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TRANSFERRED CHERN CLASSES IN MORAVA K-THEORY

MALKHAZ BAKURADZE AND STEWART PRIDDY

(Communicated by Paul Goerss)

Abstract. Let η be a complex n-plane bundle over the total space of a cyclic
covering of prime index p. We show that for k ∈ {1, 2, ..., np} \ {p, 2p, ..., np}
the k-th Chern class of the transferred bundle differs from a certain transferred

class ωk of η by a polynomial in the Chern classes cp, ..., cnp of the transferred
bundle. The polynomials are defined by the formal group law and certain
equalities in K(s)∗B(Z/p × U(n)).

1. Statements

Let p be a prime, and let π be the cyclic group of order p. For a given action of
π on a space X consider the regular covering

ρ : Eπ ×X → Eπ ×π X.
Let us write for short Xhπ := Eπ×πX. For the permutation action of π on X = Y p

we have Y phπ = Eπ ×π Y p. Let t be a generator of π and let Nπ = 1 + t+ ...+ tp−1

be the trace map. For an n-plane bundle ηn, the corresponding classifying map

f : X → BU(n)

induces the classifying map (f, tf, ..., tp−1f) for the bundle Nπη
n and thereby a

map of orbit spaces
fηn : Xhπ → BU(n)phπ.

For the covering
ρπ : Eπ × BU(n)p → BU(n)phπ

and the universal n-plane bundle ξn → BU(n) consider the Atiyah transfer bundle
[2]

ξnπ → BU(n)phπ,
i.e., the np-plane bundle

ξnπ = Eπ ×π (ξn)×p.
Then the map fηn classifies the Atiyah transfer bundle for ηn and ρ. So by natu-
rality of transfer [1] we can consider ρπ as the universal example.
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Let K(s)∗, s ≥ 1, be the sth Morava K-theory at p. We recall that by the
Künneth isomorphism, K(s)∗(BU(n)p) = F ⊕ T as a π module, where F is free
and T is trivial.

Definition 1.1. Let ω(n)
k ∈ F be defined modulo kerNπ = Im(1− t) by

Nπ(ω(n)
k ) = ck(Nπ(ξn)),

where the ck are Chern classes, k ∈ {1, ..., np} \ {p, 2p, ..., np}.

By naturality of the transfer, Tr∗π = Tr∗πt, where

Tr∗π : K(s)∗(Eπ ×BU(n)p)→ K(s)∗(BU(n)phπ);

hence Tr∗π(ω(n)
k ) is well defined.

We write ωk(ηn) for the pullback by the map fηn of orbit spaces defined above.
Recall that K(s)∗(Bπ) = Fp[vs, v−1

s ][z]/(zp
s

), where z = c1(θ) is the Chern class
of the canonical complex line bundle over Bπ.

Lemma 1.2. We can define a polynomial in n+ 1 variables,

A
(n)
k (zp−1, Z1, ..., Zn) ∈ K(s)∗[z, Z1, ..., Zn],

uniquely by the equation in K(s)∗B(π × U(n)):

Ck − vszp
s−1p−1

∑
i1+2i2+...+nin=k
i0+i1+...+in=p

(
p

i0, i1, ..., in

)
ci11 ...c

in
n = A

(n)
k (zp−1, Cp, ..., Cpn)

where Ci = ci(ξn ⊕ θ ⊗ ξn ⊕ ... ⊕ θp−1 ⊗ ξn), cj = cj(ξn) are Chern classes, and
k ∈ {1, ..., np} \ {p, ..., np}.

For example, in K(s)∗(Bπ ×BU(1)) one has

C1 = vs

(
zp
s−1c1 +

s−1∑
i=1

zp
s−piCp

i−1

p

)
;

thus

A
(1)
1 (zp−1, Z1) = vs

s−1∑
i=1

zp
s−piZp

i−1

1 .

Then using the polynomials A(n)
k we evaluate the transferred classes ωk(ηn) for

regular coverings:

Theorem 1.3. Let ρ : X → X/π be the regular cyclic covering of prime index p
defined by a free action of π on X, and let Tr∗ = Tr∗ρ be the associated transfer
homomorphism. Let ηn → X be a complex n-plane bundle, ηnπ → X/π the pn-
plane bundle defined by Atyiah transfer, and ψ → X/π be the complex line bundle
associated with ρ. Then

ck(ηnπ )− Tr∗(ωk(ηn)) = A
(n)
k (cp−1

1 (ψ), cp(ηnπ ), ..., cpn(ηnπ )),

where k ∈ {1, ..., np} \ {p, ..., np}.

Example 1.4. ω1 = c1(ηn); hence if k = 1 we have

c1(ηnπ )− Tr∗(c1(ηn)) = A
(n)
1 (cp−1

1 (ψ), cp(ηnπ), ..., cpn(ηnπ )).
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If, in addition, n = 1, then by the above example we have for the line bundle η → X
and the transferred Chern class,

c1(ηπ)− Tr∗(c1(η)) = vs

s−1∑
i=1

zp
s−picp(ηπ)p

i−1
.

2. Proofs

For the proof of Lemma 1.2 we need the following property of formal group laws
(FGL) observed in [3].

Lemma 2.1. For the formal group law in Morava K-theory K(s)∗, s > 1, we have
mod xp

2(s−1)
(or modulo yp

2(s−1)
)

F (x, y) ≡ x+ y − vs
∑

0<j<p

p−1

(
p

j

)
(xp

s−1
)j(yp

s−1
)p−j .

Proof. As D. Ravenel explained, this result can be derived from the recursive for-
mula for the FGL given in [5, 4.3.8]: For the FGL in Morava K-theory it reads

F (x, y) = F (x+ y, vsw1(x, y)p
s−1

, ve2s w2(x, y)p
2(s−1)

, ...)

where wi is a certain homogeneous polynomial of degree pi defined by [5, 4.3.5] and
ei = (pis − 1)/(ps − 1). In particular, w0 = x + y (the first term in the formula
above),

w1 = −
∑

0<j<p

p−1

(
p

j

)
xjyp−j,

and wi /∈ (xp, yp).
For s > 1 we can reduce modulo the ideal ve2s (xp

2(s−1)
, yp

2(s−1)
) and get

F (x, y) ≡ F (x+ y, vsw1(x, y)p
s−1

)

= F (x+ y + vsw1(x, y)p
s−1

, vsw1(x + y, vsw1(x, y)p
s−1

)p
s−1

, . . . )

≡ F (x+ y + vsw1(x, y)p
s−1

, vsw1(xp
s−1

+ yp
s−1

, vp
s−1

s w1(x, y)p
2(s−1)

)),

and modulo v1+ps−1

s (xp
2(s−1)

, yp
2(s−1)

) we have F (x, y) ≡ x+y+vsw1(x, y)p
s−1

. �
Proof of Lemma 1.2. We begin by considering the case n = 1. Let σi be the i-th
symmetric functions in p variables. Then

Ci = σi(x, F (x, z), ..., F (x, (p − 1)z)),

where x = c1(ξ1), z = c1(θ) are Chern classes in K(s)∗B(π×U(1)) = K(s)∗[[z, x]]/
(zp

s

). Consider the equation

Ck = −
∑

0≤i≤ps
λkiC

i
p + p−1

(
p

k

)
xkzp

s−1; 1 ≤ k ≤ p− 1.

We want to prove that such λki exist uniquely as elements in K(s)∗[[z]]/(zp
s

)
and to compute these elements as polynomials in zp−1. Then A

(1)
k (zp−1, Cp) =∑

0≤i≤ps λkiC
i
p.

Ck is the Chern class of the bundle ξ ⊗ (1 + θ + θ2 + ... + θp−1) and can be
written as a series in the Chern classes of ξ, that is x, and the Chern classes of
1 + θ + θ2 + ... + θp−1. But the Chern classes of the latter bundle are elementary
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symmetric functions in z, 2z, ..., (p− 1)z, the Chern classes of θ, θ2, ..., θp−1, all of
which vanish except for the (p − 1)-th class, which is −zp−1. Hence we can write
the classes Ck as series in x and zp−1. Lemma 2.1 enables us to write Ck as explicit
polynomials in x and zp−1. Now noting that Cp = xp mod zp−1 we obtain from
the above equation a system of linear equations in variables λkj by equating the
coefficients at xi, i ≥ 0. Vanishing also implies that λk0 = 0, k = 1, ..., p − 2 and
λp−10 = cp−1(1 + θ + ...+ θp−1) = −zp−1.

Then equating the coefficients at xp,...,xp
s+1

in the above equation after rewriting
it in terms of x and zp−1 as above, we have a system of ps linear equations in ps

variables λki, i = 1, ..., ps . The determinant of this system is invertible since the
diagonal coefficients are invertible and all other coefficients lie in the (nilpotent)
augmentation ideal. Thus the elements λki are uniquely defined.

Of course, equating the coefficients at xi for i 6= p, 2p, ..., ps+1 will produce
other equations in λkj , j = 1, ..., ps. But these equations are derived from the old
equations above. These additional equations make the matrix upper triangular.
This defines A(1)

k .
In the general n case we proceed analogously, noting that Cip = cpi mod zp−1,

i = 1, ..., n. Our additional claim again is that the A(n)
k are polynomials, that is,

only a finite number of elements λk,i1,...,in are nontrivial. Here we need the splitting
principle and Lemma 2.1 to express explicitly the elements Ci, i = 1, ..., np in terms
of polynomials in zp−1 and c1, ..., cn. For k ∈ {1, ..., np} \ {p, ..., np}, let

A
(n)
k (zp−1, Cp, ..., Cpn) =

∑
0≤i1,...,in≤ps

λk,i1,...,inC
i1
p ...C

in
np.

We define λk,0...0 = ck(n + nθ + ... + nθp−1) again by looking at reductions to
K(s)∗(Bπ). The other n(ps+1)−1 elements λk,i1,...,in can be defined as the solution
of a system of n(ps + 1)− 1 linear equations with an invertible determinant. This
system is obtained from the equation after using Lemma 2.1 to rewrite it in terms
of zp−1 and c1, ..., cn and equating coefficients at cpi11 ...cpinn . The solution defines
λk,i1,...,in , 0 ≤ ij ≤ ps. Again the additional equations in these elements arise from
the coefficients of other monomials and are not new. The desired polynomials are
thus uniquely defined. �

Proof of Theorem 1.3. Consider the homotopy orbit space BU(n)phπ = Eπ ×π
BU(n)p as the universal example. The diagonal map BU(n) → BU(n)p induces
the inclusion

i : Bπ ×BU(n)→ Eπ ×π BU(n)p.

We use a result from [4] (Proposition 4.2) which implies that since BU(n) is a
unitary-like space (i.e., K(s)∗BU(n) has no nilpotent elements) the map (i ∨ ρπ)∗

is a monomorphism. Since ρ∗πTr
∗ = Nπ, the difference

ck(ηnπ)− Tr∗(ω(n)
k )

belongs to ker ρ∗π and hence is detected by i∗. The result now follows from Lemma
1.2. �

Note we can replace the cyclic group by the symmetric group Σp and use the
polynomials A(n)

k to evaluate the disparity or “gap” between Chern class ck(ξnΣp)
and ImTr∗Σp , for ρΣp : EΣp × U(n)p → BU(n)phΣp

.
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Namely, the Euler characteristic of the coset space Σp oU(n)/π oU(n) = (p− 1)!
is prime to p. Hence the inclusion ρπ,Σp : π → Σp induces a monomorphism

K(s)∗(B(Σp o U(n)))→ K(s)∗(B(π o U(n))).

Hence Hunton’s result above holds for BU(n)phΣp
.

Now let ς(n)
k ∈ F be defined modulo kerNΣp by NΣp(ς(n)

k ) = ck(Nπ(ξn)). Again
Tr∗Σp(ς(n)

k ) is well-defined: as above, kerNπ = Im(1 − t∗) and therefore

a ∈ F ∩ kerNΣp ⇒
∑

g∈Σp/π

g∗a ∈ Im(1 − t∗)⇒ Tr∗Σp(
∑

g∈Σp/π

g∗a) = 0

⇒ (p− 1)!Tr∗Σp(a) = 0⇒ Tr∗Σp(a) = 0.

Then for the np-plane bundle over BU(n)phΣp
,

ξnΣp = EΣp ×Σp (ξn)×p,

the difference

ck(ξnΣp)− Tr∗Σp(ς(n)
k )

belongs to ker ρ∗Σp and hence is detected by the polynomials

A
(n)
k (y, cp(ξnΣp), ..., cnp(ξnΣp)),

where

y ∈ K(s)∗(B(Σp)) = K(s)∗[[y]]/(yms),

|y| = 2(p− 1), and ms = [(ps − 1/(p− 1))] + 1.
Thus we have:

Theorem 2.2.

ck(ξnΣp)− Tr∗Σp(ς(n)
k ) = A

(n)
k (y, cp(ξnΣp), ..., cnp(ξnΣp)),

for k ∈ {1, ..., np} \ {p, ..., np}.
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