} C^{p}\left(K_{p}, \pi_{p+1}\right) \rightarrow B^{(n)}$ by $c^{p} \mapsto a_{c^{p}}$.

Let $\bar{q}_{k}: A^{(k+1)} \rightarrow A^{(k)}$ be the above introduced restriction homomorphisms. For fixed n, consider a sequence of groups and epimorphisms

$$
A_{n, n} \xrightarrow{q_{n-1}} A_{n, n-1} \rightarrow \cdots \rightarrow A_{n, 2} \xrightarrow{q_{1}} A_{n, 1}
$$

where $A_{n, n}=A^{(n)}$ and $A_{n, k}=\operatorname{Im}\left(\bar{q}_{k} \circ \cdots \circ \bar{q}_{n-2} \circ \bar{q}_{n-1}\right), q_{k}=\bar{q}_{k} \mid A_{n, k+1}$, $1 \leq k \leq n-1$. Besides, let $B_{n, n}=B^{(n)}$ and $B_{n, k}=q_{k}\left(B_{n, k+1}\right), 1 \leq k \leq$ $n-1$. Then the group $B_{n, k}$ is a normal subgroup of $A_{n, k}, 1 \leq k \leq n$.

Now we can consider the factorgroups $G_{n, k}=A_{n, k} / B_{n, k}, 1 \leq k \leq n$, and the epimorphisms $\beta_{k-1}: G_{n, k} \rightarrow G_{n, k-1}, 2 \leq k \leq n$. induced by epimorphisms q_{k-1}.

The next proposition gives a partial information for groups $G_{n, k}$ and, in particular, for group $G^{(n)}=A^{(n)} \prime B^{(n)}=G_{n, n}$ too.

Proposition 6. $G_{n, 1}$ is a factorgroup of a subgroup of $H^{1}\left(N, \pi_{*}\right)$ and there are exact sequences of groups

$$
0 \leftarrow G_{n, k-1} \stackrel{\beta_{k-1}}{\leftarrow} G_{n, k} \stackrel{\alpha_{k}}{\leftarrow} H_{n, k}, 2 \leq k \leq n,
$$

where $H_{n, k}$ is a subgroup of $H^{k}\left(K_{k-1}, \pi_{k}\right)$ and $a_{k}\left(\left[z^{k}\right]\right)=\left[\left(0, \cdots, 0, z^{k}\right)\right]$

Proof. By definition $A_{n, 1}$ is a subgroup of $Z^{1}\left(N, \pi_{1}\right)$. By Lemma 9 we have $B^{1}\left(N, \pi_{1}\right) \subset B_{n, 1}$. Consequently $G_{n, 1}$ is a factorgroup of a subgroup of $H^{1}\left(N, \pi_{1}\right)$. Let, now, $g^{(k)}=\left[a^{(k)}\right] \in \operatorname{Ker} \beta_{k-1}$, where $a^{(k)} \in A_{n, k}$. Consider the element $b^{(k-1)}=\left(q_{k-1}\left(a^{(k)}\right)\right)^{-1} \in B_{n, k-1}$. Let $q_{k-1}\left(b^{(k)}\right)=b^{(k-1)}$, where $b^{(k)} \in B_{n, k}$. Then $q_{k-1}\left(a^{(k)} * b^{(k)}\right)=1$ and $a^{(k)} * b^{(k)}=\left(0, \ldots, 0, z^{k}\right)$, where $z^{k} \in Z^{k}\left(K_{k-1}, \pi_{k}\right)$. Consequently $g^{(k)}=\left[\left(0, \ldots, 0, z^{k}\right)\right]$. Let

$$
\bar{Z}^{k}=\left\{z^{k} \mid z^{k} \in Z^{k}\left(K_{k-1}, \pi_{k}\right),\left[\left(0, \ldots, 0, z^{k}\right)\right] \in G_{n, k}\right\}
$$

According to the formula of group operation in $A^{(n)}, \bar{Z}^{k}$ is a subgroup of $Z^{k}\left(K_{k-1}, \pi_{k}\right)$. By Lemma 9 we have $B^{k}\left(K_{k-1}, \pi_{k}\right) \subset \bar{Z}^{k}$. Consider the factorgroup

$$
H_{n, k}=\bar{Z}^{k} \prime B^{k}\left(K_{k-1}, \pi_{k}\right)
$$

Obviously $H_{n, k}$ is a subgroup of $H^{k}\left(K_{k-1}, \pi_{k}\right)$. Define now a homomorphism $\alpha_{k}: H_{n, k} \rightarrow G_{n, k}$ by $\alpha_{k}\left(\left[z^{k}\right]\right)=\left[\left(0, \ldots, 0, z^{k}\right)\right]$, where $\left[z^{k}\right] \in H_{n, k}$. This homomorphism is well defined. Indeed, if $\left[z_{1}^{k}\right],\left[z_{2}^{k}\right] \in H_{n, k}$ and $z_{1}^{k}-z_{2}^{k}=\delta c^{k-1}$, then, by Lemma 9 we have

$$
\left(0, \ldots, 0, z_{2}^{k}\right)^{-1} *\left(0, \ldots, 0, z_{1}^{k}\right)=\left(0, \ldots, 0, \delta c^{k-1}\right) \in B_{n, k}
$$

Obviously we have $\operatorname{Im} \alpha_{k}=\operatorname{Ker} \beta_{k-1}$ and this completes the proof.
The constructed group $G^{(n)}$ we use to formulate the criterion of equivalence of towers. Consider a natural action

$$
H^{n+2}\left(K_{n}, \pi_{n+1}\right) \times G^{(n)} \rightarrow H^{n+2}\left(K_{n}, \pi_{n+1}\right)
$$

given by $h \circ g=f_{n}^{*}(h)$, here $\left[\left\{f_{i}\right\}\right]=g$. The action is well defined: if $\left[\left\{f_{i}^{*}\right\}\right]=$ g, then f_{n} is homotopic to f_{n}^{i}, thus they induce the same homomorphisms of cohomology. Obviously we have $h \circ 1=h$ and $h \circ\left(g_{2} g_{1}\right)=\left(h \circ g_{2}\right) \circ g_{1}$.

Theorem 10. Let t and \bar{t} be two elements of $T\left(N, \pi_{*}\right)$ such that $z^{k}=z^{k}$ for $k \leq n+1$, i.e. the restrictions $t^{(n)}$ and $\bar{t}^{(n)}$ are equal and let $G^{(n)}$ be the group corresponding to $t^{(n)}$. Then the restrictions $t^{(n+1)}$ and $\bar{t}^{(n+1)}$ are equivalent in $T^{(n+1)}\left(N, \pi_{*}\right)$ if and only if there exists an element $g \in G^{(n)}$ such that $\left[\bar{z}^{n+2}\right]=\left[z^{n+2}\right] \circ g$.
Proof. Let $t^{(n+1)}$ and $\bar{t}^{(n+1)}$ be equivalent in $T^{(n+1)}\left(N, \pi_{*}\right)$, i.e. there exists a morphism

$$
\left\{f_{0}=i d, f_{1}, \ldots, f_{n}, f_{n+1}\right\}: t^{(n+1)} \rightarrow \bar{t}^{(n+1)}
$$

and let ($a^{1}, \ldots, a^{n}, a^{n+1}$) be the corresponding sequence of cochains. Then

$$
\left(a^{1}, \ldots, a^{n}\right) \in A^{(n)} \text { and } \delta a^{n+1}=f_{n}^{\#}\left(\bar{z}^{n+2}\right)-z^{n+2}
$$

Thus $\left[z^{n+2}\right] \circ g^{-1}=\left[\bar{z}^{n+2}\right]$, where $g=\left[\left(a^{1}, \ldots, a^{n}\right)\right]$. Suppose now that there exists $g \in G^{(n)}$ such that $\left[z^{n+2}\right] \circ g=\left[\bar{z}^{n+2}\right]$. Let $g^{-1}=$ $\left[\left(a^{1}, \ldots, a^{n}\right)\right]$. The sequence $\left(a^{1}, \ldots, a^{n}\right)$ defines a morphism

$$
\left\{f_{0}=i d, f_{1}, \ldots, f_{n}\right\}: t^{(n)} \rightarrow \bar{t}^{(n)}
$$

and there exists a cochain a^{n+1} such that $\delta a^{n+1}=f_{n}^{\#}\left(\bar{z}^{n+2}\right)-z^{n+2}$. Then the sequence ($a^{1}, \ldots, a^{n}, a^{n+1}$) defines a morphism

$$
\left\{f_{0}=i d, f_{1}, \ldots, f_{n}, f_{n+1}\right\}: t^{(n+1)} \rightarrow \bar{t}^{(n+1)}
$$

References

1. N. Berikashvili N, On the obstruction functor. Bull. Georgian Acad. Sci. 153(1996), No. 1, 11-15.
2. N. Berikashvili, Th. Kadeishvili, S. Khazhomia, D. Makalatia, M. Mikiashvili, and S. Saneblidze, On the obstruction functor. Bull. Georgian Acad. Sci. 153(1996), No. 2, 172-176.
3. J. P. May, Simplicial objects in algebraic topology, Van Nostrand, 1967.

Simplicial objects in algebraic topology. Van Nostrand Mathematical Studies, No. 11. D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967.

Acknowledgement

This research described in this publication was made possible in part by the grant GNF/ST06/3-007 of the Georgian National Science Foundation.
(Received 30.11.2006)
Authors' address:
A. Razmadze Mathematical Institute, Georgian Academy of Sciences,
1, M. Aleksidze St, 0193 Tbilisi
Georgia

[^0]: 2000 Mathematics Subject Classification. 55S35, 55S40, 55S45, 55U10.
 Key words and phrases. obstruction, cohomology, fibration, simplicial set, cross section, Postnikov-Tower.

