TRANSFERRED CHARACTERISTIC CLASSES AND GENERALIZED COHOMOLOGY RINGS

M. Bakuradze
 UDC 515.16

Abstract

In this paper, we study the interaction between transferred Chern classes and Chern classes of transferred bundles. We calculate the algebra $B P^{*}\left(X_{h \Sigma_{p}}^{p}\right)$ and show that its multiplicative structure is completely determined by the Frobenius reciprocity. We also give some tables of the initial segments of the formal group law in the Morava K-theory which are often useful in calculations.

CONTENTS

1. Introduction 10
2. Transferred Chern Classes 11
3. Transferred Chern Classes for Σ_{p}-Coverings 22
4. Calculation of the Elements $\delta_{i}^{(k)}$ and $\tilde{\delta}_{i}^{(k)}$ in the Morava K-Theory 27
5. Transfer and $K(s)^{*}\left(X_{h \Sigma_{p}}^{p}\right)$ 32
6. Transferred Chern Classes in the Morava K-Theory 34
7. Stable Euler Classes 38
8. Morava K-Theory Rings for p-Groups with Maximal Cyclic Subgroup in Chern Classes 41
9. Dihedral, Semidihedral, and Generalized Quaternion Groups 47
10. Symplectic Cobordism 55
11. Some Examples and Tables 62
References 66

1. Introduction

The stable transfer map and its applications is already a subject of a whole branch of algebraic topology. For the constructions and formal properties of the transfer map, the best reference is the book [1] where J. F. Adams suggested that all topologists become acquainted with the transfer map as a major tool in applications and proofs. For axiomatic approach, see [10].

Our aim here is to give some applications of the transfer map in the presentation of the cohomology rings in the explicit form.

A considerable part of the material is collected from joint publications with Stewart Priddy, Vladimir Vershinin, and Mamuka Jibladze [3-7].

For various examples of finite groups, the complex oriented cohomology ring coincides with its subring generated by Chern classes [36, 39, 40]. Even more groups are good in the sense that their Morava K-theory is generated by transferred Chern classes of complex representations of subgroups [23]. Special effort was needed to find an example of a group not good in this sense [28]. Thus, the relations in the complex oriented cohomology ring of a finite group derived from formal properties of the transfer should play a major role. The purpose of the first part is to elucidate for finite coverings the interaction between transferred Chern classes and Chern classes of transferred bundles.

[^0]Let p be a prime and let $G \leq \Sigma_{p}$ be a subgroup of the symmetric group. In the first part we consider the complex oriented cohomology of homotopy orbit spaces $X_{h G}^{p}=E G \times{ }_{G} X^{p}$. Several authors have calculated these cohomology groups [23-25]; however, we are particularly interested in the ring structure and thereby explicit formulas for the transfer. Thus we are led to consider Frobenius reciprocity, the relation between cup products and transfer:

$$
\operatorname{Tr}^{*}(x) y=\operatorname{Tr}^{*}\left(x \rho^{*}(y)\right)
$$

where $\rho: E G \times X^{p} \rightarrow X_{h G}^{p}$ is the covering projection and

$$
\operatorname{Tr}^{*}: E^{*}\left(X^{p}\right) \rightarrow E^{*}\left(X_{h G}^{p}\right)
$$

is the associated transfer homomorphism.
Let $\pi \leq \Sigma_{p}$ be the subgroup of cyclic permutations of order p. Our results for $M U^{*}\left(X_{h \pi}^{p}\right), X=$ $\mathbf{C} P^{\infty}$, and the canonical complex line bundle $\xi \rightarrow \mathbf{C} P^{\infty}$, provide a universal example which enables us to write explicitly the Chern classes c_{1}, \ldots, c_{p-1} of the transferred bundle ξ_{π} as a certain formal power series in the Euler class $c_{p}\left(\xi_{\pi}\right)$ with coefficients in $E^{*}(B \pi)$ plus certain transferred classes of the bundle ξ. We give an algorithm for calculating these coefficients. In particular for $E=B P$, Brown-Peterson cohomology, the coefficients of this formal power series are invariant under the action of the normalizer of π in Σ_{p}. This enables us to give similar results for Σ_{p} coverings. Moreover, we calculate the algebra $B P^{*}\left(X_{h \Sigma_{p}}^{p}\right)$ and show that its multiplicative structure is completely determined by Frobenius reciprocity. In addition to the Morava K-theory $E=K(s)$, calculations become easier: we show that the formal power series in the algorithm above descends to polynomials. We derive an alternative way for calculation and give some examples. Finally we give some tables of the initial segments of the formal group law in the Morava K-theory which are often useful in calculations.

The author would like to thank Mamuka Jibladze for Maple programs used in the examples.

2. Transferred Chern Classes

2.1. Preliminaries. We recall that a multiplicative cohomology theory E^{*} is called complex oriented if there exists a Thom class, that is, a class $u \in E^{2}\left(\mathbf{C} P^{\infty}\right)$ that restricts to a generator of the free one-dimensional E^{*} module $E^{2}\left(\mathbf{C} P^{1}\right)$. The universal example is the complex cobordism $M U^{*}$. Then

$$
E^{*}\left(\mathbf{C} P^{\infty}\right)=E^{*}[[x]],
$$

where x is the Euler class of the canonical complex line bundle ξ over $\mathbf{C} P^{\infty}=B U(1)$. Further,

$$
E^{*}\left(B U(1)^{p}\right)=E^{*}\left[\left[x_{1}, \ldots, x_{p}\right]\right],
$$

where $x_{i}=c_{1}\left(\xi_{i}\right)$ and ξ_{i} is the pullback bundle over $B U(1)^{p}$ by the projection $B U(1)^{p} \rightarrow B U(1)$ on the i th factor.

Much of our paper is written in terms of transfer maps [1, 27] and formal group laws. Let us give a brief review of formal properties of the transfer. For a finite covering

$$
\rho: X \rightarrow X / G
$$

there is a stable transfer map

$$
\operatorname{Tr}=\operatorname{Tr}(\rho): X / G^{+} \rightarrow X^{+}
$$

For any multiplicative cohomology theory E^{*}, the Frobenius reciprocity holds, i.e., the induced map Tr^{*} is a map of $E^{*}(X / G)$ modules possessing the following properties:
(i) $\operatorname{Tr}^{*}\left(x \rho^{*}(y)\right)=\operatorname{Tr}^{*}(x) y, x \in E^{*}(X), y \in E^{*}(X / G)$.

For example,
(ii) $\operatorname{Tr}^{*}\left(\rho^{*}(y)\right)=\operatorname{Tr}^{*}(1) y$.

The element $\operatorname{Tr}^{*}(1) \in E^{0}(X / G)$ is called the index or stable Euler class of the covering ρ. The following additional properties of the transfer will be used:
(iii) the transfer is natural with respect to pullbacks;
(iv) $\operatorname{Tr}\left(\rho_{1} \times \rho_{2}\right)=\operatorname{Tr}\left(\rho_{1}\right) \wedge \operatorname{Tr}\left(\rho_{2}\right)$;
(v) if $\rho=\rho_{2} \rho_{1}$, then $\operatorname{Tr}(\rho)=\operatorname{Tr}\left(\rho_{2}\right) \operatorname{Tr}\left(\rho_{1}\right)$.

More generally, for a covering projection

$$
\rho_{H, G}: X / H \rightarrow X / G
$$

with $H \leq G$, there is a stable transfer map

$$
\operatorname{Tr}_{H, G}: X / G^{+} \rightarrow X / H^{+}
$$

To simplify notation, we write projection and transfer in equivalent ways $\rho=\rho_{G}$ and $\operatorname{Tr}=\operatorname{Tr}(\rho)=$ Tr_{G} if $H=e$.

The reverse composition to (ii) is as follows:
(vi) (double coset formula) if $K, H \leq G$, then

$$
\rho_{K, G}^{*} \operatorname{Tr}_{H, G}^{*}=\sum_{x} \operatorname{Tr}_{K \cap H^{x}, K}^{*} \circ x^{-1^{*}} \circ \rho_{K^{x}-1}^{*} \cap H, H,
$$

where the sum is taken over a set of double coset representatives $x \in K \backslash G / H$ and $H^{x}=x H x^{-1}$. For a regular covering $\rho_{H, G}$, i.e., $H \unlhd G$,

$$
\rho_{H, G}^{*} \operatorname{Tr}_{H, G}^{*}(x)=N(x)=\sum_{g \in G / H} g^{*}(x),
$$

where $N(x)$ is called the norm or trace of x.
In subsequent sections, the reduced transfer

$$
\operatorname{Tr}_{H, G}: X / G \rightarrow X / H
$$

is used.
We recall Quillen's formula [16, 30]. First,

$$
E^{*}(B \mathbf{Z} / p)=E^{*}[[z]] /([p](z)),
$$

where x is the Euler class of a faithful one-dimensional complex representation of \mathbf{Z} / p and $[p](z)$ is the p-series or p-fold iterated formal sum. Then

$$
\begin{equation*}
\operatorname{Tr}_{\mathbf{Z} / p}^{*}(1)=[p](z) / z, \tag{2.1}
\end{equation*}
$$

where $\operatorname{Tr}_{\mathbf{Z} / p}^{*}$ is the transfer homomorphism for the universal \mathbf{Z} / p-covering $E \mathbf{Z} / p \rightarrow B \mathbf{Z} / p$. The relation $[p](z)=0$ is equivalent to the transfer relation

$$
z \operatorname{Tr}_{\mathbf{Z} / p}^{*}(1)=\operatorname{Tr}_{\mathbf{Z} / p}^{*}\left(c_{1}(\mathbf{C})\right)=\operatorname{Tr}_{\mathbf{Z} / p}^{*}(0)=0
$$

obtained by applying (ii). Of course, since the transfer is natural, Quillen's formula enables us to calculate the stable Euler class for any regular \mathbf{Z} / p covering.

In this spirit, let

$$
\pi=\langle t\rangle \leq \Sigma_{p}
$$

be the subgroup of cyclic permutations of order p. For a given free action of π on a space Y with a given complex line bundle $\eta \rightarrow Y$ we have an equivariant map

$$
\eta_{\pi}=\left(g_{1}, \ldots, g_{p}\right): Y \rightarrow B U(1)^{p},
$$

where g_{i} classifies the line bundle $t^{i-1} \eta$.

So by the naturality of the transfer, the calculation of transferred Chern classes $\operatorname{Tr}^{*}\left(c_{1}^{i}(\eta)\right), i \geq 1$, for cyclic coverings can be reduced to the covering

$$
\rho_{\pi}: E \pi \times(B U(1))^{p} \rightarrow E \pi \times_{\pi}(B U(1))^{p},
$$

as the universal example.
For the symmetric group, the arguments are similar.
Let ξ be the canonical complex line bundle over $\mathbf{C} P^{\infty}=B U(1)$ and ξ_{i} be the pullback bundle over $B U(1)^{p}$ by the projection on the i th factor as before. Then

$$
M U^{*}\left(B U(1)^{p}\right)=M U^{*}\left[\left[x_{1}, \ldots, x_{p}\right]\right],
$$

$x_{i}=c_{1}\left(\xi_{i}\right)$ and $x_{1} \cdots x_{p}$ is the Euler class of the bundle $\xi^{\times p}=\bigoplus \xi_{i}$.
Note that by transfer property (v), $\operatorname{Tr}\left(\rho_{\pi}\right)^{*}$ has the same value on the Chern classes x_{1}, \ldots, x_{p} : the group π permutes the x_{i} and $\rho_{\pi} t=\rho_{\pi}, t \in \pi$. Thus in calculations of the transfer we sometimes write these Chern classes in an equivalent way $x, t x, \ldots, t^{p-1} x$.

For the sphere bundle $S\left(\xi^{\times p}\right)$, we have

$$
\begin{equation*}
M U^{*}\left(S\left(\xi^{\times p}\right)\right)=M U^{*}\left[\left[x_{1}, \ldots, x_{p}\right]\right] /\left(x_{1} \cdots x_{p}\right) . \tag{2.2}
\end{equation*}
$$

Then for the trace map

$$
N=1+t+\cdots+t^{p-1}
$$

we have $\operatorname{ker} N=\operatorname{Im}(1-t), t \in \pi$ in $M U^{*} B U(1)^{p}$, and after restricting N to $M U^{*}\left(S\left(\xi^{\times p}\right)\right)$ we have the exact sequence

$$
\begin{equation*}
\cdots \leftarrow M U^{*}\left(S\left(\xi^{\times p}\right)\right) \stackrel{N}{\leftarrow} M U^{*}\left(S\left(\xi^{\times p}\right)\right) \stackrel{1-t}{\leftarrow} M U^{*}\left(S\left(\xi^{\times p}\right)\right) \stackrel{N}{\leftarrow} M U^{*}\left(S\left(\xi^{\times p}\right)\right) \leftarrow \ldots \tag{2.3}
\end{equation*}
$$

Then let $\xi_{\pi}=E \pi \times_{\pi} \xi^{\times p}$ be the Atiyah transfer bundle [2],

$$
\begin{equation*}
S\left(\xi_{\pi}\right)=E \pi \times_{\pi} S\left(\xi^{\times p}\right) \tag{2.4}
\end{equation*}
$$

be its sphere bundle, and

$$
\begin{equation*}
D\left(\xi_{\pi}\right)=E \pi \times_{\pi} D\left(\xi^{\times p}\right) \tag{2.5}
\end{equation*}
$$

be its disk bundle. Let $X=\mathbf{C} P^{\infty}$; then $D\left(\xi_{\pi}\right)$ is homotopy equivalent to $X_{h \pi}^{p}=B(\pi \imath U(1))$.
The cofibration $D\left(\xi_{\pi}\right) / S\left(\xi_{\pi}\right)=\left(X_{h \pi}^{p}\right)^{\xi_{\pi}}$ gives a long exact sequence

$$
\begin{equation*}
\cdots \leftarrow M U^{*}\left(S\left(\xi_{\pi}\right)\right) \leftarrow M U^{*}\left(X_{h \pi}^{p}\right) \stackrel{\times c_{p}}{\longleftarrow} M U^{*}\left(\left(X_{h \pi}^{p}\right)^{\xi_{\pi}}\right) \leftarrow \ldots \tag{2.6}
\end{equation*}
$$

where $\left(X_{h \pi}^{p}\right)^{\xi_{\pi}}$ is the Thom space of the bundle ξ_{π} and the right homomorphism is multiplication by the Euler class $c_{p}=c_{p}\left(\xi_{\pi}\right)$.

Since the diagonal of $B U(1)^{p}$ is fixed under the permutation action of π, the inclusion

$$
E \pi \rightarrow E \pi \times B U(1)^{p}, \quad x \rightarrow(x, \text { fixed point })
$$

defines the inclusions

$$
i: B \pi \rightarrow X_{h \pi}^{p}, \quad i_{0}: B \pi \rightarrow S\left(\xi_{\pi}\right) .
$$

The projection $\varphi: X_{h \pi}^{p} \rightarrow B \pi$ induced by $\pi \imath U(1) \rightarrow \pi$ defines the projection

$$
\begin{equation*}
\varphi_{0}: S\left(\xi_{\pi}\right) \rightarrow B \pi \tag{2.7}
\end{equation*}
$$

and the compositions $\varphi_{0} i_{0}$ and φi are the identities. We can consider $S\left(\xi_{\pi}\right)$ as a bundle over $B \pi$ with fiber $S\left(\xi^{\times p}\right)$.

Let η be the canonical line bundle over $B \pi$ and

$$
\theta=\varphi^{*}(\eta) \rightarrow X_{h \pi}^{p}
$$

be the pullback bundle. Thus

$$
i^{*}(\theta)=\eta, \quad i^{*}\left(\xi_{\pi}\right)=\mathbf{C}+\eta+\cdots+\eta^{p-1}
$$

Consider the pullback diagram

Let $\operatorname{Tr}=\operatorname{Tr}(\rho)$ be the transfer of the covering ρ, and $\operatorname{Tr}_{0}: S\left(\xi_{\pi}\right) \rightarrow S\left(\xi^{\times p}\right)$ the transfer map of ρ_{0}.
We will often refer to the following lemma which follows from (2.3) and the Frobenius reciprocity.
Lemma 2.1. In $M U^{*}\left(X_{h \pi}^{p}\right)$, we have

$$
\operatorname{Im} \operatorname{Tr}^{*} \cap \operatorname{Ker}\left(\rho^{*}\right)=0
$$

Proof. We have

$$
\rho^{*}\left(\operatorname{Tr}^{*}(a)\right)=N(a)=0 \Rightarrow a \in \operatorname{Im}(1-t) \Rightarrow \operatorname{Tr}^{*}(a)=0
$$

The lemma is proved.
Remark 2.2. Lemma 2.1 is valid only in a complex oriented cohomology E^{*} with a torsion-free coefficient ring. This lemma is used in the proof of Theorem 2.3 in a complex cobordism and in the second statement of Theorem 3.6 in the Brown-Peterson cohomology. By the naturality, these results hold for all E^{*} in the first case and all p-local E^{*} in the second.
2.2. Transferred Chern classes for cyclic coverings. In this section, we prove our main result for cyclic coverings, Theorem 2.4.

In the notation of the previous section, the k th Chern class of the bundle $\xi^{\times p}$ is an elementary symmetric function $\sigma_{k}\left(x_{1}, \ldots, x_{p}\right)$ in the Chern classes x_{i} and is the sum of $\binom{p}{k}$ elementary monomials. The action of π on the set of these monomials yields $p^{-1}\binom{p}{k}$ orbits, and the transfer homomorphism is constant on orbits by transfer property (v) or (iii).

Let E^{*} be a complex oriented cohomology theory. For $k=1, \ldots, p-1$, let

$$
\omega_{k}=\omega_{k}\left(x_{1}, \ldots, x_{p}\right) \in E^{*}\left(B U(1)^{p}\right)
$$

be the sum of representative monomials one from each of these orbits. The value of $\operatorname{Tr}^{*}\left(\omega_{k}\right)$ does not depend on the choice of ω_{k} since ω_{k} is defined modulo $\operatorname{Im}(1-t)$ and on the elements of $\operatorname{Im}(1-t)$ the transfer homomorphism is zero again by (v). In other words, we can take any ω_{k} for which $N \omega_{k}=\sigma_{k}\left(x_{1}, \ldots, x_{p}\right)$ holds. As we shall explain in Corollary 2.8 of Theorem 2.3, the following result enables us to calculate the transfer on all elements whose norm is symmetric.

To simplify the notation, we set $X=\mathbf{C} P^{\infty}$ and $c_{j}=c_{j}\left(\xi_{\pi}\right), j=1, \ldots, p$.
Theorem 2.3. We can construct explicit elements

$$
\delta_{i}^{(k)} \in \tilde{E}^{*}(B \pi), \quad k=1, \ldots, p-1,
$$

such that

$$
\operatorname{Tr}^{*}\left(\omega_{k}\right)=c_{k}+\sum_{i \geq 0} \varphi^{*}\left(\delta_{i}^{(k)}\right) c_{p}^{i}
$$

for the transfer of the covering $\rho: X^{p} \rightarrow X_{h \pi}^{p}$.
Before constructing the elements $\delta_{i}^{(k)}$ by proving Theorem 2.3, we prove their existence.

2.3. Complex cobordism of $\left(\mathbf{C} P^{\infty}\right)_{h \pi}^{p}$.

Theorem 2.4. In $M U^{*}\left(X_{h \pi}^{p}\right)$, we have:
(a) the annihilator of the Chern class $c=c_{1}(\theta)$ coincides with $\operatorname{Im~}_{\operatorname{Tr}}{ }^{*}$;
(b) multiplication by $c_{p}=c_{p}\left(\xi_{\pi}\right)$ is a monomorphism;
(c) any element of $\operatorname{Ker}\left(\rho^{*}\right)$ has the form

$$
\sum_{k \geq 0} \varphi^{*}\left(\delta_{k}\right) c_{p}^{k}
$$

for some elements $\delta_{k} \in \tilde{M} U^{*}(B \pi)$;
(d) for $\pi=\mathbf{Z} / 2$,
$M U^{*} B(\pi \imath U(1))=M U^{*}\left[\left[c, c_{1}, c_{2}\right]\right] /\left(c_{1}-c_{1}^{*}, c_{2}-c_{2}^{*}\right)=M U^{*}(B \pi)\left[\left[\operatorname{Tr}^{*}(x), c_{2}\right]\right] /\left(c \operatorname{Tr}^{*}(x)\right)$,
where $c_{i}=c_{i}\left(\xi_{\pi}\right), c_{i}^{*}=c_{i}\left(\xi_{\pi} \otimes_{\mathbf{C}} \theta\right)$, and x are Chern characteristic classes with

$$
x \in M U^{*}\left(B U(1)^{2}\right)=M U^{*}[[x, t x]] .
$$

Lemma 2.5. The left homomorphism in the long exact sequence (2.6) is an epimorphism and thus gives a short exact sequence

$$
0 \leftarrow M U^{*}\left(S\left(\xi_{\pi}\right)\right) \leftarrow M U^{*}\left(X_{h \pi}^{p}\right) \stackrel{\times c_{p}}{\longleftarrow} M U^{*}\left(X_{h \pi}^{p}\right)^{\xi_{\pi}} \leftarrow 0 .
$$

Moreover, there is a space X_{π} and a stable equivalence

$$
\varphi_{0} \vee f_{\pi}: S\left(\xi_{\pi}\right) \rightarrow B \pi \vee X_{\pi}
$$

with f_{π} factoring through the composite map

$$
S\left(\xi_{\pi}\right) \rightarrow X_{h \pi}^{p} \xrightarrow{\operatorname{Tr}} E \pi \times B U(1)^{p}
$$

and φ_{0} as in (2.7).
Proof. Consider the Serre spectral sequence for the fibration (2.7):

$$
S\left(\xi^{\times p}\right) \rightarrow S\left(\xi_{\pi}\right) \xrightarrow{\varphi_{0}} B \pi,
$$

$E_{2}^{i, j}=H^{i}\left(\pi, H^{j}\left(S\left(\xi^{\times p}\right) ; \mathbf{F}_{q}\right)\right)$ with the action of π on $H^{*}\left(S\left(\xi^{\times p}\right) ; \mathbf{F}_{q}\right)$ by permutations of the cohomological Chern classes.

When $q=p$,

$$
E_{2}^{0, j}=H^{j}\left(S\left(\xi^{\times p}\right) ; \mathbf{F}_{p}\right)^{\pi}, \quad E_{2}^{i, 0}=H^{i}\left(B \pi ; \mathbf{F}_{p}\right) .
$$

Then in positive dimensions

$$
H^{*}\left(S\left(\xi^{\times p}\right) ; \mathbf{F}_{q}\right)=\mathbf{F}_{q}\left[x_{1}, \ldots, x_{p}\right] /\left(x_{1} \cdots x_{p}\right)
$$

is a permutation representation of π acting on monomials which have degree zero in at least one indeterminate. This is a free $\mathbf{F}_{q}[\pi]$-module since all the monomials that are fixed under this action have been factored out after quotienting by the ideal $\left(x_{1} \cdots x_{p}\right)$. Hence the cohomology of π with coefficients in this module is trivial in positive dimensions, i.e., $E_{2}^{i, j}=0$ when $i, j>0$. Thus the spectral sequence collapses and we have

$$
H^{*}\left(S\left(\xi_{\pi}\right) ; \mathbf{F}_{p}\right) \approx H^{*}\left(B \pi ; \mathbf{F}_{p}\right) \oplus \tilde{H}^{*}\left(S\left(\xi^{\times p}\right) ; \mathbf{F}_{p}\right)^{\pi}
$$

Also if $q \neq p$, we have

$$
H^{*}\left(S\left(\xi_{\pi}\right) ; \mathbf{F}_{q}\right) \approx H^{*}\left(S\left(\xi^{\times p}\right) ; \mathbf{F}_{q}\right)^{\pi} .
$$

Let X_{π} be a stable summand of $B U(1)^{p}$ defined as follows. The action of π on $B U(1)^{p}$ induces an action of π on the stable decomposition of $B U(1)^{p}$ as a wedge of all smash products of length
$1, \ldots, p-1$, say Y_{π}, and a smash product of length p. Then choose X_{π} such that $N X_{\pi}=Y_{\pi}$, where $N=1+t+\cdots+t^{p-1}$. By the stable equivalence

$$
\begin{equation*}
S\left(\xi^{\times p}\right) \rightarrow B U(1)^{p} \rightarrow Y_{\pi}, \tag{2.8}
\end{equation*}
$$

we can consider X_{π} as a stable summand of $S\left(\xi^{\times p}\right)$. For any choice of X_{π}, consider the composition of stable maps

$$
\begin{equation*}
f_{\pi}: S\left(\xi_{\pi}\right) \rightarrow X_{h \pi}^{p} \xrightarrow{\operatorname{Tr}} E \pi \times B U(1)^{p} \rightarrow B U(1)^{p} \rightarrow X_{\pi} . \tag{2.9}
\end{equation*}
$$

We must show that the stable map $\varphi_{0} \vee f_{\pi}$ induces an isomorphism in cohomology for any group of coefficients \mathbf{F}_{q}, q is a prime, and hence gives a stable equivalence by the stable Whitehead lemma. It follows from the above arguments that

$$
\tilde{H}^{*}\left(S\left(\xi_{\pi}\right) ; \mathbf{F}_{p}\right)=\varphi_{0}^{*} \tilde{H}^{*}\left(B \pi ; \mathbf{F}_{p}\right) \oplus \operatorname{Tr}_{0}^{*} \tilde{H}^{*}\left(S\left(\xi^{\times p}\right) ; \mathbf{F}_{p}\right),
$$

and

$$
\tilde{H}^{*}\left(S\left(\xi_{\pi}\right) ; \mathbf{F}_{q}\right)=\operatorname{Tr}_{0}^{*} \tilde{H}^{*}\left(S\left(\xi^{\times p}\right) ; \mathbf{F}_{q}\right),
$$

when $q \neq p$. The restriction of Tr_{0} on X_{π} induces a monomorphism on $\operatorname{Im} \operatorname{Tr}_{0}^{*}$ since by the transfer property (iv),

$$
\rho_{0}^{*} \operatorname{Tr}_{0}^{*}=N,
$$

and the restriction of N on $\tilde{H}^{*}\left(X_{\pi} ; \mathbf{F}_{q}\right)$ is a monomorphism. Hence $\left(\varphi_{0} \vee \operatorname{Tr}_{0} \mid X_{\pi}\right)^{*}$ is an isomorphism and so is $\left(\varphi_{0} \vee f_{\pi}\right)^{*}$ by the commutative diagram

This proves Lemma 2.5.
Proof of Theorem 2.4. (a) We consider the restriction of any element $y \in M U^{*}\left(X_{h \pi}^{p}\right)$ to $M U^{*}\left(S\left(\xi_{\pi}\right)\right)$. By Lemma 2.5, we see that this restriction has the form $\varphi_{0}^{*}(u)+f_{\pi}^{*}(w)$ for some $u \in \tilde{M} U^{*}(B \pi)$, $w \in M U^{*}\left(X_{\pi}\right)$. Since the composition

$$
S\left(\xi_{\pi}\right) \rightarrow X_{h \pi}^{p} \xrightarrow{\varphi} B \pi
$$

coincides with $\varphi_{0}, \varphi^{*}(u)$ also restricts to $\varphi_{0}^{*}(u)$. By diagram (2.10), there is an element $v \in$ $M U^{*}\left(B U(1)^{p}\right)$ such that $\operatorname{Tr}^{*}(v)$ restricts to $f_{\pi}^{*}(w)$. By the exactness

$$
y=\varphi^{*}(u)+\operatorname{Tr}^{*}(v)+y_{1} c_{p},
$$

for some $y_{1} \in M U^{*}\left(X_{h \pi}^{p}\right)$. For use in the proof of (c) we observe that (2.2) and (2.8) imply that v can be chosen in the direct summand $M U^{*}\left[\left[x_{1}, \ldots, x_{p}\right]\right] /\left(x_{1} \cdots x_{p}\right)$. Thus we can assume that this expression for y is unique and if $v \neq 0$ then $\operatorname{Tr}^{*}(v)$ restricts nontrivially in $M U^{*}\left(S\left(\xi_{\pi}\right)\right)$.

Then we suppose that $c y=0$. We know that $\rho^{*}(\theta)=\mathbf{C}$, hence $\rho^{*}(c)=0$ and

$$
c \operatorname{Tr}^{*}(v)=\operatorname{Tr}^{*}\left(\rho^{*}(c) v\right)=0
$$

by the Frobenius reciprocity. So we have

$$
c \varphi^{*}(u)+c y_{1} c_{p}=0 .
$$

We prove that

$$
\varphi^{*}(u) \in \operatorname{Im}^{\operatorname{Tr}} .
$$

Applying i^{*} we have

$$
0=i^{*}\left(c \varphi^{*}(u)\right)+i^{*}\left(c y_{1} c_{p}\right)=z u
$$

since

$$
i^{*} \varphi^{*}=\mathrm{id}, \quad c=\varphi^{*}(z), \quad i^{*}\left(c_{p}\right)=0
$$

Hence

$$
u \in \operatorname{Ann}(z)=\operatorname{Im} \operatorname{Tr}_{\mathbf{Z} / p}^{*}
$$

by the naturality of the transfer $\varphi^{*}(u) \in \operatorname{Im} \operatorname{Tr}^{*}$. Thus, $c \varphi^{*}(u)=0$ and therefore $c y_{1} c_{p}=0$. Multiplication by c_{p} is injective by Lemma 2.5 , hence $c y_{1}=0$. Since $\operatorname{dim}\left(y_{1}\right)=\operatorname{dim}(y)-2 p$, iterating this argument gives us statement (a).

Item (b) follows from the fact that the right homomorphism in the short exact sequence from Lemma 2.5 is multiplication by the Euler class $c_{p}\left(\xi_{\pi}\right)$.
(c) Let $y \in \operatorname{Ker} \rho^{*}$. Since $\varphi \rho=*$ we have

$$
0=\rho^{*}\left(\operatorname{Tr}^{*}(v)\right)+\rho^{*}\left(y_{1} c_{p}\right)
$$

If the first summand is not zero, it restricts nontrivially in $M U^{*}\left(S\left(\xi^{\times p}\right)\right)$ by the definition of v. However, the second summand restricts to zero since

$$
\rho^{*}\left(c_{p}\right)=x_{1} \cdots x_{p}, \quad \rho^{*}\left(y_{1} c_{p}\right)=\rho^{*}\left(y_{1}\right) x_{1} \cdots x_{p}
$$

$x_{1} \cdots x_{p}$ restricts to zero as the Euler class. Hence both summands are zero. Furthermore, multiplication by $x_{1} \cdots x_{p}$ is a monomorphism hence $\rho^{*}\left(y_{1}\right)=0$. Thus

$$
y=\varphi^{*}(u)+y_{1} c_{p}=\varphi^{*}(u)+\left(\varphi^{*}\left(u_{1}\right)+y_{2} c_{p}\right) c_{p}=\varphi^{*}(u)+\varphi^{*}\left(u_{1}\right) c_{p}+y_{2} c_{p}^{2}
$$

Repetition of this process proves c).
(d) The fact that c, c_{1}, and c_{2} multiplicatively generate $M U^{*} B(\pi \imath U(1))$ follows from Lemma 2.5. The relations $c_{1}=c_{1}^{*}, c_{2}=c_{2}^{*}$ follow from the bundle relation

$$
\xi_{\pi} \otimes_{\mathbf{C}} \theta=\left(\xi \otimes_{\mathbf{C}} \rho^{*}(\theta)\right)_{\pi}=\xi_{\pi}
$$

which in turn follows from transfer property (i).
So we must prove that the Chern classes c, c_{1}, and c_{2} with these relations are a complete system of generators and relations. Let us use the splitting principle to write formally

$$
\xi_{\pi}=\eta_{1}+\eta_{2}, \quad u_{1}=c_{1}\left(\eta_{1}\right), \quad u_{2}=c_{1}\left(\eta_{2}\right)
$$

Let

$$
F(x, y)=\sum \alpha_{i j} x^{i} y^{j}
$$

be a formal group law. Using the bundle relation above and applying the Whitney formula for the first and second Chern classes, we obtain two relations of the form

$$
\begin{equation*}
F\left(u_{1}, c\right)+F\left(u_{2}, c\right)=c_{1}, \quad F\left(u_{1}, c\right) F\left(u_{2}, c\right)=c_{2} \tag{2.11}
\end{equation*}
$$

or in terms of $c, c_{1}=u_{1}+u_{2}$, and $c_{2}=u_{1} u_{2}$,

$$
\begin{gather*}
F\left(u_{1}, c\right)+F\left(u_{2}, c\right)-c_{1}=c\left(2+\sum \beta_{i j k} c^{i} c_{1}^{j} c_{2}^{k}\right)=0 \tag{2.12}\\
F\left(u_{1}, c\right) F\left(u_{2}, c\right)-c_{2}=c\left(c_{1}+\sum \gamma_{i j k} c^{i} c_{1}^{j} c_{2}^{k}\right)=0 \tag{2.13}
\end{gather*}
$$

for some coefficients $\beta_{i j k}, \gamma_{i j k} \in M U^{*}(p t)$.
We claim that relations (2.12) and (2.13) are equivalent to the following two obvious transfer relations for $\operatorname{Tr}^{*}: M U^{*}[[x, t x]] \rightarrow M U^{*}(B(\pi \imath U(1)))$:

$$
c \operatorname{Tr}^{*}(1)=0, \quad c \operatorname{Tr}^{*}(x)=0
$$

Rewrite relations (2.12) and (2.13) as follows:

$$
\begin{aligned}
& c a=0, \quad \text { where } \quad a=2+\alpha_{11} c_{1}+\sum_{k \geq 2} \alpha_{k 1}\left(u_{1}^{k}+u_{2}^{k}\right)+o(c), \\
& c b=0, \quad \text { where } \quad b=c_{1}+2 \alpha_{11} c_{2}+\sum_{k \geq 2} \alpha_{k 1}\left(u_{1}^{k-1}+u_{2}^{k-1}\right) c_{2}+o(c),
\end{aligned}
$$

and the $\alpha_{i j}$ are the coefficients of the formal group law.
By the first part of Theorem 2.4, $a \in \operatorname{Im~Tr}$. Also by transfer property (vi)

$$
\rho^{*}(a)=\rho^{*}\left(\operatorname{Tr}^{*}(1)+\alpha_{11} \operatorname{Tr}^{*}(x)+\sum_{k \geq 2} \alpha_{k 1} \operatorname{Tr}^{*}\left(x^{k}\right)\right) .
$$

Thus by Lemma 2.5

$$
\operatorname{Tr}^{*}(1)+\alpha_{11} \operatorname{Tr}^{*}(x)+\sum_{k \geq 2} \alpha_{k 1} \operatorname{Tr}^{*}\left(x^{k}\right)=\frac{F\left(u_{1}, c\right)+F\left(u_{2}, c\right)-c_{1}}{c} ;
$$

similarly, $b \in \operatorname{Im} \operatorname{Tr}^{*}$ and

$$
\operatorname{Tr}^{*}(x)+\alpha_{11} \operatorname{Tr}^{*}(1) c_{2}+\sum_{k \geq 2} \alpha_{k 1} \operatorname{Tr}^{*}\left(x^{k-1}\right) c_{2}=\frac{F\left(u_{1}, c\right) F\left(u_{2}, c\right)-c_{2}}{c}
$$

Now since

$$
x^{k}=x^{k-1}(x+t x)-x^{k-2}(x t x),
$$

transfer property (i) and the calculation of $\operatorname{Tr}^{*}(x)$ is sufficient for the calculation of $\operatorname{Tr}^{*}\left(x^{k}\right), k \geq 2$ (see also Corollary 2.8 and Remark 2.2). So we have

$$
\begin{align*}
\operatorname{Tr}^{*}(1)\left(1+g_{0}\right)+\operatorname{Tr}^{*}(x) h_{0} & =\frac{F\left(u_{1}, c\right)+F\left(u_{2}, c\right)-c_{1}}{c} \tag{2.14}\\
\operatorname{Tr}^{*}(1) g_{1}+\operatorname{Tr}^{*}(x)\left(1+h_{1}\right) & =\frac{F\left(u_{1}, c\right) F\left(u_{2}, c\right)-c_{2}}{c} \tag{2.15}
\end{align*}
$$

where $g_{0}, h_{0}, g_{1}, h_{1} \in M U^{*}(B(\pi \imath U(1)))$. This proves (d).
This completes the proof of Theorem 2.4.
Formula (2.15) for calculating $\operatorname{Tr}^{*}(x)$ is complicated; let us give a simpler form. Consider again (2.13). Note that the coefficient $\gamma_{00 k} \in M U^{*}(p t)$ contains a factor 2: the element

$$
c_{1}+\sum \gamma_{i j k} c^{i} c_{1}^{j} c_{2}^{k}
$$

annihilates c and hence belongs to $\operatorname{Im} \operatorname{Tr}^{*}$. On the other hand,

$$
\rho^{*} \operatorname{Tr}^{*}=1+t, \quad \rho^{*}(c)=0, \quad \rho^{*}\left(c_{1}\right)=x+t x, \quad \rho^{*}\left(c_{2}\right)=x t x
$$

hence applying ρ^{*} we obtain that

$$
x+t x+\sum \gamma_{0 j k}(x+t x)^{j}(x t x)^{k}
$$

belongs to $\operatorname{Im}(1+t)$. So

$$
\gamma_{00 k}(x t x)^{k}=2 \gamma_{k}(x t x)^{k}
$$

that is, $\gamma_{00 k}=2 \gamma_{k}$ for some coefficient γ_{k}.
Recall that, on the other hand, $F(c, c)=0$, that is, $2 c=o\left(c^{2}\right)$. So $\gamma_{00 k} c=o\left(c^{2}\right)$, hence taking into account the relation $F(c, c)=0$ we can rewrite (2.13) after division by

$$
1+\sum_{i, k \geq 0} \gamma_{i 1 k} c^{i} c_{2}^{k}
$$

(the coefficient at $c c_{1}$) as follows:

$$
\begin{equation*}
c c_{1}=d_{0} c+d_{2} c c_{1}^{2}+\cdots+d_{n} c c_{1}^{n}+\ldots, \tag{2.16}
\end{equation*}
$$

where $d_{k}=d_{k}\left(c, c_{2}\right) \in M U^{*}\left[\left[c, c_{2}\right]\right]$ and $d_{0}\left(0, c_{2}\right)=0$; the subscript n indicates the coefficient at $c c_{1}^{n}$. Since

$$
\rho^{*}\left(\operatorname{Tr}^{*}(x)-c_{1}\right)=0,
$$

it follows from Theorem 2.4c) that there exist elements

$$
\delta_{j} \in \tilde{M} U^{*}(B \pi)
$$

such that

$$
\operatorname{Tr}^{*}(x)=c_{1}+\sum_{j \geq 0} \varphi^{*}\left(\delta_{j}\right) c_{2}^{j}
$$

Using the inclusion $i: B \pi \rightarrow B(\pi \imath U(1))$ we have

$$
i^{*}\left(c_{1}\right)=i_{0}^{*}(c), \quad i^{*} \operatorname{Tr}^{*}(x)=0, \quad i^{*}\left(c_{2}\right)=0
$$

therefore,

$$
\varphi^{*}\left(\delta_{0}\right)=-c .
$$

For the calculation of the other elements δ_{j} recall that $c \operatorname{Tr}^{*}(x)=0$, hence

$$
\begin{equation*}
c c_{1}^{n}=-c \varphi^{*}\left(\delta^{n}\right), \quad n \geq 1 \tag{2.17}
\end{equation*}
$$

where

$$
\delta=-c+\sum_{j \geq 1} \delta_{j} c_{2}^{j}
$$

Combining (2.16) and (2.17), we obtain the following assertion.
Proposition 2.6. The elements $\delta_{j}, j>0$, can be determined from the recurrence relations which arise from the following formula in $M U^{*}(B \pi)\left[\left[c_{2}\right]\right]$:

$$
\delta=d_{0}+\sum_{i \geq 2} d_{i} \delta^{i}
$$

Proof. By definition, the element

$$
\delta-d_{0}-\sum_{i \geq 2} d_{i} \delta^{i}
$$

belongs to $\operatorname{Ker} \rho^{*}$. On the other hand, this element is annihilated by c, hence

$$
\delta-d_{0}-\sum_{i \geq 2} d_{i} \delta^{i} \in \operatorname{Im} \operatorname{Tr}^{*} \cap \operatorname{Ker}\left(\rho^{*}\right)=0
$$

by Lemma 2.5 .
Corollary 2.7. For the elements $\delta_{j} \in \tilde{M U}^{*}(B \mathbf{Z} / 2)$ constructed in Proposition 2.6, the following formula holds in $M U^{*} B(\mathbf{Z} / 2 \imath U(1))$:

$$
\operatorname{Tr}^{*}(x)=c_{1}-c+\sum_{j \geq 1} \varphi^{*}\left(\delta_{j}\right) c_{2}^{j}
$$

In fact, we have proved Theorem 2.3 for $p=2$. The general case, similar but more cumbersome, will be examined below.

Proof of Theorem 2.3. Note that by the definition of ω_{k}, the difference $\operatorname{Tr}^{*}\left(\omega_{k}\right)-c_{k}$ is an element of $\operatorname{Ker}\left(\rho^{*}\right)$. Thus, Theorem 2.4(c) implies the existence of the elements $\delta_{i}^{(k)}$ in Theorem 2.3.

First, let us elucidate the meaning of the relations

$$
\xi_{\pi} \otimes_{\mathbf{C}} \theta=\xi_{\pi}
$$

in the general case of $B(\pi \imath U(1))$.
Again, we can use the splitting principle and write formally

$$
\xi_{\pi}=\eta_{1}+\eta_{2}+\cdots+\eta_{p}, \quad u_{m}=c_{1}\left(\eta_{m}\right), \quad m=1, \ldots, p .
$$

Applying the Whitney formula for the relation

$$
\eta_{1} \otimes_{\mathbf{C}} \theta+\cdots+\eta_{p} \otimes_{\mathbf{C}} \theta=\eta_{1}+\cdots+\eta_{p}
$$

and taking into account the fact that $c_{m}=c_{m}\left(\xi_{\pi}\right)$ is an elementary symmetric function $\sigma_{m}\left(u_{1}, \ldots, u_{p}\right)$, we have

$$
\begin{equation*}
\sigma_{m}\left(F\left(u_{1}, c\right), \ldots, F\left(u_{p}, c\right)\right)=c_{m}, \quad m=1, \ldots, p, \tag{2.18}
\end{equation*}
$$

or, in terms of c, c_{1}, \ldots, c_{p},

$$
c\left(p+\sum \beta_{i_{0}, i_{1}, \ldots, i_{p}}^{0} c^{i_{0}} c_{1}^{i_{1}} \ldots c_{p}^{i_{p}}\right)=0
$$

and

$$
\begin{equation*}
c\left((p-k) c_{k}+\sum \beta_{i_{0}, i_{1}, \ldots, i_{p}}^{k} c^{i_{0}} c_{1}^{i_{1}} \ldots c_{p}^{i_{p}}\right)=0 \tag{2.19}
\end{equation*}
$$

for $k=1, \ldots, p-1$ and some $\beta_{i_{0}, i_{1}, \ldots, i_{p}}^{0}, \beta_{i_{0}, i_{1}, \ldots, i_{p}}^{k} \in M U^{*}(p t)$.
We claim that these relations are equivalent to the obvious relations

$$
c \operatorname{Tr}^{*}(1)=0, \quad c \operatorname{Tr}^{*}\left(\omega_{k}\right)=0
$$

for the elements $\omega_{k} \in M U^{*}(B U(1))^{p}, k=1, \ldots, p-1$, defined above.
For the proof of our claim, multiply the k th relation from (2.19) by $p_{k}=(p-k)^{-1}$ in \mathbf{F}_{p}. Then by Theorem 2.4, $\operatorname{Ann}(c)$ coincides with $\operatorname{Im~}_{\mathrm{Tr}}{ }^{*}$ and hence (2.18) implies that

$$
p_{k}\left(\sigma_{k+1}\left(F\left(u_{1}, c\right), \ldots, F\left(u_{p}, c\right)\right)-c_{k+1}\right) / c=\operatorname{Tr}^{*}\left(a_{k}\right)
$$

for some a_{k} which we have to find. Let us write

$$
\begin{aligned}
& \rho^{*}\left(p_{k}\left(\sigma_{k+1}\left(F\left(u_{1}, c\right), \ldots, F\left(u_{p}, c\right)\right) c_{k+1}\right) / c\right)=g^{(k)}\left(\sigma_{1}, \ldots, \sigma_{p}\right) \\
& =\sigma_{k}\left(1+g_{k}^{(k)}\left(\sigma_{1}, \ldots, \sigma_{p}\right)\right)+\sum_{\substack{j \neq k \\
1 \leq j \leq p-1}} \sigma_{j} g_{j}^{(k)}\left(\sigma_{j}, \sigma_{j+1}, \ldots, \check{\sigma_{k}}, \ldots, \sigma_{p}\right) \\
& \quad=N\left(\omega_{k}\right)\left(1+g_{k}^{(k)}\left(\sigma_{1}, \ldots, \sigma_{p}\right)\right)+\sum_{\substack{j \neq k \\
1 \leq j \leq p-1}} N\left(\omega_{j}\right) g_{j}^{(k)}\left(\sigma_{j}, \sigma_{j+1}, \ldots, \check{\sigma_{k}}, \ldots, \sigma_{p}\right) .
\end{aligned}
$$

Here the symbol $\check{\sigma_{k}}$ indicates absence of the corresponding term. So we have

$$
\begin{aligned}
& p_{k}\left(\sigma_{k+1}\left(F\left(u_{1}, c\right), \ldots, F\left(u_{p}, c\right)\right)-c_{k+1}\right) / c \\
& \quad=\operatorname{Tr}^{*}\left(\omega_{k}\right)\left(1+g_{k}^{(k)}\left(c_{1}, \ldots, c_{p}\right)\right)+\sum_{\substack{j \neq k \\
1 \leq j \leq p-1}} \operatorname{Tr}^{*}\left(\omega_{j}\right) g_{j}^{(k)}\left(c_{j}, c_{j+1}, \ldots, \check{c_{k}}, \ldots, c_{p}\right)
\end{aligned}
$$

and

$$
\left[\sigma_{1}\left(F\left(u_{1}, c\right), \ldots, F\left(u_{p}, c\right)\right)-c_{1}\right] / c
$$

$$
=\operatorname{Tr}^{*}(1)\left(1+g_{0}^{(0)}\left(c_{1}, \ldots, c_{p}\right)\right)+\sum_{1 \leq j \leq p-1} \operatorname{Tr}^{*}\left(\omega_{j}\right) g_{j}^{(0)}\left(c_{j}, c_{j+1}, \ldots, c_{p}\right)
$$

This proves our claim.
For calculating $\delta_{i}^{(k)}$, we start with Eqs. (2.19) and rewrite them as follows:

$$
\begin{equation*}
c f_{k}\left(c, c_{1}, \ldots, c_{p}\right)=0, \quad k=1, \ldots, p-1 \tag{2.20}
\end{equation*}
$$

These are equations in a power series algebra $M U^{*}(B \pi)\left[\left[c_{p}\right]\right]$, since we know $c c_{k} \in c M U^{*}(B \pi)\left[\left[c_{p}\right]\right]$.
Now we find explicitly formal series

$$
\begin{equation*}
\delta^{(k)}\left(c_{p}\right)=\sum_{i \geq 0} \delta_{i}^{(k)}(c) c_{p}^{i} \tag{2.21}
\end{equation*}
$$

such that

$$
\operatorname{Tr}^{*}\left(\omega_{k}\right)=c_{k}+\delta^{(k)}\left(c_{p}\right)
$$

and hence

$$
\begin{equation*}
c c_{k}^{j}=-c\left(\delta^{(k)}\left(c_{p}\right)\right)^{j}, \quad j \geq 1 \tag{2.22}
\end{equation*}
$$

For this, we replace Eqs. (2.20) by the equations

$$
\begin{equation*}
c \widetilde{f}_{k}\left(c, \delta^{(1)}\left(c_{p}\right), \ldots, \delta^{(p-1)}\left(c_{p}\right), c_{p}\right)=0 \tag{2.23}
\end{equation*}
$$

where $\widetilde{f}_{k} \in \operatorname{Ker} \rho_{\pi}^{*}$ is a series whose coefficient at $\delta^{(k)}$ is invertible.
In fact, $\widetilde{f_{k}}=0$ since we know that

$$
\operatorname{Ann}(c)=\operatorname{Im} \operatorname{Tr}^{*}, \quad \operatorname{Ker}\left(\rho^{*}\right) \cap \operatorname{Im} \operatorname{Tr}^{*}=0
$$

by Lemma 2.5.
Then equating each coefficient of the resulting series

$$
\begin{equation*}
g_{k}\left(c_{p}\right)=\widetilde{f}_{k}\left(c, \delta^{(1)}\left(c_{p}\right), \ldots, \delta^{(p-1)}\left(c_{p}\right), c_{p}\right)=0 \tag{2.24}
\end{equation*}
$$

in the ring $M U^{*}(B \pi)\left[\left[c_{p}\right]\right]$ to zero, we obtain $p-1$ infinite strings of equations in $M U^{*}(B \pi)$. Assuming that $\delta_{i}^{(l)}$ are already found for $i<n$, we get

$$
\begin{equation*}
\delta_{n}^{(k)}=\psi_{n, k}\left(\left(\delta_{i}^{(1)}\right)_{i \leq n}, \ldots,\left(\delta_{i}^{(k)}\right)_{i<n}, \ldots,\left(\delta_{i}^{(p-1)}\right)_{i \leq n}\right) \tag{2.25}
\end{equation*}
$$

which is a system of linear equations in $\delta_{n}^{(l)}, l=1, \ldots, p-1$, with invertible determinant and coefficients in $M U^{*}[[c]]$. Since $\delta_{0}^{(l)}$ are already known as l th Chern classes of the bundle $1+\theta+\cdots+\theta^{p-1}$, by induction on n we can solve formally (2.25) to get

$$
\begin{equation*}
\delta_{n}^{(k)}(c)=\tilde{\psi}_{n, k}\left(\left(\delta_{i}^{(l)}\right)_{i<n}\right) \tag{2.26}
\end{equation*}
$$

This yields

$$
\delta_{n}^{(k)}=\delta_{n}^{(k)}(z) \in M U^{*}(B \pi)
$$

obviously satisfying our equations.
Now for the remaining equation (2.23) we proceed as follows. Let us look at the term $c f_{k}\left(0,0, \ldots, 0, c_{p}\right)$ in Eqs. (2.20). Note that $f_{k}\left(0,0, \ldots, 0, c_{p}\right)$ is divisible by p :

$$
f_{k} \in \operatorname{Ann}(c)=\operatorname{Im} \operatorname{Tr}^{*} \Rightarrow \rho_{\pi}^{*} f_{k} \in \operatorname{Im} N \Rightarrow f_{k}\left(0, \ldots, 0, \sigma_{p}\right) \in \operatorname{Im} N \Rightarrow f_{k}\left(0, \ldots, 0, \sigma_{p}\right)
$$

Next using the relation $[p]_{F}(c)=0$ we know that $p c$ is divisible by c^{2}; hence each occurrence of $p c$ in these equations can be replaced by terms with higher powers of c. So $c f_{k}\left(0,0, \ldots, 0, c_{p}\right)$ can be replaced by a term divisible by c^{2}.

Also the k th relation from (2.20) contains the term $c(p-k) c_{k}$, and for the condition (2.24) we multiply the k th equation from (2.20) by $(p-k)^{-1}$, the inverse of $p-k$ in \mathbf{F}_{p}, and as above we can
replace $c(p-k) c_{k}$ by $c c_{k}+\left(\right.$ terms divisible by $\left.c^{2}\right)$. Then we use (2.22) and substitute the series $\delta^{(k)}$ in the resulting equations, thus obtaining (2.23).

This completes the proof for $E=M U$, which is the universal example of complex oriented cohomology theories. From this result we can descend to all E.

We now turn to calculation of Tr^{*} in general.
Corollary 2.8. For all primes p, Theorem 2.3 enables us to explicitly calculate the transfer homomorphism for those polynomials $a \in \tilde{M} U^{*}\left[\left[x_{1}, \ldots, x_{p}\right]\right]$ for which $N a=a+t a+\cdots+t^{p-1} a$ is symmetric in x_{1}, \ldots, x_{p}.
Proof. If

$$
N a=\sigma_{1} a_{1}\left(\sigma_{1}, \ldots, \sigma_{p}\right)+\cdots+\sigma_{p-1} a_{p-1}\left(\sigma_{1}, \ldots, \sigma_{p}\right),
$$

then

$$
\left.\operatorname{Tr}^{*}(a)=\operatorname{Tr}^{*}\left(\omega_{1}\right) a_{1}\left(c_{1}, \ldots, c_{p}\right)+\cdots+\operatorname{Tr}^{*}\left(\omega_{p-1}\right) a_{p-1}\left(c_{1}, \ldots, c_{p}\right)\right) .
$$

To see this, we set

$$
\hat{a}=\omega_{1} a_{1}\left(\sigma_{1}, \ldots, \sigma_{p}\right)+\cdots+\omega_{p-1} a_{p-1}\left(\sigma_{1}, \ldots, \sigma_{p}\right) .
$$

Then $N(a-\hat{a})=0$, that is, $a-\hat{a} \in \operatorname{Im}(1-t)$, hence $\operatorname{Tr}^{*}(a)=\operatorname{Tr}^{*}(\hat{a})$.
Remark 2.9. For $p=2$, we have the recurrence formulas for $\operatorname{Tr}^{*}\left(x^{k}\right), k \geq 1$:

$$
\operatorname{Tr}^{*}(x)=\operatorname{Tr}^{*}\left(\omega_{1}\right), \quad \operatorname{Tr}^{*}\left(x^{k}\right)=\operatorname{Tr}^{*}\left(x^{k-1}\right) c_{1}-\operatorname{Tr}^{*}\left(x^{k-2}\right) c_{2}
$$

This follows from the formula

$$
x^{k}=x^{k-1}(x+t x)-x^{k-2}(x t x) .
$$

3. Transferred Chern Classes for Σ_{p}-Coverings

If we consider a p-local, complex, oriented cohomology E^{*}, then by standard transfer arguments (see Lemma 3.2 below), $E^{*}\left(B \Sigma_{p}\right)$ is isomorphic to the subring of $E^{*}(B \pi)$ invariant under the action of the normalizer of π in Σ_{p}. The results of this section imply that the elements $\delta_{i}^{(k)} \in \tilde{E}^{*}(B \pi)$ from Theorem 2.3 are invariant under this action. This defines elements $\tilde{\delta}_{i}^{(k)} \in \tilde{E}^{*}\left(B \Sigma_{p}\right)$ which we use for calculating the transfer.

In this section, we consider $B P^{*}\left(X_{h \Sigma_{p}}^{p}\right)$ for $X=\mathbf{C} P^{\infty}$, and for the covering projection

$$
\rho_{\Sigma_{p}}: E \Sigma_{p} \times X^{p} \rightarrow X_{h \Sigma_{p}}^{p},
$$

we give the formula for the transfer homomorphism

$$
\begin{equation*}
\operatorname{Tr}_{\Sigma_{p}}{ }^{*}: B P^{*}\left(X^{p}\right) \rightarrow B P^{*}\left(X_{h \Sigma_{p}}^{p}\right) \tag{3.1}
\end{equation*}
$$

using the elements $\tilde{\delta}_{i}^{(k)}$.
We need definitions similar to those of Sec. 2, with the cyclic group replaced by the symmetric group. The p-fold product $\xi^{\times p}$ of the canonical line bundle over X^{p} extends to an p-dimensional bundle

$$
\begin{equation*}
\xi_{\Sigma_{p}}=E \Sigma_{p} \times \Sigma_{p} \xi^{\times p} \tag{3.2}
\end{equation*}
$$

over $X_{h \Sigma_{p}}^{p}$ classified by the inclusion

$$
X_{h \Sigma_{p}}^{p}=B\left(\Sigma_{p} \imath U(1)\right) \hookrightarrow B U(p) .
$$

Let $c_{i}=c_{i}\left(\xi_{\Sigma_{p}}\right)$. Then

$$
\rho_{\Sigma_{p}}{ }^{*}\left(c_{i}\right)=c_{i}\left(\xi^{\times p}\right)=\sigma_{i},
$$

the i th symmetric polynomial in the x_{j}, where $B P^{*}\left(X^{p}\right)=B P^{*}\left[\left[x_{1}, \ldots, x_{p}\right]\right]$.

Then we have the projection

$$
\begin{equation*}
\varphi: X_{h \Sigma_{p}}^{p} \rightarrow B \Sigma_{p} \tag{3.3}
\end{equation*}
$$

induced by the factorization $\Sigma_{p} \prec U(1) / U(1)^{p}=\Sigma_{p}$ and the inclusion

$$
\begin{equation*}
i: B \Sigma_{p} \rightarrow X_{h \Sigma_{p}}^{p} \tag{3.4}
\end{equation*}
$$

induced by the inclusion of Σ_{p} in $\Sigma_{p} 乙 U(1)$.
Definition 3.1. Let $\tilde{c}_{i}=\operatorname{Tr}_{\Sigma_{p}}{ }^{*}\left(x_{1} x_{2} \cdots x_{i}\right)$ for $i=1, \ldots, p-1$.
Lemma 3.2. The following relation holds:

$$
\rho_{\Sigma_{p}}{ }^{*}\left(\tilde{c}_{i}\right)=i!(p-i)!\sigma_{i}
$$

Proof. We have

$$
\rho_{\Sigma_{p}}^{*}\left(\tilde{c}_{i}\right)=\rho_{\Sigma_{p}}^{*} \operatorname{Tr}_{\Sigma_{p}}^{*}\left(x_{1} x_{2} \cdots x_{i}\right)=N_{\Sigma_{p}}\left(x_{1} x_{2} \cdots x_{i}\right) .
$$

For each subset of i integers $\left\{j_{1}, j_{2}, \ldots, j_{i}\right\}$ such that $1 \leq j_{k} \leq p$, there are i ! bijections

$$
\{1,2, \ldots, i\} \rightarrow\left\{j_{1}, j_{2}, \ldots, j_{i}\right\}
$$

and $(p-i)$! bijections

$$
\{i+1, i+2, \ldots, p\} \rightarrow\{1,2, \ldots, p\} \backslash\left\{j_{1}, j_{2}, \ldots, j_{i}\right\}
$$

Thus, there are $i!(p-i)!$ summands of $x_{j_{1}} x_{j_{2}} \ldots x_{j_{i}}$ in $N_{\Sigma_{p}}\left(x_{1} x_{2} \ldots x_{i}\right)$.
We recall that

$$
B P^{*}(B \pi)=B P^{*}[[z]] /([p] z)
$$

with $|z|=2$. The corresponding calculation for $B P^{*}\left(B \Sigma_{p}\right)$ is also known (see [35]). For the reader's convenience, we derive this result in a form useful for our purposes.

Lemma 3.3. As a $B P^{*}$-algebra,
(i) $B P^{*}\left(B \Sigma_{p}\right)=B P^{*}[[y]] /\left(y \operatorname{Tr}_{\Sigma_{p}}^{*}(1)\right)$,
where y and $\operatorname{Tr}_{\Sigma_{p}}^{*}(1)$ are uniquely determined by $\rho_{\pi, \Sigma_{p}}^{*}(y)=z^{p-1}$, and
(ii) $\quad \rho_{\pi, \Sigma_{p}}^{*}\left(\operatorname{Tr}_{\Sigma_{p}}^{*}(1)\right)=(p-1)!\operatorname{Tr}_{\pi}^{*}(1)=(p-1) / z$.

In particular, $|y|=2(p-1)$.
Proof. (ii) If we apply the double coset formula (transfer property (vi)) to

$$
B P^{*}(B e) \xrightarrow{\mathrm{Tr}_{e, \Sigma_{p}}^{*}} B P^{*}\left(B \Sigma_{p}\right) \xrightarrow{\rho_{\pi, \Sigma_{p}}^{*}} B P^{*}(B \pi),
$$

the statement follows from Quillen's formula.
(i) The relation $y \operatorname{Tr}_{\Sigma_{p}}^{*}(1)=0$ is a consequence of the Frobenius reciprocity. To see that it is the defining relation, we recall that the cohomology of $B \Sigma_{p}$ with simple coefficients in $\mathbf{Z}_{(p)}$ is

$$
H^{*}\left(B \Sigma_{p} ; \mathbf{Z}_{(p)}\right)=\mathbf{Z}_{(p)}[y] /(p y)
$$

where $|y|=2(p-1)$. This easily follows from the mod- p cohomology and the Bockstein spectral sequence.

Also

$$
H^{*}\left(B \pi ; \mathbf{Z}_{(p)}\right)=\mathbf{Z}_{(p)}[z] /(p z)
$$

where $|z|=2$. The map

$$
\rho_{\pi, \Sigma_{p}}: B \pi \rightarrow B \Sigma_{p}
$$

yields

$$
\rho_{\pi, \Sigma_{p}}^{*}(y)=x^{p-1}
$$

Now the Atiyah-Hirzebruch-Serre spectral sequence for $B P^{*}\left(B \Sigma_{p}\right)$ is

$$
E_{2}=H^{*}\left(B \Sigma_{p} ; B P^{*}\right)=B P^{*}[y] /(p y) \Longrightarrow B P^{*}\left(B \Sigma_{p}\right)
$$

Since y is even-dimensional, the sequence collapses at $E_{2}=E_{\infty}$. Thus, $B P^{*}\left(B \Sigma_{p}\right)$ is generated by y as a $B P^{*}$-algebra.

For the group $W=N_{\Sigma_{p}}(\pi) / \pi \approx \mathbf{Z} /(p-1),|W|$ is prime to p, hence by the standard transfer argument

$$
\rho_{\pi, \Sigma_{p}}^{*}: B P^{*}\left(B \Sigma_{p}\right) \rightarrow B P^{*}(B \pi)
$$

is an injective map of $B P^{*}$ algebras. Since

$$
\rho_{\pi, \Sigma_{p}}^{*}\left(y \operatorname{Tr}_{\Sigma_{p}}^{*}(1)\right)=p!z^{p-1}+\text { terms of higher filtration }
$$

we see that

$$
y \operatorname{Tr}_{\Sigma_{p}}^{*}(1)=0
$$

is the unique relation.
Relating π and Σ_{p}, we have a lift of $\rho_{\pi, \Sigma_{p}}$

Lemma 3.4. We have

$$
\tilde{\rho}_{\pi, \Sigma_{p}}^{*}\left(\widetilde{c}_{k}\right)=k!(p-k)!\operatorname{Tr}_{\pi}^{*}\left(\omega_{k}\right)
$$

Proof. Note that modulo $\operatorname{Im}(1-t)$, we have

$$
\Sigma g^{*}\left(x_{1} x_{2} \cdots x_{k}\right)=k!(p-k)!\omega_{k}
$$

summed over Σ_{p} / π. Applying the double coset formula we have

$$
\rho_{\pi, \Sigma_{p}}^{*}\left(\widetilde{c}_{k}\right)=\rho_{\pi, \Sigma_{p}}^{*} \operatorname{Tr}_{\Sigma_{p}}^{*}\left(x_{1} x_{2} \cdots x_{k}\right)=\operatorname{Tr}_{\pi}^{*} \sum_{g \in \Sigma_{p} / \pi} g^{*}\left(x_{1} x_{2} \cdots x_{k}\right)=k!(p-k)!\operatorname{Tr}_{\pi}^{*}\left(\omega_{k}\right)
$$

The lemma is proved.
Let

$$
c=\varphi^{*}(y) \in B P^{2(p-1)}\left(X_{h \Sigma_{p}}^{p}\right)
$$

Lemma 3.5. $\operatorname{Im} \operatorname{Tr}_{\Sigma_{p}}^{*}$ is contained in the $B P^{*}$-algebra generated by $c, \tilde{c}_{1}, \ldots, \tilde{c}_{p-1}, c_{p}$.
Proof. By the Künneth isomorphism,

$$
\begin{equation*}
B P^{*}\left(X^{p}\right)=B P^{*}(X)^{\otimes p}=F \oplus T \tag{3.5}
\end{equation*}
$$

as a π-module, where F is free and T is trivial. Explicitly, a $B P^{*}$-basis for T is $\left\{x_{1}^{i} \cdots x_{p}^{i}, i \geq 0\right\}$, while a $B P^{*}$-basis for F is $\left\{x_{1}^{i_{1}} \cdots x_{p}^{i_{p}}, i_{j} \geq 0\right\}$, where not all the exponents are equal.

By Lemma 3.3, $\operatorname{Tr}_{\Sigma_{p}}^{*}(1)$ is a power series in c. Now recall (see [22, p. 44]) that we can consider $B P^{*}\left(X^{p}\right), X=\mathbf{C} P^{\infty}$, as a free $B P^{*}\left[\left[\sigma_{1}, \ldots, \sigma_{p}\right]\right]$-module generated by 1 and the elements $x_{1}^{i_{1}} \cdots x_{p}^{i_{p}} \in$ F, with $0 \leq i_{j} \leq p-j$. So by the Frobenius reciprocity, it suffices to calculate the transfer on these
monomials. Summed over the symmetric group $\sum g^{*}\left(x_{1}^{i_{1}} \cdots x_{p}^{i_{p}}\right)$ is a symmetric function and hence has the form

$$
\sum_{\pi} \sum_{\Sigma_{p} / \pi} g^{*}\left(x_{1}^{i_{1}} \cdots x_{p}^{i_{p}}\right)=\sigma_{1} s_{1}+\cdots+\sigma_{p-1} s_{p-1}=\sum_{\pi}\left(\omega_{1} s_{1}+\cdots+\omega_{p-1} s_{p-1}\right)
$$

for the elements ω_{k} from Theorem 2.4 and some symmetric functions s_{1}, \ldots, s_{p-1}. Hence modulo ker $N_{\pi}=\operatorname{Im}(1-t), t \in \pi$, we have the following equation in F :

$$
\sum_{\Sigma_{p} / \pi} g^{*}\left(x_{1}^{i_{1}} \cdots x_{p}^{i_{p}}\right)=\omega_{1} s_{1}+\cdots+\omega_{p-1} s_{p-1} .
$$

The left sum consists of $(p-1)$! elements each having the same transfer value. Also ω_{k} is the sum of $p^{-1}\binom{p}{k}$ elements $x_{i_{1}} \cdots x_{i_{k}}$; on each of these elements the transfer evaluates to $\operatorname{Tr}_{\Sigma_{p}}^{*}\left(x_{1} \cdots x_{k}\right)=\tilde{c}_{k}$. Thus, the Frobenius reciprocity and Lemma 3.4 are all that is needed for calculating $\operatorname{Tr}_{\Sigma_{p}}^{*}$.

Recall the elements $\delta_{i}^{(k)} \in \tilde{B P}{ }^{*}(B \pi)$ derived from Theorem 2.3 by the naturality. By the standard transfer argument again, the map induced by

$$
\tilde{\rho}_{\pi, \Sigma_{p}}: X_{h \pi}^{p} \rightarrow X_{h \Sigma_{p}}^{p},
$$

the lift of $\rho_{\pi, \Sigma_{p}}: B \pi \rightarrow B \Sigma_{p}$, is also injective. Moreover, for $B P^{*}\left(X_{h \Sigma_{p}}^{p}\right)$ the ring structure is completely determined by the following theorem.
Theorem 3.6. As a $B P^{*}$-algebra,

$$
B P^{*}\left(X_{h \Sigma_{p}}^{p}\right)=B P^{*}\left[\left[c, \tilde{c}_{1}, \ldots, \tilde{c}_{p-1}, c_{p}\right]\right] /\left(c \operatorname{Tr}_{\Sigma_{p}}^{*}(1), c \tilde{c}_{i}\right)
$$

and we have the formula

$$
\widetilde{c}_{k}-k!(p-k)!c_{k}=\Sigma_{i \geq 0} \varphi^{*}\left(\tilde{\delta}_{i}^{(k)}\right) c_{p}^{i}, \quad k=1, \ldots, p-1,
$$

where the elements $\tilde{\delta}_{i}^{(k)} \in \tilde{B_{P}}\left(B \Sigma_{p}\right)$ are determined by

$$
\rho_{\pi, \Sigma_{p}}^{*}\left(\tilde{\delta}_{j}^{(k)}\right)=k!(p-k)!\delta_{j}^{(k)}, \quad j \geq 0
$$

For the proof, we follow that of Theorem 2.4. Let

$$
S\left(\xi_{\Sigma_{p}}\right)=E \Sigma_{p} \times_{\Sigma_{p}} S\left(\xi^{\times p}\right)
$$

be the sphere bundle of the bundle $\xi_{\Sigma_{p}}$ of (3.2)). $X_{h \Sigma_{p}}^{p}$ is homotopy equivalent to the disk bundle

$$
D\left(\xi_{\Sigma_{p}}\right)=E \Sigma_{p} \times_{\Sigma_{p}} D\left(\xi^{\times p}\right)
$$

Then we have the obvious inclusion

$$
i_{0}: B \Sigma_{p} \rightarrow S\left(\xi_{\Sigma_{p}}\right)
$$

and the projection

$$
\varphi_{0}: S\left(\xi_{\Sigma_{p}}\right) \rightarrow B \Sigma_{p}
$$

with fiber $S\left(\xi^{\times p}\right) ; \varphi_{0} i_{0}$ is the identity. Thus, stably $B \Sigma_{p}$ is a wedge summand of $S\left(\xi_{\Sigma_{p}}\right)$. As for the other summand, let

$$
X_{\Sigma_{p}}=\vee_{i=1}^{p-1} E \Sigma_{i} \times_{\Sigma_{i}} B U(1)^{\wedge i}
$$

By the standard transfer argument localized at $p, X_{\Sigma_{p}}$ is a stable summand of

$$
\bigvee_{i=1}^{p-1} E \Sigma_{i} \times B U(1)^{\wedge i}
$$

and hence of $E \Sigma_{p} \times B U(1)^{\times p}$. From this we derive the following result.

Lemma 3.7. One has a stable equivalence localized at p

$$
\varphi_{0} \vee f_{\Sigma_{p}}: S\left(\xi_{\Sigma_{p}}\right) \rightarrow B \Sigma_{p} \vee X_{\Sigma_{p}}
$$

with $f_{\Sigma_{p}}$, the composition of stable maps

$$
f_{\Sigma_{p}}: S\left(\xi_{\Sigma_{p}}\right) \rightarrow X_{h \Sigma_{p}}^{p} \xrightarrow{\operatorname{Tr}_{\Sigma_{p}}} E \Sigma_{p} \times B U(1)^{p} \rightarrow X_{\Sigma_{p}}
$$

Proof. The inclusion i_{0} splits off $\varphi_{0}^{*} H^{*}\left(B \Sigma_{p}\right)$ in $H^{*}\left(S\left(\xi_{\Sigma_{p}}\right)\right)$. Furthermore, in mod- p cohomology

$$
H^{*}\left(S\left(\xi^{\times p}\right)\right)=\mathbf{F}_{p}\left[x_{1}, \ldots, x_{p}\right] /\left(\sigma_{p}\right),
$$

hence

$$
H^{*}\left(S\left(\xi^{\times p}\right)\right)^{\Sigma_{p}} \approx \mathbf{F}_{p}\left[\tilde{c}_{1}, \ldots, \tilde{c}_{p-1}\right]
$$

by Lemma 3.2.
Then $H:=\tilde{H}^{*}\left(S\left(\xi^{\times p}\right)\right)$ is a free π module and $H^{*}\left(\Sigma_{p} ; H\right) \subseteq H^{*}(\pi ; H)$. Thus

$$
H^{*}\left(\Sigma_{p} ; H\right)= \begin{cases}H^{\Sigma_{p}} & \text { if } *=0 \\ 0 & \text { if } *>0\end{cases}
$$

Therefore, there is an isomorphism

$$
H^{*}\left(S\left(\xi_{\Sigma_{p}}\right)\right) \xrightarrow{\rho^{*} \oplus i_{0}^{*}} \tilde{H}^{*}\left(S\left(\xi^{\times p}\right)\right)^{\Sigma_{p}} \oplus H^{*}\left(B \Sigma_{p}\right),
$$

where $\rho: S\left(\xi^{\times p}\right) \rightarrow S\left(\xi_{\Sigma_{p}}\right)$ is the projection. We have to prove that the first summand is $f_{\Sigma_{p}}^{*} \tilde{H}^{*}\left(X_{\Sigma_{p}}\right)$.
By the naturality of the transfer we have the commutative diagram

Thus, $f_{\Sigma_{p}}$ coincides with $\tilde{f}_{\Sigma_{p}}$, the map Tr_{0} followed by the horizontal maps in the above diagram. We show that the restriction of $\operatorname{Tr}_{0}^{*}$ to the image of $H^{*}\left(X_{\Sigma_{p}}\right)$ is an isomorphism onto $H^{*}\left(S\left(\xi^{\times p}\right)\right)^{\Sigma_{p}}$.

Now considering the transfer for the Σ_{i} coverings

$$
E \Sigma_{i} \times B U(1)^{\wedge i} \rightarrow E \Sigma_{i} \times_{\Sigma_{i}} B U(1)^{\wedge i},
$$

it follows from transfer properties (ii) and (vi) that $H^{*}\left(E \Sigma_{i} \times \Sigma_{i} B U(1)^{\wedge i}\right)$ is a submodule of $H^{*}\left(E \Sigma_{i} \times\right.$ $\left.B U(1)^{\wedge i}\right)$ generated by Σ_{i} norms of monomials in $x_{1}, x_{2}, \ldots, x_{i}$, with nonincreasing degrees. From this it is straightforward that $H^{*}\left(X_{\Sigma_{p}}\right)$ and $H^{*}\left(S\left(\xi^{\times p}\right)\right)^{\Sigma_{p}}$ have the same ranks in each dimension. Thus, we are reduced to showing the desired map is injective.

However, for any monomial x in $x_{1}, x_{2}, \ldots, x_{i}$, we have

$$
\operatorname{Tr}_{0}^{*}\left(N_{\Sigma_{i}}(x)\right)=i!\operatorname{Tr}_{0}^{*}(x)
$$

by the naturality of the transfer. Thus, the restriction of $\operatorname{Tr}_{0}^{*}$ to the image of $H^{*}\left(X_{\Sigma_{p}}\right)$ will be a monomorphism if $\operatorname{Tr}_{0}^{*}$ is nonzero on polynomials consisting of monomials with nonincreasing degrees. This in turn will follow if the norm $N_{\Sigma_{p}}$ is non-zero on such polynomials. In fact we claim:
(1) $N_{\Sigma_{p}}$ is nonzero on any monomial $x^{I}=x_{1}^{i_{1}} \cdots x_{p-1}^{i_{p-1}}$, and
(2) different monomials with nonincreasing degrees in $x_{1}, \ldots, x_{i}, i<p$ are in different Σ_{p} orbits.

Claim (2) is obvious. To prove (1), we set $J=\left(j_{1}, \ldots, j_{p}\right)$ and $x^{J}=x_{1}^{j_{1}} \cdots x_{p}^{j_{p}}$, all of whose exponents are not equal. Then we will show that the coefficient of x^{J} in $N_{\Sigma_{p}}\left(x^{J}\right)$ is prime to p. The isotropy subgroup of x^{J} is the finite product $\Sigma_{n_{1}} \times \Sigma_{n_{2}} \times \cdots<\Sigma_{p}$, where n_{j} is the number of terms of J equaling j. This group has order $n_{1}!n_{2}!\ldots$, which is prime to p. Hence

$$
N_{\Sigma_{p}}(x)=\left(n_{1}!n_{2}!\ldots\right) x^{J}+\text { other monomials. }
$$

This proves the claim. Thus, $\varphi_{0} \vee f_{\Sigma_{p}}$ induces an isomorphism and hence is a p-local stable equivalence.

This implies
Lemma 3.8. The long exact sequence for the pair $\left(D\left(\xi_{\Sigma_{p}}\right), S\left(\xi_{\Sigma_{p}}\right)\right)$ gives the following short exact sequence:

$$
0 \leftarrow B P^{*}\left(S\left(\xi_{\Sigma_{p}}\right)\right) \leftarrow B P^{*}\left(X_{h \Sigma_{p}}^{p}\right) \leftarrow B P^{*}\left(\left(X_{h \Sigma_{p}}^{p}\right)^{\xi_{\Sigma_{p}}}\right) \leftarrow 0 .
$$

Indeed, the left arrow is an epimorphism by Lemma 3.7 and hence the right arrow is a monomorphism.

Now the proof of Theorem 3.6 is completely analogous to that of Theorem 2.4 taking into account additionally that any element $y \in B P^{*}\left(X_{h \pi}^{p}\right)$ has the form

$$
y=\varphi^{*}(u)+g\left(\tilde{c}_{1}, \ldots, \tilde{c}_{p-1}\right)+y_{1} c_{p}
$$

for some $u \in B P^{*}\left(X_{h \pi}^{p}\right)$, where g is a formal power series and $y_{1} \in B P^{*}\left(X_{h \pi}^{p}\right)$. This follows by Lemmas 3.7 and 8.4.

4. Calculation of the Elements $\delta_{i}^{(k)}$ and $\tilde{\delta}_{i}^{(k)}$ in the Morava K-Theory

In this section, we work in the Morava K-theory $K(s)^{*}$ and give an alternative, better algorithm for explicit calculations.

Fix a prime p and an integer $s \geq 0$; then

$$
K(s)^{*}=\mathbf{F}_{p}\left[v_{s}, v_{s}^{-1}\right],
$$

where $\left|v_{s}\right|=-2\left(p^{s}-1\right)$. By a result of Würgler [38], there is no restrictions on p : although $K(s)$ is not a commutative ring spectrum for $p=2$, we shall consider only spaces whose Morava K-theory is even-dimensional. This implies the deviation from commutativity is zero.

We recall that

$$
K(s)^{*}(B \pi)=K(s)^{*}[z] /\left(z^{p^{s}}\right),
$$

where $|z|=2$.
Similarly to Lemma 3.3, we obtain the following assertion.
Lemma 4.1. (i) The map $\rho_{\pi, \Sigma_{p}}: B \pi \rightarrow B \Sigma_{p}$ induces an isomorphism of $K(s)^{*}$-algebras

$$
\rho_{\pi, \Sigma_{p}}^{*}: K(s)^{*}\left(B \Sigma_{p}\right) \stackrel{\approx}{\leftrightarrows}\left\{K(s)^{*}(B \pi)\right\}^{W},
$$

where

$$
W=N_{\Sigma_{p}}(\pi) / \pi \approx \mathbf{Z} /(p-1) .
$$

Computing invariants yields

$$
K(s)^{*}\left(B \Sigma_{p}\right)=K(s)^{*}[y] /\left(y^{m_{s}}\right),
$$

where

$$
\rho_{\pi, \Sigma_{p}}^{*}(y)=z^{p-1}, \quad m_{s}=\left[\left(p^{s}-1\right) /(p-1)\right]+1 .
$$

(ii) $\operatorname{Tr}_{\Sigma_{p}}^{*}(1)=-v_{s} y^{m_{s}-1}$.

Then combining Theorem 3.6 and Remark 2.2 we obtain

$$
K(s)^{*}\left(X_{h \Sigma_{p}}^{p}\right)=K(s)^{*}\left[\left[c, \tilde{c}_{1}, \ldots, \tilde{c}_{p-1}, c_{p}\right]\right] /\left(c^{m_{s}}, c \tilde{c}_{i}\right) .
$$

Our main result in this section is the following proposition.
Proposition 4.2. We can construct explicit elements $\delta_{i}^{(k)} \in K(s)^{*}(B \pi)$ such that the following assertions hold.
(1) in $K(s)^{*}\left(X_{h \pi}^{p}\right)$, we have

$$
c_{k}\left(\xi_{\pi}\right)=\operatorname{Tr}_{\pi}^{*}\left(\omega_{k}\right)-\sum_{0 \leq i \leq p^{s}} \varphi_{\pi}^{*}\left(\delta_{i}^{(k)}\right) c_{p}^{i}\left(\xi_{\pi}\right) ;
$$

(2) in $K(s)^{*}\left(X_{h \Sigma_{p}}^{p}\right)$, we have

$$
c_{k}\left(\xi_{\Sigma_{p}}\right)=\operatorname{Tr}_{\Sigma_{p}}^{*}\left(x_{1} \ldots x_{k}\right)-\sum_{0 \leq i \leq p^{s}} \varphi_{\Sigma_{p}}^{*}\left(\tilde{\delta}_{i}^{(k)}\right) c_{p}^{i}\left(\xi_{\Sigma_{p}}\right)
$$

with

$$
\tilde{\rho}_{\pi, \Sigma_{p}}^{*}\left(\tilde{\delta}_{i}^{(k)}\right)=k!(p-k)!\delta_{i}^{(k)} k
$$

(3) the value of $\operatorname{Tr}_{\pi}^{*}\left(c_{1}\left(\xi_{i}\right)\right)$ is determined by

$$
c_{1}\left(\xi_{\pi}\right)=\operatorname{Tr}_{\pi}^{*}\left(c_{1}\left(\xi_{i}\right)\right)+v_{s} \sum_{1 \leq j \leq s-1} c^{p^{s}-p^{j}} c_{p}^{p^{j-1}}\left(\xi_{\pi}\right)
$$

where ξ_{i} is the pullback of the canonical line bundle ξ by projection $B U(1)^{p} \rightarrow B U(1)$ on the ith factor.
We are grateful to D. Ravenel for supplying us with the proof of the following result.
Lemma 4.3. For the formal group law in the Morava K-theory $K(s), s>1$, we have

$$
F(x, y) \equiv x+y-v_{s} \sum_{0<j<p} p^{-1}\binom{p}{j}\left(x^{p^{s-1}}\right)^{j}\left(y^{p^{s-1}}\right)^{p-j}
$$

modulo $x^{p^{2(s-1)}}$ (or modulo $y^{p^{2(s-1)}}$).
Proof. This result can be derived from the recursive formula for the FGL given in [31, 4.3.9]. For the FGL in the Morava K-theory it reads

$$
F(x, y)=\sum_{i \geq 0}^{F} v_{s}^{e_{i}} w_{i}(x, y)^{p^{i(s-1)}},
$$

where w_{i} is a certain homogeneous polynomial of degree p^{i} defined in [31, 4.3.5] and

$$
e_{i}=\frac{p^{i s}-1}{p^{s}-1} .
$$

In particular, $\omega_{0}=x+y$,

$$
w_{1}=-\sum_{0<j<p} p^{-1}\binom{p}{j} x^{j} y^{p-j},
$$

and $w_{i} \notin\left(x^{p}, y^{p}\right)$.
We find it more convenient to express $F(x, y)$ as

$$
F(x, y)=F\left(x+y, v_{s} w_{1}(x, y)^{p^{s-1}}, v_{s}^{e_{2}} w_{2}(x, y)^{p^{2(s-1)}}, \ldots\right) .
$$

Then for $s>1$, we can reduce modulo the ideal $v_{s}^{e_{2}}\left(x^{p^{2(s-1)}}, y^{p^{2(s-1)}}\right)$ and get

$$
\begin{aligned}
& F(x, y) \equiv F\left(x+y, v_{s} w_{1}(x, y)^{p^{s-1}}\right) \\
& \quad=F\left(x+y+v_{s} w_{1}(x, y)^{p^{s-1}}, v_{s} w_{1}\left(x+y, v_{s} w_{1}(x, y)^{p^{s-1}}\right)^{p^{s-1}}, \ldots\right) \\
& \quad \equiv F\left(x+y+v_{s} w_{1}(x, y)^{p^{s-1}}, v_{s} w_{1}\left(x^{p^{s-1}}+y^{p^{s-1}}, v_{s}^{p^{s-1}} w_{1}(x, y)^{p^{2(s-1)}}\right)\right)
\end{aligned}
$$

and modulo $v_{s}^{1+p^{s-1}}\left(x^{p^{2(s-1)}}, y^{p^{2(s-1)}}\right)$ we have

$$
F(x, y) \equiv x+y+v_{s} w_{1}(x, y)^{p^{s-1}}
$$

The lemma is proved.
For brevity, we write $\sigma_{k}=\sigma_{k}(x, F(x, z), \ldots, F(x,(p-1) z))$.
Corollary 4.4. In $K(s)^{*}(B U(1) \times B \pi)$, the following formula holds:

$$
\sigma_{k}=-\sum_{0 \leq i \leq p^{s}} \lambda_{i}^{(k)} \sigma_{p}^{i}+p^{-1}\binom{p}{k} x^{k} v_{s} z^{p^{s}-1},
$$

where $\lambda_{i}^{(k)}=\lambda_{i}^{(k)}\left(z^{p-1}\right)$ are polynomials in z^{p-1} and $\lambda_{0}^{(j)}=0, j=1, \ldots, p-2, \lambda_{0}^{(p-1)}=-z^{p-1}$.
Proof. For $1 \leq k \leq p-1$, equating the coefficients of $x^{i p}, 1 \leq i \leq p^{s}$, we obtain a system of linear equations with invertible matrix of the form Id + nilpotent. Thus, the elements $\lambda_{1}^{(k)}, \ldots, \lambda_{p^{s}}^{(k)}$ can be defined as the solution of this system. Of course, equating the coefficients at x^{i} for $i \neq p, 2 p, \ldots, p^{s+1}$, we obtain other equations for $\lambda_{j}^{(k)}, j=1, \ldots, p^{s}$. But these equations are derived from the old equations above. These additional equations make the matrix upper triangular.

Now we prove Proposition 4.2 and show that one necessarily has $\delta_{i}^{(k)}=\lambda_{i}^{(k)}, i=0, \ldots, p^{s}$ for $\lambda_{i}^{(k)}$ encountered in Corollary 4.4. Thus by Lemma 4.1, $\delta_{i}^{(k)}$ is invariant under the action of W and we can define $\tilde{\delta}_{i}^{(k)}$ by

$$
\tilde{\rho}_{\pi, \Sigma_{p}}^{*}\left(\tilde{\delta}_{i}^{(k)}\right)=k!(p-k)!\delta_{i}^{(k)} .
$$

The diagonal map $\Delta: B U(1) \rightarrow B U(1)^{p}$ induces an inclusion $B \pi \times B U(1) \rightarrow X_{h \pi}^{p}$ and the commutative diagram

Then

$$
(1 \times \Delta)^{*}\left(\omega_{k}\right)=p^{-1}\binom{p}{k} x^{k}, \quad x=c_{1}(\xi) .
$$

Hence by transfer properties (i) and (iv), we have for the transfer $\operatorname{Tr}=\operatorname{Tr}(\pi \times 1)$:

$$
\operatorname{Tr}^{*}\left((1 \times \Delta)^{*}\left(\omega_{k}\right)\right)=p^{-1}\binom{p}{k} x^{k} \operatorname{Tr}^{*}(1)=p^{-1}\binom{p}{k} x^{k} v_{s} z^{p^{s}-1}
$$

On the other hand, by the existence of the elements $\delta_{i}^{(k)}$ we have

$$
\begin{aligned}
& \operatorname{Tr}^{*}\left((1 \times \Delta)^{*}\left(\omega_{k}\right)\right) \\
& \quad=\sigma_{k}(x, F(x, z), \ldots, F(x,(p-1) z))+\sum_{i \geq 0} \delta_{i}^{(k)} \sigma_{p}^{i}(x, F(x, z), \ldots, F(x,(p-1) z))
\end{aligned}
$$

ξ_{π} restricts to $\sum_{i} \xi \otimes \theta^{i}$ on $B U(1) \times B \pi$, and thus $c_{k}\left(\xi_{\pi}\right)$ to

$$
\sigma_{k}(x, F(x, z), \ldots, F(x,(p-1) z))
$$

by Lemma 4.3 and the fact that $z^{p^{s}}=0,[i] z$ can be replaced by $i z$. By Corollary 4.4,

$$
\begin{aligned}
& \sigma_{k}(x, F(x, z), \ldots, F(x,(p-1) z)) \\
& \qquad=-\sum_{0 \leq i \leq p^{s}} \lambda_{i}^{(k)} \sigma_{p}^{i}(x, F(x, z), \ldots, F(x,(p-1) z))+p^{-1}\binom{p}{k} x^{k} v_{s} z^{p^{s}-1}
\end{aligned}
$$

Then the restriction of $(1 \times \Delta)^{*}$ to Ker ρ^{*} is a monomorphism (see [24]). This proves Proposition 4.2 and shows that $\delta_{i}^{(k)}=\lambda_{i}^{(k)}$ for $0 \leq i \leq p^{s}$ and zero otherwise. Statement (2) follows from Lemma 3.4. Then statement (3) follows from the following explicit formula for σ_{1}.
Lemma 4.5. In $K(s)^{*}(B \pi \times B U(1))$, we have

$$
\sigma_{1}=v_{s}\left(z^{p^{s}-1} x+\sum_{i=1}^{s-1} z^{p^{s}-p^{i}} \sigma_{p}^{p^{i-1}}\right) .
$$

Proof. One has

$$
\begin{aligned}
& \sigma_{1}=x+ F(x, z)+\cdots+F(x,(p-1) z) \\
&=x+x+z+v_{s} w_{1}\left(x^{p^{s-1}}, z^{p^{s-1}}\right)+\cdots+x+(p-1) z+v_{s} w_{1}\left(x^{p^{s-1}},((p-1) z)^{p^{s-1}}\right) \\
&=p x+\frac{p(p-1)}{2} z+v_{s}\left(\sum_{i=1}^{p-1} w_{1}(x, i z)\right)^{p^{s-1}}= v_{s}\left(\sum_{i=1}^{p-1} \sum_{j=1}^{p-1}-p^{-1}\binom{p}{j} i^{j} x^{p-j} z^{j}\right)^{p^{s-1}} \\
&=v_{s}\left(\sum_{j=1}^{p-1}-\left(\sum_{i=1}^{p-1} i^{j}\right) p^{-1}\binom{p}{j} z^{j} x^{p-j}\right)^{p^{s-1}} .
\end{aligned}
$$

Now $\sum_{i=1}^{p-1} i^{j}$ is an integral linear combination of $\sigma_{k}(1,2, \ldots, p-1)$ with $k \leq i$, hence by it is zero for $i<p-1$ and for $i=p-1$ it is $p-1$. Thus,

$$
\begin{equation*}
\sigma_{1}=-v_{s}\left((p-1) p^{-1}\binom{p}{p-1} z^{p-1} x^{p-(p-1)}\right)^{p^{s-1}}=v_{s} z^{p^{s}-p^{s-1}} x^{p^{s-1}} \tag{4.1}
\end{equation*}
$$

Now since $F(x, z)^{p}=x^{p}+z^{p}$, we have

$$
\sigma_{p}^{p}=(x(x+z) \ldots(x+(p-1) z))^{p} .
$$

But again we have

$$
x(x+z) \ldots(x+(p-1) z)=x^{p}-x z^{p-1}
$$

Substituting this we obtain

$$
\begin{aligned}
& v_{s}\left(z^{p^{s}-1} x+\sum_{i=1}^{s-1} z^{p^{s}-p^{i}} \sigma_{p}^{p^{i-1}}\right) \\
& =v_{s}\left(z^{p^{s}-1} x+z^{p^{s}-p} \sigma_{p}+\sum_{i=2}^{s-1} z^{p^{s}-p^{i}}\left(x^{p}-z^{p-1} x\right)^{p^{i-1}}\right)
\end{aligned}
$$

$$
=v_{s}\left(z^{p^{s}-1} x+z^{p^{s}-p} \sigma_{p}+\sum_{i=2}^{s-1} z^{p^{s}-p^{i}}\left(x^{p^{i}}-z^{(p-1) p^{i-1}} x^{p^{i-1}}\right)\right) .
$$

But it is straightforward to see that

$$
\sum_{i=2}^{s-1} z^{p^{s}-p^{i}}\left(x^{p^{i}}-z^{(p-1) p^{i-1}} x^{p^{i-1}}\right)=z^{p^{s}-p^{s-1}} x^{p^{s-1}}-z^{p^{s}-p} x^{p} .
$$

Hence

$$
\begin{equation*}
v_{s}\left(z^{p^{s}-1} x+\sum_{i=1}^{s-1} z^{p^{s}-p^{i}} \sigma_{p}^{p^{i-1}}\right)=v_{s}\left(z^{p^{s}-1} x+z^{p^{s}-p} \sigma_{p}+z^{p^{s}-p^{s-1}} x^{p^{s-1}}-z^{p^{s}-p} x^{p}\right) . \tag{4.2}
\end{equation*}
$$

Now we have

$$
z^{p^{s}-p} F(x, k z)=z^{p^{s}-p}\left(x+k z+v_{s} w_{1}\left(x^{p^{s-1}},(k z)^{p^{s-1}}\right)\right)=z^{p^{s}-p}(x+k z),
$$

hence

$$
z^{p^{s}-p} \sigma_{p}=z^{p^{s}-p} x(x+z) \ldots(x+(p-1) z)=z^{p^{s}-p}\left(x^{p}-z^{p-1} x\right) .
$$

Substituting this into (4.2) we obtain

$$
v_{s}\left(z^{p^{s}-1} x+\sum_{i=1}^{s-1} z^{p^{s}-p^{i}} \sigma_{p}^{p^{i-1}}\right)=v_{s} z^{p^{s}-p^{s-1}} x^{p^{s-1}}
$$

which is σ_{1} by (4.1).
Now we calculate some of the elements $\delta_{i}^{(k)}$ and $\tilde{\delta}_{i}^{(k)}$.
First, recall (see [21, 31]) that generators for

where

$$
\left|v_{n}\right|=2\left(p^{n}-1\right)=\left|m_{n}\right|,
$$

are given by

$$
v_{n}=p m_{n}-\sum_{i=1}^{n-1} m_{i} v_{n-i}^{p^{i}} .
$$

Given a formal group law over a graded ring R_{*},

$$
F(x, y)=\sum_{i, j} \alpha_{i j}^{R} x^{i} y^{j} \in R_{*}[[x, y]], \quad \alpha_{i j}^{R} \in R_{2(i+j-1)},
$$

there is a ring map

$$
g: M U_{*} \rightarrow R_{*},
$$

which induces the formal group law, that is,

$$
g^{*}\left(\alpha_{i j}^{M U}\right)=\alpha_{i j}^{R} .
$$

We use also the following well-known formulas:

$$
F(x, y)=\exp (\log x+\log y), \quad \log x=\sum_{n \geq 0} m_{n} x^{n+1}
$$

for calculating the elements δ_{i} in $B P$ theory by the algorithm of Sec. 2 .

Example 4.6. For $\delta_{1} \in B P^{*}(B \mathbf{Z} / 2)=B P^{*}[[z]] /([2](z))$, we have modulo z^{8} :

$$
\delta_{1}=v_{1}^{2} z^{2}+\left(v_{1}^{3}+v_{2}\right) z^{3}+v_{1} z^{4}+\left(v_{1}^{6}+v_{1}^{3} v_{2}\right) z^{6}+\left(v_{1}^{4} v_{2}+v_{2}^{2}+v_{3}\right) z^{7} .
$$

5. Transfer and $K(s)^{*}\left(X_{h \Sigma_{p}}^{p}\right)$

Let X be a CW-complex whose Morava K-theory $K(s)^{*}(X)$ is even-dimensional and finitely generated as a module over $K(s)^{*}$.

In this section, we study the transfer homomorphism in this more general context. We extend some results of Hopkins-Kuhn-Ravenel [23] to spaces. We consider the Atiyah-Hirzebruch-Serre (AHS) spectral sequence:

$$
\begin{equation*}
E_{2}^{*, *}(\pi, X)=H^{*}\left(\pi ; K(s)^{*} X^{p}\right) \Rightarrow K(s)^{*}\left(X_{h \pi}^{p}\right) . \tag{5.1}
\end{equation*}
$$

By the Künneth isomorphism,

$$
\begin{equation*}
\left.K(s)^{*} X^{p} \stackrel{(}{\underset{\sim}{\approx}} K(s)^{*} X\right)^{\otimes p} . \tag{5.2}
\end{equation*}
$$

Then $K(s)^{*} X^{p}$ is a π-module, where π acts by permuting factors (see [23, Theorem 7.3]).
An element $x \in K(s)^{*}(X)$ is said to be good if there is a finite cover $Y \rightarrow X$ together with an Euler class $y \in K(s)^{*}(Y)$ such that $x=\operatorname{Tr}^{*}(y)$, where $\operatorname{Tr}^{*}: K(s)^{*}(Y) \rightarrow K(s)^{*}(X)$ is the transfer. The space X is said to be good if $K(s)^{*}(X)$ is spanned over $K(s)^{*}$ by good elements.

Let $\gamma=\varphi^{*}(z)$, where $\varphi: X_{h \pi}^{p} \rightarrow B \pi$ is the projection, and let $\left\{x_{j}, j \in \mathcal{J}\right\}$ be a $K(s)^{*}$-basis for $K(s)^{*}(X)$. Hunton showed [25] that if $K(s)^{*}(X)$ is concentrated in even dimensions, then so is $K(s)^{*}\left(X_{h \pi}^{p}\right)$. We adopt a stronger hypothesis that X is good and derive a stronger result, following the argument of [23, Theorem 7.3] for classifying spaces.

Proposition 5.1. Let X be a good space.
(i) As a $K(s)^{*}$-module, $K(s)^{*}\left(X_{h \pi}^{p}\right)$ is free with basis

$$
\left\{\gamma^{i} \otimes\left(x_{j}\right)^{\otimes p} \mid 0 \leq i<p^{s}, j \in \mathcal{J}\right\}
$$

and

$$
\left\{\sum_{\left(i_{1}, i_{2}, \ldots, i_{p}\right)=I} 1 \otimes x_{i_{1}} \otimes x_{i_{2}} \otimes \cdots \otimes x_{i_{p}} \mid I \in \mathcal{P}_{p}\right\}
$$

where $I=\left\{\left(i_{1}, i_{2}, \ldots, i_{p}\right)\right\}$ runs over the set \mathcal{P}_{p} of π-equivalence classes of p-tuples of indices $i_{j} \in \mathcal{J}$ at least two of which are not equal.
(ii) $X_{h \pi}^{p}$ is good.

Proof. (i) By the Künneth isomorphism,

$$
\begin{equation*}
K(s)^{*}(X)^{\otimes p}=F \oplus T \tag{5.3}
\end{equation*}
$$

as a π-module, where F is free and T is trivial. Explicitly, a $K(s)^{*}$-basis for T is $\left\{\left(x_{i}\right)^{\otimes p}, i \in \mathcal{J}\right\}$, while a $K(s)^{*}$-basis for F is $\left\{x_{i_{1}} \otimes x_{i_{2}} \otimes \cdots \otimes x_{i_{p}}, i_{j} \in \mathcal{J}\right\}$, where not all the factors are equal. Then

$$
H^{*}(\pi ; F)= \begin{cases}F^{\pi} & \text { if } *=0 \\ 0 & \text { if } *>0\end{cases}
$$

and

$$
H^{*}(\pi ; T)=H^{*}(B \pi) \otimes T
$$

Thus,

$$
E_{2}{ }^{0, *}(\pi, X)=K(s)^{*}\left(X_{h \pi}^{p}\right)^{\pi}=F^{\pi} \oplus T .
$$

To continue the proof, we recall the covering projection

$$
\rho_{\pi}: E \pi \times X^{p} \rightarrow X_{h \pi}^{p},
$$

its associated transfer homomorphism

$$
\begin{equation*}
\operatorname{Tr}^{*}=\operatorname{Tr}_{\pi}^{*}: K(s)^{*}\left(X^{p}\right) \rightarrow K(s)^{*}\left(X_{h \pi}^{p}\right), \tag{5.4}
\end{equation*}
$$

and the induced homomorphism

$$
\rho_{\pi}{ }^{*}: K(s)^{*}\left(X_{h \pi}^{p}\right) \rightarrow K(s)^{*}\left(X^{p}\right) .
$$

Similar maps are defined for the group Σ_{p}. Then $\rho_{\pi}{ }^{*} \operatorname{Tr}^{*}=N$, where $N=N_{\pi}$ is the trace map.
Thus, we have established the following lemma.
Lemma 5.2. If $y \in K(s)^{*}\left(X^{p}\right)$ is good, then there exists a good element $z \in K(s)^{*}\left(X_{h \pi}^{p}\right)$ such that $\rho_{\pi}^{*}(z)=N(y)$.

Lemma 5.3. If $x \in K(s)^{*}(X)$ is good, then there is a good element $z \in K(s)^{*}\left(X_{h \pi}^{p}\right)$ such that $\rho_{\pi}^{*}(z)=x^{\otimes p}$.

Proof. By assumption, there is a finite covering $f: Y \rightarrow X$ and an Euler class $e \in K(s)^{*}(Y)$ such that $x=\operatorname{Tr}^{*}(e)$. Now consider the covering

$$
\phi=f \times \cdots \times f: Y^{p} \rightarrow X^{p}
$$

which extends to a covering

$$
1 \times \phi: Y_{h \pi}^{p} \rightarrow X_{h \pi}^{p}
$$

and yields a map of coverings

The class $e^{\otimes p}$ is an Euler class for Y^{p}. Since the transfer is natural and commutes with tensor products, we have

$$
\rho_{\pi}^{*} \operatorname{Tr}^{*}\left(1 \otimes e^{\otimes p}\right)=\operatorname{Tr}^{*} \rho_{\pi}^{*}\left(1 \otimes e^{\otimes p}\right)=\operatorname{Tr}^{*}\left(e^{\otimes p}\right)=\operatorname{Tr}^{*}(e) \otimes \cdots \otimes \operatorname{Tr}^{*}(e)=x^{\otimes p}
$$

The lemma is proved.
Corollary 5.4. $E_{2}{ }^{0, *}(\pi, X)$ consists of permanent cycles that are good.
Thus, as differential graded $K(s)^{*}$ modules, there is an isomorphism of spectral sequences

$$
\left(E_{r}{ }^{*, *}(\pi, p t) \otimes_{K(s)^{*}} T\right) \oplus F^{\pi} \underset{\rightarrow}{\approx} E_{r}{ }^{*, *}(\pi, X) .
$$

It follows that as a $K(s)^{*}$-algebra $K(s)^{*}\left(X_{h \pi}^{p}\right)$ is generated by $K(s)^{*}(B \pi), T$, and F^{π}.
(ii) The proof of [23, Theorem 7.3] carries over. This completes the proof of Proposition 5.1.

Remark 5.5. From the periodicity of the cohomology of a cyclic group [15, Proposition XII, 11.1], we have the isomorphisms

$$
H^{t}\left(\pi ; K(s)^{*}\left(X^{p}\right)\right) \xrightarrow{\cdot z} H^{t+2}\left(\pi ; K(s)^{*}\left(X^{p}\right)\right)
$$

for $t>0$ and

$$
H^{0}\left(\pi ; K(s)^{*}\left(X^{p}\right)\right) / \operatorname{Im}(N) \xrightarrow{-z} H^{2}\left(\pi ; K(s)^{*}\left(X^{p}\right)\right) .
$$

Thus, multiplication by z is also injective on T at the E_{2} term.

Remark 5.6. $\rho_{\pi}{ }^{*} \operatorname{Tr}^{*}=N$; thus, modulo $\operatorname{ker}\left(\rho_{\pi}{ }^{*}\right)$ we have

$$
\begin{equation*}
\operatorname{Tr}^{*}\left(x_{i_{1}} \otimes x_{i_{2}} \otimes \cdots \otimes x_{i_{p}}\right)=\sum_{\sigma \in \pi} 1 \otimes x_{\sigma\left(i_{1}\right)} \otimes x_{\sigma\left(i_{2}\right)} \otimes \cdots \otimes x_{\sigma\left(i_{p}\right)} . \tag{5.5}
\end{equation*}
$$

Note that if the i_{j} in (5.5) are equal, the right-hand side is zero. However,

$$
\operatorname{Tr}^{*}\left(x_{j}{ }^{\otimes p}\right)=1 \otimes x_{j} \otimes p \cdot \operatorname{Tr}^{*}(1) .
$$

Now we turn to $K(s)^{*}\left(X_{h \Sigma_{p}}^{p}\right)$.
Let $c=\varphi^{*}(y)$, where $\varphi: E \Sigma_{p} \times \Sigma_{p} X^{p} \rightarrow B \Sigma_{p}$ is the projection.
Proposition 5.7. Let X be a good space. As a $K(s)^{*}$-module, $K(s)^{*}\left(X_{h \Sigma_{p}}^{p}\right)$ is free with basis

$$
\left\{c^{i} \otimes\left(x_{j}\right)^{\otimes p} \mid 0 \leq i<m_{s}, j \in \mathcal{J}\right\}
$$

and

$$
\left\{\sum_{\left(i_{1}, i_{2}, \ldots, i_{p}\right)=I} 1 \otimes x_{i_{1}} \otimes x_{i_{2}} \otimes \cdots \otimes x_{i_{p}} \mid I \in \mathcal{E}_{p}\right\},
$$

where $I=\left\{\left(i_{1}, i_{2}, \ldots, i_{p}\right)\right\}$ runs over the set \mathcal{E}_{p} of Σ_{p}-equivalence classes of p-tuples of indices $i_{j} \in \mathcal{J}$ at least two of which are not equal.

Since $|W|$ is prime to p, the result follows from the AHS spectral sequence, as in the proof of Proposition 5.1.

6. Transferred Chern Classes in the Morava K-Theory

6.1. Statements. Let p be a prime and π be the cyclic group of order p. For a given action of π on a space X, consider the regular covering

$$
\rho: E \pi \times X \rightarrow E \pi \times_{\pi} X
$$

For brevity we write $X_{h \pi}:=E \pi \times_{\pi} X$. For the permutation action of π on $X=Y^{p}$, we have

$$
Y_{h \pi}^{p}=E \pi \times_{\pi} Y^{p} .
$$

Let t be a generator of π and $N_{\pi}=1+t+\cdots+t^{p-1}$ be the trace map. For a n-plane bundle η^{n}, the corresponding classifying map

$$
f: X \rightarrow B U(n)
$$

induces the classifying map $\left(f, t f, \ldots, t^{p-1} f\right)$ for the bundle $N_{\pi} \eta^{n}$ and thereby a map of orbit spaces

$$
f_{\eta^{n}}: X_{h \pi} \rightarrow B U(n)_{h \pi}^{p} .
$$

For the covering

$$
\rho_{\pi}: E \pi \times B U(n)^{p} \rightarrow B U(n)_{h \pi}^{p}
$$

and the universal n-plane bundle $\xi^{n} \rightarrow B U(n)$, we consider the Atiyah transfer bundle (see [2])

$$
\xi_{\pi}^{n} \rightarrow B U(n)_{h \pi}^{p},
$$

i.e., the $n p$-plane bundle

$$
\xi_{\pi}^{n}=E \pi \times_{\pi}\left(\xi^{n}\right)^{\times p} .
$$

Then the map $f_{\eta^{n}}$ classifies the Atiyah transfer bundle for η^{n} and ρ. So by the naturality of the transfer [1] we can consider ρ_{π} as the universal example.

Let $K(s)^{*}, s \geq 1$, be the s th Morava K-theory at p. We recall that, by the Künneth isomorphism, $K(s)^{*}\left(B U(n)^{p}\right)=F \oplus T$ as a π-module, where F is free and T is trivial.

Definition 6.1. Let $\omega_{k}^{(n)} \in F$ be defined modulo ker $N_{\pi}=\operatorname{Im}(1-t)$ by

$$
N_{\pi}\left(\omega_{k}^{(n)}\right)=c_{k}\left(N_{\pi}\left(\xi^{n}\right)\right),
$$

where c_{k} are Chern classes, $k \in\{1, \ldots, n p\} \backslash\{p, 2 p, \ldots, n p\}$.
By the naturality of the transfer $\operatorname{Tr}_{\pi}^{*}=\operatorname{Tr}_{\pi}^{*} t$, where

$$
\operatorname{Tr}_{\pi}^{*}: K(s)^{*}\left(E \pi \times B U(n)^{p}\right) \rightarrow K(s)^{*}\left(B U(n)_{h \pi}^{p}\right),
$$

hence $\operatorname{Tr}_{\pi}^{*}\left(\omega_{k}^{(n)}\right)$ is well defined.
We write $\omega_{k}\left(\eta^{n}\right)$ for the pullback by map $f_{\eta^{n}}$ of orbit spaces defined above.
Recall that

$$
K(s)^{*}(B \pi)=F_{p}\left[v_{s}, v_{s}^{-1}\right][z] /\left(z^{p^{s}}\right),
$$

where $z=c_{1}(\theta)$ is the Chern class of the canonical complex line bundle over $B \pi$.
Lemma 6.2. We can define a polynomial in $n+1$ variables

$$
A_{k}^{(n)}\left(z^{p-1}, Z_{1}, \ldots, Z_{n}\right) \in K(s)^{*}\left[z, Z_{1}, \ldots, Z_{n}\right]
$$

uniquely by the equation in $K(s)^{*} B(\pi \times U(n))$:

$$
C_{k}-v_{s} z^{p^{s}-1} p^{-1} \sum_{\substack{i_{1}+2 i_{2} \cdots+n i_{n}=k \\ i_{0}+i_{1}+\cdots+i_{n}=p}}\binom{p}{i_{0}, i_{1}, \ldots, i_{n}} c_{1}^{i_{1}} \ldots c_{n}^{i_{n}}=A_{k}^{(n)}\left(z^{p-1}, C_{p}, \ldots, C_{p n}\right),
$$

where

$$
C_{i}=c_{i}\left(\xi^{n} \oplus \theta \otimes \xi^{n} \oplus \cdots \oplus \theta^{p-1} \otimes \xi^{n}\right),
$$

$c_{j}=c_{j}\left(\xi^{n}\right)$ are Chern classes, and $k \in\{1, \ldots, n p\} \backslash\{p, \ldots, n p\}$.
For example, in $K(s)^{*}(B \pi \times B U(1)), p>2$, we have

$$
C_{1}=v_{s}\left(z^{p^{s}-1} c_{1} \sum_{i=1}^{s-1} z^{p^{s}-p^{i}} C_{p}^{p^{i-1}}\right)
$$

thus

$$
A_{1}^{(1)}\left(z^{p-1}, Z_{1}\right)=v_{s} \sum_{i=1}^{s-1} z^{p^{s}-p^{i}} Z_{1}^{p^{i-1}}
$$

Then using the polynomials $A_{k}^{(n)}$, we evaluate the transferred classes $\omega_{k}\left(\eta^{n}\right)$ for regular coverings.
Theorem 6.3. Let $\rho: X \rightarrow X / \pi$ be the regular cyclic covering of prime index p defined by a free action of π on X and $\operatorname{Tr}^{*}=\operatorname{Tr}_{\rho}^{*}$ be the associated transfer homomorphism. Let $\eta^{n} \rightarrow X$ be a complex n-plane bundle, $\eta_{\pi}^{n} \rightarrow X / \pi$ be the pn-plane bundle defined by Atyiah transfer, and $\psi \rightarrow X / \pi$ be the complex line bundle associated with ρ. Then

$$
\left.c_{k}\left(\eta_{\pi}^{n}\right)\right)-\operatorname{Tr}^{*}\left(\omega_{k}\left(\eta^{n}\right)\right)=A_{k}^{(n)}\left(c_{1}^{p-1}(\psi), c_{p}\left(\eta_{\pi}^{n}\right), \ldots, c_{p n}\left(\eta_{\pi}^{n}\right)\right),
$$

where $k \in\{1, \ldots, n p\} \backslash\{p, \ldots, n p\}$.
Example 6.4. $\omega_{1}=c_{1}\left(\eta^{n}\right)$; hence if $k=1$, we have

$$
\left.c_{1}\left(\eta_{\pi}^{n}\right)\right)-\operatorname{Tr}^{*}\left(c_{1}\left(\eta^{n}\right)\right)=A_{1}^{(n)}\left(c_{1}^{p-1}(\psi), c_{p}\left(\eta_{\pi}^{n}\right), \ldots, c_{p n}\left(\eta_{\pi}^{n}\right)\right) .
$$

If, in addition, $n=1$, then by above example we have for the line bundle $\eta \rightarrow X$ and the transferred Chern class

$$
c_{1}\left(\eta_{\pi}\right)-\operatorname{Tr}^{*}\left(c_{1}(\eta)\right)=v_{s} \sum_{i=1}^{s-1} c_{1}(\psi)^{p^{s}-p^{i}} c_{p}\left(\eta_{\pi}\right)^{p^{i-1}}
$$

For $p=2$, we have

$$
A_{1}^{(1)}\left(c_{1}^{2}(\psi), c_{2}\right)=c_{1}(\psi)+\operatorname{sum}_{i=1}^{s-1} c_{1}(\psi)^{2^{s}-2^{i}} c_{2}\left(\eta_{\pi}\right)^{2^{i-1}}
$$

6.2. Proofs.

Remark 6.5. Neil Strickland suggested an elegant proof of Lemma 6.2 completely within the context of subgroups of formal groups. This material is available from N.P.Strickland@sheffield.ac.uk. It uses rather different techniques than our proof for which we now offer some motivation. The lemma says that modulo image of the transfer

$$
\operatorname{Tr}^{*}: K(s)^{*} B(U(n)) \rightarrow K(s)^{*} B(\pi \times U(n))
$$

for the covering $\pi \times 1: E \pi \times B U(n) \rightarrow B \pi \times B U(n)$, the class C_{k} can be written as a polynomial in z^{p-1} and $C_{p}, \ldots, C_{n p}$, that this expression vanishes when restricted to $K(s)^{*} B U(n)$, and that the indeterminacy is obtained by applying the transfer to $p^{-1} C_{k}$ after restricting to $K(s)^{*}(B U(n))$. This uses Frobenius reciprocity and the fact that

$$
\operatorname{Tr}^{*}(1)=[p](z) / z=v_{s} z^{p^{s}-1}
$$

in the Morava K-theory.
Proof of Lemma 6.2. We begin by considering the case $n=1$. Let σ_{i} be the i th symmetric functions in p variables. Then

$$
C_{i}=\sigma_{i}(x, F(x, z), \ldots, F(x,(p-1) z)),
$$

where $x=c_{1}\left(\xi^{1}\right)$ and $z=c_{1}(\theta)$ are Chern classes in $K(s)^{*} B(\pi \times U(1))=K(s)^{*}[[z, x]] /\left(z^{p^{s}}\right)$. Consider the equation

$$
C_{k}=-\sum_{0 \leq i \leq p^{s}} \lambda_{k i} C_{p}^{i}+p^{-1}\binom{p}{k} x^{k} z^{p^{s}-1}, \quad 1 \leq k \leq p-1 .
$$

We prove that such $\lambda_{k i}$ uniquely exist as elements in $K(s)^{*}[[z]] /\left(z^{p^{s}}\right)$ and calculate these elements as polynomials in z^{p-1}. Then

$$
A_{k}^{(1)}\left(z^{p-1}, C_{p}\right)=\sum_{0 \leq i \leq p^{s}} \lambda_{k i} C_{p}^{i} .
$$

Since C_{k} is the Chern class of the bundle $\xi \otimes\left(1+\theta+\theta^{2}+\cdots+\theta^{p-1}\right)$, it can be written as a series in the Chern classes of ξ, i.e., x, and the Chern classes of $1+\theta+\theta^{2}+\cdots+\theta^{p-1}$. But the Chern classes of the latter bundle are elementary symmetric functions in $z, 2 z, \ldots,(p-1) z$, the Chern classes of $\theta, \theta^{2}, \ldots, \theta^{p-1}$ all of which vanish except the $(p-1)$ th class which is $-z^{p-1}$. Hence we can write the classes C_{k} as series in x and z^{p-1}. Lemma 4.1 allows us to write C_{k} as explicit polynomials in x and z^{p-1}. Now noting that $C_{p}=x^{p} \bmod z^{p-1}$, we obtain from the above equation a system of linear equations in variables $\lambda_{k j}$ by equating the coefficients at $x^{i}, i \geq 0$. Vanishing also implies $\lambda_{k 0}=0$, $k=1, \ldots, p-2$, and

$$
\lambda_{p-10}=c_{p-1}\left(1+\theta+\cdots+\theta^{p-1}\right)=-z^{p-1} .
$$

Then equating the coefficients at $x^{p}, \ldots, x^{p^{s+1}}$ in the above equation after rewriting it in terms of x and z^{p-1} as above, we have a system of p^{s} linear equations in p^{s} variables $\lambda_{k i}, i=1, \ldots, p^{s}$. The determinant of this system is invertible since the diagonal coefficients are invertible and all other coefficients lie in the (nilpotent) augmentation ideal. Thus the elements $\lambda_{k i}$ are uniquely defined.

Of course, equating the coefficients at x^{i} for $i \neq p, 2 p, \ldots, p^{s+1}$ will produce other equations in $\lambda_{k j}, j=1, \ldots, p^{s}$. But these equations are derived from the old equations above. These additional equations make the matrix upper triangular. This defines $A_{k}^{(1)}$.

In the general n case we proceed analogously, noting that $C_{i p}=c_{i}^{p} \bmod z^{p-1}, i=1, \ldots, n$.
Our additional claim again is that the $A_{k}^{(n)}$ are polynomials, that is, only a finite number of elements $\lambda_{k, i_{1}, \ldots, i_{n}}$ are nontrivial. Here we need the splitting principle and Lemma 4.3 to express explicitly the elements $C_{i}, i=1, \ldots, n p$, in terms of polynomials in z^{p-1} and c_{1}, \ldots, c_{n}. For $k \in\{1, \ldots, n p\} \backslash$ $\{p, \ldots, n p\}$, let

$$
A_{k}^{(n)}\left(z^{p-1}, C_{p}, \ldots, C_{p n}\right)=\sum_{0 \leq i_{1}, \ldots, i_{n} \leq p^{s}} \lambda_{k, i_{1}, \ldots, i_{n}} C_{p}^{i_{1}} \ldots C_{n p}^{i_{n}}
$$

We define

$$
\lambda_{k, 0 \ldots 0}=c_{k}\left(n+n \theta+\cdots+n \theta^{p-1}\right)
$$

again by looking at reductions to $K(s)^{*}(B \pi)$. The other $n\left(p^{s}+1\right)-1$ elements $\lambda_{k, i_{1}, \ldots, i_{n}}$ can be defined as the solution of a system of $n\left(p^{s}+1\right)-1$ linear equations with an invertible determinant. This system is obtained from the equation after using Lemma 4.3 to rewrite it in terms of z^{p-1} and c_{1}, \ldots, c_{n} and equating coefficients of $c_{1}^{p i_{1}} \ldots c_{n}^{p i_{n}}$. The solution defines $\lambda_{k, i_{1}, \ldots, i_{n}}, 0 \leq i_{j} \leq p^{s}$. Again, the additional equations in these elements arise from the coefficients of other monomials and are not new. The desired polynomials are thus uniquely defined.
Proof of Theorem 6.3. Consider the homotopy orbit space

$$
B U(n)_{h \pi}^{p}=E \pi \times_{\pi} B U(n)^{p}
$$

as the universal example. The diagonal map $B U(n) \rightarrow B U(n)^{p}$ induces the inclusion

$$
i: B \pi \times B U(n) \rightarrow E \pi \times_{\pi} B U(n)^{p}
$$

We use [24, Proposition 4.2], which implies that since $B U(n)$ is a unitary-like space (i.e., $K(s)^{*} B U(n)$ has no nilpotent elements), the map $\left(i \vee \rho_{\pi}\right)^{*}$ is a monomorphism. Since $\rho_{\pi}^{*} \operatorname{Tr}^{*}=N_{\pi}$, the difference

$$
c_{k}\left(\eta_{\pi}^{n}\right)-\operatorname{Tr}^{*}\left(\omega_{k}^{(n)}\right)
$$

belongs to $\operatorname{ker} \rho_{\pi}^{*}$ and hence is detected by i^{*}. The result now follows from Lemma 6.2.
Note we can replace the cyclic group by the symmetric group Σ_{p} and use the polynomials $A_{k}^{(n)}$ to evaluate the disparity or "gap" between the Chern class $c_{k}\left(\xi_{\Sigma_{p}}^{n}\right)$ and $\operatorname{Im} \operatorname{Tr}_{\Sigma_{p}}^{*}$, for

$$
\rho_{\Sigma_{p}}: E \Sigma_{p} \times U(n)^{p} \rightarrow B U(n)_{h \Sigma_{p}}^{p} .
$$

Namely, the Euler characteristic of the coset space

$$
\Sigma_{p} \prec U(n) / \pi \prec U(n)=(p-1)!
$$

is prime to p. Hence the inclusion

$$
\rho_{\pi, \Sigma_{p}}: \pi \rightarrow \Sigma_{p}
$$

induces a monomorphism

$$
K(s)^{*}\left(B\left(\Sigma_{p} \prec U(n)\right)\right) \rightarrow K(s)^{*}(B(\pi \imath U(n))) .
$$

Hence Hunton's result above holds for $B U(n)_{h \Sigma_{p}}^{p}$.
Now let $\varsigma_{k}^{(n)} \in F$ be defined modulo ker $N_{\Sigma_{p}}$ by

$$
N_{\Sigma_{p}}\left(\varsigma_{k}^{(n)}\right)=c_{k}\left(N_{\pi}\left(\xi^{n}\right)\right)
$$

Again $\operatorname{Tr}_{\Sigma_{p}}^{*}\left(\varsigma_{k}^{(n)}\right)$ is well defined: as above, $\operatorname{Ker} N_{\pi}=\operatorname{Im}\left(1-t^{*}\right)$; therefore,

$$
\begin{aligned}
a \in F \cap \operatorname{ker} N_{\Sigma_{p}} \Rightarrow & \sum_{g \in \Sigma_{p} / \pi} g^{*} a \in \operatorname{Im}\left(1-t^{*}\right) \\
& \Rightarrow \operatorname{Tr}_{\Sigma_{p}}^{*}\left(\sum_{g \in \Sigma_{p} / \pi} g^{*} a\right)=0 \Rightarrow(p-1)!\operatorname{Tr}_{\Sigma_{p}}^{*}(a)=0 \Rightarrow \operatorname{Tr}_{\Sigma_{p}}^{*}(a)=0 .
\end{aligned}
$$

Then for the $n p$-plane bundle over $B U(n)_{h \Sigma_{p}}^{p}$

$$
\xi_{\Sigma_{p}}^{n}=E \Sigma_{p} \times \Sigma_{p}\left(\xi^{n}\right)^{\times p}
$$

the difference

$$
c_{k}\left(\xi_{\Sigma_{p}}^{n}\right)-\operatorname{Tr}_{\Sigma_{p}}^{*}\left(\varsigma_{k}^{(n)}\right)
$$

belongs to $\operatorname{ker} \rho_{\Sigma_{p}}^{*}$ and hence is detected by the polynomials

$$
A_{k}^{(n)}\left(y, c_{p}\left(\xi_{\Sigma_{p}}^{n}\right), \ldots, c_{n p}\left(\xi_{\Sigma_{p}}^{n}\right)\right)
$$

where

$$
y \in K(s)^{*}\left(B\left(\Sigma_{p}\right)\right)=K(s)^{*}[[y]] /\left(y^{m_{s}}\right)
$$

and $|y|=2(p-1)$ and $m_{s}=\left[\left(p^{s}-1 /(p-1)\right)\right]+1$.

Theorem 6.6.

$$
c_{k}\left(\xi_{\Sigma_{p}}^{n}\right)-\operatorname{Tr}_{\Sigma_{p}}^{*}\left(\varsigma_{k}^{(n)}\right)=A_{k}^{(n)}\left(y, c_{p}\left(\xi_{\Sigma_{p}}^{n}\right), \ldots, c_{n} p\left(\xi_{\Sigma_{p}}^{n}\right)\right)
$$

for $k \in\{1, \ldots, n p\} \backslash\{p, \ldots, n p\}$.

7. Stable Euler Classes

Now we turn to $G_{n}=\pi \imath\left(\mathbf{Z} / p^{n}\right)$, where $\pi=\mathbf{Z} / p$. Then $B G_{n}=X_{h \pi}^{p}$ for $X=B \mathbf{Z} / p^{n}$. Consider the AHS spectral sequence for

$$
B\left(\mathbf{Z} / p^{n}\right)^{p} \rightarrow B G_{n} \xrightarrow{\varphi} B \pi
$$

Then

$$
E_{2}^{p, q}=H^{*}\left(\pi ; K^{*}(s)\left(B\left(\mathbf{Z} / p^{n}\right)^{p}\right)\right),
$$

where

$$
K^{*}(s)\left(B\left(\mathbf{Z} / p^{n}\right)^{p}\right)=\left(K(s)^{*}[z] /\left(z^{p^{n s}}\right)\right)^{\otimes p}=F \oplus T
$$

and F and T, as in (5.3) above, are free (respectively, trivial) π-modules.
Let $\gamma=\varphi^{*}(z)$, where $K(s)^{*}(B \pi)=K(s)^{*}[z] /\left(z^{p^{s}}\right)$ as above.
Proposition 7.1. As a $K(s)^{*}$-module, $K(s)^{*}\left(B G_{n}\right)$ is free with basis

$$
\left\{\gamma^{i} \otimes\left(z^{j}\right)^{\otimes p}, 0 \leq i<p^{s}, 0 \leq j<p^{n s}\right\}
$$

and

$$
\left\{\sum_{\left(i_{1}, i_{2}, \ldots, i_{p}\right)=I} 1 \otimes z^{i_{1}} \otimes z^{i_{2}} \otimes \cdots \otimes z^{i_{p}} \mid I \in \mathcal{P}_{p}(n)\right\}
$$

where $I=\left\{\left(i_{1}, i_{2}, \ldots, i_{p}\right)\right\}$ runs over the set $\mathcal{P}_{p}(n)$ of π-equivalence classes of p-tuples of integers $\left\{0 \leq i_{j}<p^{n s}\right\}$ at least two of which are not equal.

Proof. This spectral sequence calculation is exactly analogous to that of Proposition 5.1.

Remark 7.2. (i) For $X=\mathbf{C} P^{\infty}$, Proposition 7.1 gives another derivation of $K(s)^{*}\left(X_{h \pi}^{p}\right)$. Since

$$
\mathbf{C} P^{\infty} \hat{p}=\left[\operatorname{colim}_{n} B\left(\mathbf{Z} / p^{n}\right)\right]_{p}^{\wedge}
$$

we have

$$
K(s)^{*}\left(X_{h \pi}^{p}\right)=\lim _{n} K(s)^{*}\left(B G_{n}\right)
$$

(ii) G_{n} is good for $K(s)^{*}$ by [23, Theorem 7.3].

By analogy with Sec. 4 we have the following lemma.
Lemma 7.3. (i) $\operatorname{Im}\left(\operatorname{Tr}^{*}\right) \cdot \gamma=0$.
(ii) $\operatorname{Tr}^{*}(1)=v_{s} \gamma^{p^{s}-1}$.
(iii) If $y \in T$, then $\operatorname{Tr}^{*}(y)=y \cdot \operatorname{Tr}^{*}(1)$.
7.1. p-Groups with cyclic subgroup of index p. In this section, we consider the class of p groups with a (necessarily normal) cyclic subgroup of index p. It is known (see [13, Theorem 4.1, Chap. IV]) that every p-group of this form is isomorphic to one of the following groups:
(a) $\mathbf{Z} / q\left(q=p^{n}, n \geq 1\right)$;
(b) $\mathbf{Z} / q \times \mathbf{Z} / p\left(q=p^{n}, n \geq 1\right)$;
(c) $\mathbf{Z} / q \rtimes \mathbf{Z} / p\left(q=p^{n}, n \geq 2\right)$, where the canonical generator of \mathbf{Z} / p acts on \mathbf{Z} / q as multiplication by $1+p^{n-1}$. This group is called the modular group if $p \geq 3$ and the quasi-dihedral group if $p=2$ and $n \geq 4$.
For $p=2$, there are three additional families.
(d) Dihedral 2-groups $D_{2 m}=\mathbf{Z} / m \rtimes \mathbf{Z} / 2(m \geq 2)$, where the generator of $\mathbf{Z} / 2$ acts on \mathbf{Z} / m as multiplication by -1 . If $m=2^{n}, D_{2 m}$ is a 2-group. Note that D_{4} belongs to (b) and D_{8} belongs to (c).
(e) Generalized quaternion 2-groups. Let \mathbf{H} be the algebra of quaternions $\mathbf{R} \oplus \mathbf{R} i \oplus \mathbf{R} j \oplus \mathbf{R} k$. For $m \geq 2$, the generalized quaternion group $Q_{4 m}$ is defined as the subgroup of the multiplicative group \mathbf{H}^{*} generated by $x=e^{\pi i / m}$ and $y=j$. The subgroup $\mathbf{Z} / 2 m$ generated by x is normal and has index 2 . If m is a power of $2, Q_{4 m}$ is a 2 -group. In the extension

$$
0 \rightarrow \mathbf{Z} / 2 m \rightarrow Q_{4 m} \rightarrow \mathbf{Z} / 2 \rightarrow 0
$$

the generator of $\mathbf{Z} / 2$ acts on $\mathbf{Z} / 2 m$ as -1 . In particular, Q_{8} is the group of quaternions $\{ \pm 1, \pm i, \pm j, \pm k\}$.
(f) Semi-dihedral groups $\mathbf{Z} / q \rtimes \mathbf{Z} / 2\left(q=p^{n}, n \geq 3\right)$, where the generator of $\mathbf{Z} / 2$ acts on \mathbf{Z} / q as multiplication by $-1+2^{n-1}$.
Now we consider the problem of calculation of the stable Euler class, $\operatorname{Tr}_{G}^{*}(1)$, for the universal G-covering $E G \rightarrow B G$.
For the case (a), there is the well-known formula of Quillen (2.1)

$$
\operatorname{Tr}_{\mathbf{Z} / q}^{*}(1)=[q]_{F}(z) / z
$$

in $M U^{*}(B \mathbf{Z} / q)=M U^{*}[[z]] /\left([q]_{F}(z)\right)$.
For the case (b), the answer follows from transfer property (ii):

$$
\operatorname{Tr}_{G}=\operatorname{Tr}_{\mathbf{Z} / q} \wedge \operatorname{Tr}_{\mathbf{Z} / p}
$$

In the cases (d), (e), and (f), $\operatorname{Tr}_{G}^{*}$ is the composition of two transfers $\operatorname{Tr}_{\mathbf{Z} / q}^{*}$ and $\operatorname{Tr}_{C, G}^{*}: M U^{*}(B C) \rightarrow$ $M U^{*}(B G)$, where C is the corresponding cyclic subgroup. So we must calculate $\operatorname{Tr}_{C, G}^{*}\left(z^{i}\right), i \geq 1$, and we can apply our results for $B \mathbf{Z} / 2 \imath U(1)$, namely Remark 2.9.

Similarly for the case (c), Tr_{G} is the composition $\operatorname{Tr}_{\mathbf{Z} / q, G} \operatorname{Tr}_{\mathbf{Z} / q}$ and we can apply Corollary 2.8.

This task is trivial for wreath products $\mathbf{Z} / p \backslash \mathbf{Z} / p^{n}$ since $\operatorname{Tr}_{\mathbf{Z} / p^{n}}^{*}(1)$ is symmetric in z_{1}, \ldots, z_{p} in the ring

$$
M U^{*}\left(\left(B \mathbf{Z} / p^{n}\right)^{p}\right)=M U^{*}\left[\left[z_{1}, \ldots, z_{p}\right]\right] /\left(\left[p^{n}\right]\left(z_{1}\right), \ldots,\left[p^{n}\right]\left(z_{p}\right)\right)
$$

and hence invariant under the \mathbf{Z} / p action. So in this case we need only Quillen's formula.
Finally, we note that if G is the modular group of case (c), Brunetti [12] has completely calculated the ring $K(s)^{*}(B G)$. The relations are quite simple, but the generators are technically complicated. In a future paper, we plan to use transferred Chern classes to give a more natural presentation.
7.2. Other examples. Consider the semi-direct products

$$
G=(\mathbf{Z} / p)^{n} \rtimes \mathbf{Z} / p,
$$

where the generator α of \mathbf{Z} / p acts on $H_{n}=\mathbf{Z} / p[T] /\left(T^{n}\right)$ by $1-\alpha=T, 1 \leq n \leq p$. Then every $\mathbf{Z} / p[\mathbf{Z} / p]$-module is a direct sum of the modules H_{n}. As shown by Yagita [40] and Kriz [28], these semi-direct products are good in the sense of Hopkins-Kuhn-Ravenel.

We recall that

$$
K(s)^{*}\left(B(\mathbf{Z} / p)^{n}\right)=K(s)^{*}\left[\left[z_{1}, \ldots, z_{n}\right]\right] /\left(z_{i}^{p^{s}}\right),
$$

where z_{i} is the Euler class of a faithful complex line bundle θ_{i} on the i th factor. Then \mathbf{Z} / p acts on $K(s)^{*}\left[z_{1}, \ldots, z_{n}\right] /\left(z_{i}^{p^{s}}\right)$ by

$$
\alpha: z_{i} \rightarrow F_{K(s)}\left(z_{i}, z_{i+1}\right), \quad z_{n+1}:=0
$$

where $F_{K(s)}$ denotes the formal group law for the Morava K-theory.
Our aim is to show how to calculate the stable Euler classes in terms of characteristic classes and the formal group law.

The transfer $\operatorname{Tr}^{*}: K(s)^{*} E G \rightarrow K(s)^{*} B G$ is the composition of two transfers

$$
\operatorname{Tr}_{1}^{*}: K(s)^{*} E\left((\mathbf{Z} / p)^{n}\right) \rightarrow K(s)^{*} B\left((\mathbf{Z} / p)^{n}\right)
$$

and

$$
\operatorname{Tr}_{2}^{*}: K(s)^{*} B\left((\mathbf{Z} / p)^{n}\right) \rightarrow K(s)^{*} B G .
$$

Recall also that

$$
\operatorname{Tr}_{1}^{*}(1)=z_{1}^{p^{s}-1} \cdots z_{n}^{p^{s}-1}
$$

It is easy to see that in $K(s)^{*}\left((B \mathbf{Z} / p)^{n}\right)$, we have

$$
e^{p^{s}-1}\left(\alpha^{i_{1}}\left(\theta_{1}\right)\right) \cdots e^{p^{s}-1}\left(\alpha^{i_{n}}\left(\theta_{1}\right)\right)=z_{1}^{p^{s}-1} \cdots z_{n}^{p^{s}-1}
$$

where e is the Euler class and $1 \leq i_{1}<\cdots<i_{n} \leq p$. Then recall the elements ω_{n} from Theorem 2.3 and let $\omega_{n}(l)$ be the sum of the same monomials after raising to the power l. Since $\omega_{n}(l)$ consist of $p^{-1}\binom{p}{n}$ summands and $p^{-1}\binom{p}{n}=\frac{(-1)^{n}}{n} \bmod p$, we have that in $K(s)^{*}\left((B Z / p)^{n}\right)$

$$
\eta_{\pi}^{*}\left(\omega_{n}\left(p^{s}-1\right)\right)=(-1)^{n} z_{1}^{p^{s}-1} \cdots z_{n}^{p^{s}-1} / n,
$$

where the map η_{π} defined in Sec. 2 sends $\xi_{i}=t^{i-1} \xi_{1}$ to $\alpha^{i-1} \theta_{1}$. Hence

$$
\operatorname{Tr}_{G}^{*}(1)=\operatorname{Tr}_{2}^{*}\left(\operatorname{Tr}_{1}^{*}(1)\right)=\operatorname{Tr}_{2}^{*}\left((-1)^{n} n \eta_{\pi}^{*}\left(\omega_{n}\left(p^{s}-1\right)\right)\right)=(-1)^{n} n \operatorname{Tr}_{2}^{*}\left(\eta_{\pi}^{*}\left(\omega_{n}\left(p^{s}-1\right)\right)\right),
$$

and we apply Corollary 2.7.

8. Morava K-Theory Rings for p-Groups with Maximal Cyclic Subgroup in Chern Classes

The rank of the Morava K-theory ring of the classifying space of a finite group as a free $K(s)^{*}$ module is given by the Hopkins-Kuhn-Ravenel generalized character theory [23]. For many finite p groups, the Morava K-theory ring is generated by transferred Chern classes (in general, this is invalid; see [28]).

In $[4,5]$ we studied the Chern classes of a transferred bundle in terms of transferred classes of the bundle. As an application, we derived formulas for the stable Euler classes $\operatorname{Tr}_{G}(1)$ for these groups and sought to simplify presentations of $K(s)^{*}(B G)$ when G is modular or quasi-dihedral.

We consider the group

$$
G_{p^{m+2}}=\left\langle a, b \mid a^{p^{m+1}}=b^{p}=1, b a b^{-1}=a^{p^{m}+1}\right\rangle, \quad m>1
$$

This group is called the modular group $M_{p^{m+2}}$ if $p \geq 3$ and the quasi-dihedral group $Q D_{2^{m+2}}$ if $p=2$ and $m \geq 3$.

In $[36,40]$, it was shown that $K(s)^{*}(B G)$ is generated as a $K(s)^{*}(p t)$-module by Chern classes of complex vector bundles. The multiplicative structure has been determined only modulo certain indeterminacy. In order to obtain explicit ring structure, it was suggested in [12, 35] to use some artificial generators not equal to Chern classes.

Our aim here is to apply the formulas for the transferred Chern classes derived in [5] and determine $K^{*}(B G)$ for the modular and quasi-dihedral groups completely in terms of Chern classes. The dihedral, semi-dihedral, and generalized quaternion groups are considered in [6].

The group $G_{p^{m+2}}$ is the semidirect product $Z / p^{m+1} \rtimes Z / p$ and there is the exact sequence

$$
1 \rightarrow Z / p^{m+1} \rightarrow G_{p^{m+2}} \rightarrow Z / p \rightarrow 1
$$

where

$$
Z / p^{m+1}=\langle a\rangle, \quad Z / p=\langle b\rangle
$$

For the canonical complex line bundle $\xi \rightarrow B Z / p^{m+1}$ and its first Chern class u, we have

$$
b(\xi)=\xi^{\otimes^{1+p^{m}}}, \quad b(u)=\left[1+p^{m}\right](u)
$$

Let

$$
\xi_{\pi} \rightarrow B G_{p^{m+2}}
$$

be the p-plane bundle transferred from ξ (see $[1,2]$),

$$
c_{i}=c_{i}\left(\xi_{\pi}\right), \quad i=1, \ldots, p
$$

be the Chern classes, and let

$$
c=c_{1}(\theta)
$$

be the Chern class of the line complex bundle, the pullback by the projection $G_{p^{m+2}} \rightarrow Z / p$. Then it is proved in [36] that

$$
\begin{equation*}
K(s)^{*}\left(B G_{p^{m+2}}\right)=K(s)^{*}\left[c, c_{1}, \ldots, c_{p}\right] / \text { relations } \tag{8.1}
\end{equation*}
$$

and the relations are given modulo some ideal.
In $[4,5]$ we introduced and calculated the following polynomials A_{i} in two variables:

$$
A_{i}\left(z^{p-1}, Z\right) \in K(s)^{*}[z, Z] /[p]_{F}(z), \quad s>1, \quad i=1, \ldots, p-1
$$

uniquely determined by the equations

$$
\sigma_{i}=A_{i}\left(z^{p-1}, \sigma_{p}\right)+p^{-1}\binom{p}{i} v_{s} y^{i} z^{p^{s}-1}
$$

where

$$
\sigma_{k}=\sigma_{k}(y, F(y, z), \ldots, F(y,(p-1) z)), \quad k=1, \ldots, p,
$$

is i th elementary symmetric function and F is the formal group law.
For $p=2$, we have

$$
A_{1}(z, Z)=z+v_{s} \sum_{i=1}^{s-1} z^{s^{s}-2^{i}} Z^{2^{i-1}} .
$$

Our main result is the following theorem.
Theorem 8.1. We have

$$
K(s)^{*}\left(B G_{p^{m+2}}\right) \cong K(s)^{*}\left[c, c_{1}, \ldots, c_{p}\right] / R
$$

and the ideal R is generated by

$$
c^{p^{s}}, x^{p^{s}}, c c_{i}^{*}, x c_{i}^{* *}, c_{i}^{*} c_{j}^{* *}, i+j \neq p-1, \quad c_{i}^{*} c_{p-1-i}^{* *}-p^{-2}\binom{p}{i}\binom{p}{i+1} v_{s} x^{p^{s}-1} c^{p-1},
$$

where

$$
x=v_{s}^{\left(p^{m s}-1\right) /\left(p^{s}-1\right)} c_{p}^{p^{m s-1}}, \quad c_{i}^{*}=c_{i}-A_{i}\left(c^{p-1}, c_{p}\right), \quad c_{i}^{* *}=c_{i}-A_{i}\left(x^{p-1}, c_{p}\right)
$$

It is natural to compare our description of $K(s)^{*}\left(B G_{p^{m+2}}\right)$ and the one given in [12], in terms of alternative generating set. Note that we have a smaller number of generating relations, even if less explicit.

Corollary 8.2. (i) We have

$$
K(s)^{*}\left(B Q D_{2^{m+2}}\right) \cong K(s)^{*}\left[c, c_{1}, c_{2}\right] /\left(c^{2^{s}}, x^{2^{s}}, c c_{1}^{*}, x c_{1}^{* *}, c_{1}^{*} c_{1}^{* *}\right),
$$

where

$$
x=v_{s}^{\left(2^{m s}-1\right) /\left(2^{s}-1\right)} c_{2}^{2^{m s-1}}
$$

and

$$
c_{1}^{*}=c_{1}+c+v_{s} \sum_{i=1}^{s-1} c^{2^{s}-2^{i}} c_{2}^{2^{i-1}}, \quad c_{1}^{* *}=c_{1}+x+v_{s} \sum_{i=1}^{s-1} x^{2^{s}-2^{i}} c_{2}^{2^{i-1}}
$$

(ii) $c^{2} x=c x^{2}, c_{1}^{2}=c^{2}+x^{2}+c x+v_{s}^{2}\left(c x c_{2}\right)^{2^{s-1}}$.

More precisely, the following assertion holds.
Proposition 8.3. (i) $A K(s)^{*}$-basis for $K(s)^{*}\left(B G_{p^{m+2}}\right)$ is

$$
\begin{array}{ll}
c_{1}, \ldots, c_{p-1} ; & \\
c_{p}^{i}, & i=1, \ldots, p^{(m+1) s-1}-1 ; \\
c_{k} c_{p}^{j}, & k=1, \ldots, p-1, j=1, \ldots, p^{m s-1}-1 ; \\
c^{l} c_{p}^{m}, & l=1, \ldots, p^{s}-1, m=0, \ldots, p^{m s-1}-1 ; \\
c^{n} c_{p}^{q}, & n=1, \ldots, p-1, q=p^{m s-1}, \ldots, p^{(m+1) s-1}-1 .
\end{array}
$$

(ii) The relations

$$
c c_{p-1}^{*}=0, \quad x c_{p-1}^{* *}=0
$$

imply

$$
c^{p} x=c x^{p} .
$$

Then for $i, j=1, \ldots, p-1$, the relations

$$
c c_{i}^{*}=0, \quad x c_{i}^{* *}=0
$$

$$
\begin{gathered}
c_{i}^{*} c_{p-1-i}^{* *}=p^{-2}\binom{p}{i}\binom{p}{p-1-i} v_{s} x^{p^{s}-1} c^{p-1} \\
c_{i}^{*} c_{j}^{* *}=0, \quad j \neq p-1-i
\end{gathered}
$$

give basic expressions for $c c_{i}, c_{i} c_{p}^{p^{m s-1}}$, and $c_{i} c_{j}$, respectively.
Proposition 8.3 agrees with the rank of $K(s)^{*}\left(B G_{2^{m+2}}\right)$ as a free $K(s)^{*}$ module. This number is $p^{m s-1}\left(p^{s+1}+p^{s}-1\right)$ and is given by the generalized character theory [23]. In particular, $K(s)^{\text {odd }}\left(B G_{p^{m+2}}\right)=0$ by (39). Hence

$$
\operatorname{rank}_{K(s)} K(s)^{\mathrm{even}}\left(B G_{p^{m+2}}\right)=\chi_{s, p}\left(G_{p^{m+2}}\right)
$$

and the rank follows from the formula for $\chi_{s, p}\left(G_{p^{m+2}}\right)$ (see [12, Lemma 2.2]).
Now we prove the relations of Theorem 8.1 and show that they give the decompositions of Proposition 8.3 . Then by the rank argument this will imply that the system of relations is complete.

We recall some results from [5] (see also [4]).
Let $X \rightarrow X / \pi$ be a regular cyclic covering of prime index p defined by a free action of cyclic group π on X and let

$$
\operatorname{Tr}_{\pi}^{*}: K(s)^{*}(X) \rightarrow K(s)^{*}(X / \pi)
$$

be its associated transfer homomorphism [17, 27]. Let $\eta \rightarrow X$ be a complex line bundle and $\eta_{\pi} \rightarrow X / \pi$ be the transferred η.

In [5] we proved that modulo $\operatorname{Im} \operatorname{Tr}_{\pi}^{*}$, the Chern classes $c_{i}\left(\eta_{\pi}\right), 1 \leq i<p$, can be written in terms of the polynomials A_{i} from Theorem 8.1. Namely, we have constructed certain classes $\omega_{i}(\eta)$ such that

$$
\begin{equation*}
c_{i}\left(\eta_{\pi}\right)=A_{i}\left(\left(c_{1} \psi\right)^{p-1}, \quad c_{p}\left(\eta_{\pi}\right)\right)+\operatorname{Tr}_{\pi}^{*}\left(\omega_{i}(\eta)\right) \tag{8.2}
\end{equation*}
$$

where $\psi \rightarrow X / \pi$ is the complex line bundle associated with the covering $X \rightarrow X / \pi$. We will need the following two consequences.

Let

$$
\xi \rightarrow B Z / p^{m+1}, \quad \xi_{\pi} \rightarrow B G_{p^{m+2}}, \quad \theta \rightarrow B G_{p^{m+2}}
$$

be the bundles of the Introduction and let $c=c_{1}(\theta), u=c_{1}(\xi)$, and $c_{k}=c_{k}\left(\xi_{\pi}\right), k=1, \ldots, p$ be their corresponding Chern classes.

Lemma 8.4. $c_{i}=A_{i}\left(c^{p-1}, c_{p}\right)+\operatorname{Tr}^{*}\left(\omega_{i}(\xi)\right), i=1, \ldots, p-1$.
In the notation of Theorem 8.1, $c_{i}^{*}=\operatorname{Tr}^{*}\left(\omega_{i}(\xi)\right)$. For instance, $c_{1}^{*}=\operatorname{Tr}^{*}(u)$. The values $\operatorname{Tr}^{*}\left(u^{k}\right)$ for $2 \leq k \leq p-1$ can be calculated as follows.

Lemma 8.5. (i) We have

$$
\operatorname{Tr}_{\pi}^{*}\left(u^{k}\right)=\sum_{i=1}^{k-1}(-1)^{i+1} \operatorname{Tr}^{*}\left(u^{k-i}\right) c_{i}+(-1)^{k+1} k c_{k}^{*}
$$

(ii) Modulo the ideal in $K(s)^{*}\left(B G_{p^{m+2}}\right)$ generated by $c^{p}, c_{1}, \ldots, c_{p-1}$, we have

$$
\operatorname{Tr}^{*}\left(u^{k}\right)=0, \quad 2 \leq k<p-1, \quad \operatorname{Tr}^{*}\left(u^{p-1}\right)=-c^{p-1}
$$

Proof. (i) As in the Introduction, let $u, b(u), \ldots, b^{p-1}(u)$ be the Chern classes of the bundles ξ, $b(\xi), \ldots, b^{p-1}(\xi)$. Then

$$
u^{k}=\sum_{i=1}^{k-1}(-1)^{i+1} u^{k-i} \sigma_{i}\left(u, b(u), \ldots, b^{p-1}(u)\right)+(-1)^{k+1} u \sigma_{k-1}\left(b(u), \ldots, b^{p-1}(u)\right)
$$

It follows from the definition of ω_{i} (see [4]) that $u \sigma_{k-1}\left(b(u), \ldots, b^{p-1}(u)\right)$ contains k summands, each with transfer value $\operatorname{Tr}^{*}\left(\omega_{k}\right)=c_{k}^{*}$.
(ii) This follows from (i) and the fact that modulo c^{p}, we have

$$
A_{k}\left(c^{p-1}, c_{p}\right)=0, \quad 2 \leq k<p-1, \quad A_{p-1}\left(c^{p-1}, c_{p}\right)=-c^{p-1}
$$

The lemma is proved.
We will need also the following simple facts which follow immediately from the definitions.
Lemma 8.6. Let $Z / p^{m}=\left\langle a^{p}\right\rangle$ and $Z / p^{m+1}=\langle a\rangle$ be subgroups of $G_{p^{m+2}}$. Let $\rho: B Z / p^{m} \rightarrow B Z / p^{m+1}$ be the standard p-covering and Tr_{ρ} be the corresponding transfer map. Then the following assertions hold.
(i) The line bundle associated with ρ is $\xi^{\otimes p^{m}}$. The transferred trivial bundle 1_{ρ} is

$$
1+\xi^{\otimes p^{m}}+\cdots+\xi^{\otimes(p-1) p^{m}}
$$

(ii) The bundle

$$
\pi^{*}\left(\xi_{\pi}\right)=\xi \otimes\left(1+\xi^{\otimes p^{m}}+\cdots+\xi^{\otimes(p-1) p^{m}}\right)
$$

is the transferred bundle of $\rho^{*}(\xi)$. Further,

$$
c_{1}\left(\xi^{\otimes p^{m}}\right)=v_{s}^{\left(p^{m s}-1\right) /\left(p^{s}-1\right)} u^{p^{m s}}=\pi^{*}(x), \quad \operatorname{Tr}_{\rho}^{*}(1)=-v_{s} \pi^{*}(x)^{p^{s}-1}
$$

(iii) We have

$$
c_{i}\left(\pi^{*}\left(\xi_{\pi}\right)\right)=A_{i}\left(\left(\pi^{*}(x)\right)^{p-1}, c_{p}\left(\pi^{*}\left(\xi_{\pi}\right)\right)\right)+\operatorname{Tr}_{\rho}^{*}\left(\omega_{i}\left(\rho^{*}(\xi)\right)\right)
$$

and since the bundle $\rho^{*}\left(\xi^{p^{m}}\right)$ is trivial,

$$
\omega_{i}\left(\rho^{*}(\xi)\right)=p^{-1}\binom{p}{i} \rho^{*}\left(u^{i}\right) .
$$

The proof of Theorem 8.1 is organized as follows. In a sequence of lemmas below, we prove all relations of Theorem 8.1. The relations given by Lemma 8.7(ii) and Lemma 8.10 are not yet the decompositions of $c c_{i}$ and $c_{i} c_{j}, i, j=1, \ldots, p-1$, in the basis of Proposition 8.3: there will arise terms divisible by the factor $c^{p} x$, but to eliminate these we just have to apply $c^{p} x=c x^{p}$ of Lemma 8.9. Lemma 8.8(ii) gives the proper decomposition of $x c_{i}$. Together with $c^{p^{s}}=x^{p^{s}}=0$ (Lemma 8.7(i) and Lemma 8.8(i)) and $x=v_{s}^{\left(p^{m s}-1\right) /\left(p^{s}-1\right)} c_{p}^{p^{m s-1}}$ (Lemma 8.11(ii)), these relations give the proper decompositions of all other monomials in c, c_{1}, \ldots, c_{p}. This system of relations is complete.

Lemma 8.7. (i) $c^{p^{s}}=0$;
(ii) $c c_{i}=c A_{i}\left(c^{p-1}, c_{p}\right), i=1, \ldots, p-1$.

Proof. (i) We have $\theta^{\otimes p}=1$. Hence $c_{1}\left(\theta^{\otimes p}\right)=c^{p^{s}}=0$.
The relations (ii) follow from Lemma 8.4 since $\pi^{*}(c)=0$ and by the Frobenius reciprocity of the transfer

$$
c \operatorname{Tr}^{*}\left(\omega_{i}(\xi)\right)=\operatorname{Tr}^{*}\left(\pi^{*}(c) \omega_{i}(\xi)\right)=0
$$

On the other hand, we have the bundle relation

$$
\begin{equation*}
\theta \otimes \xi_{\pi}=\xi_{\pi} \tag{8.3}
\end{equation*}
$$

Equating the Chern classes in (8.3) and applying the splitting principle we get the same relations after simplifying them. This was proved for the universal example in [4].
Lemma 8.8. Let $x=c_{1}\left(\left(\operatorname{det} \xi_{\pi}\right)^{\otimes p^{m-1}}\right)$. Then
(i) $x^{p^{s}}=0$;
(ii) $x c_{i}=x A_{i}\left(x^{p-1}, c_{p}\right), i=1, \ldots, p-1$.

Proof. Assertion (i) immediately follows from Lemma 8.7(i) and the definition of x.
(ii) We have the bundle relation

$$
\begin{equation*}
\left(\operatorname{det} \xi_{\pi}\right)^{\otimes p^{m-1}} \otimes \xi_{\pi}=\xi_{\pi} \tag{8.4}
\end{equation*}
$$

which comes from the Frobenius reciprocity:

$$
\left(\operatorname{det} \xi_{\pi}\right)^{\otimes p^{m-1}} \otimes \xi_{\pi}=\left(\pi^{*}\left(\left(\operatorname{det} \xi_{\pi}\right)^{\otimes p^{m-1}}\right) \otimes \xi\right)_{\pi}=\left(\xi^{\otimes p^{m}+1}\right)_{\pi}=\left(b^{*}(\xi)\right)_{\pi}=\xi_{\pi}
$$

For the last equality, we recall from the Introduction the action of $b \in Z / p$ in $B Z / p^{m+1}$ and that transfer is constant on the orbit elements.

Now we can equate the Chern classes in (8.3) and proceed as in the proof of Lemma 8.7.
Lemma 8.9. (i) $c^{p} x=c x^{p}$;
(ii) $c_{i} x^{p^{s}-1}=0, i<p$;
(iii) $c^{p} x^{p^{s}-1}=0$.

Proof. (i) Multiplying the relations of Lemmas 8.7 and 8.8 by x and c, respectively, for $i=p-1$ and then equating the right-hand sides, we have

$$
c x A_{p-1}\left(c^{p-1}, c_{p}\right)=c x A_{p-1}\left(x^{p-1}, c_{p}\right) .
$$

Then note that, up to an invertible factor, the difference $A_{p-1}\left(c^{p-1}, c_{p}\right)-A_{p-1}\left(x^{p-1}, c_{p}\right)$ coincides with $c^{p-1}-x^{p-1}$. Thus, $c x\left(c^{p-1}-x^{p-1}\right)=0$.
(ii) By Lemma 8.8

$$
c_{i} x^{p^{s}-1}=c_{i} x x^{p^{s}-2}=x A_{i}\left(x^{p-1}, c_{p}\right) x^{p^{s}-2} .
$$

By definition, $A_{i}\left(0, c_{p}\right)=0$. Thus, the right-hand side contains the factor $x^{p^{s}}$ hence is trivial again by Lemma 8.8.
(iii) Since $c^{p} x^{p^{s}-1}=c^{p} x^{p^{s}-2} x$ divisible by $x^{p^{s}}$, it is zero by Lemma 8.8.

Lemma 8.10. We have $c_{i}^{*} c_{j}^{* *}=0, j \neq p-1-i$, and

$$
c_{i}^{*} c_{p-1-i}^{* *}=p^{-2}\binom{p}{i}\binom{p}{p-1-i} v_{s} x^{p^{s}-1} c^{p-1} .
$$

Proof. We use the Frobenius reciprocity of the transfer and formulas for transferred classes. Let Tr_{ρ} be the transfer map of the covering

$$
\rho: B Z / p^{m} \rightarrow B Z / p^{m+1}
$$

and let $\operatorname{Tr}_{\pi}=\operatorname{Tr}$ be the transfer map of π as above. Then $\left(c_{i}-A_{i}\left(c^{p-1}, c_{p}\right)\right)\left(c_{j}-A_{j}\left(x^{p-1}, c_{p}\right)\right)$ is equal to

$$
\begin{array}{rlrl}
\operatorname{Tr}_{\pi}^{*}\left(\omega_{i}\right) & \left(c_{j}-A_{j}\left(x^{p-1}, c_{p}\right)\right) & & \text { by Lemma 8.4 } \\
= & \operatorname{Tr}_{\pi}^{*}\left(\omega_{i}(\xi) \pi^{*}\left(c_{j}-A_{j}\left(x^{p-1}, c_{p}\right)\right)\right) & & \text { by the Frobenius reciprocity } \\
= & \operatorname{Tr}_{\pi}^{*}\left(\omega_{i}(\xi) \operatorname{Tr}_{\rho}^{*} \omega_{j}\left(\rho^{*}(\xi)\right)\right) & & \text { by Lemma 8.6(iii) } \\
= & \operatorname{Tr}_{\pi}^{*}\left(\operatorname{Tr}_{\rho}^{*}\left(\rho^{*}\left(\omega_{i}(\xi)\right)\left(\omega_{j}\left(\rho^{*}(\xi)\right)\right)\right)\right) & \text { by the Frobenius reciprocity } \\
= & \operatorname{Tr}_{\pi}^{*}\left(\operatorname{Tr}_{\rho}^{*}\left(p^{-2}\binom{p}{i}\binom{p}{j} \rho^{*}\left(u^{i+j}\right)\right)\right) & \text { by Lemma 8.6(iii) } \\
=p^{-2}\binom{p}{i}\binom{p}{j} \operatorname{Tr}_{\pi}^{*}\left(\operatorname{Tr}_{\rho}^{*}(1)\left(u^{i+j}\right)\right) & \text { by the Frobenius reciprocity } \\
= & -p^{-2}\binom{p}{i}\binom{p}{j} \operatorname{Tr}_{\pi}^{*}\left(v_{s} \pi^{*}(x)^{p^{s}-1}\left(u^{i+j}\right)\right) & \text { by Lemma 8.6(ii) }
\end{array}
$$

$$
=-p^{-2}\binom{p}{i}\binom{p}{j} v_{s} x^{p^{s}-1} \operatorname{Tr}_{\pi}^{*}\left(u^{i+j}\right) \quad \text { by the Frobenius reciprocity. }
$$

Then by Lemma $8.5(\mathrm{ii}), \operatorname{Tr}^{*}\left(u^{i+j}\right)$ is in the ideal $\left(c^{p}, c_{1}, \ldots, c_{p-1}\right)$ if $0 \leq i+j \leq p-1$ and hence annihilates $x^{p^{s}-1}$ by Lemma 8.9. If $j=p-1-i$, then

$$
\operatorname{Tr}^{*}\left(u^{i+j}\right)=-c^{p-1} \quad \bmod \left(c^{p}, c_{1}, \ldots, c_{p-1}\right)
$$

by Lemma 8.5 (ii) and the result follows.
Finally, let $i+j=p+q, q=0, \ldots, p-2$. Note that

$$
\rho^{*}\left(\pi^{*}\left(c_{p}\right)\right)=\rho^{*}\left(u^{p}\right) .
$$

Then

$$
\begin{aligned}
\operatorname{Tr}_{\pi}^{*}\left(\operatorname{Tr}_{\rho}^{*}\left(\rho^{*}\left(u^{i+j}\right)\right)\right) & =\operatorname{Tr}_{\pi}^{*}\left(\operatorname{Tr}_{\rho}^{*}\left(\rho^{*}\left(\pi^{*}\left(c_{p}\right)\right) \rho^{*}\left(u^{q}\right)\right)\right) \\
& \left.=\operatorname{Tr}_{\pi}^{*}\left(\operatorname{Tr}_{\rho}^{*}(1) \pi^{*}\left(c_{p}\right) u^{q}\right)\right)=\operatorname{Tr}_{\pi}^{*}\left(\pi^{*}\left(x^{p^{s}-1}\right) \pi^{*}\left(c_{p}\right) u^{q}\right)=x^{p^{s}-1} c_{p} \operatorname{Tr}_{\pi}^{*}\left(u^{q}\right)=0 .
\end{aligned}
$$

Here, as above, $\operatorname{Tr}_{\pi}^{*}\left(u^{q}\right)$ is in the ideal $\left(c^{p}, c_{1}, \ldots, c_{p-1}\right)$ and hence annihilates $x^{p^{s}-1}$.
Now let us evaluate x in Theorem 8.1.
Lemma 8.11. (i) $c_{i}^{p^{s}}=0$ for $i=1, \ldots, p-1$ and odd p and $c_{1}^{2^{s}+1}=0$, for $p=2$. $c_{p}^{p^{s}}$ restricts to $u^{p^{s+1}}$ in $K(s)^{*}\left(B Z / p^{m+1}\right)$.
(ii) We have

$$
x=v_{s}^{\left(p^{m s}-1\right) /\left(p^{s}-1\right)} c_{p}^{p^{m s-1}} .
$$

Proof. First, let p be odd.
(i) Lemma 8.4 and Lemma 8.5(i) imply that, modulo c, the classes c_{1}, \ldots, c_{p-1} can be written in $\operatorname{Tr}^{*}(u), \ldots, \operatorname{Tr}^{*}\left(u^{p-1}\right)$ and vice versa. Then by Lemma 8.7, $c^{p^{s}}=0$; hence it suffices to prove that

$$
\operatorname{Tr}^{*}\left(u^{k}\right)^{p^{s}}=0
$$

c_{i} restricts to the i th elementary symmetric function in the variables $u,\left[1+p^{m}\right](u), \ldots,[1+(p-$ 1) $\left.p^{m}\right](u)$ in $K(s)^{*}\left(B Z / p^{m+1}\right)$.

Note that

$$
\left(\left[p^{m}\right](u)\right)^{p^{s}}=u^{p^{(m+1) s}}=0
$$

and recall (see $[4,31]$) that

$$
\left[1+i p^{m}\right](u)=u+i\left[p^{m}\right](u)+v_{s} w_{1}\left(u, i\left[p^{m}\right](u)\right)^{p^{s-1}}
$$

where w_{1} is a homogeneous polynomial:

$$
w_{1}(u, v)=-\sum_{0 \leq j \leq p} p^{-1}\binom{p}{j} u^{j} v^{p-j} .
$$

Thus, c_{i} and $\operatorname{Tr}^{*}\left(u^{i}\right), i=1, \ldots, p-2$, restrict trivially in $K(s)^{*}\left(B Z / p^{m+1}\right)$ modulo $\left(\left[p^{m}\right](u)\right)^{p^{s-1}}$ and c_{p-1} and $\operatorname{Tr}^{*}\left(u^{p-1}\right)$ restrict trivially modulo $\left(\left[p^{m}\right](u)\right)^{p-1}$.

Similarly, c_{p} restricts to u^{p} modulo $\left(\left[p^{m}\right](u)\right)^{p^{s-1}}$. Then

$$
\left(p^{s-1}\right)\left(p^{s}-1\right),(p-1)\left(p^{s}-1\right)>p^{s} .
$$

Hence $\operatorname{Tr}\left(u^{k}\right)^{p^{s}-1}$ restricts trivially in $K(s)^{*}\left(B Z / p^{m+1}\right)$ and by the Frobenius reciprocity

$$
\operatorname{Tr}^{*}\left(u^{k}\right)\left(\operatorname{Tr}^{*}\left(u^{k}\right)\right)^{p^{s}-1}=\operatorname{Tr}^{*}\left(u^{k} \cdot 0\right)=0 .
$$

(ii) Let $\operatorname{det} \xi_{\pi}$ be the determinant. The Chern class $\gamma=c_{1}\left(\operatorname{det} \xi_{\pi}\right)$ can be written in terms of the classes c_{1}, \ldots, c_{p} in the standard way.

After raising to the power $p^{m s-s} \geq p^{s}$, we have that (i) implies

$$
\begin{equation*}
\gamma^{p^{m s-s}}=v_{s}^{p^{m s-s}} c_{p}^{p^{m s-1}} . \tag{8.5}
\end{equation*}
$$

Then $v_{s}^{\left(p^{(m-1) s}-1\right) /\left(p^{s}-1\right)} \gamma^{p^{m s-s}}$ is the Chern class of the bundle

$$
\left(\operatorname{det}\left(\xi_{\pi}\right)\right)^{\otimes p^{m-1}}
$$

and (ii) follows.
For $p=2$, note that for the Chern class of $\operatorname{det} \xi_{\pi}$, as the standard series in c_{1} and c_{2}, we have modulo c_{1}

$$
\gamma=v_{s} c_{2}^{2^{s-1}}
$$

Again

$$
x=v_{s}^{\left(2^{(m-1) s}-1\right) /\left(2^{s}-1\right)} \gamma^{2^{m s-s}}
$$

and it suffices to prove that $c_{1}^{2^{s}+1}=0$. By the definition of quasi-dihedral group $m>2,2^{m s-s}>2^{s}+1$ and we can proceed as in case of odd p.

Recall that $c^{2^{s}}=x^{2^{s}}=0$ by Lemma 8.7(i) and Lemma 8.8(i). Also by Lemma 8.10, $c^{2} x=c x^{2}$ hence we have for $i+j \geq 2^{s}+1$

$$
\begin{equation*}
c^{i} x^{j}=0 . \tag{8.6}
\end{equation*}
$$

Now the formulas for c_{1}^{*} and $c_{1}^{* *}$ simplify $c_{1}^{*} c_{1}^{* *}=0$ as

$$
\begin{equation*}
c_{1}^{2}=c_{1} c+c_{1} x+c x=c^{2}+x^{2}+c x+v_{s}^{2}\left(c x c_{2}\right)^{2^{s-1}} . \tag{8.7}
\end{equation*}
$$

Hence after raising (8.3) to the power 2^{s-1}, we have

$$
\begin{equation*}
c_{1}^{2^{s}}=c^{2^{s-1}} x^{2^{s-1}} \tag{8.8}
\end{equation*}
$$

Thus,

$$
c_{1}^{2^{s}+1}=x^{2^{s-1}} c^{2^{s-1}} c_{1}=x^{2^{s-1}} c^{2^{s-1}-1} c c_{1}=x^{2^{s-1}} c^{2^{s-1}-1} c^{2}=0
$$

by (8.8), $c c_{1}=0$ modulo c^{2}, and (8.6) the result follows.

9. Dihedral, Semidihedral, and Generalized Quaternion Groups

Now let

$$
G=\left\langle a, b \mid a^{2^{m+1}}=1, b^{2}=a^{e}, b a b^{-1}=a^{r}\right\rangle, \quad m \geq 1,
$$

and either
(i) $e=0$ and $r=-1$ (the dihedral group $D_{2^{m+2}}$ of order 2^{m+2}), or
(ii) $e=2^{m}$ and $r=-1$ (the generalized quaternion group $Q_{2^{m+2}}$), or
(iii) $m \geq 2, e=0$, and $r=2^{m}-1$ (the semidihedral group $S D_{2^{m+2}}$).

Consider the following Chern classes c, x, c_{1}, and c_{2} of dimensions $|c|=|x|=\left|c_{1}\right|=2$ and $\left|c_{2}\right|=4$:

$$
\begin{array}{ll}
c=c_{1}\left(\eta_{1}\right), & \eta_{1}: G /\langle a\rangle \cong \mathbf{Z} / 2 \rightarrow \mathbb{C}^{*}, \quad b \mapsto-1, \\
x=c_{1}\left(\eta_{2}\right), & \eta_{2}: G /\left\langle a^{2}, b\right\rangle \cong \mathbf{Z} / 2 \rightarrow \mathbb{C}^{*}, \quad a \mapsto-1,
\end{array}
$$

and $c_{i}=c_{i}\left(\xi_{\pi_{1}}\right)$, where

$$
\xi_{\pi_{1}} \rightarrow B\langle a, b\rangle
$$

is the plane bundle transferred from the canonical line bundle

$$
\xi \rightarrow B\langle a\rangle,
$$

for the double covering

$$
\pi_{1}: B\langle a\rangle \rightarrow B\langle a, b\rangle
$$

corresponding to η_{1}.

Theorem 9.1. (i) $K(s)^{*}(B G)=K(s)^{*}\left[c, x, c_{2}\right] / R$ and the relations R are determined by

$$
\begin{gather*}
c^{2^{s}}=x^{2^{s}}=0, \tag{9.1}\\
v_{s} c c_{2}^{2^{s-1}}=v_{s} \sum_{i=1}^{s-1} c^{2^{s}-2^{i}+1} c_{2}^{2^{i-1}}+ \begin{cases}0 & \text { if } G \text { is dihedral, } \\
c^{2} & \text { if } G \text { is quaternion }, \\
c x & \text { if } G \text { is semidihedral; }\end{cases} \tag{9.2}\\
v_{s}^{2} c_{2}^{2^{s}}= \begin{cases}c x+x^{2} & \text { if } G=D_{8}, \\
c^{2}+c x+x^{2} & \text { if } G=Q_{8}\end{cases} \tag{9.3}
\end{gather*}
$$

and for $m>1$

$$
\begin{equation*}
v_{s}^{2 \kappa(m)} c_{2}^{2^{2 m s}}=c x+x^{2} \tag{9.4}
\end{equation*}
$$

for G of all three types;

$$
v_{s} x c_{2}^{2^{s-1}}=v_{s} \sum_{i=1}^{s-1} x^{2^{s}-2^{i}+1} c_{2}^{2^{i-1}}+ \begin{cases}c x+x^{2} & \text { if } G=D_{8} \tag{9.5}\\ x^{2} & \text { if } G=Q_{8}\end{cases}
$$

for $m>1$,

$$
v_{s} x c_{2}^{s^{s-1}}=v_{s} x \sum_{i=1}^{s-1} c^{2^{s}-2^{i}} c_{2}^{2^{i-1}}+\sum_{i=1}^{m s} v_{s}^{1+\kappa(m)+2^{m s}-2^{i}} c_{2}^{\left(2^{m s}+1\right) 2^{s-1}-\left(2^{s}-1\right) 2^{i-1}}
$$

$$
+ \begin{cases}0 & \text { if } G \text { is dihedral }, \\ c x & \text { if } G \text { is quaternion } \\ & \text { or semidihedral },\end{cases}
$$

where

$$
\kappa(m)=\frac{2^{m s}-1}{2^{s}-1} .
$$

(ii) $c^{2} x=c x^{2}, c_{1}^{2^{m s}+1}=0$, and $c_{2}^{\left(2^{m s}+1\right) 2^{s-1}}=0$.

Together with the covering π_{1}, we can consider the covering

$$
\pi_{2}: B\left\langle a^{2}, b\right\rangle \rightarrow B\langle a, b\rangle
$$

corresponding to η_{2}. Then let

$$
\eta_{\pi_{2}} \rightarrow B G
$$

be the transferred line bundle associated with double covering

$$
\left\langle a^{4}, b\right\rangle \rightarrow\left\langle a^{2}, b\right\rangle .
$$

The bundles $\xi_{\pi_{1}}$ and $\eta_{\pi_{2}}$ coincide if $m=1$, but if $m>1$, then

$$
\begin{equation*}
\eta_{\pi_{2}}=\left(\xi^{\otimes 2^{m-1}}\right)_{\pi_{1}} \tag{9.6}
\end{equation*}
$$

The following bundle relations hold.
Lemma 9.2. (i) $\eta_{i}^{\otimes 2}=\mathbb{C}, \eta_{1} \otimes \xi_{\pi_{1}}=\xi_{\pi_{1}}$;
(ii) $\eta_{i} \otimes \eta_{\pi_{2}}=\eta_{\pi_{2}}$;
(iii) $\eta_{\pi_{2}}^{\otimes 2}=\mathbb{C} \oplus \eta_{1} \oplus \eta_{2} \oplus \eta_{1} \otimes \eta_{2}$;
(iv) $\operatorname{det} \xi_{\pi_{1}}$ is η_{1} if G is dihedral, the trivial bundle \mathbb{C} if G is quaternion, and $\eta_{1} \otimes \eta_{2}$ if G is semidihedral, and for $m>1$, we have $\operatorname{det} \eta_{\pi_{2}}=\eta_{1}$ in all three cases;
(v) we have

$$
\left(\left(\xi^{\otimes 2^{i}}\right)_{\pi_{1}}\right)^{\otimes 2}=\left(\xi^{\otimes 2^{i+1}}\right)_{\pi_{1}} \oplus \mathbb{C} \oplus \eta_{1}
$$

for $1 \leq i<m-1$. The bundle

$$
\xi_{\pi_{1}} \otimes \xi_{\pi_{1}}=\left(\xi^{\otimes 2}\right)_{\pi_{1}} \oplus\left(\xi \otimes \xi^{\otimes r}\right)_{\pi_{1}}
$$

is

$$
\left(\xi^{\otimes 2}\right)_{\pi_{1}} \oplus \mathbb{C} \oplus \eta_{1}
$$

if G is dihedral or quaternion and is

$$
\left(\xi^{\otimes 2}\right)_{\pi_{1}} \oplus \eta_{1} \otimes \eta_{2} \oplus \eta_{2}
$$

if G is semidihedral.
Proof. These relations are the consequences of the Frobenius reciprocity of the transfer in complex K-theory. For example,

$$
\begin{aligned}
\eta_{\pi_{2}}^{\otimes 2}=\left(\xi^{2^{m-1}}\right)_{\pi_{1}}^{\otimes 2}=\left(\xi^{2^{m-1}} \otimes \pi_{1}^{*}\left(\left(\xi^{2^{m-1}}\right)_{\pi_{1}}\right)\right)_{\pi_{1}}= & \left(\xi^{2^{m}} \oplus \mathbb{C}\right)_{\pi_{1}} \\
& =\eta_{2} \otimes(\mathbb{C})_{\pi_{1}} \oplus \mathbb{C} \oplus \eta_{1}=\eta_{2} \otimes\left(\mathbb{C} \oplus \eta_{1}\right) \oplus \mathbb{C} \oplus \eta_{1}
\end{aligned}
$$

The lemma is proved.
We recall the transfer formula from [5] (see also [4]).
Let $X \rightarrow X / \pi$ be a regular double covering defined by a free involution on $X, \xi \rightarrow X$ be a complex line bundle, ξ_{π} the transferred bundle, and let

$$
\operatorname{Tr}_{\pi}^{*}: K(s)^{*}(X) \rightarrow K(s)^{*}(X / \pi)
$$

be the associated transfer homomorphism [17, 27]. Then

$$
\begin{equation*}
c_{1}\left(\xi_{\pi}\right)=c_{1}(\psi)+v_{s} \sum_{i=1}^{s-1} c_{1}(\psi)^{2^{s}-2^{i}} c_{2}\left(\xi_{\pi}\right)^{2^{i-1}}+\operatorname{Tr}_{\pi}^{*}\left(c_{1}(\xi)\right), \tag{9.7}
\end{equation*}
$$

where $\psi \rightarrow X / \pi$ is the complex line bundle associated to the covering $X \rightarrow X / \pi$.
The following lemma is an easy consequence of the recursive formula for the FGL given in [31, 4.3.9] (see also [4, Lemma 5.3]).

Lemma 9.3. (i) For the Honda formal group law at $p=2, s>1$, we have

$$
F(y, z)=y+z+v_{s}(y z)^{2^{s-1}}
$$

modulo $y^{2^{2(s-1)}}$ (or modulo $z^{2^{2(s-1)}}$).
(ii) We have

$$
F(y, z)=y+z+v_{s} \Phi\left(v_{s}, y, z\right)^{2^{s-1}}
$$

where

$$
\Phi\left(v_{s}, y, z\right)=y z+v_{s}(y z)^{2^{s-1}}(y+z)
$$

modulo $(y z)^{2^{s-1}}(y+z)^{2^{s-1}}$.
For two line bundles with the Chern classes y and z, respectively, $\Phi\left(v_{s}, y, z\right)$ can be regarded as the $K(s)^{*}$ orientation class of their sum.
Lemma 9.4. Let $m>1$ and either $r=-1$ or $r=2^{m}-1$. We have in $K(s)^{*}[u] /\left(u^{2^{(m+1) s}}\right)$

$$
u^{2^{m s}}=\sum_{i=1}^{m s} v_{s}^{2^{m s}-2^{i}}(u[r](u))^{2^{(m+1) s-1}-\left(2^{s}-1\right) 2^{i-1}}+[r](u)(u+[r](u))^{2^{m s}-1} .
$$

Proof. The obvious decomposition in $\mathbb{F}_{2}[y, z]$

$$
y^{2^{k}}=\sum_{i=1}^{k}(y+z)^{2^{k}-2^{i}}(y z)^{2^{i-1}}+y(y+z)^{2^{k}-1}
$$

for $y=u, z=[r](u)$, and $k=m s$ implies

$$
u^{2^{m s}}=\sum_{i=1}^{m s}(u+[r](u))^{2^{m s}-2^{i}}(u[r](u))^{2^{i-1}}+u(u+[r](u))^{2^{m s}-1} .
$$

We equate the monomials

$$
(u+[r](u))^{2^{m s}-2^{i}}=(u+[r](u))^{2^{i}+\cdots+2^{m s-1}}
$$

to the monomials

$$
v_{s}^{2^{m s}-2^{i}}(u[r](u))^{\left(2^{m s}-2^{i}\right) 2^{s-1}}=v_{s}^{2^{i}+\cdots+2^{m s-1}}(u[r](u))^{\left(2^{i}+\cdots+2^{m s-1}\right) 2^{s-1}}
$$

by the equation

$$
(u+[r](u))^{2}=v_{s}^{2}(u[r](u))^{2^{s}}
$$

modulo some irrelevant factor as follows.
The nilpotence degree for u is $2^{(m+1) s}$, hence is $2^{(m+1) s-1}$ for $u[r](u)$. Since it is 2^{s} for $F\left(u,\left[2^{m}-1\right]\right)$ (whereas $F(u,[-1](u))=0$), the nilpotence degree for $u+[r](u)$ is $2^{m s}$ by Lemma 9.3(ii).

Therefore, it suffices to show

$$
(u+[r](u))^{2}=v_{s}^{2}(u[r](u))^{2^{s}} \quad \bmod (u+[r](u))^{4} .
$$

Lemma 9.3(ii) implies

$$
(u+[r](u))^{2}=v_{s}^{2}(u[r](u))^{2^{s}}+F(u,[r](u))^{2} \quad \bmod (u+[r](u))^{2^{s}}
$$

and the dihedral and quaternion cases follow.
For the semidihedral group, we have

$$
F\left(u,\left[2^{m}-1\right](u)\right)=v_{s}^{\kappa(m)} u^{2^{m s}} .
$$

Also,

$$
u^{2^{m s+1}}=(u[r] u)^{2^{m s}}
$$

as $u^{2^{m s}}=([r](u))^{2^{m s}}$. Therefore, we obtain, modulo $(u+[r](u))^{2^{s}}$ ignoring powers of v_{s},

$$
(u[r](u))^{2^{s}}=(u+[r](u))^{2}+(u[r](u))^{2^{m s}} ;
$$

moreover,

$$
F(u,[r](u))^{2}=(u[r](u))^{2^{m s}}=\left((u+[r](u))^{2}+(u[r](u))^{2 m s}\right)^{2^{m s-s}}=0
$$

as $m s-s+1>s$. The lemma is proved.
As mentioned in Sec. 7, it was proved in [36] that as a $K(s)^{*}(p t)$-module, $K(s)^{*}$ of the spaces we consider is generated by the Chern classes c, x, and c_{2} defined above. Let $\tilde{c_{1}}$ and $\tilde{c_{2}}$ be the Chern classes of the bundle $\eta_{\pi_{2}}$.

Lemma 9.2(i) implies $c^{2^{s}}=0$ and $x^{2^{s}}=0$ as $[2](c)=v_{s} c^{2^{s}}=0$ and similarly for x.
Let

$$
\begin{equation*}
c_{1}^{*}=c_{1}+c+v_{s} \sum_{i=1}^{s-1} c^{2^{s}-2^{i}} c_{2}^{2^{i-1}}, \quad c_{1}^{* *}=\tilde{c}_{1}+x+v_{s} \sum_{i=1}^{s-1} x^{2^{s}-2^{i}} \tilde{c}_{2}^{2^{i-1}} . \tag{9.8}
\end{equation*}
$$

By (9.7),

$$
c_{1}^{*} \in \operatorname{Im} \operatorname{Tr}_{\pi_{1}}^{*}, \quad c_{1}^{* *} \in \operatorname{Im} \operatorname{Tr}_{\pi_{2}}^{*} ;
$$

hence

$$
c_{1}^{2^{s}} \in \operatorname{Im} \operatorname{Tr}_{\pi_{1}}^{*}, \quad \tilde{c}_{1}^{2^{s}} \in \operatorname{Im} \operatorname{Tr}_{\pi_{2}}^{*}
$$

as $c^{2^{s}}=x^{2^{s}}=0$.
By the Frobenius reciprocity, $c c_{1}^{*}=0$; hence by (9.7)

$$
c^{2^{s-1}} c_{1}^{2^{s-1}}=0, \quad x^{2^{s-1}} c_{1}^{2^{s-1}}=c^{2^{s-1}} x^{2^{s-1}}
$$

modulo $\operatorname{Tr}_{\pi_{1}}^{*}(u), u=c_{1}(\xi)$. From (8.8) we obtain

$$
c_{1}^{2^{s-1}}=c^{2^{s-1}} \quad \bmod \operatorname{Tr}_{\pi_{1}}^{*}(u)
$$

Hence

$$
\begin{equation*}
c_{1}\left(\operatorname{det} \xi_{\pi_{1}}\right)=c_{1}+v_{s} c_{2}^{2 s-1} \quad \bmod \operatorname{Tr}_{\pi_{1}}^{*}(u) \tag{9.9}
\end{equation*}
$$

Then note that

$$
F(c, x)=c+x+v_{s} c^{c^{s-1}} x^{2^{s-1}}
$$

hence combining (9.8) and (9.9) we obtain, modulo $\operatorname{Tr}_{\pi_{1}}^{*}(u)$ and $c^{2^{s-1}} x^{2^{s-1}}$,

$$
v_{s} 2_{2}^{s-1}+v_{s} \sum_{i=1}^{s-1} c^{2^{s}-2^{i}} c_{2}^{2^{i-1}}= \begin{cases}0 & \text { if } G \text { is dihedral } \tag{9.10}\\ c & \text { if } G \text { is quaternion } \\ x & \text { if } G \text { is semidihedral }\end{cases}
$$

Also we have

$$
\begin{equation*}
c_{1}\left(\operatorname{det} \eta_{\pi_{2}}\right)=\tilde{c}_{1}+v_{s} \tilde{c}_{2}^{s-1}+v_{s} \tilde{c}_{1}^{2^{s}} \tag{9.11}
\end{equation*}
$$

To prove (9.11) we need the relations (ii) of Theorem 9.1. These are consequences of the following relations (9.12)-(9.15).

Lemma $9.2(\mathrm{v})$ and (9.6) implies that modulo c and x, the Chern classes \tilde{c}_{1} and \tilde{c}_{2} coincide with the first and second Chern classes of $\left(\xi_{\pi_{1}}\right)^{\otimes 2^{m-1}}$, respectively:

$$
\begin{equation*}
\tilde{c}_{1}=v_{s}^{\frac{2^{(m-1) s}-1}{2^{s}-1}} c_{1}^{2^{(m-1) s}}, \quad \tilde{c}_{2}=v_{s}^{\frac{2\left(2^{(m-1) s}-1\right)}{2^{s}-1}} c_{2}^{2^{(m-1) s}} \tag{9.12}
\end{equation*}
$$

On the other hand, consecutively equating Chern classes of both sides of the equation in Lemma 9.2(iii), we obtain, respectively,

$$
\begin{equation*}
\tilde{c}_{1}^{2^{s}}=c^{2^{s-1}} x^{2^{s-1}} \tag{9.13}
\end{equation*}
$$

for $m=1$,

$$
v_{2}^{2} c_{2}^{2^{s}}= \begin{cases}c x+x^{2} & \text { if } G=D_{8} \tag{9.14}\\ c^{2}+c x+x^{2} & \text { if } G=Q_{8}\end{cases}
$$

for $m>1$,

$$
v_{2}^{2} \tilde{2}_{2}^{s}=c x+x^{2}
$$

in all cases, and

$$
\begin{equation*}
c^{2} x+c x^{2}=0 \tag{9.15}
\end{equation*}
$$

and we obtain formula (9.3) from Theorem 9.1 and relations (ii). Here we use the splitting principle and write formally

$$
\eta_{\pi_{2}}=\lambda_{1} \oplus \lambda_{2}, \quad \eta_{\pi_{2}}^{\otimes 2}=\lambda_{1}^{\otimes 2} \oplus \lambda_{2}^{\otimes 2} \oplus 2 \lambda_{1} \otimes \lambda_{2} .
$$

Also we take into account that the determinant $\lambda_{1} \otimes \lambda_{2}$ is known by Lemma 9.2(iv). Let $m>1$ and $\lambda_{1} \otimes \lambda_{2}=\eta_{1}$. Then by the first equation for the Chern classes

$$
v_{s} \tilde{c}_{1}^{s}=c+x+c+x+v_{s}{c^{s-1}}^{2^{s-1}} \Rightarrow \text { (9.13). }
$$

By (9.12) and formula (9.1) of Theorem 9.1,

$$
\tilde{c}_{1}^{2^{s}} \in \operatorname{Im} \operatorname{Tr}_{\pi_{1}}^{*}
$$

Also as before,

$$
\tilde{c}_{1}^{2^{s}} \in \operatorname{Im} \operatorname{Tr}_{\pi_{2}}^{*}
$$

Hence

$$
c \tilde{c}_{1}^{2^{s}}=x \tilde{c}_{1}^{2^{s}}=0
$$

and, by (9.13),

$$
c^{i} x^{j}=0 \quad \text { for } i+j>2^{s} .
$$

Multiplying (9.8) by $c^{2^{s-1}} x^{2^{s-1}}$ we obtain $c_{1}^{2^{m s}+1}=0$; therefore, Lemma 9.3 implies

$$
c_{2}^{\left(2^{m s}+1\right) 2^{s-1}}=0
$$

Then the second equation yields

$$
v_{s}^{2} \tilde{c}_{2}^{2^{s}}+c^{2}=c x+(c+x)\left(c+x+v_{s} c^{2^{s-1}} x^{2^{s-1}}\right) \Rightarrow \text { (9.14). }
$$

The third equation yields

$$
0=v_{s} \tilde{c}_{1}^{s} c^{2}=c x\left(c+x+v_{s} c^{c^{s-1}} x^{2^{s-1}}\right)=c x(c+x)
$$

and (9.15) follows. Similarly, for $m=1$, but $\tilde{c}_{i}=c_{i}$, and for $G=Q_{8}$, the determinant $\lambda_{1} \otimes \lambda_{2}$ is trivial.

To prove formula (9.2) of Theorem 9.1 for $m>1$, we raise (9.9) to the power $2^{m s-s}>2^{s}$. We obtain

$$
\begin{equation*}
c_{2}^{2^{m s-1}}=0 \quad \bmod \operatorname{Tr}_{\pi_{1}}^{*}(u) . \tag{9.16}
\end{equation*}
$$

By the Frobenius reciprocity of the transfer, (9.16) implies

$$
\begin{equation*}
c c_{2}^{2^{m s-1}}=0 \tag{9.17}
\end{equation*}
$$

Then, as above,

$$
c^{i} x^{j}=0 \quad \text { for } i+j \geq 2^{s}+1 .
$$

Multiplying (9.10) by c, we obtain formula (9.2) of Theorem 9.1.
Now let $m=1$. Then $\tilde{c}_{i}=c_{i}$ and $c c_{1}^{*}=0$ by (9.7). Hence multiplying (9.11) by c, we obtain formula (9.2) of Theorem 9.1.

Proof of formula (9.5) of Theorem 9.1. Let $m>1$. By the above definitions, we have

$$
\pi_{1}^{*}\left(\xi_{\pi_{1}}\right)=\xi \oplus \xi^{\otimes r}, \quad \pi^{*}\left(\eta_{2}\right)=\xi^{\otimes 2^{m}}
$$

Then Lemma 9.3 implies

$$
\begin{equation*}
v_{s}^{-\kappa(m)} \pi_{1}^{*}(x)=u^{2^{m s}}=\pi_{1}^{*}\left(\sum_{i=1}^{m s} v_{s}^{2^{m s}-2^{i}} c_{2}^{2^{(m+1) s-1}-\left(2^{s}-1\right) 2^{i-1}}\right)+[r](u) \pi_{1}^{*}\left(c_{1}^{2^{m s}-1}\right) \tag{9.18}
\end{equation*}
$$

We apply transfer to (9.18) after multiplying by u. By (9.7), $c_{1}^{2^{m s}-1} \in \operatorname{Im} \operatorname{Tr}_{\pi_{1}}^{*}$ is in the annihilator of c, hence

$$
\operatorname{Tr}_{\pi_{1}}^{*}(u[r](u)) c_{1}^{2^{m s}-1}=\operatorname{Tr}_{\pi_{1}}^{*}(1) c_{2} c_{1}^{2 m s}-1=v_{s} c^{2^{s}-1} c_{2} c_{1}^{2^{m s}-1}=0
$$

and we obtain

$$
\begin{equation*}
\operatorname{Tr}_{\pi_{1}}^{*}(u)\left(x+\sum_{i=1}^{m s} v_{s}^{\kappa(m)+2^{m s}-2^{i}} c_{2}^{2^{(m+1) s-1}-\left(2^{s}-1\right) 2^{i-1}}\right)=0 . \tag{9.19}
\end{equation*}
$$

Now multiplying (9.10) by

$$
x+\sum_{i=1}^{m s} v_{s}^{\kappa(m)+2^{m s}-2^{i}} c_{2}^{2^{(m+1) s-1}-\left(2^{s}-1\right) 2^{i-1}}
$$

and using (9.17) and (9.19), we obtain the dihedral and quaternion cases. For the semidihedral group, it remains to show that

$$
\begin{equation*}
x\left(x+\sum_{i=1}^{m s} v_{s}^{\kappa(m)+2^{m s}-2^{i}} c_{2}^{2^{(m+1) s-1}-\left(2^{s}-1\right) 2^{i-1}}\right)=c x . \tag{9.20}
\end{equation*}
$$

For simplicity, we introduce the notation

$$
\Sigma=\sum_{i=1}^{m s} v_{s}^{\kappa(m)+2^{m s}-2^{i}} c_{2}^{2^{(m+1) s-1}-\left(2^{s}-1\right) 2^{i-1}}
$$

Then

$$
\Sigma(x+\Sigma)=0
$$

since (9.16) implies $\Sigma=0$ modulo $\operatorname{Tr}_{\pi_{1}}^{*}(u)$ and

$$
\Sigma^{2}=v_{s}^{2 \kappa(m)} c_{2}^{2 m s}
$$

since the nilpotence degree of c_{2} is $2^{(m+1) s-1}+2^{s-1}$.
Thus,

$$
x \Sigma=v_{s}^{2 \kappa(m)} c_{2}^{2^{m s}}
$$

and (9.20) follows from formula (9.3) of Theorem 9.1.
Now let $m=1$. Then

$$
\tilde{c}_{i}=c_{i}, \quad c c_{1}^{*}=0, \quad x c_{1}^{* *}=0
$$

by (9.7); $\operatorname{det} \eta_{\pi_{2}}$ is η_{1} (for $G=D_{8}$) or the trivial bundle (for $G=Q_{8}$). Hence multiplying (9.11) by x, we obtain formula (9.5) of Theorem 9.1.

It remains to show that the given relations give a ring of correct rank, which is

$$
2^{(m+1) s-1}+2^{2 s}-2^{s-1}
$$

according to the generalized character theory [23]. This follows by counting the obvious explicit bases of these rings according to Theorem 9.1:
(i) for $G=D_{8}$ or Q_{8},

$$
\left\{c^{i} c_{2}^{j}, x^{i} c_{2}^{j}, c^{i} x c_{2}^{j}, c_{2}^{k} \mid 1 \leq i<2^{s}, 0 \leq j<2^{s-1}, 0 \leq k<2^{s}\right\}
$$

(ii) for $m>1$ and all three cases,

$$
\left\{c^{i} c_{2}^{j}, c^{i} x c_{2}^{j}, c_{2}^{k} \mid 1 \leq i<2^{s}, 0 \leq j<2^{s-1}, 0 \leq k<\left(2^{m s}+1\right) 2^{s-1}\right\} .
$$

Of course, there are alternative bases: for example, if we consider $c x$ as the decomposable in Theorem 9.1, then for $m>1$, the $K(s)^{*}$-base for $K(s)^{*}(B G)$ is:
(i) for $G=D_{2^{m+2}}$,

$$
\left\{c^{i} c_{2}^{j}, x^{i} c_{2}^{j}, c_{2}^{k} \mid 1 \leq i<2^{s}-j, 0 \leq j<2^{s}-1,0 \leq k<\left(2^{m s}+1\right) 2^{s-1}\right\}
$$

(ii) for $G=Q_{2^{m+2}}$,

$$
\left\{c c_{2}^{i}, x c_{2}^{i}, c_{2}^{j} \mid 0 \leq i<\left(2^{s}-1\right) 2^{s-1}, 0 \leq j<\left(2^{m s}+1\right) 2^{s-1}\right\}
$$

(iii) and for $G=S D_{2^{m+2}}$,

$$
\left\{c^{i} c_{2}^{j}, x c_{2}^{k}, c_{2}^{l} \mid 1 \leq i<2^{s}-j, 0 \leq j<2^{s}-1,0 \leq k<\left(2^{s}-1\right) 2^{s-1}, 0 \leq l<\left(2^{m s}+1\right) 2^{s-1}\right\}
$$

A natural question arises concerning the relationship between our calculations and those of [35, 36], in terms of an alternative generating set.

Example $9.5\left(K(2)^{*}\left(B D_{8}\right)\right)$. This example shows that the ring structures given in [35] must be corrected. For D_{8}, they are correct modulo the minimal (one-dimensional) ideal lying in the kernel of the restriction maps corresponding to all proper subgroups.

Let A be the version of $K(2)^{*}\left(B D_{8}\right)$ of Theorem 9.1 and B be its version from [35]. Then

$$
\begin{aligned}
& A=\mathbb{F}_{2}\left[v_{2}^{ \pm 1}\right]\left[c, x, c_{2}\right] /\left(c^{4}, x^{4}, c^{3} c_{2}+c c_{2}^{2}, v_{2} x^{3} c_{2}+v_{2} x c_{2}^{2}+c x+x^{2}, v_{2}^{2} c_{2}^{4}+c x+x^{2}\right), \\
& B=\mathbb{F}_{2}\left[v_{2}^{ \pm 1}\right]\left[y_{1}, y_{2}, \hat{c}_{2}\right] /\left(y_{1}^{4}, y_{2}^{4}, v_{2}^{2} \hat{c}_{2}^{4}+v_{2} y_{1} \hat{c}_{2}^{2}, v_{2} y_{1} \hat{c}_{2}^{2}+v_{2} y_{2} \hat{c}_{2}^{2}, v_{2} y_{2} \hat{c}_{2}^{2}+y_{1} y_{2}\right) .
\end{aligned}
$$

Choose the following basis in A over $\mathbb{F}_{2}\left[v_{2}^{ \pm 1}\right]$:

$$
\begin{aligned}
& \left\langle 1, c, x, c^{2}, c x, x^{2}, c_{2}, c^{3}, x^{3}, c c_{2}, x c_{2}, c x^{2}, c x^{2} c_{2}\right. \\
& \left.c^{2} c_{2}, x^{2} c_{2}, c x c_{2}, c_{2}^{2}, c c_{2}^{2}, x c_{2}^{2}, c x c_{2}^{2}, c_{2}^{3}, x c_{2}^{3}\right\rangle
\end{aligned}
$$

and assume that there is a graded isomorphism $f: B \rightarrow A$. Then by dimension considerations,

$$
\begin{gathered}
f\left(y_{1}\right)=\epsilon_{11} c+\epsilon_{12} x+\epsilon_{13} v_{2} c_{2}^{2}+\epsilon_{14} v_{2} x^{2} c_{2}+\epsilon_{15} v_{2} c x c_{2}+\epsilon_{16} v_{2} c^{2} c_{2}+\epsilon_{17} v_{2}^{2} x c_{2}^{3} \\
f\left(y_{2}\right)=\epsilon_{21} c+\epsilon_{22} x+\epsilon_{23} v_{2} c_{2}^{2}+\epsilon_{24} v_{2} x^{2} c_{2}+\epsilon_{25} v_{2} c x c_{2}+\epsilon_{26} v_{2} c^{2} c_{2}+\epsilon_{27} v_{2}^{2} x c_{2}^{3} \\
f\left(\hat{c}_{2}\right)=\alpha_{1} c_{2}+\alpha_{2} c^{2}+\alpha_{3} c x+\alpha_{4} x^{2}+\alpha_{5} v_{2} x c_{2}^{2}+\alpha_{6} v_{2} c c_{2}^{2}+\alpha_{7} v_{2} c x^{2} c_{2}
\end{gathered}
$$

where $\epsilon_{i j}, \alpha_{k} \in \mathbb{F}_{2}$.
Then $y_{1}^{4}=0$ implies

$$
\begin{aligned}
&\left(\epsilon_{11} c+\epsilon_{12} x+\epsilon_{13} v_{2} c_{2}^{2}+\epsilon_{14} v_{2} x^{2} c_{2}+\epsilon_{15} v_{2} c x c_{2}+\epsilon_{16} v_{2} c^{2} c_{2}+\epsilon_{17} v_{2}^{2} x c_{2}^{3}\right)^{4} \\
&=\epsilon_{13} c_{2}^{8}=\epsilon_{13} x^{2} c_{2}+\epsilon_{13} c x c_{2}+\epsilon_{13} v_{2} x c_{2}^{3}=0
\end{aligned}
$$

hence $\epsilon_{13}=0$.
Similarly, $y_{2}^{4}=0$ implies $\epsilon_{23}=0$.
Next,

$$
f\left(\left(y_{1}-y_{2}\right) \hat{c}_{2}^{2}\right) c_{2}^{5}=0
$$

implies

$$
\left(\epsilon_{12}+\epsilon_{22}\right) \alpha_{1} c x c_{2}^{2}=0
$$

Necessarily $\alpha_{1} \neq 0$, since otherwise c_{2} would not be in the image of f. Thus we have

$$
\epsilon_{12}=\epsilon_{22}
$$

Moreover, these are not zero as otherwise x would not be in the image of f. Thus we have

$$
\begin{gathered}
f\left(y_{1}\right)=\epsilon_{11} c+x+\epsilon_{14} v_{2} x^{2} c_{2}+\epsilon_{15} v_{2} c x c_{2}+\epsilon_{16} v_{2} c^{2} c_{2}+\epsilon_{17} v_{2}^{2} x c_{2}^{3} \\
f\left(y_{2}\right)=\epsilon_{21} c+x+\epsilon_{24} v_{2} x^{2} c_{2}+\epsilon_{25} v_{2} c x c_{2}+\epsilon_{26} v_{2} c^{2} c_{2}+\epsilon_{27} v_{2}^{2} x c_{2}^{3} \\
f\left(\hat{c}_{2}\right)=c_{2}+\alpha_{2} c^{2}+\alpha_{3} c x+\alpha_{4} x^{2}+\alpha_{5} v_{2} x c_{2}^{2}+\alpha_{6} v_{2} c c_{2}^{2}+\alpha_{7} v_{2} c x^{2} c_{2}
\end{gathered}
$$

Taking this into account, we see that

$$
f\left(y_{1} \hat{c}_{2}^{2}-y_{1} y_{2}\right) c_{2}^{2}=0
$$

implies

$$
\epsilon_{11}+\epsilon_{21}+\epsilon_{24}+\epsilon_{27}=0
$$

and

$$
f\left(y_{2} \hat{c}_{2}^{2}-y_{1} y_{2}\right) c_{2}^{2}=0
$$

implies

$$
\epsilon_{11}+\epsilon_{21}+\epsilon_{14}+\epsilon_{17}=0
$$

whereas

$$
f\left(y_{1} y_{2}-\hat{c}_{2}^{4}\right) c_{2}^{2}=0
$$

implies

$$
\epsilon_{11}+\epsilon_{21}+\epsilon_{14}+\epsilon_{24}+\epsilon_{17}+\epsilon_{27}=1
$$

Hence

$$
\epsilon_{11}+\epsilon_{21}=\epsilon_{14}+\epsilon_{17}=\epsilon_{24}+\epsilon_{27}=1
$$

But these relations imply that

$$
\left(f\left(y_{1}\right) f\left(\hat{c}_{2}\right)^{2}-f\left(y_{2}\right) f\left(\hat{c}_{2}\right)^{2}\right) x=c x c_{2}^{2}
$$

which should actually be zero as $\left(y_{1}-y_{2}\right) \hat{c}_{2}^{2}=0$.

10. Symplectic Cobordism

Here the decompositions of the products of Ray elements and low-dimensional free generators of the symplectic cobordism ring are obtained. In particular, it is stated that most of the $4 n$-dimensional generators with n small belong after multiplication on Ray elements $\phi_{i}, i \geq 0$, to the ideal spanned by low-dimensional Ray elements.

Let $\nu \rightarrow B \mathbb{Z} / 2$ be the canonical real line bundle and $\zeta \rightarrow \mathrm{BSp}(1)$ be the canonical symplectic line bundle. Since there is an additive isomorphism

$$
\operatorname{MSp}^{*}(B \mathbb{Z} / 2 \wedge \operatorname{BSp}(1)) \approx \operatorname{MSp}^{*}(B \mathbb{Z} / 2)[x]
$$

where $x=e(\zeta)$ is the Euler class of ζ, we see that the Euler class of the symplectic virtual bundle $\left((\nu-1) \otimes_{R}(\zeta-4)\right)$ has the form

$$
e\left((\nu-1) \otimes_{R}(\zeta-4)\right)=\sum_{i \geq 1} \alpha_{i} x^{i}
$$

for some elements $\alpha_{i} \in \operatorname{MSp}^{4-4 i}(B \mathbb{Z} / 2)$.
For the restrictions of α_{i} to the symplectic cobordism ring of the n-dimensional real projective space $R P^{n}$, the notation $\theta_{i}(n)$ is used. These elements α_{i} and $\theta_{i}(n)$ have been studied by Buchstaber in [14].

Since $R P^{1}=S^{1} \underset{\sim}{\text { and }} \operatorname{MSp}^{\tilde{1}}\left(S^{1}\right) \approx Z$, the restriction of $\theta_{i}(n)$ has the form $\theta_{i}(1)=s_{1} \theta_{i}$ for the generator $s_{1} \in \operatorname{MSp}^{\tilde{1}}\left(S^{1}\right)$ and for some coefficients $\theta_{i} \in \operatorname{MSp}^{3-4 i}(p t)$. These elements θ_{i} are called Ray elements. The elements θ_{1} and $\theta_{2 i}, i \geq 1$, are indecomposable and have order 2 (see [31]) and $\theta_{2 i+1}=0\left(\right.$ see [34]). Let us write $\phi_{0}=\theta_{1}$ and $\phi_{i}=\theta_{2 i}$.

Let ζ_{i} be the pullback bundle by the projection of $\operatorname{BSp}(1)^{\times 3}$ on the i th factor.
Then

$$
\zeta_{1} \otimes_{C} \zeta_{2} \otimes_{C} \zeta_{3}=\left(\zeta_{1} \otimes_{H} \zeta_{2}\right) \otimes_{R} \zeta_{3}
$$

is the symplectic bundle over $\operatorname{BSp}(1)^{\times 3}$.
By the calculation with the Hurevicz homomorphism, we see that in terms of the coefficients $a_{k l m}$ of the first Conner-Floyd symplectic Pontryagin class

$$
p f_{1}\left(\zeta_{1} \otimes_{C} \zeta_{2} \otimes_{C} \zeta_{3}\right)=\sum_{k+l+m \geq 1} a_{k l m} p f_{1}^{k}\left(\zeta_{1}\right) p f_{1}^{l}\left(\zeta_{2}\right) p f_{1}^{m}\left(\zeta_{3}\right)
$$

the structure of $\mathrm{MSp}_{4 k}, n \leq 4$, from $[32,37]$ can be interpreted as follows:

k	$\mathrm{MSp}_{4 k}$	Generators
1	Z	$a_{011} \cong 2 x_{1}$
2	$Z+Z$	$a_{012} \cong 2 x_{2}, a_{111} \cong x_{1}^{2}$
3	$Z+Z+Z$	$a_{022} \cong 2 x_{3}, a_{011} a_{111} \cong 2 x_{1}^{3}, a_{211} \cong x_{1} x_{2}$,
4	$\bigoplus^{5} Z$	$a_{014} \cong 2 x_{4}, a_{011} a_{211} \cong a_{012} a_{111} \cong 2 x_{1}^{2} x_{2}, a_{122} \cong x_{2}^{2}, a_{111}^{2} \cong x_{1}^{4}, 2 y$

where \cong is the equality $\bmod 2 \mathrm{MSp}_{*}$.
In the following two subsections, we calculate the Hurevicz homomorphism and the Becker-Gottlieb transfer and prove the following theorem.

Theorem 10.1. For all $i \geq 0$ and $j=1,2,3,4$, we have:
(a) $\phi_{i}\left(2 x_{j}\right)=0$;
(b) $\phi_{i}\left(x_{1}^{2}\right)$ and $\phi_{i}\left(x_{2}^{2}\right)$ belong to the ideal $\phi_{0} \mathrm{MSp}^{*}$;
(c) $\phi_{i}\left(x_{1} x_{2}\right)$ belong to the ideal $\phi_{0} \mathrm{MSp}^{*}+\phi_{1} \mathrm{MSp}^{*}$.
10.1. The Hurevicz homomorphism. Let

$$
h: \pi_{*}(\mathrm{MSp}) \rightarrow H_{*}(\mathrm{MSp})=Z\left[q_{1}, q_{2}, \ldots\right]
$$

be the Hurevicz homomorphism. Since $\pi_{4 n}(\mathrm{MSp})$ is torsion free for small n (see $[32,37]$), the Hurevicz homomorphism is monomorphism in these dimensions. So in low dimensions $4 n$ the Hurevicz homomorphism determines all relations. Our aim here is to express the coefficients $a_{k l m}$ from the Introduction by the generators x 's.

The Hurevicz homomorphism for these $a_{k l m}$ are calculated in [26]. In low dimensions we have

$$
\begin{gathered}
h\left(a_{100}\right)=h\left(a_{010}\right)=h\left(a_{001}\right)=4, \quad h\left(a_{200}\right)=h\left(a_{020}\right)=h\left(a_{002}\right)=0, \\
h\left(a_{110}\right)=h\left(a_{101}\right)=h\left(a_{011}\right)=24 q_{1}, \quad h\left(a_{111}\right)=360 q_{2}, \\
h\left(a_{210}\right)=\cdots=h\left(a_{012}\right)=60 q_{2}-24 q_{1}^{2}, \quad h\left(a_{300}\right)=\cdots=h\left(a_{003}\right)=0, \\
h\left(a_{220}\right)=\cdots=h\left(a_{022}\right)=280 q_{3}-120 q_{1} q_{2}+24 q_{1}^{3}, \\
h\left(a_{310}\right)=\cdots=h\left(a_{013}\right)=112 q_{3}-96 q_{1} q_{2}+48 q_{1}^{3}, \\
h\left(a_{211}\right)=\cdots=h\left(a_{112}\right)=1680 q_{3}-360 q_{1} q_{2}, \\
h\left(a_{122}\right)=\cdots=h\left(a_{122}\right)=75600 q_{4}-3360 q_{1} q_{3}+360 q_{1}^{2} q_{2}, \\
h\left(a_{410}\right)=\cdots=h\left(a_{140}\right)=180 q_{4}-360 q_{1} q_{3}+420 q_{1}^{2} q_{2}-120 q_{2}^{2}-120 q_{1}^{4} .
\end{gathered}
$$

Then the Hurevicz images of generators x 's from the Introduction are calculated in [33]. Namely,

$$
\begin{gathered}
h\left(2 x_{1}\right)=24 q_{1}, \quad h\left(2 x_{2}\right)=20 q_{2}-8 q_{1}^{2}, \quad h\left(x_{1}^{2}\right)=144 q_{1}^{2}, \\
h\left(2 x_{3}\right)=56 q_{3}-72 q_{1} q_{2}+24 q_{1}^{3}, \quad h\left(x_{1} x_{2}\right)=120 q_{1} q_{2}-48 q_{1}^{3} \\
h\left(x_{1}^{3}\right)=3456 q_{1}^{3}, \quad h\left(2 x_{4}\right)=12 q_{4}-24 q_{1} q_{3}-8 q_{2}^{2}+28 q_{1}^{2} q_{2}-8 q_{1}^{4}, \\
\frac{1}{2}\left(x_{2}^{2}+x_{1} x_{3}\right)=50 q_{2}^{2}+168 q_{1} q_{3}-256 q_{1}^{2} q_{2}+80 q_{1}^{4}, \\
h\left(x_{2}^{2}\right)=100 q_{2}^{2}-80 q_{1}^{2} q_{2}+16 q_{1}^{4}, \quad h\left(2 x_{1}^{2} x_{2}\right)=2880 q_{1}^{2} q_{2}-1152 q_{1}^{4}, \quad h\left(x_{1}^{4}\right)=20736 q_{1}^{4} .
\end{gathered}
$$

We are interested of mod 2 nonzero coefficients $a_{011}, a_{111}, a_{022}, a_{122}, a_{112}, a_{120}$, and a_{140}.
By the above equalities we have

$$
\begin{gathered}
a_{011}=2 x_{1}, \quad a_{111}=18\left(2 x_{2}\right)+x_{1}^{2}, \quad a_{120}=3\left(2 x_{2}\right), \\
a_{022}=5\left(2 x_{3}\right)+2\left(x_{1} x_{2}\right), \quad a_{211}=30\left(2 x_{3}\right)+15\left(x_{1} x_{2}\right), \\
a_{122}=1050\left(2 x_{4}\right)+130\left(\frac{1}{2}\left(\frac{1}{4} x_{1} x_{3}+\frac{1}{4} x_{2}^{2}\right)\right)+19\left(x_{2}^{2}\right)+2\left(2 x_{1}^{2}\right), \quad a_{140}=15\left(2 x_{4}\right) .
\end{gathered}
$$

So we have the following assertion.
Proposition 10.2. The following relations hold $\bmod 2 \mathrm{MSp}_{*}$:

$$
a_{011}=2 x_{1}, \quad a_{111}=x_{1}^{2}, \quad a_{022}=2 x_{3}, \quad a_{122}=x_{2}^{2},
$$

$$
a_{112}=x_{1} x_{2}, \quad a_{120}=2 x_{2}, \quad a_{140}=2 x_{4} .
$$

10.2. Calculations with transfer. Let ξ be a universal $U(1)$ bundle and Λ be a universal $\operatorname{Spin}(3)$ bundle. Then the bundle $\pi: B U(1) \rightarrow \mathrm{BSp}(1)$ is the sphere bundle of Λ and

$$
\pi^{*}(\zeta)=\xi+\bar{\xi}, \quad \pi^{*}(\Lambda)=\xi^{2}+R, \quad \zeta \otimes_{H} \zeta=\Lambda+R,
$$

where ζ is a universal $\operatorname{Sp}(1)$ bundle as above. Let N be the normalizer of the torus $U(1)$ in $\operatorname{Sp}(1)$. The classifying space $B N$ coincides with the orbit space of complex projective space $C P(\infty)$ under free involution I, which acts by

$$
I:\left[z_{0}, z_{1}, \ldots\right] \rightarrow\left[-\bar{z}_{1}, \bar{z}_{0}\right]
$$

on homogeneous coordinates.
The bundle $p: B N \rightarrow \mathrm{BSp}(1)$ coincides with the projective bundle of Λ, hence we have the canonical splitting

$$
p^{*}(\Lambda)=\mu+\nu,
$$

where μ and ν are a plane and linear real bundles. Of course, for the double covering $q: B U(1) \rightarrow B N$ we have $q^{*}(\mu)=\xi^{2}$ and $q^{*}(\nu)=R$.

Let $\tau(\pi)$ and $\tau(p)$ be the transfer maps of the bundles π and p. The following lemma follows from [18].

Lemma 10.3.

$$
\pi^{*} \tau(\pi)^{*}=1+I^{*}, \quad \pi^{*}(p)^{*}=q^{*}
$$

The following lemma follows from the definitions.
Lemma 10.4. For the Atiyah transfer ! of the double covering

$$
1 \times q: B U(1) \times B U(1) \rightarrow B U(1) \times B N
$$

we have

$$
\left(\xi_{1} \xi_{2}^{2}+\bar{\xi}_{1} \bar{\xi}_{2}^{2}\right)_{!}=\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \mu
$$

Let f be the map $f: B N \rightarrow B Z_{2}$ induced by projection of N on the Weyl group Z_{2} and let $\tau^{*}(1 \times q)$ be the Becker-Gottlieb transfer homomorphism for the above double covering $1 \times q$.

Lemma 10.5. For some elements γ_{i} from $\operatorname{MSp}^{*}(R P(\infty))$, the following formula holds:

$$
\tau^{*}(1 \times q)\left(p f_{1}\left(\xi_{1} \xi_{2}^{2}+\overline{\xi_{1}} \bar{\xi}_{2}^{2}\right)\right)=p f_{1}\left(r \xi_{1} \otimes_{R} p^{*}\left(\zeta_{2}\right)\right)+\sum_{i \geq 0} f^{*}\left(\gamma_{i}\right) p f_{2}^{i}\left(r \xi_{1} \otimes_{R} \zeta_{2}\right)
$$

Proof. Taking into account Lemma 3.2, we show that the proof follows from the following formula [34]. Let Q be the double covering $Q: X \rightarrow B, \eta \rightarrow X$ be the symplectic line bundle, $\eta!\rightarrow B$ be the Atiyah transfer image of $\eta, \tau(Q)$ be the Becker-Gottlieb transfer map for Q, and $F: X \rightarrow R P(\infty)$ be the classifying map of the real line bundle associated with the double covering Q. Then for some elements γ_{i} from $\mathrm{MSp}^{*}(R P(\infty))$, the following formula holds:

$$
\tau(Q)^{*}\left(p f_{1}(\eta)\right)=p f_{1}\left(\eta_{!}\right)+\sum_{i \geq 0} f^{*}\left(\gamma_{i}\right) p f_{2}^{i}\left(\eta_{!}\right) .
$$

The lemma is proved.

Lemma 10.6.

$$
\phi_{j} \tau^{*}(\pi)(a)=0 \quad \forall a \in \operatorname{MSp}^{*}(B U(1)) .
$$

Proof. Let $\delta(\pi)$ be the Boardman map [11]. Then we know from [9] that

$$
\tau^{*}(\pi)(a)=\delta(\pi)\left(a e\left(\xi_{2}^{2}\right)\right),
$$

where $e\left(\xi_{2}^{2}\right)$ is the Euler class of the bundle ξ_{2}^{2}, which is the bundle of tangents along the fibers. Then from [19, 20] we have

$$
\theta_{j} e\left(\xi_{2}^{2}\right)=0
$$

this proves Lemma 10.6.
Recall from [20,29] that the bundle Λ is MSp-orientable and the corresponding Euler class has the form

$$
e(\Lambda)=\sum_{j \geq 1} \theta_{j} p f_{1}\left(\zeta_{1}\right)^{j}
$$

We denote the restrictions of π and p to symplectic projective space $H P(4)$ by the same symbols. The total spaces of these bundles coincides with complex projective space $C P(9)$ and orbit space $C P(9) / I$ under free involution I which acts by

$$
\left[z_{0}, z_{1}, \ldots, z_{8}, z_{9}\right] \rightarrow\left[-\bar{z}_{1}, \bar{z}_{0}, \ldots,-z_{9}, \bar{z}_{8}\right]
$$

in homogeneous coordinates.
Proposition 10.7. For the bundle $1 \times \pi: B U(1) \times B U(1) \rightarrow B U(1) \times \operatorname{BSp}(1)$, we have

$$
\phi_{j} \tau^{*}(1 \times \pi)\left(p f_{i}\left(r \xi_{1} \otimes_{R} \zeta_{2}\right)=0\right.
$$

for all $j \geq 0$ and $i=1,2$.
Proof. $\operatorname{In} \mathrm{MSp}^{*}(B U(1) \times \operatorname{BSp}(1))=\operatorname{MSp}^{*}(B U(1))\left[\left[p f_{1}\left(\zeta_{2}\right)\right]\right]$ we have

$$
p f_{i}\left(r \xi_{1} \otimes_{R} \zeta_{2}\right)=\sum_{k \geq 0} \omega_{k}^{(i)} p f_{1}^{k}\left(\zeta_{2}\right)
$$

Then

$$
\phi_{j} \tau^{*}\left(\sum_{k \geq 0} \omega_{k}^{(i)} p f_{1}^{k}\left(\zeta_{2}\right)\right)=\sum_{k \geq 0} \phi_{k} \tau^{*}\left(\omega_{k}^{(i)} p f_{1}^{k}\left(\zeta_{2}\right)\right)=0
$$

The last equation follows from Lemma 10.6.
Proposition 10.8. In $\mathrm{MSp}^{*}(H P(4) \times H P(4))$, the following relations hold for all $j \geq 0$:
(a) $\phi_{0} p f_{1}\left(\zeta_{1}\right)+\phi_{1} p f_{1}^{2}\left(\zeta_{1}\right)+\phi_{2} p f_{1}^{4}\left(\zeta_{1}\right)$ divides $\phi_{j} p f_{1}\left(\zeta_{1} \otimes_{C} \zeta_{2}^{2}\right)$;
(b) $\phi_{j} p f_{1}\left(\zeta_{1} \otimes_{R} \zeta_{2}\right)=0$.

Proof. (a) The bundle

$$
C P(9) \times H P(4) \rightarrow H P(4) \times H P(4)
$$

coincides with the sphere bundle of the pullback of

$$
\Lambda \rightarrow H P(4)
$$

by the projection on the first factor

$$
H P(4) \times H P(4) \rightarrow H P(4)
$$

Thus, we must prove that $\phi_{j} p f_{1}\left(\zeta_{1} \otimes_{C} \zeta_{2}^{2}\right)$ goes to zero in $\operatorname{MSp}^{*}(C P(9) \times H P(4))$ by the homomorphism $\pi \times 1$.

The transfer

$$
\tau=\tau(1 \times \pi)
$$

of the bundle

$$
C P(9) \times C P(9) \rightarrow C P(9) \times H P(4)
$$

is the composition of two transfers

$$
\tau_{1}=\tau(1 \times q), \quad \tau_{2}=\tau(1 \times p)
$$

corresponding to

$$
C P(9) \times C P(9) \rightarrow C P(9) \times C P(9) / I
$$

and

$$
C P(9) \times C P(9) / I \rightarrow C P(9) \times H P(4),
$$

respectively.
By the definitions, we have

$$
p f_{1}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{C} \zeta_{2}^{2}\right)=p f_{1}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \Lambda+R\right)=p f_{1}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \Lambda\right)+p f_{1}\left(\xi_{1}+\bar{\xi}_{1}\right)
$$

Applying Lemmas 10.4 and 10.5, we have

$$
\tau_{1}^{*}\left(p f_{1}\left(\xi_{1} \xi_{2}^{2}+\bar{\xi}_{1} \bar{\xi}_{2}^{2}\right)\right)=p f_{1}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \mu\right)+\sum_{i \geq 0} f^{*}\left(\gamma_{i}\right) p f_{2}^{i}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \mu\right)
$$

Then by definitions

$$
\begin{gathered}
p f_{1}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \mu\right)=(1 \times p)^{*} p f_{1}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \Lambda\right)-p f_{1}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \nu\right), \\
\tau^{*}\left(p f_{1}\left(\xi_{1} \xi_{2}^{2}+\bar{\xi}_{1} \bar{\xi}_{2}^{2}\right)\right)=\tau_{2}^{*}\left(\left(p f_{1}\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \mu\right)\right)+\tau_{2}^{*}\left(\sum_{i \geq 0} f^{*}\left(\gamma_{i}\right) p f_{2}^{i}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \mu\right)\right),
\end{gathered}
$$

and

$$
\begin{aligned}
& \tau_{2}^{*}\left(\left(p f_{1}\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \mu\right)\right)=\tau_{2}^{*}(1 \times p)^{*}\left(p f_{1}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \Lambda\right)\right)-\tau_{2}^{*}\left(p f_{1}\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \nu\right) \\
&=p f_{1}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \Lambda\right) \tau_{2}^{*}\left(1 \times p^{*}\right)(1)-\tau_{2}^{*}\left(p f_{1}\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \nu\right)
\end{aligned}
$$

Now we must prove that

$$
\begin{gathered}
\tau_{2}^{*}\left(1 \times p^{*}\right)(1)=1, \quad \tau_{2}^{*}\left(p f_{1}\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \nu\right)=p f_{1}\left(\zeta_{1}\right), \\
\tau_{2}^{*}\left(\sum_{i \geq 0} f^{*}\left(\gamma_{i}\right) p f_{2}^{i}\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \mu\right)=0
\end{gathered}
$$

Then since $\left.\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \nu\right)$ is the pullback of the bundle

$$
\zeta \times \eta \rightarrow \mathrm{BSp}(1) \times B Z_{2}
$$

by the map $\pi \times f$, we have

$$
p f_{1}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \nu\right)=p f_{1}\left(\xi_{1}+\bar{\xi}_{1}\right)+\sum_{i \geq 0} f^{*}\left(\delta_{i}\right) p f_{1}^{i}\left(\xi_{1}+\bar{\xi}_{1}\right)
$$

Similarly,

$$
\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \mu
$$

is the pullback of the bundle

$$
\zeta \times \eta(2) \rightarrow \mathrm{BSp}(1) \times B O(2)
$$

and hence

$$
p f_{2}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \mu\right)=p f_{2}(2 \mu)+\sum_{i \geq 0} \sigma_{i} p f_{1}^{i}\left(\xi_{1}+\bar{\xi}_{1}\right) .
$$

So we have

$$
\begin{aligned}
& \tau^{*}\left(p f_{1}\left(\xi_{1} \xi_{2}^{2}+\bar{\xi}_{1} \bar{\xi}_{2}^{2}\right)\right)=p f_{1}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \Lambda\right) \tau_{2}^{*}\left(1 \times p^{*}\right)(1) \\
&-\tau_{2}^{*}\left(p f_{1}\left(\zeta_{1}\right)\right)+\tau_{2}^{*}\left(p f_{1}\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{R} \nu\right)+\tau_{2}^{*}\left(\sum_{i \geq 0}\left(\alpha_{i} p f_{1}\left(\zeta_{1}\right)\right)\right)
\end{aligned}
$$

for some $\alpha_{i} \in \operatorname{MSp}^{*}(C P(9) / I)$.
It is known from [37] that up to dimension $32, \mathrm{MSp}^{4 n}$ is torsion-free. Therefore, $\mathrm{MSp}^{4 n}(H P(4))$ is torsion-free for $4 n \geq-12$. Now Lemma 10.3 asserts that for any element a from

$$
\operatorname{ker} q^{*} \operatorname{MSp}^{4 n}(C P(9) / I) \rightarrow \operatorname{MSp}^{4 n}(C P(9)), \quad 4 n \geq-12
$$

which comes from $\operatorname{MSp}^{*}(B N)$, we have

$$
\tau^{*}(p)(a)=0
$$

Also

$$
\tau^{*}(p)(1)=1, \quad \tau^{*}(\pi)(1)=2
$$

But the minimal degree of the elements α_{i} is -12 . This proves Proposition 10.8(a).
The proof of (b) follows from Lemma 10.3. For the bundle $\pi \times 1$ from Proposition 10.7 we have

$$
\begin{aligned}
(\pi \times 1)^{*} \tau^{*}(\pi \times 1)\left(p f_{1}\left(r \xi_{1} \otimes \zeta_{2}\right)\right)=(1+I)^{*}\left(p f_{1}(\right. & \left.\left.\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{C} \zeta_{2}\right)\right) \\
& =2 p f_{1}\left(\left(\xi_{1}+\bar{\xi}_{1}\right) \otimes_{C} \zeta_{2}\right)=(\pi \times 1)^{*}\left(\zeta_{1} \otimes_{R} \zeta_{2}\right)
\end{aligned}
$$

The proof now follows from Proposition 10.7.
Proof of Theorem 10.1. From Propositions 10.2 and 10.8(a) we have in $\mathrm{MSp}^{*}(H P(4) \times H P(4)$ the relation of the form

$$
\theta_{j}\left(\left(2 x_{1}\right) v^{2}+\left(x_{1}^{2}\right) u v^{2}+\left(2 x_{3}\right) v^{4}+\left(x_{1} x_{2}\right) u^{2} v^{2}+\left(x_{2}^{2}\right) u v^{4}+\cdots\right)=\sum_{i \geq 1}\left(\theta_{i} v^{i}\right)\left(\sum_{k, l \geq 0} b_{k l}^{(j)} u^{k} v^{l}\right)
$$

for $u=p f_{1}\left(\zeta_{1}\right), v=p f_{1}\left(\zeta_{2}\right), j \geq 1$, and some elements

$$
\left.b^{(j)}=\sum_{k, l \geq 0} b_{k l}^{(j)} u^{k} v^{l}\right) \in \operatorname{MSp} *\left(\operatorname{BSp}(1)^{2}\right)
$$

Since $\theta_{2 i+1}=0$ (see [34]) by the equality of the coefficients at the monomials $u v^{2}, u^{2} v^{2}$, and $u v^{4}$, we obtain (b) and (c).

Similarly from Propositions 10.2 and 10.8(b) we have

$$
\left.\theta_{j}\left(a_{110}\right) v^{2}+a_{120} u v^{2}+a_{220} u^{2} v^{2}+a_{140} u v^{4}+\ldots\right)=0
$$

i.e.,

$$
\theta_{j}\left(\left(2 x_{1}\right) v^{2}+\left(2 x_{2}\right) u v^{2}+\left(2 x_{3}\right) v^{4}+\left(2 x_{4}\right) u v^{4}+\ldots\right)=0
$$

and we have (a).
10.3. On symplectic cobordisms of real projective plane. Let r be the generator of $\operatorname{MSp}^{2}\left(R P^{2}\right)=\mathbb{Z} / 2$. Recall two formulas in $\operatorname{MSp}^{*}\left(R P^{2}\right)$ from [20]:

$$
2 \theta_{i}(2)=\theta_{1} \theta_{i} r
$$

and

$$
\theta_{i}(2) \theta_{i}(2)=\theta_{i} \theta_{j} r .
$$

As above, let $\phi_{0}=\theta_{1}$ and $\phi_{i}=\theta_{2 i}$.
Theorem 10.9. In $\operatorname{MSp}^{*}\left(R P^{2}\right)$, the following relations hold:

$$
\theta_{8 n+7}(2)=0, \quad \theta_{8 n+3}(2)=\phi_{2 n+1}^{2} r, \quad \theta_{4 k+1}(2)=\sum_{i=0}^{k-1} \phi_{2 i+1} \phi_{2(k-i)} r
$$

for $n \geq 0$ and $k \geq 1$.
Proof. We use the Becker-Gottlieb transfer map. Namely, we need two formulas. First, as was proved by Buchstaber [20] for the transfer map $\tau(\pi)$ of the double covering $\pi: S^{\infty} \rightarrow R P^{\infty}$, we have

$$
\begin{equation*}
\tau^{*}(\pi)(1)=2+\sum_{k=1}^{\infty} a_{k} y^{k-1} \tag{10.1}
\end{equation*}
$$

where y is the Euler class of the bundle ν from the definition of the elements $\theta_{i}(n)$. So for the covering $\pi: S^{2} \rightarrow R P^{2}$, this implies

$$
\begin{equation*}
\tau^{*}(\pi)(1)=2+\theta_{1}(2) \tag{10.2}
\end{equation*}
$$

The second formula we need is the following [34].
Let p be a double covering $p: X \rightarrow B, \eta$ be the symplectic line bundle $\eta \rightarrow X, \eta_{p}$ be the transferred $\eta, \tau(p)$ be the transfer map of p, and $f: B \rightarrow R P^{\infty}$ be the classifying map of the real bundle ν over B associated with the covering p. Then for some elements $\gamma_{i} \in \operatorname{MSp}^{4-8 i}\left(R P^{\infty}\right)$ the following formula holds in $\mathrm{MSp}^{*}(B)$:

$$
\begin{equation*}
\tau(p)^{*}\left(P_{1}(\eta)\right)=P_{1}\left(\eta_{p}\right)+\sum_{i \geq 0} f^{*}\left(\gamma_{i}\right) P_{2}\left(\eta_{p}\right) \tag{10.3}
\end{equation*}
$$

where P_{i} are symplectic Pontryagin classes. Applying (10.3) to the transfer map $\tau=\tau(\pi \times 1)$ for the double covering

$$
\pi \times 1: S^{2} \times H P^{\infty} \rightarrow R P^{2} \times H P^{\infty}
$$

and taking into account the fact that for the transferred bundle $\zeta_{p}=\zeta+\nu \otimes_{R} \zeta$ we have

$$
P_{1}\left(\zeta_{p}\right)=x+x+\sum_{i \geq 1} \theta_{i}(2) x^{i}, \quad p_{2}\left(\zeta_{p}\right)=x\left(x+\sum_{i \geq 1} \theta_{i}(2) x^{i}\right),
$$

we obtain

$$
\tau^{*}(x)=x+x+\sum_{i \geq 1} \theta_{i}(2) x^{i}+\sum_{j \geq 1} f^{*}\left(\gamma_{i}\right)\left(1+\sum_{i \geq 1} \theta_{i}(2) x^{i-1}\right)^{j} x^{2 j}
$$

On the other hand, by (10.1) we have

$$
\left.\tau^{*}(x)=\left(2+\theta_{i}(2)\right)\right) x
$$

We obtain

$$
\begin{equation*}
\sum_{i \geq 2} \theta_{i}(2) x^{i}=-\sum_{j \geq 1} f^{*}\left(\gamma_{i}\right)\left(1+\sum_{i \geq 1} \theta_{i}(2) x^{i-1}\right)^{j} x^{2 j} . \tag{10.4}
\end{equation*}
$$

The theorem is proved.

The diagonal of $R P^{2} \wedge R P^{2}$ coincides with $R P^{1} \wedge R P^{1}$, i.e., with S^{2}, and the diagonal map $R P^{2} \rightarrow$ $R P^{2} \wedge R P^{2}$ factors as composition of the projection $R P^{2} \rightarrow S^{2}$ onto top cell with the inclusion of the bottom cell. Then the triple diagonal map $R P^{2} \rightarrow R P^{2} \wedge R P^{2} \wedge R P^{2}$ is null-homotopic. This means that for any $\alpha, \beta \in \operatorname{MSp}^{*}\left(R P^{2}\right)$, we have $\alpha \beta=\alpha_{1} \beta_{1} r$, where $s_{1} \alpha_{1}$ and $s_{1} \beta_{1}$ are restrictions of α and β to $R P^{1}=S^{1}$. In particular, all triple products in $\operatorname{MSp}^{*}\left(R P^{2}\right)$ are zero.

After remarks on double and triple products, the proof is completed by (10.3) and induction on i.

11. Some Examples and Tables

First, recall from [31] that generators for

where

$$
\left|v_{n}\right|=2\left(p^{n}-1\right)=\left|m_{n}\right|,
$$

are given by

$$
v_{n}=p m_{n-} \sum_{i=1}^{n-1} m_{i} v_{n-i}^{p^{i}} .
$$

We use the above formula with the following well-known formulas

$$
F(x, y)=\exp (\log x+\log y), \quad \log x=\sum_{n \geq 0} m_{n} x^{n+1}
$$

for calculating $\alpha_{i j}=\alpha_{i j}^{B P}$.

11.1. Coefficients of formal group law in $B P$ theory.

$$
\begin{aligned}
& \alpha_{11}=-v_{1}, \\
& \alpha_{12}=v_{1}^{2}, \\
& \alpha_{13}=-2 v_{1}^{3}-2 v_{2}, \\
& \alpha_{22}=-4 v_{1}^{3}-3 v_{2}, \\
& \alpha_{14}=3 v_{1}^{4}+4 v_{1} v_{2}, \\
& \alpha_{23}=10 v_{1}^{4}+11 v_{1} v_{2}, \\
& \alpha_{15}=-4 v_{1}^{5}+6 v_{1}^{2} v_{2}, \\
& \alpha_{24}=-21 v_{1}^{5}-28 v_{1}^{2} v_{2}, \\
& \alpha_{33}=-34 v_{1}^{5}-43 v_{1}^{2} v_{2}, \\
& \alpha_{16}=6 v_{1}^{6}+12 v_{1}^{3} v_{2}+4 v_{2}^{2}, \\
& \alpha_{25}=43 v_{1}^{6}+75 v_{1}^{3} v_{2}+18 v_{2}^{2}, \\
& \alpha_{34}=101 v_{1}^{6}+164 v_{1}^{3} v_{2}+34 v_{2}^{2}, \\
& \alpha_{17}=-10 v_{1}^{7}-24 v_{1}^{4} v_{2}-14 v_{1} v_{2}^{2}-4 v_{3}, \\
& \alpha_{26}=-88 v_{1}^{7}-190 v_{1}^{4} v_{2}-89 v_{1} v_{2}^{2}-14 v_{3}, \\
& \alpha_{35}=-275 v_{1}^{7}-551 v_{1}^{4} v_{2}-226 v_{1} v_{2}^{2}-28 v_{3},
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{44}=-394 v_{1}^{7}-765 v_{1}^{4} v_{2}-302 v_{1} v_{2}^{2}-35 v_{3}, \\
& \alpha_{18}=15 v_{1}^{8}+40 v_{1}^{5} v_{2}+28 v_{1}^{2} v_{2}^{2}+8 v_{1} v_{3}, \\
& \alpha_{27}=169 v_{1}^{8}+420 v_{1}^{5} v_{2}+257 v_{1}^{2} v_{2}^{2}+46 v_{1} v_{3}, \\
& \alpha_{36}=680 v_{1}^{8}+1586 v_{1}^{5} v_{2}+879 v_{1}^{2} v_{2}^{2}+126 v_{1} v_{3}, \\
& \alpha_{45}=1303 v_{1}^{8}+2933 v_{1}^{5} v_{2}+1543 v_{1}^{2} v_{2}^{2}+203 v_{1} v_{3}, \\
& \alpha_{19}=-22 v_{1}^{9}-66 v_{1}^{6} v_{2}-58 v_{1}^{3} v_{2}^{2}-12 v_{1}^{2} v_{3}-v_{2}^{3}, \\
& \alpha_{28}=-312 v_{1}^{9}-880 v_{1}^{6} v_{2}-688 v_{1}^{3} v_{2}^{2}-104 v_{1}^{2} v_{3}-72 v_{2}^{3}, \\
& \alpha_{37}=-1573 v_{1}^{9}-4192 v_{1}^{6} v_{2}-3001 v_{1}^{3} v_{2}^{2}-382 v_{1}^{2} v_{3}-260 v_{2}^{3}, \\
& \alpha_{46}=-3861 v_{1}^{9}-9900 v_{1}^{6} v_{2}-6707 v_{1}^{3} v_{2}^{2}-791 v_{1}^{2} v_{3}-523 v_{2}^{3}, \\
& \alpha_{55}=-5156 v_{1}^{9}-13042 v_{1}^{6} v_{2}-8671 v_{1}^{3} v_{2}^{2}-1001 v_{1}^{2} v_{3}-654 v_{2}^{3} .
\end{aligned}
$$

11.2. Example $n=2$. Let

$$
\alpha_{i j}=\alpha_{i j}^{G(2)} .
$$

Then using the map

$$
B P \rightarrow G(n),
$$

where

$$
B P^{*}=Z_{(p)}\left[v_{1}, v_{2}, \ldots\right], \quad G(n)^{*}=Z_{(p)}\left[v_{n} \cdot v_{n}^{-1}\right],
$$

which satisfies $v_{r} \rightarrow v_{r}$ if $r=n$ and $v_{r} \rightarrow 0$ otherwise, we have

$$
\alpha_{13}=-2 v_{2}, \quad \alpha_{22}=-3 v_{2}, \quad \alpha_{16}=4 v_{2}^{2}, \quad \alpha_{25}=18 v_{2}^{2}, \quad \alpha_{34}=34 v_{2}^{2},
$$

and otherwise $\alpha_{i j}=0$ for $i+j=8$.
11.3. Initial segments of the formal group law in Morava theory $K(s)^{*}$. For $p=2$ and $s=2$:

$$
\begin{aligned}
x+ & +v_{2} x^{2} y^{2} \\
& +v_{2}^{3}\left(x^{6} y^{4}+x^{4} y^{6}\right) \\
& +v_{2}{ }^{5}\left(y^{12} x^{4}+y^{4} x^{12}\right) \\
& +v_{2}{ }^{7}\left(y^{10} x^{12}+y^{12} x^{10}+y^{14} x^{8}+y^{8} x^{14}\right) \\
& +v_{2}{ }^{9}\left(y^{20} x^{8}+y^{8} x^{20}\right) \\
& +v_{2}{ }^{11}\left(y^{8} x^{26}+y^{10} x^{24}+y^{24} x^{10}+y^{26} x^{8}\right) \\
& +v_{2}^{13}\left(y^{12} x^{28}+y^{28} x^{12}\right) \\
& +v_{2}^{15}\left(y^{30} x^{16}+y^{16} x^{30}+y^{18} x^{28}+y^{20} x^{26}+y^{22} x^{24}+y^{24} x^{22}+y^{26} x^{20}+y^{28} x^{18}\right) \\
& +v_{2}^{17}\left(y^{20} x^{32}+y^{32} x^{20}\right) \\
& +v_{2}^{19}\left(y^{16} x^{42}+y^{18} x^{40}+y^{40} x^{18}+y^{42} x^{16}\right) \\
& +v_{2}^{21}\left(y^{8} x^{56}+y^{20} x^{44}+y^{40} x^{24}+y^{56} x^{8}+y^{24} x^{40}+y^{44} x^{20}\right) \\
& +v_{2}^{23}\left(y^{16} x^{54}+y^{18} x^{52}+y^{20} x^{50}+y^{22} x^{48}+y^{48} x^{22}+y^{50} x^{20}+y^{52} x^{18}+y^{54} x^{16}\right) \\
& +v_{2}^{25}\left(y^{28} x^{48}+y^{16} x^{60}+y^{48} x^{28}+y^{60} x^{16}\right) \\
& +v_{2}^{27}\left(y^{24} x^{58}+y^{26} x^{56}+y^{56} x^{26}+y^{58} x^{24}\right) \\
& +v_{2}^{29}\left(y^{16} x^{72}+y^{28} x^{60}+y^{32} x^{56}+y^{40} x^{48}+y^{48} x^{40}+y^{60} x^{28}+y^{56} x^{32}+y^{72} x^{16}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +v_{2}^{31}\left(y^{32} x^{62}+y^{34} x^{60}+y^{38} x^{56}+y^{36} x^{58}+y^{40} x^{54}+y^{42} x^{52}+y^{44} x^{50}+y^{48} x^{46}\right. \\
& \left.+y^{46} x^{48}+y^{50} x^{44}+y^{52} x^{42}+y^{54} x^{40}+y^{56} x^{38}+y^{58} x^{36}+y^{60} x^{34}+y^{62} x^{32}\right)+\ldots
\end{aligned}
$$

For $p=2$ and $s=3$:

$$
\begin{aligned}
x+y & +v_{3} x^{4} y^{4} \\
& +v_{3}{ }^{5}\left(y^{20} x^{16}+y^{16} x^{20}\right) \\
& +v_{3}{ }^{9}\left(y^{16} x^{48}+y^{48} x^{16}\right) \\
& +v_{3}^{21}\left(y^{80} x^{68}+y^{84} x^{64}+y^{64} x^{84}+y^{68} x^{80}\right) \\
& +v_{3}{ }^{25}\left(y^{112} x^{64}+y^{64} x^{112}\right)+\ldots
\end{aligned}
$$

For $p=2$ and $s=4$:

$$
\begin{aligned}
x+y & +v_{4} y^{8} x^{8} \\
& +v_{4}{ }^{9}\left(y^{72} x^{64}+y^{64} x^{72}\right) \\
& +v_{4}{ }^{17}\left(y^{64} x^{192}+y^{192} x^{64}\right) \\
& +v_{4}{ }^{73}\left(y^{520} x^{576}+y^{512} x^{584}+y^{584} x^{512}+y^{576} x^{520}\right)+\ldots
\end{aligned}
$$

For $p=2$ and $s=5$:

$$
\begin{aligned}
x+y & +v_{5} y^{16} x^{16} \\
& +v_{5}{ }^{17}\left(y^{272} x^{256}+y^{256} x^{272}\right) \\
& +v_{5}{ }^{33}\left(y^{768} x^{256}+y^{256} x^{768}\right)+\ldots
\end{aligned}
$$

For $p=3$ and $s=2$:

$$
\begin{aligned}
& x+y+ v_{2}\left(2 x^{6} y^{3}+2 x^{3} y^{6}\right) \\
&+v_{2}{ }^{4}\left(2 y^{12} x^{21}+y^{9} x^{24}+y^{15} x^{18}+y^{18} x^{15}+y^{24} x^{9}+2 y^{21} x^{12}\right) \\
&+ v_{2}{ }^{7}\left(2 y^{21} x^{36}+2 y^{18} x^{39}+2 y^{36} x^{21}+y^{30} x^{27}+y^{27} x^{30}+2 y^{39} x^{18}\right) \\
&+ v_{2}{ }^{10}\left(2 y^{45} x^{36}+2 y^{36} x^{45}+2 y^{18} x^{63}+2 y^{9} x^{72}+2 y^{72} x^{9}+2 y^{63} x^{18}\right) \\
&+ v_{2}{ }^{13}\left(y^{48} x^{57}+2 y^{27} x^{78}+y^{57} x^{48}+2 y^{33} x^{72}+y^{30} x^{75}+2 y^{60} x^{45}+y^{36} x^{69}\right. \\
& \quad+2 y^{39} x^{66}+2 y^{66} x^{39}+2 y^{45} x^{60}+y^{42} x^{63}+2 y^{51} x^{54}+2 y^{54} x^{51}+y^{75} x^{30} \\
&\left.\quad+2 y^{78} x^{27}+y^{63} x^{42}+y^{69} x^{36}+2 y^{72} x^{33}\right) \\
&+ v_{2}{ }^{16}\left(2 y^{90} x^{39}+2 y^{93} x^{36}+2 y^{39} x^{90}+2 y^{36} x^{93}+y^{63} x^{66}+y^{66} x^{63}\right) \\
&+ v_{2}^{19}\left(2 y^{36} x^{117}+y^{27} x^{126}+y^{81} x^{72}+y^{72} x^{81}+2 y^{54} x^{99}+2 y^{99} x^{54}+y^{126} x^{27}+2 y^{117} x^{36}\right) \\
&+ v_{2}{ }^{22}\left(y^{69} x^{108}+y^{63} x^{114}+2 y^{57} x^{120}+y^{60} x^{117}+2 y^{66} x^{111}+y^{54} x^{123}+y^{123} x^{54}\right. \\
& \quad+2 y^{81} x^{96}+y^{108} x^{69}+2 y^{96} x^{81}+2 y^{111} x^{66}+y^{114} x^{63}+y^{117} x^{60}+2 y^{120} x^{57} \\
&\left.\quad+y^{93} x^{84}+y^{84} x^{93}+2 y^{87} x^{90}+2 y^{90} x^{87}\right) \\
&+ v_{2}{ }^{25}\left(2 y^{57} x^{144}+2 y^{54} x^{147}+2 y^{75} x^{126}+2 y^{72} x^{129}+y^{84} x^{117}+y^{81} x^{120}\right. \\
& \quad+y^{99} x^{102}+2 y^{93} x^{108}+2 y^{90} x^{111}+y^{102} x^{99}+2 y^{111} x^{90}+2 y^{108} x^{93}+y^{117} x^{84} \\
&\left.\quad+y^{120} x^{81}+2 y^{129} x^{72}+2 y^{126} x^{75}+2 y^{144} x^{57}+2 y^{147} x^{54}\right) \\
&+ v_{2}^{28}\left(2 y^{54} x^{171}+2 y^{90} x^{135}+2 y^{135} x^{90}+2 y^{171} x^{54}\right)+\ldots
\end{aligned}
$$

For $p=3$ and $s=3$:

$$
\begin{aligned}
x+y & +v_{3}\left(2 x^{9} y^{18}+2 x^{18} y^{9}\right) \\
& +v_{3}{ }^{10}\left(y^{81} x^{180}+2 y^{90} x^{171}+y^{99} x^{162}+y^{162} x^{99}+2 y^{171} x^{90}+y^{180} x^{81}\right) \\
& +v_{3}{ }^{19}\left(2 y^{171} x^{324}+2 y^{162} x^{333}+y^{243} x^{252}+2 y^{333} x^{162}+y^{252} x^{243}+2 y^{324} x^{171}\right) \\
& +v_{3}{ }^{28}\left(2 y^{567} x^{162}+2 y^{162} x^{567}+2 y^{648} x^{81}+2 y^{81} x^{648}+2 y^{324} x^{405}+2 y^{405} x^{324}\right)+\ldots
\end{aligned}
$$

For $p=7$ and $s=2$:

$$
\begin{aligned}
& x+y+ v_{2}\left(4 y^{35} x^{14}+6 y^{42} x^{7}+4 y^{14} x^{35}+2 y^{28} x^{21}+2 y^{21} x^{28}+6 y^{7} x^{42}\right) \\
&+v_{2}{ }^{8}\left(4 y^{105} x^{280}+3 y^{98} x^{287}+3 y^{126} x^{259}+4 y^{119} x^{266}+2 y^{154} x^{231}+3 y^{140} x^{245}\right. \\
&+5 y^{147} x^{238}+4 y^{133} x^{252}+y^{91} x^{294}+2 y^{182} x^{203}+5 y^{175} x^{210}+2 y^{168} x^{217} \\
&+5 y^{161} x^{224}+2 y^{217} x^{168}+5 y^{210} x^{175}+2 y^{203} x^{182}+5 y^{196} x^{189}+5 y^{189} x^{196} \\
&+4 y^{252} x^{133}+3 y^{245} x^{140}+5 y^{238} x^{147}+2 y^{231} x^{154}+5 y^{224} x^{161} \\
&+3 y^{273} x^{112}+4 y^{266} x^{119}+3 y^{259} x^{126}+6 y^{315} x^{70}+y^{308} x^{77}+6 y^{301} x^{84} \\
&+y^{294} x^{91}+3 y^{287} x^{98}+4 y^{280} x^{105}+y^{336} x^{49}+6 y^{329} x^{56}+y^{322} x^{63} \\
&\left.+y^{49} x^{336}+y^{63} x^{322}+6 y^{56} x^{329}+6 y^{70} x^{315}+y^{77} x^{308}+6 y^{84} x^{301}+3 y^{112} x^{273}\right) \\
&+v_{2}{ }^{15}\left(4 y^{413} x^{308}+6 y^{427} x^{294}+2 y^{420} x^{301}+2 y^{448} x^{273}+6 y^{441} x^{280}+4 y^{98} x^{623}\right. \\
&+4 y^{462} x^{259}+4 y^{455} x^{266}+4 y^{308} x^{413}+6 y^{490} x^{231}+5 y^{119} x^{602}+6 y^{476} x^{245} \\
&+4 y^{315} x^{406}+6 y^{126} x^{595}+2 y^{469} x^{252}+2 y^{322} x^{399}+2 y^{518} x^{203}+4 y^{511} x^{210} \\
&+4 y^{504} x^{217}+2 y^{497} x^{224}+2 y^{553} x^{168}+y^{546} x^{175}+3 y^{539} x^{182}+6 y^{525} x^{196} \\
&+5 y^{609} x^{112}+5 y^{602} x^{119}+6 y^{595} x^{126}+4 y^{588} x^{133}+3 y^{574} x^{147}+4 y^{133} x^{588} \\
&+y^{567} x^{154}+2 y^{560} x^{161}+3 y^{147} x^{574}+4 y^{623} x^{98}+6 y^{616} x^{105} \\
&+6 y^{329} x^{392}+y^{154} x^{567}+2 y^{168} x^{553}+2 y^{161} x^{560}+3 y^{182} x^{539}+y^{175} x^{546} \\
&+6 y^{196} x^{525}+4 y^{210} x^{511}+2 y^{203} x^{518}+4 y^{217} x^{504}+6 y^{231} x^{490}+2 y^{224} x^{497} \\
&+6 y^{392} x^{329}+2 y^{252} x^{469}+4 y^{259} x^{462}+6 y^{245} x^{476}+4 y^{406} x^{315}+2 y^{399} x^{322} \\
&+2 y^{273} x^{448}+2 y^{301} x^{420}+4 y^{266} x^{455}+6 y^{280} x^{441}+6 y^{294} x^{427}+6 y^{105} x^{616} \\
& 5 y^{112} x^{609}+\ldots
\end{aligned}
$$

11.4. Examples of the polynomials A_{k}^{1}. Below are some $A_{k}^{1}(z, Z)$ from Sec. 5, $y=z^{p-1}$ and $\sigma_{p}=Z$.

For $p=3$ and $s=2$:

$$
\begin{aligned}
& \sigma_{1}=v_{2} y^{3} \sigma_{3}+v_{2} y^{4} x, \\
& \sigma_{2}=2 v_{2}^{2} y^{3} \sigma_{3}^{4}+2 v_{2} y^{2} \sigma_{3}{ }^{2}+x^{2} v_{2} y^{4}+2 y .
\end{aligned}
$$

For $p=5$ and $s=3$:

$$
\begin{aligned}
\sigma_{1} & =v_{3} y^{25} \sigma_{5}{ }^{5}+v_{3} y^{30} \sigma_{5}+v_{3} y^{31} x, \\
\sigma_{2} & =4 v_{3}{ }^{2} y^{25} \sigma_{5}{ }^{30}+4 v_{3}{ }^{2} y^{30} \sigma_{5}{ }^{26}+3 v_{3} y^{19} \sigma_{5}{ }^{10}+v_{3} y^{24} \sigma_{5}{ }^{6}+3 v_{3} y^{29}{\sigma_{5}}^{2}+2 v_{3} y^{31} x^{2}, \\
\sigma_{3} & =2 v_{3}{ }^{3} y^{25} \sigma_{5}{ }^{55}+2 v_{3}{ }^{3} y^{30} \sigma_{5}{ }^{51}+v_{3}{ }^{2} y^{19} \sigma_{5}{ }^{35}+2 v_{3}{ }^{2} y^{24} \sigma_{5}{ }^{31}+v_{3}{ }^{2} y^{29} \sigma_{5}{ }^{27} \\
& +2 v_{3} y^{13} \sigma_{5}{ }^{15}+v_{3} y^{18} \sigma_{5}{ }^{11}+v_{3} y^{23} \sigma_{5}{ }^{7}+2 v_{3} y^{28} \sigma_{5}{ }^{3}+2 x^{3} v_{3} y^{31},
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{4} & =4 v_{3}{ }^{4} y^{25} \sigma_{5}{ }^{80}+4 v_{3}{ }^{4} y^{30} \sigma_{5}{ }^{76}+4 v_{3}{ }^{3} y^{19} \sigma_{5}{ }^{60}+3 v_{3}{ }^{3} y^{24} \sigma_{5}{ }^{56} \\
& +4 v_{3}{ }^{3} y^{29} \sigma_{5}{ }^{52}+4 v_{3}{ }^{2} y^{13} \sigma_{5}{ }^{40}+2 v_{3}{ }^{2} y^{18} \sigma_{5}{ }^{36}+2 v_{3}{ }^{2} y^{23} \sigma_{5}{ }^{32}+4 v_{3}{ }^{2} y^{28} \sigma_{5}{ }^{28} \\
& +4 y^{7} v_{3} \sigma_{5}{ }^{20}+y^{12} v_{3} \sigma_{5}{ }^{16}+4 y^{17} v_{3} \sigma_{5}{ }^{12}+y^{22} v_{3} \sigma_{5}{ }^{8}+4 y^{27} v_{3} \sigma_{5}{ }^{4}+x^{4} v_{3} y^{31}+4 y .
\end{aligned}
$$

REFERENCES

1. J. F. Adams, Infinite Loop Spaces, Ann. Math. Stud., Princeton Univ. Press, Princeton (1978).
2. M. F. Atiyah, "Characters and cohomology of finite groups," Publ. Math. I.H.E.S., 9, 23-64 (1961).
3. M. Bakuradze, "Morava K-theory rings for the modular groups in Chern classes," K-theory, 38, No. 2, 87-94 (2008).
4. M. Bakuradze and S. Priddy, "Transfer and complex oriented cohomology rings," Alg. Geom. Topol., 3, 473-509 (2003).
5. M. Bakuradze and S. Priddy, "Transferred Chern classes in Morava K-theory," Proc. Am. Math. Soc., 132, 1855-1860 (2004).
6. M. Bakuradze and V. Vershinin, "Morava K-theory rings for the dihedral, semidihedral, and generalized quaternion groups in Chern classes," Proc. Am. Math. Soc., 134, 3707-3714 (2006).
7. M. Bakuradze, M. Jibladze, and V. Vershinin, "Characteristic classes and transfer relations in cobordisms," Proc. Am. Math. Soc., 131 No. 6, 1935-1942 (2003).
8. M. Bakuradze and R. Nadiradze, "Cohomological realizations of two-valued formal groups and their application," Proc. Tbilisi A. Razmadze Math. Inst., 94, 12-28 (1991).
9. J. C. Becker and D. H. Gottlieb, "The transfer map and fibre bundles," Topology, 14, 1-12 (1975).
10. J. C. Becker and R. E. Schultz, "Axioms for bundle transfers and traces," Math. Z., 227, No. 4, 583-605 (1998).
11. J. M. Boardman, Stable Homotopy Theory, Univ. of Warwick (1966).
12. M. Brunetti, "Morava K-theory of p-groups with cyclic maximal subgroups and other related p-groups," K-Theory, 24, 385-395 (2001).
13. K. S. Brown, Cohomology of Groups, Grad. Texts Math., 87, Springer-Verlag, Berlin (1982).
14. V. M. Buchstaber, "Characteristic classes in cobordisms and topological applications of theories of one- and two-valued formal groups," in: Itogi Nauki Tekh., 10, VINITI, Moscow (1977), pp. 5178.
15. H. Cartan and S. Eilenberg, Homological Algebra, Princeton Math. Ser., 19, Princeton Univ. Press, Princeton (1956).
16. T. tom Dieck, "Transformation groups and representation theory," Lect. Notes Math., 766 (1979).
17. A. Dold, "The fixed point transfer of fibre-preserving maps," Math. Z., 148, 215-244 (1976).
18. M. Feshbach, "The transfer and compact Lie groups," Trans. Am. Math. Soc., 251, 139-169 (1979).
19. V. G. Gorbunov, "Symplectic cobordism of projective spaces," Math. Sb., 181, 506-520 (1990).
20. V. G Gorbunov and N. Ray, "Orientation of $\operatorname{Spin}(n)$ bundles and symplectic cobordism," Publ. RIMS Kyoto Univ., 28, No. 1, 39-55 (1992).
21. M. Hazewinkel, "Constructing formal groups, III. Applications to complex cobordism and BrownPeterson cohomology," J. Pure Appl. Algebra, 10, 1-18 (1977/78).
22. F. Hirzebruch, T. Berger, and R. Jung, Manifolds and Modular Forms, Asp. Math., E20, Friedrich Vieweg \& Sohn, Braunschweig (1992).
23. M. Hopkins, N. Kuhn, and D. Ravenel, "Generalized group characters and complex oriented cohomology theories," J. Am. Math. Soc., 13, No. 3, 553-594 (2000).
24. J. Hunton, "The Morava K-theories of wreath products," Math. Proc. Cambridge Philos. Soc., 107, 309-318 (1990).
25. J. Hunton, "The complex oriented cohomology of extended powers," Ann. Inst. Fourier, Grenoble, 48, No. 2, 517-534 (1998).
26. M. Imaoka, "Symplectic Pontryagin numbers and homotopy groups of $\operatorname{MSp}(N)$," Hiroshima Math. J., 12, No. 1, 151-181 (1982).
27. D. S. Kahn and S. B. Priddy, "Applications of the transfer to stable homotopy theory," Bull Am. Math. Soc., 78, 981-987 (1972).
28. I. Kriz, "Morava K-theory of classifying spaces: Some calculations," Topology, 36, 1247-1273 (1997).
29. R. Nadiradze, "Characteristic classes in the $S C^{*}$-theory and their applications," in: Proc. Int. Topol. Conf. Baku (1987); Preprint Razmadze Math. Inst., Tbilisi (1991); Preprint No. 58, Heidelberg (1993).
30. D. Quillen, "Elementary proofs of some results of cobordism 1theory using Steenrod operations," Adv. Math., 7, 29-56 (1971).
31. D. Ravenel, Complex Cobordism and Stable Homotopy Groups of Spheres, Academic Press, Orlando, Florida (1986).
32. N. Ray, "Indecomposables in Tors MSp ${ }^{*}$ " Topology, 10, 261-270 (1971).
33. N. Ray, "Some results in generalised homology, K-theory, and bordism," Proc. Cambridge Philos. Soc., 71, 283-300 (1977).
34. F. W. Roush, "On some torsion classes in symplectic bordism," unpublished.
35. B. Schuster, "On the Morava K-theory of some finite 2-groups," Math. Proc. Cambridge Philos. Soc., 121, 7-13 (1997).
36. M. Tezuka and N. Yagita, "Cohomology of finite groups and Brown-Peterson cohomology, II," in: Homotopy Theory and Related Topics (Kinosaki, 1988), Lect. Notes Math., 1418, SpringerVerlag, Berlin (1990), pp. 57-69.
37. V. V. Vershinin, "Computation of the symplectic cobordism ring in dimensions less than 32 and the non-triviality of the majority of the triple products of Ray's elements," Sib. Mat. Zh., 24, 50-63 (1983).
38. U. Würgler, "Commutative ring spectra in characteristic 2," Commun. Math. Helv., 61, 33-45 (1986).
39. N. Yagita, "Complex K-theory of $B S L_{3}(Z)$," K-Theory, 6, 87-95 (1992).
40. N. Yagita, "Note on $B P$-theory for extensions of cyclic groups by elementary abelian p-groups," Kodai Math. J., 20, No. 2, 79-84 (1997).

M. Bakuradze

Razmadze Mathematical Institute, Tbilisi, Georgia
E-mail: maxo@rmi.acnet.ge

[^0]: Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 77, Complex Analysis and Topology, 2012.

