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MOD 2 MORAVA K-THEORY FOR FROBENIUS
COMPLEMENTS OF EXPONENT DIVIDING 2n · 9
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Abstract
We determine the cohomology rings K(s)∗(BG) at 2 for all

finite Frobenius complements G of exponent dividing 2n · 9.

Let V be an abelian group, and let G be a group of automorphisms of V . If G
has exponent 2n · 3k for 0 6 n and 0 6 k 6 2 and G acts freely on V , then G
is finite (see [6] Theorem 1.1). Every finite group that acts freely on an abelian
group is isomorphic to a Frobenius complement in some finite Frobenius group (see
[6] Lemma 2.6). By the classification of finite Frobenius complements (see [7]) the
quotient of G by its maximal normal 3-subgroup H is isomorphic to a cyclic 2-group
C, a generalized quaternion group Q, the binary tetrahedral group 2T of order 24 (or
SL(2,3)), or the binary octahedral group 2O of order 48. Then Atiyah-Hirzebruch-
Serre spectral sequence for H¢G implies that at 2 the ring K(s)∗(BG) is isomorphic
to K(s)∗(BK), for K = G/H is either C, Q, 2T , 2O. For the cyclic group C = Z/2k,
K(s)∗(BZ/2k) = F2[vs, v

−1
s ][u]/(u2ks

). For the generalized quaternion group Q2m+2

we have Theorem 1.1 of [4]. We deduce Morava K-theory rings at 2 for the groups
2T and 2O as certain subgroups in K(s)∗(BQ8) and K(s)∗(BQ16) respectively
(Proposition 5 and Proposition 6.)

In [3] we proved the following formula for the first Chern class of the transferred
line complex bundle: Let X → Y be the regular two covering defined by free action
of Z/2 on X and let θ → Y be the associated line complex bundle; Let ξ → X be a
complex line bundle and let ζ → Y be the plane bundle, transferred from ξ by Atiyah
transfer [2]. Then for Tr∗ : K(s)(X) → K(s)∗(Y ), the transfer homomorphism [1]
for our covering X → Y , one has

Tr∗(c1(ξ)) = c1(θ) + c1(ζ) + vs

s−1∑

i=1

c1(θ)2
s−2i

c2(ζ)2
i−1

. (1)

We show that formula 1 plays major role in the ring structure K(s)∗(BG) at 2
for aforementioned groups and gives another derivations for some related rank one
Lie groups.
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Much of our note is written in terms of Theorem 1.1 of [4]. Let

G = 〈a, b |a2m+1
= 1, b2 = ae, bab−1 = ar〉, m > 1

and either e = 0, r = −1 (the dihedral group D2m+2 of order 2m+2), e = 2m,
r = −1 (the generalized quaternion group Q2m+2) or m > 2, e = 0, r = 2m− 1 (the
semidihedral group SD2m+2).

Spectral sequence consideration (see [8]) imply that K(s)(BG) is generated by
following Chern classes |c| = |x| = 2, |c2| = 4:

c = c1(η1), η1 : G/〈a〉 ∼= Z/2 → C∗, b 7→ −1;

x = c1(η2), η2 : G/〈a2, b〉 ∼= Z/2 → C∗, a 7→ −1;

and c2 = c2(ξπ1), where ξπ1 → B〈a, b〉 is the plane bundle transferred from the
canonical line bundle ξ → B〈a〉, for the double covering π1 : B〈a〉 → B〈a, b〉
corresponding to η1.

The ring structure is the result of the formula for transferred first Chern class 1.
See [4].

Let N be the normalizer of U(1) in S3. The normalizes of the maximal torus in
SO(3) is O(2) = U(1)oZ/2 and Z/2 acts on K(s)∗BU(1) = K(s)∗[[u]] by [−1]F (u)
as above.

Since BU(1)̂p = [colimnBZ/(pn)]̂p, we have

K(s)∗(BO(2)) = K(s)∗(limm(BD2m+2)) = K(s)∗(limm(BSD2m+2))

and
K(s)∗(BN) = K(s)∗(limm(BQ2m+2)).

Thus Theorem 1.1 of [4] implies

Corollary 1. K(s)∗(BO(2)) = K(s)∗[[c, c2]]/(c2s

, vsc
∑s

i=1 c2s−2i

c2i−1

2 ), where c =
c1(detη) and c2 = c2(η) are the Chern classes of the bundle η → BO(2), the
complexification of canonical O(2) bundle.

Corollary 2. K(s)∗(BN) = K∗(s)[[c, c2]]/(c2s

, c2 + vsc
∑s

i=1 c2s−2i

c2i−1

2 ), where
c = c1(ν) is the Chern class of ν the pullback bundle of the canonical real line
bundle by N → N/U(1) = Z/2 and c2 = c2(p∗(ζ)) is the Euler class of the pullback
bundle of the canonical quaternionic line bundle by the inclusion N ⊂ S3.

Then RP 2 → BO(2) → BO(3) is the projective bundle of the canonical SO(3)
bundle. Hence the pullback of the complexification of this canonical SO(3) bun-
dle splits over BO(2) as η ⊕ detη. Note that c1(detη) = c1(η) + vsc2(η)2

s−1
mod-

ulo transfer for the covering BU(1) → BO(2). Thus K(s)∗(BSO(3)) is subring in
K(s)∗(BO(2)) generated by v = c2 + vscc

2s−1

2 + c2 and w = cc2. This implies

Corollary 3. K(s)∗(BSO(3)) = K(s)∗[[v, w]](fs(v, w), gs(v, w)), where |v| = 4,
|w| = 6, and fs = fs(v, w), gs = gs(v, w) are determined by f2 = vw, g2 = w2 and
for s > 2
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fs =

{
f2

s−1 s even,
fs−1gs−1

v + wv2s−1−1 s odd,

gs =

{
g2

s−1 s odd,
fs−1gs−1

v + wv2s−1−1 s even.

Our main result is the following.
Let G be a group acting freely on an abelian group. Let G be of exponent dividing

2n · 9 (hence G is necessarily finite, as above) and let H¢G be the maximal normal
3-subgroup.

Theorem 4. As a ring K(s)∗(BG) has one of the following forms

(i) If G/H=Q8 , then K(s)∗(BG) = K(s)∗[c, x, c2]/R
and the relations R are determined by

c2s

= x2s

= 0, vscc
2s−1

2 = vs

∑s−1
i=1 c2s−2i+1c2i−1

2 + c2, v2
sc2s

2 = c2 + cx + x2,

vsxc2s−1

2 = vs

∑s−1
i=1 x2s−2i+1c2i−1

2 + x2.

(ii) If G/H=Q2m+2 , m > 1 , then K(s)∗(BG) = K(s)∗[c, x, c2]/R,
and the relations R are determined by

c2s

= x2s

= 0, vscc
2s−1

2 = vs

∑s−1
i=1 c2s−2i+1c2i−1

2 + c2, v
2κ(m)
s c2ms

2 = cx + x2,

vsxc2s−1

2 = vsx
∑s−1

i=1 c2s−2i

c2i−1

2 +
∑ms

i=1 v
1+κ(m)+2ms−2i

s c
(2ms+1)2s−1−(2s−1)2i−1

2

+ cx,
where κ(m) = 2ms−1

2s−1 .

(iii) If G/H=2T , then K(s)∗(BG) = K(s)∗[c2]/c
(2s+1)2s−1

2 .

(iv) If G/H=2O, then
K(s)∗(BG) = K(s)∗[c, c2]/(c2s

, c2 + vsc
∑s

i=1 c2s−2i

c2i−1

2 , c
(2s+1)2s−1

2 ).

(v) If G/H=Z/2k, then K(s)∗(BG) = K(s)∗[c]/c2ks

.

Here in all cases |c| = |x| = 2, |c2| = 4.

The statement (v) is clear. (i) and (ii) follow from Theorem 1.1 of [4] for Q8 and
Q2m+2 respectively. What remains is to consider the cases of binary tetrahedral and
binary octahedral groups.

Binary Polyhedral groups

As it is known any finite subgroup of SO(3) is either a cyclic group, a dihe-
dral group or one of the groups of a Platonic solid: tetrahedral group T ∼= A4,
cube/octahedral group O ∼= S4, or icosahedral group I ∼= A5. We consider the
preimages of the latter groups under the covering homomorphism S3 → SO(3).
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Binary tetrahedral group
Binary tetrahedral group 2T as the group of 24 units in the ring of Hurwitz

integers 2T is given by {±1,±i,±j,±k, 1
2 (±1± i± j ± k)}.

This group can be written as a semidirect product 2T = Q8 o Z/3, where Q8 is
the quaternion group consisting of the 8 Lipschitz units ±1,±i,±j,±k and Z/3 is
the cyclic group generated by − 1

2 (1+ i+j +k). The cyclic group acts on the normal
subgroup Q8 by conjugation. So that the generator of Z/3 cyclically rotates i, j, k.

Consider now Morava K-theory at 2. Then relations of Theorem 1.1 of [4] for
K(s)∗(BQ8) imply that its subring of invariants under Z/3 action is generated by
c2: the generator of Z/3 cyclically rotates c, x and c + x + vsc

2s−1
x2s−1

. If ignoring
the powers of vs then the first and second elementary symmetric functions in these
three symbols are equal to c2s−1

2 and c2s

2 respectively and the third is zero. It follows
that K(s)∗(B2T ) ∼= [K(s)∗(BQ8)]Z/3.

Proposition 5. K(s)∗(B2T ) ∼= K(s)∗[c2]/c
(2s+1)2s−1

2 , where |c2| = 4.

Binary octahedral group 2O
This group is given as the union of the 24 Hurwitz units {±1,±i,±j,±k, 1

2 (±1±
i±j±k)} with all 24 quaternions obtained from 1√

2
(±1±i+0j+0k) by permutation

of coordinates.
The generalized quaternion group Q16 forms a subgroup of 2O and its conjugacy

classes has 3 members. Therefore by the transfer argument B2O is a stable wedge
summand of BQ16 after localized at 2, meaning K(s)∗(B2O) is the subring in
K(s)∗(BQ16) at 2. We show that this is the subring generated by two symbols c
and c2 of Theorem 1.1 of [4]. Namely one has

Proposition 6. K(s)∗(B2O) is isomorphic to

K(s)∗[c, c2]/(c2s

, c2 + vsc

s∑

i=1

c2s−2i

c2i−1

2 , c
(2s+1)2s−1

2 ),

where |c| = 2, |c2| = 4.

Binary icosahedral group
2I is given as the union of the 24 Hutwitz units {±1,±i,±j,±k, 1

2 (±1±i±j±k)}
with all 96 quaternions obtained from 1

2 (0±1± i±ϕ−1j±ϕk) by even permutation
of coordinates. Here ϕ = 1

2 (1 +
√

5) is the golden ratio. This group is isomorphic to
SL2(5)-the group of all 2× 2 matrices over F5 with unit determinant.

Among other subgroups the relevant subgroup is the binary tetrahedral group
formed by Hurwitz units. Then coset 2I/2O has 5 members hence by the transfer
argument again B2I splits off B2O after localized at 2. Thus we obtain

K(s)∗B(2I) ∼= K(s)∗B(2T ).
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