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ON THE OBSTRUCTION FUNCTOR

N. BERIKASHVILI, TH. KADEISHVILI, S. KHAZHOMIA, D. MAKALATIA AND
M. MIKIASHVILI

Abstract. An obstruction functor in terms of Postnikov towers is
introduced and studied.
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1. Introduction

Let π∗ = {π1, π2, . . . , πi, . . . } be a graded abelian group. According
to [1] the obstruction functor DO(−, π∗) is a contravariant functor from
the category Top of topological spaces B into the category of sets with
distinguished subset and element ∗ ∈ DO(B, π∗) ⊂ DO(B, π∗), with the
following properties.

Property 1.1. If f is homotopic to g then DO(f) = DO(g).

Property 1.2. For any Serre fibration F → E → B with suitable as-
sumption on the fiber, there is defined a functorial (with respect to induced
fibrations) element do(E) ∈ DO(B, π∗), where π∗ = π∗(F ) is the sequence
of homotopy groups of the fiber, and E has a cross section if and only if
do(E) ∈ DO(B, π∗).

Property 1.3. If πi = 0 for all i 6= n then DO is the singular cohomology
group Hn+1(−, πn), DO = 0 and do(E) is the classical first obstruction
class.

Property 1.4. Functor DO is constructed in terms of cochains of space
B and groups πi. There is a reasonable criterion to define whether two
cochain representations give the same element of DO(B, π∗) or not.

The construction of the obstruction functor in first nontrivial case when
πk = 0, k 6= p, k 6= q is given (in terms of twisted tensor product) and
investigated in [1].
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Here we construct the obstruction functor in general case in terms of
Moore-Postnikov towers with the Property 1.4 somewhat weakened: DO is
constructed in terms of cochains of complexes of tower not only of B.

In sections 2-4 we construct the functor DO and obstruction element
do(E) and establish their general properties (Properties 1,1-1,3). In section
5 we give a criterion of equivalence of two towers (Property 1.4).

Main results of this paper (partially in slightly different form) was an-
nounced in [2].

2. Preliminaries

Below, throughout this paper, all simplicial sets and topological spaces
will be connected and arcwise connected respectively.

Let N be a simplicial set and π be an abelian group. Below we use
only normalized cochains cn ∈ Cn(N, π). Let Zn(N, π) be the group of
n−dimensional cocycles.

Recall the definition of Postnikov construction P = P (N, π, zn), zn ∈
Zn(N, π) (see for details [3]). Let E(π, n) be the complex whose q-simplexes
are cochains u ∈ Cn(∆[q], π) and face and degeneracy operators ∂i and si

are defined by

∂iu = e#i u, siu = d#
i u; u ∈ C

n(∆q, π), 0 ≤ i ≤ q,

where ∆[q] is the standard simplicial q-simplex, ei : ∆[q − 1] → ∆[q] and
di : ∆[q + 1]→ ∆[q] are the standard maps.

The Eilenberg-MacLane complex K(π, n) is defined as the subcomplex
of E(π, n) whose simplexes u ∈ Cn(∆[q], π) are cocycles u ∈ Zn(∆[q];π).
For a simplicial set N the following bijections are well know:

Cn(N, π) = Hom(N,E(π, n)); Zn(N, π) = Hom(N,K(π, n)).

If cn ∈ Cn(N, π) then the simplicial map ĉn : N → E(π, n) is defined as
follows. For a given simplex σq ∈ N let tσq : ∆[q] → N be the standard
map for σq. Let

ĉn(σq) = t#σq (cn).

One verifies that ĉn is a simplicial map. Observe also that for tσ we have
tf(σ) = f ◦ tσ, where f is a simplicial map.

If cn = zn ∈ Zn(N, π) then ẑn(N) ⊂ K(π, n) and hence there is a
simplicial map ẑn : N → K(π, n). We use also the standard map

δ : E(π, n− 1)→ K(π, n).

The complex E(π, n) is acyclic and the homotopy groups of realization
| K(π, n) | are zero except πn(| K(π, n) |) = π.

Definition 1. The Postnikov construction P = P (N, π, zn), zn ∈
Zn(N, π), is defined as the subcomplex of N × E(π, n − 1) consisting of
all simplexes (s, u), s ∈ N, u ∈ E(π, n − 1), such that t#s (zn) = δu. The
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projection N × E(π, n − 1) → N defines the projection P (N, π, zn)
p
→ N .

There is a standard (n− 1)-cochain cn−1 ∈ Cn−1(P, π), in the sequel called
P -cochain, defined by cn−1((σn−1, g)) = g, for σn−1 ∈ N and g ∈ π, where
g on the left side is looked up as an (n− 1)-cochain of ∆[n− 1].

Obviously the P -cochain is functorial and p#(zn) = δcn−1. Note that,
for a simplicial map f : N → M and zn ∈ Zn(M,π), we have the induced
map

P (f) : P (N, π, f#(zn))→ P (M,π, zn)

of P-constructions, with P (f)(s, u) = (f(s), u).

Lemma 1. If f : N → M induces an isomorphism of homology groups
then P (f) : P (N, π, f#(zn)) → P (M,π, zn) induces an isomorphism of
homology groups as well, where zn ∈ Zn(M,π).

Proof. Spectral sequence arguments. �

Let F → E →| N | be a Serre fibration over the Milnor realization of
simplicial set N and sn−1 be a cross section over the (n − 1)-skeleton of
| N |. Then it is defined an obstruction cocycle z(sn−1) ∈ Zn(N, πn−1(F )).
If sn−1

1 is another cross section over the (n − 1)-skeleton which coincides
with sn−1 on the (n − 2)-skeleton then it is defined a difference cochain
d(sn−1, sn−1

1 ) = cn−1 ∈ Cn−1(N, πn−1(F )) and z(sn−1)− z(sn−1
1 ) = δcn−1.

For a cochain cn−1 ∈ Cn−1(N, πn−1(F )) there exists a cross section sn−1
1

coinciding with sn−1 on the (n−2)-skeleton such that d(sn−1, sn−1
1 ) = cn−1.

We have the following almost evident

Lemma 2. Let F → E →| N | be a Serre fibration over the Milnor
realization of a simplicial set N and let sn−1 be a cross section over the
(n− 1)-skeleton of | N |. Consider the Postnikov construction

P = P (N, πn−1(F ), z(sn−1))

for obstruction cocycle z(sn−1) ∈ Zn(N, π). Consider the fibration over
| P | induced from given fibration by the projection | P |→| N |. Con-
sider the induced cross section over (n − 1)-skeleton of | P | defined by
sn−1 : pr#(sn−1). Consider the cross section sn−1

1 , which coincides with
the latter cross section over (n − 2)-skeleton such that (perturb the cross
section pr#(sn−1) by P -cochain cn−1)

z(pr#(sn−1))− z(sn−1
1 ) = δcn−1,

then the cross section sn−1
1 extends over the n-skeleton of | P |.

Definition 2. In the conditions of preceding Lemma 2 every extension
of the cross section sn−1

1 over n-skeleton of | P | we will call P-extension of
the cross section sn−1.
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3. Definition of Functor DO(−, π∗)

Let N be a simplicial set and π∗ = {π1, π2, π3, . . . } be a sequence of
abelian groups.

Definition 3. A tower t(N ; z2, z3, z4, . . . ) over N is a sequence of sim-
plicial sets and their projections

N = K0 ← K1 ← K2 ← · · ·

together with a sequence of cocycles z2, z3, z4, . . . , zi+2 ∈ Zi+2(Ki, πi+1),
i ≥ 0, such that

Ki+1 = P (Ki, πi+1, z
i+2).

Let f : M → N be a simplicial map and t be a tower over N . Then,

in obvious way, we define the induced tower t = f#(t) over M by taking

z
i+2

= f#
i (zi+2), i ≥ 0, where f0 = f and fi+1 = P (fi). Hence one has

a map T (f) : T (N, π∗) → T (M,π∗). Thus the set of all towers T (N, π∗)
defines a contravariant functor T (−, π∗) from the category of simplicial sets
to the category of sets.

Definition 4. A tower t(N ; z2, z3, . . . ) is said to be zero on N if z2 = 0
(then N ⊂ K1 by standard manner), z3 | N = 0 (then N ⊂ K2), z

4 | N = 0,

(then N ⊂ K3), and so on. Denote by T̃ (N, π∗) the set of all towers zero

on N . T̃ is also a contravariant functor.

Lemma 3. If a chain map f : C → C1 is an epimorphism and induces an
epimorphism of homology, then f |Z(C): Z(C)→ Z(C1) is an epimorphism
as well (here Z(C) is the group of cycles).

Proof. Is trivial. �

Corollary 1. For a pair i : N1 ⊂ N , if i induces an isomorphism of the
integral homology groups, then

T (i) : T (N, π∗)→ T (N1, π∗) and T̃ (i) : T̃ (N, π∗)→ T̃ (N1, π∗)

are surjective.

Proof. Let t1(N1, z
2
1 , z

3
1 , . . . ) ∈ T (N1, π∗). By Lemma 3 there is a cocycle

z2 ∈ Z2(N, π1) with z2 | N1 = z2
1 . Hence P (N1, π1, z

2
1) ⊂ P (N, π1, z

2)
and by Lemma 1 they have isomorphic homology groups. By Lemma 3
there is a cocycle z3 ∈ P (N, π1, z

2) with z3 | P (N1, π1, z
2
1) = z3

1 . So one
inductively constructs the tower t(N, π∗) such that T (i)(t) = t1. Now let t1
be a tower zero on N1. Then we can construct t as follows. Since z2

1 = 0
we can select z2 = 0. For z3 ∈ P (N, π1, z

2) with z3 | P (N1, π1,z
2
1) = z3

1

let z3 = z3 − p#(z3 | N), where p : P → N is the projection. Then
z3 | P (N1, π1, z

2
1) = z3

1 too and z3 | N = 0. And so on. This completes the
proof. �
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Definition 5. Two towers, t(N ; z2, z3, . . . ) and t1(N ; z2
1 , z

3
1 , . . . ), are

equivalent (notation t ∼ t1), if there is a tower t2(N × I; z2
2 , z

3
2 , . . . ), where

I = ∆[1] is the unit interval, such that

t(N ; z2, z3, . . . ) = t2(N × I; z2
2 , z

3
2 , . . . ) | N × 0,

t1(N ; z2
1 , z

3
1 , . . . ) = t2(N × I; z2

2 , z
3
2 , . . . ) | N × 1.

Theorem 1. ∼ is an equivalence relation.

Proof. Let t, t1 and t2 be towers over a simplicial set N and let t ∼ t1,
t1 ∼ t2. Then one has two towers t and t̃ over N × I such that

t = t | N × 0, t1 = t | N × 1, t1 = t̃ | N × 0, t2 = t̃ | N × 1.

Consider the product N × ∆[2]. Then t and t1 define the sum tower on
the N × (01)

⋃
N × (12). By the Corollary 1, this tower extends from

N × (01)
⋃
N × (12) on N × ∆[2]. The restriction of obtained tower on

N × (02) provides the transitivity t ∼ t2. Reflexivity t ∼ t we obtain
considering the tower t × I = T (pr)(t), where pr : N × I → N is the
projection. Symmetricity: consider Sing([01]) and two imbeddings

i0, i1 : N × I → N × Sing([01])

i0(σ × 0) = σ × 0, i0(σ × 1) = σ × 1,

i1(σ × 0) = σ × 1, i1(σ × 1) = σ × 0

from t ∼ t1 follows by Corollary 1 there is an extension of the tower on
i0(N × I) to a tower on N × Sing([01]). Its restriction on the subcomplex
i1(N × I) provides the equivalence t1 ∼ t. �

Now we can define the obstruction functor.

Definition 6. For a simplicial set N , let

DO(N, π∗) = T (N, π∗)/ ∼ .

Definition 7. DO(N, π∗) is a subset of elements ofDO(N, π∗) containing
at least one tower zero on N . Besides, by condition zi = 0 for all i ≥ 2, we
define distinguished element ∗ ∈ DO(N, π∗).

Theorem 2. If f : N1 ⊂ N induce an isomorphism of homology then

DO(f) : DO(N, π∗)→ DO(N1, π∗) and DO(f) : DO(N, π∗)→ DO(N1, π∗)

are 1− 1 maps.

Proof. Surjectivity of DO(i) and DO(i). In virtue of Corollary 1 T (i) and

T̃ (i) are surjective. Hence DO(i) and DO(i) are surjective as well. Injec-
tivity of DO(i): Let t and t̄ be towers over N such that

t | N1 ∼ t̄ | N1.

Hence there exists a tower tI over N1 × I which provides this equivalence.
Consider N × I and it’s three subcomplexes N × 0, N × 1, N1 × I. The
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union of these subcomplexes U has the same homology as N × I. Consider
the tower t̃ on U given by

t̃ | N × 0 = t, t̃ | N × 1 = t̄, t̃ | N1 × I = tI .

By virtue of Corollary 1 of Lemma 3, there is an extension of t̃ on the
N × I. It gives the equivalence t ∼ t̄. This completes the proof of injectivity
of DO(i). Injectivity for DO(i) follows from injectivity for DO(i). �

Definition 8. Let for topological space B

DO(B, π∗) = DO(Sing(B), π∗)

DO(B, π∗) = DO(Sing(B), π∗)

Lemma 4. The inclusion

N ⊂ Sing(|N |)

induce the equalities

DO(N, π∗) = DO(Sing(|N |), π∗)

DO(N, π∗) = DO(Sing(|N |), π∗)

Proof. Follows from Theorem 2. �

Lemma 5. If B is a topological space and i0 and i1 are imbeddings as
upper and lower base of B × I then DO(i0) = DO(i1).

Proof. From Theorem 2 follows that DO(i0) and DO(i1) are 1 − 1 maps.
Hence for the projection

pr : B × I → B

DO(pr) is 1− 1 map. It follows DO(i0) = DO(i1). �

As a Corollary we have

Theorem 3. If a map of topological spaces f is homotopic to g then
DO(f) = DO(g) and DO(f) = DO(g).

Jet we can prove

Theorem 4. If a map of topological spaces

f : B1 → B

induce an isomorphism of homology then

DO(f) : DO(B, π∗)→ DO(B1, π∗) and DO(f) : DO(B, π∗)→ DO(B1, π∗)

are 1− 1 maps.



ON THE OBSTRUCTION FUNCTOR 11

Proof. Let C(f) be the cylinder of the map f . One has a homotopy com-
mutative triangle

C(f)
k

ր
q

տ

B1
f
−→ B

with k and q being the standard imbeddings. By virtue of above results one
has the commutative triangle

DO(C(f))
DO(k)

ւ
DO(q)

ց

DO(B)
DO(f)
−→ DO(B1)

with DO(k) and DO(q) 1− 1 maps in virtue of Theorem 2. Then it follows
that DO(f) is 1 − 1 map too. Analogously one has that DO(f) is 1 − 1
map. �

4. Definition of Obstruction Element do(E)

Let F → E → B be a Serre fibration. Here we assign to this fibration an
element

do(E) ∈ DO(B, π∗(F ))

with the following properties:
(i) do(E) is functorial.
(ii) the fibrationE has a cross section if and only if do(E) ∈ DO(B, π∗(F )).
Consider first the case B =| N | . LetK0 = N. Consider a cross section s1

on the 1-skeleton of | N |=| K0 |. Let z2 ∈ Z2(K0, π1(F )) be its obstruction
cocycle, z2 = z(s1). Then we obtain K1 = P (K0, π1(F ), z2) and a fibration
K1 → K0. Let s2 be a cross section over 2-skeleton of | K1 |, which is the P -
extension of s1 in the sense of Definition 2 . Let z3 = z(s2) ∈ Z3(K1, π2(F ))
and K2 = P (K1, π2(F ), z3). Let s3 be a cross section over 3-skeleton of
| K2 |, i.e. the P -extension of s1, and z4 = z(s3) ∈ Z4(K2, π3(F )), etc.
Proceeding inductively we construct the needed tower.

In general case let S(B) be the singular complex of B, ω :| S(B) |→ B be
the standard map and let E →| S(B) | be a fibration induced by ω. Then,
by above way, we construct a tower for E using the fibration E.

Definition 9. The constructed tower we call a P -tower of a fibration E
or a geometric tower.

Lemma 6. If t is a P -tower of a fibration over B and f is a map
B1 → B then T (f)t is a P -tower of the induced fibration over B1

Proof. is an easy checking. �
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Lemma 7. If F → E → B is a fibration, B1 ⊂ B and t is a P -tower of
the restricted fibration over B1 then t extends to a P -tower over B.

Proof. is an easy one. �

Definition 10. We define do(E) ∈ DO(B, π∗(F )) as the class of any
P-tower (over Sing(B)) of the fibration E.

Theorem 5. The class do(E) ∈ DO(B, π∗(F )) is uniquely defined.

Proof. Obviously it is enough to consider the case F → E →| N | . Let

t = (K0, z
2; K1, z

3; K2, z
4; . . . )

and
t̄ = (K0, z̄

2; K̄1, z̄3; K̄2, z̄
4; . . . )

be two P-towers of E. Consider the projection

pr :| N | ×I →| N |

and let E×I be the fibration induced by pr. By Lemma 7 there is a P -tower
for this fibration whose restriction on N × 0 is t and on N × 1 is t. �

Theorem 6. do(E) is functorial.

Proof. Follows from Lemma 6. �

Theorem 7. Any tower from do(E) is a P -tower of E

Proof. For a fibration E →| N | (the general case is trivial after this one)
let us consider a tower t over N × I such that its restriction on N × 0 (we
denote it by tN ) is geometric, i.e. it is a P -tower of E. It is enough to show
that t is a P -tower of induced fibration. There exists a cochain c1 = c1N×I

such that
z2

N×I − pr
#(z2

N ) = δc1N×I , c
1 ∈ C1(N × I, π1).

Indeed, the left side is zero over N × 0 and H∗(N × I,N ×O) = 0. Besides,
pr#(z2

N ) is geometric since z2
N is geometric. By classical fact pr#(z2

N ) +
δc1 is geometric as well (theorem about difference cochain). Hence z2

N×I

is geometric. Knowing z2
K1

N×0
to be geometric, consider one of geometric

z̄3
K1

N×I

cocycles extending geometric z3
K1

N×0
. By H∗(K1

N×I ,K
1
N×0) = 0

there is c2 = c2
K1

N×I

such that

z3
K1

N×I
− pr#(z3

K1
N

) = δc2K1
N×I

, c2 ∈ C1(K1
N×I , π2).

it follows z3
K1

N×I

is geometric. The same proof is valid for z4
K2

N×I

z5
K3

N×I

z6
K4

N×I

and so on. �

Theorem 8. For a fibration F → E →| N | one has do(E) ∈ DO(| N |,
π∗(F )) if and only if there exists a cross section for E.
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Proof. Sufficiency: Let do(E) ∈ DO(N, π∗(F )). This means that there is
a tower in do(E) which is zero over N . By preceding theorem this tower
is geometric. From this it is not hard to deduce that the procedure of
constructing of geometric sequence gives a cross section over the whole |
N |.Necessity: Let s :| N |→ E be a cross section. Construct the P -
tower by using this cross section as follows. Let s1 be the restriction of
cross section s on 1-skeleton of | N |=| K0 |. The cocycle z2 = z(s1), as
obstruction cocycle of s1 which is extendable over 2-skeleton of | K0 |, is
zero, z2 = 0 and hence N ⊂ K1. In constructing z3, having the freedom
of extension, extend, perturbed by P -cochain c1, cross section pr(s1) on
2-simplexes of | N |⊂| K1 | by s (see Lemma 2 and take in consideration
that c1 | N = 0). We became z3 = 0 over N and so on. �

About the property 1.3. If the graded group π∗ have only one nontrivial
component, say πn, and F → E →| N | is a Serre fibration with π∗(F ) = πn,
then towers from T (N, π∗) reduce to fibration Kn = P (N, πn, z

n+1). Then
we have: T (N, πn) = Zn+1(N, πn), there is only one tower P (N, πn, 0) =
N ×K(πn, n) zero on N and P (N, πn, z

n+1) ∼ P (N, πn, z
n+1) if and only

if [zn+1] = [zn+1]. Hence DO(N, πn) = Hn+1(N, πn) and do(E) is the
classical first obstruction class of E.

5. Criterion of Equivalence of Towers

Our aim in this section is to formulate a criterion of equivalence of two
towers (Theorem 10 below). A tool for this is a notion of maps of towers
which leads actually to an alternative definition of functor DO(B, π∗) as a
set of towers on B modulo isomorphism of towers. Below we denote by the
same symbols maps and induced homomorphisms. We denote cochains and
corresponding maps by the same symbols as well: for example Cn(N, π) =
Hom(N,E(π, n)).

5.1. Maps of P -constructions.

Definition 11. A map of P -constructions is a couple of maps

(f, F ) = (f : K → L; F : P (K,π, zn)→ P (L, π, z
n
))

such that fp = pF and F is a K(π, n − 1)-map: F (k, c+ z) = F (k, c) ◦ z,
where the operation ◦ is the standard action of Eilenberg-MacLane complex
on the total complex P .

Lemma 8. Let P (K,π, zn) and P (L, π, z
n
) be P -constructions and let

f : K → L be a map. Then there exists a map of P -constructions

(f, F ) = (f : K → L; F : P (K,π, zn)→ P (L, π, z
n
))

if and only if there exists a cochain an−1 : K → E(π, n− 1) such that

δan−1 = z
n
◦ f − zn.
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One has F = Fan−1 , where Fan−1(k, c) = (f(k), c + an−1(k)). The cochain
an−1 is uniquely determined by the map (f, F ).

Proof. Easy to show that for a given an−1 with δan−1 = z
n
◦ f − zn the

map Fan−1 satisfies the needed conditions. Suppose now that a map of P -
constructions (f, F ) is given. We have to construct a cochain an−1 satisfying
the conditions δan−1 = z

n
◦ f − zn and F = Fan−1 . Since fp = pF , one has

F (k, c) = (f(k), ϕ(k, c)), where

ϕ : P (K,π, zn)→ E(π, n− 1).

Let us introduce the map

ψ : P (K,π, zn)→ E(π, n− 1)

given by ψ(k, c) = ϕ(k, c) − c. This map does not depend on the second
argument c ∈ E(π, n−1). Indeed, suppose (k, c), (k, c‘) ∈ P (K,π, zn). Thus
δc = zn(k) = δc‘, i.e. c− c‘ ∈ K(π, n− 1). Then

ψ(k, c‘) = ψ(k, c+ c‘ − c) = ϕ(k, c+ c‘ − c)− c‘ =
= ϕ(k, c) + (c‘ − c)− c‘ = ϕ(k, c)− c = ψ(k, c).

This fact implies that there exists the unique cochain an−1 : K → E(π, n−1)
such that ψ = an−1 ◦ p. It remains to show that F = Fan−1 and δan−1 =
z

n
◦ f − zn. Indeed

F (k, c) = (f(k), ϕ(k, c)) = (f(k), c+ ψ(k, c)) =
= (f(k), c+ (an−1 ◦ p)(k, c)) = (f(k), c+ an−1(k)) = Fan−1(k, c).

Now look at δan−1. Since

F (k, c) = (f(k), c+ an−1(k)) ∈ P (L, π, z
n
),

we have δ(c+an−1(k)) = z
n
(f(k)). Thus zn(k)+δ(an−1(k)) = z

n
(f(k)). �

Note that for P (f) in Lemma 1 we have P (f) = Fan−1 with an−1 = 0.

Proposition 1. Let (f, Fan−1) and (g, Fbn−1) be maps of P -constructions

P (K,π, zn)
(f,F

an−1)
→ P (L, π, z

n
)

(g,F
bn−1)
→ P (S, π, z̃n),

then the composition again is a map (gf, Fcn−1) of P -constructions, where

cn−1 = an−1 + bn−1 ◦ f.

Proof. We have

(Fbn−1 ◦ Fan−1)(k, c) = Fbn−1(f(k), c+ an−1(k)) =
=(g(f(k)), c+an−1(k)+bn−1(f(k)))=(g(f(k)), c+cn−1(k))=Fcn−1(k, c).�

Proposition 2. If (f, F ) is a morphism of P -constructions and f is an
isomorphism [monomorphism], then F is an isomorphism [monomorphism]
too.
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Proof. By Lemma 8 F = Fan−1 for some an−1. Let

(f(k1), c1 + an−1(k1)) = (f(k2), c2 + an−1(k2)).

Then k1 = k2, c1 + an−1(k1)) = c2 + an−1(k2) and hence c1 = c2. Suppose
now that f is an isomorphism. Then the opposite map will be Fbn−1 , where
bn−1 = −an−1 ◦ f−1. Indeed, to the composition Fbn−1 ◦Fan−1 corresponds
the zero cochain:

cn−1 = an−1 + bn−1 ◦ f = an−1 − an−1 ◦ f−1 ◦ f = 0.

Thus Fbn−1 ◦ Fan−1 = Fcn−1 = F0. Since f−1 ◦ f = id one has F0 = id. �

Let P (K,π, zn) be a P -construction and L be a simplicial set. Then the
total complex P (K × L, π, z

n
), where

z
n

= zn ◦ pr : K × L→ K → K(π, n),

we can identify with P (K,π, zn)× L
Let I = ∆[1] and let, for a simplicial set M , iε : M →M × I, ε = 0, 1, be

the standard imbeddings. Obviously the standard maps iǫ = (iǫ, iǫ) : P →
P × I, where ǫ = 0, 1, are maps of P -constructions. By this, in obvious way,
we introduce the notion of homotopy of maps of P-constructions.

Definition 12. Two maps of P -constructions

(f, F ), (f ‘, F ‘) : P (K,π, zn)→ P (L, π, z
n
)

we call homotopic, if there exists a map of P -constructions

(h,H) : P (K,π, zn)× I → P (L, π, z
n
)

such that hi0 = f, hi1 = f ‘, Hi0 = F, Hi1 = F ‘.

Proposition 3. Two maps of P -constructions (f, Fan−1) and (f ‘, Fa‘n−1)
are homotopic if and only if f ∼ f ‘ by some homotopy h : K×I → L for
which there exists a cochain bn−1 : K × I → E(π, n− 1) such that

δbn−1 = z
n
◦ h− zn ◦ pr, bn−1 ◦ i0 = an−1, bn−1 ◦ i1 = a‘n−1.

Proof. Suppose there exists a map (h,H) with suitable properties. Then
by Lemma 8, there exists a cochain bn−1 : K × I → E(π, n − 1) such that
δbn−1 = z

n
◦ h − zn ◦ pr. Let us show that bn−1 ◦ i0 = an−1. Consider

the composition (hi0, Hi0) which coincides with the map (f, F ). To this
map corresponds the cochain an−1, to i0- the zero cochain, and to (h,H)
corresponds the cochain bn−1. Then by Proposition 1 we havean−1 = 0 +
bn−1 ◦ i0. In a similar way we have bn−1 ◦ i1 = a‘n−1. Suppose now that
a homotopy h and a cochain bn−1, satisfying the suitable conditions, are
given. Then by Lemma 8 there exists a map of P -constructions (h,H). It
remains to show that Hi0 = F , Hi1 = F ‘. Again, consider the composition
(h,H) ◦ (i0, i0) = (f,Hi0). Then by Proposition 1 to this map corresponds
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the cochain 0 + bn−1 ◦ i0 = an−1. Thus by Lemma 8 we get H ◦ i0 = F . In
similar way H ◦ i1 = F ‘. �

5.2. Map of towers. In definition of towers we restrict ourselves to towers
of height n i. e. instead of Definition 3 consider the notion of n-towers:

Definition 13. An n-tower t(n)(N ; z2, . . . , zn+1) over N with coefficients
in π∗ = (π1, . . . , πn) is a sequence of simplicial sets and standard projections

N = K0
p
← K1

p
← K2

p
← · · ·

p
← Kn, where Ki+1 = P (Ki, πi+1, z

n+1),
zi+2 ∈ Zi+2(Ki, πi+1), 0 ≤ i ≤ n.

The set T (n)(N, π∗) of n-towers defines a contravariant functor and there
is an equivalence relation on T (n)(N, π∗) similar to that of in Definition 5.
The obvious changes in Definitions 4, 5, 6,7, 8 leads to functorsDO(n)(B, π∗),

DO
(n)

(B, π∗).

Definition 14. A map of n-towers t(n) → t
(n)

is defined as a sequence
of simplicial maps fi : Ki → Ki where i = 0, 1, 2, . . . , n such that each
(fi, fi+1) is a map of P-constructions.

It follows from Lemma 8 that a map t(n) → t
(n)

exists if and only if there
exists a sequence of cochains a = (a1, a2, . . . , an), ai ∈ Ci(Ki−1, πi), such

that f#
i−2(z

i
)− zi = δai−1, where fi−2 = Fai−2 , 2 ≤ i ≤ n+ 1.

Proposition 4. Two towers t(n), t
(n)
∈ T n(N, π∗) are equivalent if

and only if there exists an isomorphism of towers {fi} : t(n) → t
(n)
, with

f0 = idN .

Proof. Let

t(n) = t(n)(N ; z2, z3, . . . ), t
(n)

= t
(n)

(N ; z
2
, z

3
, . . . ),

t̃(n) = t̃(n)(N × I; z̃2, z̃3, . . . ),

T (n)(i0)(t̃
(n)) = t(n), T (n)(i1)(t̃

(n) ) = t
(n)
,

where, for an arbitrary M, iǫ : M → M × I, ǫ = 0, 1 are the standard
inclusions. Below maps and corresponding homomorphisms for cochains we
denote by same symbols. Let, now,

ϕ = {ϕi} : t(n) → t̃(n) and ϕ = {ϕi} : t
(n)
→ t̃(n)

be maps of n-towers, corresponding to ϕ0 = i0, ϕ0 = i1. For Fan−1 we below
use more explicit notation F(f,an−1). Let f0 = idN : K0 = N → K0 = N .
Then, ϕ0 ∼ ϕ0◦ f0 by homotopy

h0 = id : K0 × I = N × I → K̃0 = N × I.

Since

i0(h0(
∼

z
2
)− pr(z2)) = ϕ0(

∼

z
2
)− z2 = z2 − z2 = 0,
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there exists a cochain b
1
∈ C1(K0 × I, π1) such thath0(

∼

z
2
)− pr(z2) = δb

1
.

Let

b1 = b
1
− pr(i0(b

1
)),

where, for an arbitrary M, pr : M × I → M is the standard projection.

Then, since δi0(b
1
) = i0(δb

1
) = 0, we have

i0(b
1) = 0, h0(

∼

z
2
)− pr(z2) = δb1.

Let a1 = i1(b
1). Then

δa1 = i1(δb
1) = i1(h0(

∼

z
2
))− i1(pr(z

2)) = (ϕ0 ◦ f0)(z̃
2)− z2 = f0(z

2)− z2.

Now we consider the map f1 = F(f0,a1) and homotopy

h1 = F(h0,b1) : K1 × I → K̃1

from Lemma 8 and proposition 3. Since i0(b
1) = 0 we have h1 ◦ i0 =

F(ϕ0,0) = ϕ1 and

h1 ◦ i1 = F(ϕ0◦f0,i1(b1)) = F(ϕ0,0) ◦ F(f0,a1) = ϕ1 ◦ f1.

So, by h1, we have ϕ1 ∼ ϕ1 ◦ f1 and so on. Thus we can construct a
morphism

{fi} : t(n) → t
(n)

with f0 = idN .

Now let {fi} : t(n) → t
(n)

be a morphism with f0 = idN . Let (a1, a2, . . . )

be a corresponding sequence: f#
i (zi+2) − zi+2 = δai+1. For an inclusion

f : M → M1 and ci ∈ Ci(M) define ci = ci(f) ∈ Ci(M1) as follows. If
τ i = f(σi), then ci(τ i) = ci(σi) and ci(τ i) = 0 otherwise. Let ϕ0 = i0,

ϕ0 = i1 , K̃0 = N × I andz̃2 = pr(z2) + δa1, where a1 = a1 (ϕ0f0). Then

i0(z̃
2) = i0(pr(z

2)) + δi0(a
1) = z2 + 0 = z2,

i1(z̃
2) = i1(pr(z

2)) + δi1(a
1) = z2 + δa1 = z2.

Let

K̃1 = P (K̃0, π1, z̃
2), ϕ1 = F(i0,0) : K1 → K̃1, ϕ1 = F(i1,0) : K1 → K̃1,

pr1 = F(pr,−a1) : K̃1 → K1, z̃
3 = pr1(z

3) + δa2,

where a2 = a2(ϕ1f1) = f−1
1 (a2)(ϕ1). It is clear (see Proposition 2) that

ϕ1 and ϕ1 are inclusions and, moreover, Imϕ1 ∩ Imϕ1 = ∅. Then, using
Proposition 1 we have

ϕ1(z̃
3) = ϕ1(pr1(z

3)) + δϕ1(a
2) = (F(pr,−a1) ◦ F(i0,0))(z

3) + 0 =
= F(id,0+i0(−a1))(z

3) = F(id,0)(z
3) = idK1(z

3) = z3

and

ϕ1(z̃
3) = ϕ1(pr1(z

3)) + δϕ1(a
2) = (F(pr,−a1) ◦ F(i1,0))(z

3) + δf−1
1 (a2) =

= F(id,0+i1(−a1))(z
3) + f−1

1 (δa2) = F(id,−a1)(z
3) + f−1

1 (δa2) =
= f−1

1 (z3) + f−1
1 (δa2) = f−1

1 (z3 + δa2) = z3.
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Let K̃2 = P (K̃1, π2, z̃
3) and so on we construct a desired tower t̃(n). �

Remark 1. Let t = t(N ; z2, z3, . . . ) be a tower and cp ∈ Cp(Kp−1, πp), p ≥

1. Consider a new tower t = t(N ; z
2
, z

3
, . . . ) and a map (isomorphism) of

towers f = {fi} : t→ t, where z
i
= zi for i ≤ p, fi = id for i ≤ p−1, z

p+1
=

zp+1 − δcp, fp = F(id,cp) (see Lemma 2) and the rest of the {K
i
} and {fi}

are induced from t (beginning with fp). Then, by Proposition 4 we have

t ∼ t and this is a particular case of perturbation of a representative tower
of an element of DO(N, π∗).

An obvious corollary is

Theorem 9. DO(n)(B, π∗) is equal to the set T (n)(N, π∗) of n-towers
modulo isomorphism of towers.

We shall use the following notion of homotopy of n-towers. Two mor-

phisms of towers f, g : t(n) → t
(n)

we call homotopic if there exists a mor-

phism (homotopy) of towers F : t(n) × I → t
(n)

such that Fi0 = f and
Fi1 = g, where

iǫ : t(n) = T (n)(iǫ)(t
(n) × I)→ t(n) × I, ǫ = 0, 1.

Note that we have f ∼ f(F = pr) and this notion is compatible with
compositions. This follows from the diagram

M × I
id×∆
→ M × I × I

F×id
→ K × I

Φ
→ L,

where F : M × I → K and Φ : K × I → L are some homotopies and ∆ is
the diagonal map.

From Proposition 3 we have the following

Corollary 2. Two maps of towers f = {ai} and f = {ai} are homotopic
if and only if f0 ∼ f0 by some homotopy F0 for which there exists a
sequence of cochains

b = (b1, · · ·, bi, · · ·, bn), bi ∈ Ci(Ki−1 × I, πi), 1 ≤ i ≤ n,

which satisfies the following conditions (i) i0(b
i) = ai, i1(b

i) = ai, (ii)
δbi−1 = Fbi−2 (zi) − pr(zi), where Fb0 = F0 and Fbi : Ki × I → Ki are
maps given by

Fbi((k, c)× ξ) = Fbi−1((k, c)× ξ), c+ tk×ξb
i), 1 ≤ i ≤ n.

5.3. Criterion of equivalence of towers. For a simplicial set N , let us
fix a tower t ∈ T (N, π∗) and let t(n) ∈ T (n)(N, π∗) be the restrictions of
t up to n-stage. Denote by A(n) = At(n) the set of automorphisms of the
n-tower t(n) with f0 = id:

{f0 = id, f1, . . . , fn} : t(n) → t(n).
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The composition turns A(n) into a group. According to Lemma 8 each
element {fk} ∈ A(n) can be interpreted as a sequence of cochains

a(n) = {ak}, ak ∈ Ck(Kk−1, πk), k = 1, 2, . . . , n; δak−1 = fak−2(zk)− zk.

Remark that if ai = 0 for all i with 1 ≤ i ≤ p ≤ n− 1, then fi = id for all
0 ≤ i ≤ p and δap+1 = zp+2 − zp+2 = 0.

By Proposition 1 to the composition {fak} ◦ {fak} : t(n) → t(n) corre-
sponds the sequence {ak + fak−1(ak)}, thus the operation of the group A(n)

in terms of cochains is given by

a(n) ∗ a(n) = {ak + fak−1(ak)}.

Then it follows from Proposition 1 and above formula for the group op-
eration of A(n) that there are the restriction epimorphisms iε : At(n)

×I →

A(n), ε = 0, 1, given by iε({b
i}) = {i#ε (bi)}. For example, if a(n) ∈ At(n) ,

we have iε(pr{a(n)}) = a(n), where pr({ai}) = {pr#(ai)} ∈ At(n)
×I . Let

A0
t(n)

×I = Keri0 = {b(n) | b(n) = (b1, . . . , bn) ∈ At(n)
×I , i0(b

i) = 0}.

We introduce also the restriction homomorphisms qn : A(n+1) → A(n) given
by

qn(a1, . . . , an, an+1) = (a1, . . . , an), n ≥ 1.

Define now B(n) = Im(i1 | A0
t(n)

×I
). Then it follows from above that

B(n) ⊂ A(n) is a normal subgroup of A(n) and we can define the factorgroup

G(n) = A(n)′B(n).

As above for A(n), the subgroup B(n) and consequently G(n) also have a
description in terms of cochains, which we now give.

Proposition 5. A sequence of cochains a(n) = (a1, a2, · · ·, an) ∈ A(n) =
At(n) belongs to subgroup B(n) if and only if there is exists a sequence of
cochains

b(n) = (b1, b2, · · ·, bn) ∈ C(Kn−1 × I, πi), 1 ≤ i ≤ n

which satisfies the following conditions(i) i0(b
i) = ai, i1(b

i) = ai, (ii) δbi−1 =
Fbi−2(zi)− pr(zi), where Fb0 = F0 and Fbi : Ki× I → Ki are maps given
by

Fbi((k, c)× ξ) = Fbi−1((k, c)× ξ), c+ tk×ξb
i), 1 ≤ i ≤ n.

Proof. Let i1(b
(n)) = a(n), where b(n) ∈ A0

t(n)
×I

. Applying Lemma 8 for

pr ◦ b(n) one can show that conditions of the proposition hold for {bi}.
Suppose now that conditions (i) and (ii) hold. Then

δb1 = F0(z
2)− pr(z2) = F 0(pr(z

2))− pr(z2),
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where F 0 = id : N × I → N × I. Let F b1 = F(F 0,b1).Then, by Proposition

1 pr ◦ F b1 = Fb1 and we have

δb2 = Fb1(z
3)− pr(z3) = (pr ◦ F b1)(z

3)− pr(z3) = F b1(pr(z
3))− pr(z3).

And so on we show that b(n) = {bi} ∈ A0
t(n)

×I
. Finally, it is clear that

i1(b
(n)) = a(n). �

There is the following immediate corollary of Proposition 5 and Corollary
2.

Corollary 3. An element a ∈ A(n) belongs to subgroup B(n) if and only
if 1 ∼ a by some homotopy F for which F0 = pr, where 1 = id ∈ A(n).

Now we are going to describe some special elements of the subgroup B(n).

Lemma 9. For a fixed tower t it is possible to define a functorial map

Cp(Kp, πp+1)→ B(n), p ≤ n− 1,

which assigns to cp a collection acp = {ak
cp}, k = 1, 2, · · ·, n with

ak
cp = 0 for k ≤ p and ap+1

cp = δcp.

Proof. Let (0) and (1) be two 0-simplices of I = ∆[1]. We denote by
same symbols all corresponding degenerate simplices as well. Let cp ∈
Cp(Kp, πp+1) and Iq = I × I × · · · × I (q factors). For q ≥ 0 define the
cochain cpq ∈ Cp(Kp × Iq, πp+1) as follows. For ξ = (1) × · · · × (1) let

cpq(τ × ξ) = cp(τ) and cpq(τ × ξ) = 0 otherwise. In particular cp0 = cp. For
an arbitrary L, we denote by

ĩǫ : L× Iq → L× Iq+1, ǫ = 0, 1,

all maps given by ĩǫ(τ × ξ1 × · · · × ξq) = τ × ξ1 × · · · × (ǫ)× · · · × ξq. Then
we have

ĩ1(c
p
q+1) = cpq and ĩ0(c

p
q+1) = 0.

Let, besides, F : M×I → L be a homotopy. Below we will use the standard
cochain homotopy

dF : C∗(L,G)→ C∗−1(M,G)

given by

d(cn)(mn−1) = cn(Σn−1
i=0 (−1)iF (sim

n−1 × sn−1 . . . si+1si−1 . . . s0ξ
1)),

where cn ∈ Cn(L,G), mn−1 ∈ M , ξ1 = (0, 1) ∈ ∆[1] and G is an abelian
group. Let, now, Fq : Kp+1 × Iq → Kp+1 be a map given by

Fq((σ, c) × ξ) = (σ, c + tσ×ξ(δc
p
q)),

where q ≥ 0 and ξ ∈ Iq. Then we have F0 = F(id,δcp) and, for q ≥ 1,

Fq ◦ ĩ0 = pr(q−1) and Fq ◦ ĩ1 = Fq−1,
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where, for an arbitrary L, pr(n) : L× In → L is the projection and pr(0) =
id. For q ≥ 1 we consider Fq as a homotopy by last coordinate. Then Fq

defines a functorial (for induced maps of P-constructions) cochain homotopy

dFq
: C∗(Kp+1, πp+2)→ C∗−1(Kp+1 × I

q−1, πp+2).

Inspection shows that for q ≥ 2 we have

ĩ#1 ◦ dFq
= dFq−1 and ĩ#0 ◦ dFq

= 0.

Consider now Kp+2 = P (Kp+1, πp+2, z
p+3) and the maps

Φq : Kp+2 × I
q → Kp+2, q ≥ 0,

given by

Φq((σ, c) × ξ) = (Fq(σ × ξ), c+ tσ×ξ(dFq+1 (z
p+3))).

Then it follows from above that Φq is well defined, Φ0 = F(F0,dF1(zp+3)) and

Φq ◦ ĩ1 = Φq−1, Φq ◦ ĩ0 = pr(q−1), q ≥ 1;

ĩ#1 ◦ dΦq
= dΦq−1 , ĩ

#
0 ◦ dΦq

= 0, q ≥ 2.

Then, by and analogously to Φq, we define Θq : Kp+3×Iq → Kp+3 and so on.

Define now a map F : t(n)×I→t(n) by taking F=(pr, . . . , pr, F1,Φ1,Θ1, . . . ).
Then it follows from above that F ◦ i0 = id and F ◦ i1 = acp , where

acp = (0, . . . , 0, δcp, dF1(z
p+3), dΦ1(z

p+4), dΘ1(z
p+5), . . . ) ∈ At(n) .

Finally, it follows from Corollary 3 that acp ∈ B(n) and we define a functorial
map Cp(Kp, πp+1)→ B(n) by cp 7→ acp . �

Let qk : A(k+1) → A(k) be the above introduced restriction homomor-
phisms. For fixed n, consider a sequence of groups and epimorphisms

An,n
qn−1
→ An,n−1 → · · · → An,2

q1
→ An,1,

where An,n = A(n) and An,k = Im(qk ◦ · · · ◦ qn−2 ◦ qn−1), qk = qk | An,k+1,

1 ≤ k ≤ n − 1. Besides, let Bn,n = B(n) and Bn,k = qk(Bn,k+1), 1 ≤ k ≤
n− 1. Then the group Bn,k is a normal subgroup of An,k, 1 ≤ k ≤ n.

Now we can consider the factorgroups Gn,k = An,k′Bn,k, 1 ≤ k ≤ n,
and the epimorphisms βk−1 : Gn,k → Gn,k−1, 2 ≤ k ≤ n. induced by
epimorphisms qk−1 .

The next proposition gives a partial information for groups Gn,k and, in

particular, for group G(n) = A(n)′B(n) = Gn,n too.

Proposition 6. Gn,1 is a factorgroup of a subgroup of H1(N, π∗) and
there are exact sequences of groups

0← Gn,k−1
βk−1
← Gn,k

αk← Hn,k, 2 ≤ k ≤ n,

where Hn,k is a subgroup of Hk(Kk−1, πk) and ak([zk]) = [(0, · · ·, 0, zk)]
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Proof. By definition An,1 is a subgroup of Z1(N, π1). By Lemma 9 we have
B1(N, π1) ⊂ Bn,1. Consequently Gn,1 is a factorgroup of a subgroup of

H1(N, π1). Let, now, g(k) = [a(k)] ∈ Kerβk−1, where a(k) ∈ An,k. Consider

the element b(k−1) = (qk−1(a
(k)))−1 ∈ Bn,k−1. Let qk−1(b

(k)) = b(k−1),

where b(k) ∈ Bn,k. Then qk−1(a
(k) ∗ b(k)) = 1 and a(k) ∗ b(k) = (0, . . . , 0, zk),

where zk ∈ Zk(Kk−1, πk). Consequently g(k) = [(0, . . . , 0, zk)]. Let

Z
k

= {zk | zk ∈ Zk(Kk−1, πk), [(0, . . . , 0, zk)] ∈ Gn,k}.

According to the formula of group operation in A(n), Z
k

is a subgroup of

Zk(Kk−1, πk). By Lemma 9 we have Bk(Kk−1, πk) ⊂ Z
k
. Consider the

factorgroup

Hn,k = Z
k
′Bk(Kk−1, πk).

Obviously Hn,k is a subgroup of Hk(Kk−1, πk). Define now a homomor-
phism αk : Hn,k → Gn,k by αk([zk]) = [(0, . . . , 0, zk)], where [zk] ∈ Hn,k.
This homomorphism is well defined. Indeed, if [zk

1 ], [zk
2 ] ∈ Hn,k and

zk
1 − z

k
2 = δck−1, then, by Lemma 9 we have

(0, . . . , 0, zk
2 )−1 ∗ (0, . . . , 0, zk

1 ) = (0, . . . , 0, δck−1) ∈ Bn,k.

Obviously we have Imαk = Kerβk−1 and this completes the proof. �

The constructed group G(n) we use to formulate the criterion of equivalence
of towers. Consider a natural action

Hn+2(Kn, πn+1)×G
(n) → Hn+2(Kn, πn+1)

given by h◦g = f∗

n(h), here [{fi}] = g. The action is well defined: if
[
{f ‘

i}
]

=

g, then fn is homotopic to f ‘
n, thus they induce the same homomorphisms

of cohomology. Obviously we have h ◦ 1 = h and h ◦ (g2g1) = (h ◦ g2) ◦ g1.

Theorem 10. Let t and t be two elements of T (N, π∗) such that zk = zk

for k ≤ n + 1, i.e. the restrictions t(n) and t
(n)

are equal and let G(n) be

the group corresponding to t(n). Then the restrictions t(n+1) and t
(n+1)

are
equivalent in T (n+1)(N, π∗) if and only if there exists an element g ∈ G(n)

such that [zn+2] = [zn+2] ◦ g.

Proof. Let t(n+1) and t
(n+1)

be equivalent in T (n+1)(N, π∗), i.e. there exists
a morphism

{f0 = id, f1, . . . , fn, fn+1} : t(n+1) → t
(n+1)

,

and let (a1, . . . , an, an+1) be the corresponding sequence of cochains. Then

(a1, . . . , an) ∈ A(n) and δan+1 = f#
n (zn+2)− zn+2.
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Thus
[
zn+2

]
◦ g−1 =

[
zn+2

]
, where g =

[
(a1, . . . , an)

]
. Suppose now

that there exists g ∈ G(n) such that
[
zn+2

]
◦ g =

[
zn+2

]
. Let g−1 =[

(a1, . . . , an)
]
. The sequence (a1, . . . , an) defines a morphism

{f0 = id, f1, . . . , fn} : t(n) → t
(n)

and there exists a cochain an+1 such that δan+1 = f#
n (zn+2)− zn+2. Then

the sequence (a1, . . . , an, an+1) defines a morphism

{f0 = id, f1, . . . , fn, fn+1} : t(n+1) → t
(n+1)

.

�
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