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MORAVA K-THEORY RINGS FOR THE DIHEDRAL,
SEMIDIHEDRAL AND GENERALIZED QUATERNION

GROUPS IN CHERN CLASSES

MALKHAZ BAKURADZE AND VLADIMIR VERSHININ

(Communicated by Paul Goerss)

Abstract. Morava K-theory rings of classifying spaces of the dihedral, semi-
dihedral and generalized quaternion groups are presented in terms of Chern
classes.

1. Introduction and statements

The study of Morava K-theory of groups has attracted attention in the literature,
for the generalized braid groups (also called Brieskorn groups or Artin groups); see
for example [4].

The classifying spaces of p-groups with a cyclic maximal subgroup have been
considered in [5, 10, 11, 12]. In [11, 12] it was shown that K(s)∗ of these spaces
is generated as a K(s)∗(pt)-module by Chern classes of complex vector bundles.
However, the multiplicative structure in terms of Chern classes has been determined
in [11] only modulo certain indeterminacy. As for [5, 10], there the multiplicative
structure is given completely but in terms of artificial generators not equal to Chern
classes. Our aim here is to determine the aforementioned multiplicative structure
completely in terms of Chern classes by applying the formula for transfer of the
first Chern class along double coverings [2], [3].

In this paper we will consider the dihedral, semidihedral and generalized quater-
nion 2-groups. The modular and quasidihedral groups will be considered in [1].

Let
G = 〈a, b |a2m+1

= 1, b2 = ae, bab−1 = ar〉, m ≥ 1,

and either e = 0, r = −1 (the dihedral group D2m+2 of order 2m+2), e = 2m,
r = −1 (the generalized quaternion group Q2m+2) or m ≥ 2, e = 0, r = 2m − 1 (the
semidihedral group SD2m+2).

Consider the following Chern classes c, x, c1, c2 of dimensions |c| = |x| = |c1| = 2,
|c2| = 4:

c = c1(η1), η1 : G/ 〈a〉 ∼= Z/2 → C
∗, b �→ −1,

x = c1(η2), η2 : G/
〈
a2, b

〉 ∼= Z/2 → C
∗, a �→ −1,
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and ci = ci(ξπ1), where
ξπ1 → B 〈a, b〉

is the plane bundle transferred from the canonical line bundle ξ → B 〈a〉, for the
double covering

π1 : B 〈a〉 → B 〈a, b〉
corresponding to η1.

Theorem 1.1. i) K(s)∗(BG) = K(s)∗[c, x, c2]/R and the relations R are deter-
mined by

(a)
c2s

= x2s

= 0,

(b)

vscc
2s−1

2 = vs

s−1∑
i=1

c2s−2i+1c2i−1

2 +

⎧⎪⎨
⎪⎩

0 if G is dihedral,
c2 if G is quaternion,
cx if G is semidihedral,

(c)

v2
sc2s

2 =

{
cx + x2 if G = D8,
c2 + cx + x2 if G = Q8

and for m > 1,
v2κ(m)

s c2ms

2 = cx + x2

for G of all three types,
(d)

vsxc2s−1

2 = vs

s−1∑
i=1

x2s−2i+1c2i−1

2 +

{
cx + x2 if G = D8,
x2 if G = Q8;

for m > 1,

vsxc2s−1

2 = vsx
s−1∑
i=1

c2s−2i

c2i−1

2 +
ms∑
i=1

v1+κ(m)+2ms−2i

s c
(2ms+1)2s−1−(2s−1)2i−1

2

+

{
0 if G is dihedral,

cx if G is quaternion
or semidihedral,

where κ(m) = 2ms−1
2s−1 .

ii) c2x = cx2, c2ms+1
1 = 0, c

(2ms+1)2s−1

2 = 0.

2. Preliminaries

Together with the covering π1 we can consider the covering

π2 : B
〈
a2, b

〉
→ B 〈a, b〉 ,

corresponding to η2. Then let
ηπ2 → BG

be the transferred line bundle associated with the double covering
〈
a4, b

〉
→

〈
a2, b

〉
.

The bundles ξπ1 , ηπ2 coincide if m = 1, but if m > 1, then

(1) ηπ2 = (ξ⊗2m−1
)π1 .
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The following bundle relations hold.

Lemma 2.1. i) η⊗2
i = C, η1 ⊗ ξπ1 = ξπ1 ;

ii) ηi ⊗ ηπ2 = ηπ2 ;
iii) η⊗2

π2
= C ⊕ η1 ⊕ η2 ⊕ η1 ⊗ η2;

iv) det ξπ1 is η1 if G is dihedral, the trivial bundle C if G is quaternion and
η1⊗η2 if G is semidihedral, and for m > 1 one has det ηπ2 = η1 in all three
cases;

v) ((ξ⊗2i

)π1)
⊗2 = (ξ⊗2i+1

)π1⊕C⊕η1, for 1 ≤ i < m−1. The bundle ξπ1⊗ξπ1 =
(ξ⊗2)π1 ⊕ (ξ ⊗ ξ⊗r)π1 is (ξ⊗2)π1 ⊕C⊕ η1 if G is dihedral or quaternion and
is (ξ⊗2)π1 ⊕ η1 ⊗ η2 ⊕ η2 if G is semidihedral.

Proof. These relations are the consequences of the Frobenius reciprocity of the
transfer in complex K-theory. For example,

η⊗2
π2

= (ξ2m−1
)⊗2
π1

= (ξ2m−1
⊗ π∗

1((ξ2m−1
)π1))π1 = (ξ

2m

⊕ C)π1

= η2 ⊗ (C)π1 ⊕ C ⊕ η1 = η2 ⊗ (C ⊕ η1) ⊕ C ⊕ η1. �

We recall the transfer formula from [3] (see also [2]).
Let X → X/π be a regular double covering defined by a free involution on X,

let ξ → X be a complex line bundle, let ξπ be the transferred bundle and let

Tr∗π : K(s)∗(X) → K(s)∗(X/π)

be the associated transfer homomorphism [8], [6]. Then

(2) c1(ξπ) = c1(ψ) + vs

s−1∑
i=1

c1(ψ)2
s−2i

c2(ξπ)2
i−1

+ Tr∗π(c1(ξ)),

where ψ → X/π is the complex line bundle associated to the covering X → X/π.
The following lemma is an easy consequence of the recursive formula for the FGL

given in 4.3.9 of [9]. See [2], Lemma 5.3.

Lemma 2.2. i) For the Honda formal group law at p = 2, s > 1, one has F (y, z) =
y + z + vs(yz)2

s−1
modulo y22(s−1)

(or modulo z22(s−1)
).

ii) F (y, z) = y + z + vsΦ(vs, y, z)2
s−1

, where Φ(vs, y, z) = yz + vs(yz)2
s−1

(y + z)
modulo (yz)2

s−1
(y + z)2

s−1
.

For two line bundles with the Chern classes y and z, respectively, Φ(vs, y, z) can
be regarded as the K(s)∗ orientation class of their sum.

Lemma 2.3. Let m > 1 and either r = −1 or r = 2m − 1. Then one has in
K(s)∗[u]/(u2(m+1)s

),

u2ms

=
ms∑
i=1

v2ms−2i

s (u[r](u))2
(m+1)s−1−(2s−1)2i−1

+ [r](u)(u + [r](u))2
ms−1.

Proof. The obvious decomposition in F2[y, z],

y2k

=
k∑

i=1

(y + z)2
k−2i

(yz)2
i−1

+ y(y + z)2
k−1,

implies for y = u, z = [r](u), k = ms that

u2ms

=
ms∑
i=1

(u + [r](u))2
ms−2i

(u[r](u))2
i−1

+ u(u + [r](u))2
ms−1.
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We want to equate the monomials

(u + [r](u))2
ms−2i

= (u + [r](u))2
i+...+2ms−1

to the monomials

v2ms−2i

s (u[r](u))(2
ms−2i)2s−1

= v2i+...+2ms−1

s (u[r](u))(2
i+...+2ms−1)2s−1

by the equation (u + [r](u))2 = v2
s(u[r](u))2

s

modulo some irrelevant factor as
follows.

The nilpotence degree for u is 2(m+1)s, hence is 2(m+1)s−1 for u[r](u). Then as
it is 2s for F (u, [2m − 1]) (whereas F (u, [−1](u)) = 0), the nilpotence degree for
u + [r](u) is 2ms by Lemma 2.2 ii).

Thereupon it suffices to show

(u + [r](u))2 = v2
s(u[r](u))2

s

mod (u + [r](u))4.

Lemma 2.2 ii) implies

(u + [r](u))2 = v2
s(u[r](u))2

s

+ F (u, [r](u))2 mod (u + [r](u))2
s

and the dihedral and quaternion cases follow.
For the semidihedral group one has F (u, [2m−1](u)) = v

κ(m)
s u2ms

. Also, u2ms+1
=

(u[r]u)2
ms

as u2ms

= ([r](u))2
ms

. Therefore, one obtains modulo (u + [r](u))2
s

ignoring powers of vs,

(u[r](u))2
s

= (u + [r](u))2 + (u[r](u))2
ms

,

F (u, [r](u))2 = (u[r](u))2
ms

= ((u+[r](u))2+(u[r](u))2
ms

)2
ms−s

= 0 as ms−s+1 >
s. The result follows. �

3. Proofs

As mentioned in the introduction, it was proved in [11] that as a K(s)∗(pt)-
module, K(s)∗ of the spaces we consider is generated by the Chern classes c, x, c2

defined above. Let c̃1, c̃2 be the Chern classes of the bundle ηπ2 .
Lemma 2.1 i) implies c2s

= 0 and x2s

= 0 as [2](c) = vsc
2s

= 0 and similarly for
x.

Let

(3) c∗1 = c1 + c + vs

s−1∑
i=1

c2s−2i

c2i−1

2 , c∗∗1 = c̃1 + x + vs

s−1∑
i=1

x2s−2i

c̃2i−1

2 .

By (2), c∗1 ∈ Im Tr∗π1
, c∗∗1 ∈ Im Tr∗π2

, hence c2s

1 ∈ Im Tr∗π1
, c̃2s

1 ∈ Im Tr∗π2
as

c2s

= x2s

= 0.
By the Frobenius reciprocity cc∗1 = 0, hence by (2) c2s−1

c2s−1

1 = 0 and x2s−1
c2s−1

1

= c2s−1
x2s−1

modulo Tr∗π1
(u), u = c1(ξ). From (2) one obtains c2s−1

1 = c2s−1

modulo Tr∗π1
(u). Hence Lemma 2.2 ii) implies modulo Tr∗π1

(u),

(4) c1(det ξπ1) = c1 + vsc
2s−1

2 .

Then note F (c, x) = c + x + vsc
2s−1

x2s−1
, hence combining (3) and (4) we get

modulo Tr∗π1
(u) and c2s−1

x2s−1
,

(5) vsc
2s−1

2 + vs

s−1∑
i=1

c2s−2i

c2i−1

2 =

⎧⎪⎨
⎪⎩

0 if G is dihedral,
c if G is quaternion,
x if G is semidihedral.
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Also, one has

(6) c1(det ηπ2) = c̃1 + vsc̃
2s−1

2 + vsc̃
2s

1 .

To see (6) we need the relations ii) of Theorem 1.1. These are consequences of
the relations (7)–(10).

Lemma 2.1 v) and (1) imply that modulo c, x the Chern classes c̃1, c̃2 coincide
with the first and second Chern classes of (ξπ1)

⊗2m−1
, respectively,

(7) c̃1 = v
2(m−1)s−1

2s−1
s c2(m−1)s

1 ; c̃2 = v
2(2(m−1)s−1)

2s−1
s c2(m−1)s

2 .

On the other hand, consecutively equating Chern classes of both sides of the equa-
tion in Lemma 2.1 iii) gives, respectively,

(8) c̃2s

1 = c2s−1
x2s−1

;

for m = 1,

(9) v2
2c

2s

2 =

{
cx + x2 if G = D8,
c2 + cx + x2 if G = Q8;

for m > 1,
v2
2 c̃2s

2 = cx + x2

in all cases, and

(10) c2x + cx2 = 0,

and we get (c) and relations ii). Here we use the splitting principle and write
formally ηπ2 = λ1⊕λ2, η⊗2

π2
= λ⊗2

1 ⊕λ⊗2
2 ⊕2λ1⊗λ2. Also, we take into account that

the determinant λ1⊗λ2 is known by Lemma 2.1 iv). Let m > 1, λ1⊗λ2 = η1. Then
by the first equation for the Chern classes vsc̃

2s

1 = c+x+c+x+vsc
2s−1

x2s−1 ⇒ (8).
By (7) and (a) c̃2s

1 ∈ ImTr∗π1
. Also, as before, c̃2s

1 ∈ ImTr∗π2
. Hence cc̃2s

1 = xc̃2s

1 = 0
and by (8) cixj = 0 for i+j > 2s. Multiplying (3) by c2s−1

x2s−1
we get c2ms+1

1 = 0;
therefore, Lemma 2.2 implies c

(2ms+1)2s−1

2 = 0. Then the second equation gives
v2

s c̃2s

2 + c2 = cx + (c + x)(c + x + vsc
2s−1

x2s−1
) ⇒ (9). The third equation gives

0 = vsc̃
2s

1 c2 = cx(c + x + vsc
2s−1

x2s−1
) = cx(c + x) and (10) follows. Similarly, for

m = 1, but c̃i = ci and for G = Q8 the determinant λ1 ⊗ λ2 is trivial.
To prove (b) for m > 1 we raise (4) to the power 2ms−s > 2s. One obtains

(11) c2ms−1

2 = 0 mod Tr∗π1
(u).

By the Frobenius reciprocity of the transfer, (11) implies

(12) cc2ms−1

2 = 0.

Then as above cixj = 0 for i + j ≥ 2s + 1. Multiplying (5) by c we get (b).
Now let m = 1. Then c̃i = ci and cc∗1 = 0 by (2). Hence multiplying (6) by c we

get (b).

Proof of (d). Let m > 1. By the above definitions one has π∗
1(ξπ1) = ξ ⊕ ξ⊗r and

π∗(η2) = ξ⊗2m

. Then Lemma 2.3 implies

(13)

v−κ(m)
s π∗

1(x) = u2ms

= π∗
1(

ms∑
i=1

v2ms−2i

s c
2(m+1)s−1−(2s−1)2i−1

2 ) + [r](u)π∗
1(c2ms−1

1 ).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3712 MALKHAZ BAKURADZE AND VLADIMIR VERSHININ

We want to apply transfer to (13) after multiplying by u. By (2) c2ms−1
1 ∈

ImTr∗π1
is in the annihilator of c, hence

Tr∗π1
(u [r](u))c2ms−1

1 = Tr∗π1
(1)c2c

2ms−1
1 = vsc

2s−1c2c
2ms−1
1 = 0

and we get

(14) Tr∗π1
(u)(x +

ms∑
i=1

vκ(m)+2ms−2i

s c
2(m+1)s−1−(2s−1)2i−1

2 ) = 0.

Now multiplying (5) by x +
∑ms

i=1 v
κ(m)+2ms−2i

s c
2(m+1)s−1−(2s−1)2i−1

2 and using
(12) and (14), the dihedral and quaternion cases follow. For the semidihedral
group it remains to show that

(15) x(x +
ms∑
i=1

vκ(m)+2ms−2i

s c
2(m+1)s−1−(2s−1)2i−1

2 ) = cx.

Let us denote for ease of reading, Σ =
∑ms

i=1 v
κ(m)+2ms−2i

s c
2(m+1)s−1−(2s−1)2i−1

2 .

Then Σ(x + Σ) = 0 as (11) implies Σ = 0 modulo Tr∗π1
(u) and Σ2 = v

2κ(m)
s c2ms

2

as the nilpotence degree of c2 is 2(m+1)s−1 + 2s−1. Thus xΣ = v
2κ(m)
s c2ms

2 and (15)
follows from (c).

Now let m = 1. Then c̃i = ci, cc∗1 = 0, xc∗∗1 = 0 by (2); and by (1) det ηπ2 is η1

(for G = D8) or a trivial bundle (for G = Q8). Hence multiplying (6) by x we get
(d).

There remains to show that the given relations give a ring of correct rank, which
is

2(m+1)s−1 + 22s − 2s−1

according to the generalized character theory [7]. This follows by counting the
obvious explicit bases of these rings according to Theorem 1.1: for G = D8 or Q8,

{cicj
2, x

icj
2, c

ixcj
2, c

k
2 |1 ≤ i < 2s, 0 ≤ j < 2s−1, 0 ≤ k < 2s};

and for m > 1 and all three cases,

{cicj
2, c

ixcj
2, c

k
2 |1 ≤ i < 2s, 0 ≤ j < 2s−1, 0 ≤ k < (2ms + 1)2s−1}.

Of course there are alternative bases. For example, if one considers cx as the
decomposable in Theorem 1.1, then for m > 1 the K(s)∗ base for K(s)∗(BG) is:
for G = D2m+2 ,

{cicj
2, x

icj
2, c

k
2 |1 ≤ i < 2s − j, 0 ≤ j < 2s − 1, 0 ≤ k < (2ms + 1)2s−1};

for G = Q2m+2 , {cci
2, xci

2, c
j
2|0 ≤ i < (2s − 1)2s−1, 0 ≤ j < (2ms + 1)2s−1}; and for

G = SD2m+2 , {cicj
2, xck

2 , cl
2|1 ≤ i < 2s − j, 0 ≤ j < 2s − 1, 0 ≤ k < (2s − 1)2s−1,

0 ≤ l < (2ms + 1)2s−1}.
A natural question arises about the relationship between our calculations and

those of [10] and [12], in terms of an alternative generating set.
The authors are grateful to Mamuka Jibladze for computer calculations of the

following example, and to Björn Schuster for helpful discussions clarifying this
relationship.
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Example (K(2)∗(BD8)). This example shows that the ring structures given in
[10] have to be corrected. For D8 they are correct modulo the minimal (one-dimen-
sional) ideal, lying in the kernel of the restriction maps corresponding to all proper
subgroups.

Let A be the version of K(2)∗(BD8) of Theorem 1.1 and B its [10] version. Then

A = F2[v±1
2 ][c, x, c2]/

(c4, x4, c3c2 + cc2
2, v2x

3c2 + v2xc2
2 + cx + x2, v2

2c4
2 + cx + x2),

B = F2[v±1
2 ][y1, y2, ĉ2]/

(y4
1 , y

4
2 , v2

2 ĉ
4
2 + v2y1ĉ

2
2, v2y1ĉ

2
2 + v2y2ĉ

2
2, v2y2ĉ

2
2 + y1y2).

Choose the following basis in A over F2[v±1
2 ],〈

1, c, x, c2, cx, x2, c2, c
3, x3, cc2, xc2, cx

2, cx2c2, c
2c2,

x2c2, cxc2, c
2
2, cc

2
2, xc2

2, cxc2
2, c

3
2, xc3

2

〉
and suppose there is a graded isomorphism f : B → A. Then by dimension
considerations,

f(y1) = ε11c + ε12x + ε13v2c
2
2 + ε14v2x

2c2 + ε15v2cxc2 + ε16v2c
2c2 + ε17v

2
2xc3

2,

f(y2) = ε21c + ε22x + ε23v2c
2
2 + ε24v2x

2c2 + ε25v2cxc2 + ε26v2c
2c2 + ε27v

2
2xc3

2,

f(ĉ2) = α1c2 + α2c
2 + α3cx + α4x

2 + α5v2xc2
2 + α6v2cc

2
2 + α7v2cx

2c2,

where εij , αk ∈ F2. Then, y4
1 = 0 implies (ε11c + ε12x + ε13v2c

2
2 + ε14v2x

2c2 +
ε15v2cxc2 + ε16v2c

2c2 + ε17v
2
2xc3

2)4 = ε13c
8
2 = ε13x

2c2 + ε13cxc2 + ε13v2xc3
2 = 0,

hence ε13 = 0.
Similarly, y4

2 = 0 implies ε23 = 0.
Next, f((y1 − y2)ĉ2

2)c
5
2 = 0 implies (ε12 + ε22)α1cxc2

2 = 0. Necessarily, α1 �= 0,
since otherwise c2 would not be in the image of f . Thus we have ε12 = ε22.
Moreover, these are not zero since otherwise x would not be in the image of f .
Thus we have

f(y1) = ε11c + x + ε14v2x
2c2 + ε15v2cxc2 + ε16v2c

2c2 + ε17v
2
2xc3

2,

f(y2) = ε21c + x + ε24v2x
2c2 + ε25v2cxc2 + ε26v2c

2c2 + ε27v
2
2xc3

2,

f(ĉ2) = c2 + α2c
2 + α3cx + α4x

2 + α5v2xc2
2 + α6v2cc

2
2 + α7v2cx

2c2.

Taking this into account, f(y1ĉ
2
2 − y1y2)c2

2 = 0 implies ε11 + ε21 + ε24 + ε27 = 0
and f(y2ĉ

2
2−y1y2)c2

2 = 0 implies ε11+ε21+ε14+ε17 = 0, whereas f(y1y2− ĉ4
2)c2

2 = 0
implies ε11+ε21+ε14+ε24+ε17+ε27 = 1. Hence ε11+ε21 = ε14+ε17 = ε24+ε27 = 1.

But these relations imply that (f(y1)f(ĉ2)2−f(y2)f(ĉ2)2)x = cxc2
2, which should

be actually zero as (y1 − y2)ĉ2
2 = 0.

Acknowledgments

This work was done while the first author was holding a NATO fellowship and
was visiting the University of Montpellier II (France). He is thankful for the hos-
pitality of the Mathematical Department and especially to Professor J. Lafontaine,
the director of the Institute of Mathematics and Modelization of Montpellier. The
authors would like to thank the referee for his careful reading and suggestions.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3714 MALKHAZ BAKURADZE AND VLADIMIR VERSHININ

References

1. M. Bakuradze : Morava K-theory rings for the modular groups in Chern classes, K-Theory,
to appear.

2. M. Bakuradze, S. Priddy : Transfer and complex oriented cohomology rings, Algebraic &
Geometric Topology 3(2003), 473-509. MR1997326 (2004m:55007)

3. M. Bakuradze, S. Priddy : Transfered Chern classes in Morava K-theory, Proc. Amer. Math.
Soc., 132(2004), 1855-1860. MR2051151 (2005a:55017a)

4. K. Broto, V. V. Vershinin : On the generalized homology of Artin groups. (Russian), Zap.
Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 266 (2000), Teor. Predst. Din.
Sist. Komb. i Algoritm. Metody. 5, 7–12, 336; translation in J. Math. Sci. (NY) 113 (2003),
no. 4, 545–547. MR1774644 (2001f:20077)

5. M. Brunetti : Morava K-theory of p-groups with cyclic maximal subgroups and other related
p-groups, K-Theory 24, (2001), 385–395. MR1885128 (2003a:55007)

6. A. Dold : The fixed point transfer of fibre-preserving maps, Math. Zeit. 148 (1976), 215 –
244. MR0433440 (55:6416)

7. M. Hopkins, N. Kuhn, and D. Ravenel : Generalized group characters and complex oriented

cohomology theories, J. Amer. Math. Soc. 13 3 (2000), 553–594. MR1758754 (2001k:55015)
8. D. S. Kahn, S.B. Priddy : Applications of the transfer to stable homotopy theory, Bull Amer.

Math. Soc. 78 (1972), 981–987. MR0309109 (46:8220)
9. D. Ravenel : Complex cobordism and Stable Homotopy Groups of Spheres, Academic Press,

(1986). MR0860042 (87j:55003)
10. B. Schuster : On the Morava K-theory of some finite 2-groups, Math. Proc. Camb. Phil.

Soc. 121 (1997), 7–13. MR1418356 (97i:55008)
11. M. Tezuka and N. Yagita : Cohomology of finite groups and Brown-Peterson cohomol-

ogy, Algebraic Topology Arcata 1986, Springer, LNM 1370 (1989), 396–408. MR1000392
(90i:55011)

12. N. Yagita : Complex K-theory of BSL3(Z), K-Theory 6 (1992), 87–95. MR1186775
(94a:19008)

Razmadze Institute of Mathematics, Tbilisi, 0193, Republic of Georgia

E-mail address: maxo@rmi.acnet.ge
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