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TRANSFERRED CHARACTERISTIC CLASSES
AND GENERALIZED COHOMOLOGY RINGS

M. Bakuradze UDC 515.16

Abstract. In this paper, we study the interaction between transferred Chern classes and Chern classes

of transferred bundles. We calculate the algebra BP ∗(Xp
hΣp

) and show that its multiplicative structure

is completely determined by the Frobenius reciprocity. We also give some tables of the initial segments

of the formal group law in the Morava K-theory which are often useful in calculations.
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1. Introduction

The stable transfer map and its applications is already a subject of a whole branch of algebraic

topology. For the constructions and formal properties of the transfer map, the best reference is the

book [1] where J. F. Adams suggested that all topologists become acquainted with the transfer map

as a major tool in applications and proofs. For axiomatic approach, see [10].

Our aim here is to give some applications of the transfer map in the presentation of the cohomology

rings in the explicit form.

A considerable part of the material is collected from joint publications with Stewart Priddy, Vladimir

Vershinin, and Mamuka Jibladze [3–7].

For various examples of finite groups, the complex oriented cohomology ring coincides with its

subring generated by Chern classes [36, 39, 40]. Even more groups are good in the sense that their

Morava K-theory is generated by transferred Chern classes of complex representations of subgroups

[23]. Special effort was needed to find an example of a group not good in this sense [28]. Thus, the

relations in the complex oriented cohomology ring of a finite group derived from formal properties of

the transfer should play a major role. The purpose of the first part is to elucidate for finite coverings

the interaction between transferred Chern classes and Chern classes of transferred bundles.

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applica-
tions), Vol. 77, Complex Analysis and Topology, 2012.
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Let p be a prime and let G ≤ Σp be a subgroup of the symmetric group. In the first part we

consider the complex oriented cohomology of homotopy orbit spaces Xp
hG = EG×GX

p. Several

authors have calculated these cohomology groups [23–25]; however, we are particularly interested in

the ring structure and thereby explicit formulas for the transfer. Thus we are led to consider Frobenius

reciprocity, the relation between cup products and transfer:

Tr∗(x)y = Tr∗(xρ∗(y))

where ρ : EG×Xp → Xp
hG is the covering projection and

Tr∗ : E∗(Xp)→ E∗(Xp
hG)

is the associated transfer homomorphism.

Let π ≤ Σp be the subgroup of cyclic permutations of order p. Our results for MU∗(Xp
hπ), X =

CP∞, and the canonical complex line bundle ξ → CP∞, provide a universal example which enables

us to write explicitly the Chern classes c1, . . . , cp−1 of the transferred bundle ξπ as a certain formal

power series in the Euler class cp(ξπ) with coefficients in E∗(Bπ) plus certain transferred classes of

the bundle ξ. We give an algorithm for calculating these coefficients. In particular for E = BP ,

Brown–Peterson cohomology, the coefficients of this formal power series are invariant under the action

of the normalizer of π in Σp. This enables us to give similar results for Σp coverings. Moreover, we

calculate the algebra BP ∗(Xp
hΣp

) and show that its multiplicative structure is completely determined

by Frobenius reciprocity. In addition to the Morava K-theory E = K(s), calculations become easier:

we show that the formal power series in the algorithm above descends to polynomials. We derive an

alternative way for calculation and give some examples. Finally we give some tables of the initial

segments of the formal group law in the Morava K-theory which are often useful in calculations.

The author would like to thank Mamuka Jibladze for Maple programs used in the examples.

2. Transferred Chern Classes

2.1. Preliminaries. We recall that a multiplicative cohomology theory E∗ is called complex ori-

ented if there exists a Thom class, that is, a class u ∈ E2(CP∞) that restricts to a generator of the

free one-dimensional E∗ module E2(CP 1). The universal example is the complex cobordism MU∗.
Then

E∗(CP∞) = E∗[[x]],
where x is the Euler class of the canonical complex line bundle ξ over CP∞ = BU(1). Further,

E∗(BU(1)p) = E∗[[x1, . . . , xp]],

where xi = c1(ξi) and ξi is the pullback bundle over BU(1)p by the projection BU(1)p → BU(1) on

the ith factor.

Much of our paper is written in terms of transfer maps [1, 27] and formal group laws. Let us give

a brief review of formal properties of the transfer. For a finite covering

ρ : X → X/G,

there is a stable transfer map

Tr = Tr(ρ) : X/G+ → X+.

For any multiplicative cohomology theory E∗, the Frobenius reciprocity holds, i.e., the induced map

Tr∗ is a map of E∗(X/G) modules possessing the following properties:

(i) Tr∗(xρ∗(y)) = Tr∗(x)y, x ∈ E∗(X), y ∈ E∗(X/G).
For example,

(ii) Tr∗(ρ∗(y)) = Tr∗(1)y.
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The element Tr∗(1) ∈ E0(X/G) is called the index or stable Euler class of the covering ρ. The

following additional properties of the transfer will be used:

(iii) the transfer is natural with respect to pullbacks;

(iv) Tr(ρ1 × ρ2) = Tr(ρ1) ∧ Tr(ρ2);

(v) if ρ = ρ2ρ1, then Tr(ρ) = Tr(ρ2) Tr(ρ1).

More generally, for a covering projection

ρH,G : X/H → X/G

with H ≤ G, there is a stable transfer map

TrH,G : X/G+ → X/H+.

To simplify notation, we write projection and transfer in equivalent ways ρ = ρG and Tr = Tr(ρ) =

TrG if H = e.

The reverse composition to (ii) is as follows:

(vi) (double coset formula) if K,H ≤ G, then
ρ∗K,GTr∗H,G =

∑

x

Tr∗K∩Hx,K ◦x−1∗ ◦ ρ∗
Kx−1∩H,H

,

where the sum is taken over a set of double coset representatives x ∈ K\G/H and Hx = xHx−1.

For a regular covering ρH,G, i.e., H � G,

ρ∗H,GTr∗H,G(x) = N(x) =
∑

g∈G/H

g∗(x),

where N(x) is called the norm or trace of x.

In subsequent sections, the reduced transfer

TrH,G : X/G→ X/H

is used.

We recall Quillen’s formula [16, 30]. First,

E∗(BZ/p) = E∗[[z]]/([p](z)),

where x is the Euler class of a faithful one-dimensional complex representation of Z/p and [p](z) is

the p-series or p-fold iterated formal sum. Then

Tr∗Z/p(1) = [p](z)/z, (2.1)

where Tr∗Z/p is the transfer homomorphism for the universal Z/p-covering EZ/p→ BZ/p. The relation

[p](z) = 0 is equivalent to the transfer relation

zTr∗Z/p(1) = Tr∗Z/p(c1(C)) = Tr∗Z/p(0) = 0

obtained by applying (ii). Of course, since the transfer is natural, Quillen’s formula enables us to

calculate the stable Euler class for any regular Z/p covering.

In this spirit, let

π = 〈t〉 ≤ Σp

be the subgroup of cyclic permutations of order p. For a given free action of π on a space Y with a

given complex line bundle η → Y we have an equivariant map

ηπ = (g1, . . . , gp) : Y → BU(1)p,

where gi classifies the line bundle ti−1η.
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So by the naturality of the transfer, the calculation of transferred Chern classes Tr∗(ci1(η)), i ≥ 1,

for cyclic coverings can be reduced to the covering

ρπ : Eπ × (BU(1))p → Eπ ×π (BU(1))p,

as the universal example.

For the symmetric group, the arguments are similar.

Let ξ be the canonical complex line bundle over CP∞ = BU(1) and ξi be the pullback bundle over

BU(1)p by the projection on the ith factor as before. Then

MU∗(BU(1)p) =MU∗[[x1, . . . , xp]],

xi = c1(ξi) and x1 · · ·xp is the Euler class of the bundle ξ×p =
⊕
ξi.

Note that by transfer property (v), Tr(ρπ)
∗ has the same value on the Chern classes x1, . . . , xp: the

group π permutes the xi and ρπt = ρπ, t ∈ π. Thus in calculations of the transfer we sometimes write

these Chern classes in an equivalent way x, tx, . . . , tp−1x.

For the sphere bundle S(ξ×p), we have

MU∗(S(ξ×p)) =MU∗[[x1, . . . , xp]]/(x1 · · ·xp). (2.2)

Then for the trace map

N = 1 + t+ · · ·+ tp−1

we have kerN = Im(1 − t), t ∈ π in MU∗BU(1)p, and after restricting N to MU∗(S(ξ×p)) we have

the exact sequence

· · · ←MU∗(S(ξ×p))
N←−MU∗(S(ξ×p))

1−t←−−MU∗(S(ξ×p))
N←−MU∗(S(ξ×p))← . . . . (2.3)

Then let ξπ = Eπ ×π ξ
×p be the Atiyah transfer bundle [2],

S(ξπ) = Eπ ×π S(ξ
×p) (2.4)

be its sphere bundle, and

D(ξπ) = Eπ ×π D(ξ×p) (2.5)

be its disk bundle. Let X = CP∞; then D(ξπ) is homotopy equivalent to Xp
hπ = B(π � U(1)).

The cofibration D(ξπ)/S(ξπ) = (Xp
hπ)

ξπ gives a long exact sequence

· · · ←MU∗(S(ξπ))←MU∗(Xp
hπ)

×cp←−−MU∗((Xp
hπ)

ξπ)← . . . (2.6)

where (Xp
hπ)

ξπ is the Thom space of the bundle ξπ and the right homomorphism is multiplication by

the Euler class cp = cp(ξπ).

Since the diagonal of BU(1)p is fixed under the permutation action of π, the inclusion

Eπ → Eπ ×BU(1)p, x→ (x, fixed point)

defines the inclusions

i : Bπ → Xp
hπ, i0 : Bπ → S(ξπ).

The projection ϕ : Xp
hπ → Bπ induced by π � U(1)→ π defines the projection

ϕ0 : S(ξπ)→ Bπ (2.7)

and the compositions ϕ0i0 and ϕi are the identities. We can consider S(ξπ) as a bundle over Bπ with

fiber S(ξ×p).

Let η be the canonical line bundle over Bπ and

θ = ϕ∗(η)→ Xp
hπ
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be the pullback bundle. Thus

i∗(θ) = η, i∗(ξπ) = C+ η + · · ·+ ηp−1.

Consider the pullback diagram

Eπ × S(ξ×p) ��

ρ0

��

Eπ ×BU(1)p

ρ

��
S(ξπ) �� Xp

hπ

Let Tr = Tr(ρ) be the transfer of the covering ρ, and Tr0 : S(ξπ)→ S(ξ×p) the transfer map of ρ0.

We will often refer to the following lemma which follows from (2.3) and the Frobenius reciprocity.

Lemma 2.1. In MU∗(Xp
hπ), we have

ImTr∗ ∩Ker(ρ∗) = 0.

Proof. We have

ρ∗(Tr∗(a)) = N(a) = 0 ⇒ a ∈ Im(1− t) ⇒ Tr∗(a) = 0.

The lemma is proved.

Remark 2.2. Lemma 2.1 is valid only in a complex oriented cohomology E∗ with a torsion-free

coefficient ring. This lemma is used in the proof of Theorem 2.3 in a complex cobordism and in the

second statement of Theorem 3.6 in the Brown–Peterson cohomology. By the naturality, these results

hold for all E∗ in the first case and all p-local E∗ in the second.

2.2. Transferred Chern classes for cyclic coverings. In this section, we prove our main result

for cyclic coverings, Theorem 2.4.

In the notation of the previous section, the kth Chern class of the bundle ξ×p is an elementary

symmetric function σk(x1, . . . , xp) in the Chern classes xi and is the sum of

(
p

k

)
elementary monomials.

The action of π on the set of these monomials yields p−1

(
p

k

)
orbits, and the transfer homomorphism

is constant on orbits by transfer property (v) or (iii).

Let E∗ be a complex oriented cohomology theory. For k = 1, . . . , p− 1, let

ωk = ωk(x1, . . . , xp) ∈ E∗(BU(1)p)

be the sum of representative monomials one from each of these orbits. The value of Tr∗(ωk) does not

depend on the choice of ωk since ωk is defined modulo Im(1 − t) and on the elements of Im(1 − t)
the transfer homomorphism is zero again by (v). In other words, we can take any ωk for which

Nωk = σk(x1, . . . , xp) holds. As we shall explain in Corollary 2.8 of Theorem 2.3, the following result

enables us to calculate the transfer on all elements whose norm is symmetric.

To simplify the notation, we set X = CP∞ and cj = cj(ξπ), j = 1, . . . , p.

Theorem 2.3. We can construct explicit elements

δ
(k)
i ∈ Ẽ∗(Bπ), k = 1, . . . , p− 1,

such that

Tr∗(ωk) = ck +
∑

i≥0

ϕ∗(δ(k)i )cip

for the transfer of the covering ρ : Xp → Xp
hπ.

Before constructing the elements δ
(k)
i by proving Theorem 2.3, we prove their existence.
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2.3. Complex cobordism of (CP∞)phπ.

Theorem 2.4. In MU∗(Xp
hπ), we have:

(a) the annihilator of the Chern class c = c1(θ) coincides with ImTr∗;
(b) multiplication by cp = cp(ξπ) is a monomorphism;

(c) any element of Ker(ρ∗) has the form
∑

k≥0

ϕ∗(δk)ckp

for some elements δk ∈ M̃U
∗
(Bπ);

(d) for π = Z/2,

MU∗B(π � U(1)) =MU∗[[c, c1, c2]]/(c1 − c∗1, c2 − c∗2) =MU∗(Bπ)[[Tr∗(x), c2]]/(cTr∗(x)),

where ci = ci(ξπ), c
∗
i = ci(ξπ ⊗C θ), and x are Chern characteristic classes with

x ∈MU∗(BU(1)2) =MU∗[[x, tx]].

Lemma 2.5. The left homomorphism in the long exact sequence (2.6) is an epimorphism and thus

gives a short exact sequence

0←MU∗(S(ξπ))←MU∗(Xp
hπ)

×cp←−−MU∗(Xp
hπ)

ξπ ← 0.

Moreover, there is a space Xπ and a stable equivalence

ϕ0 ∨ fπ : S(ξπ)→ Bπ ∨Xπ,

with fπ factoring through the composite map

S(ξπ)→ Xp
hπ

Tr−→ Eπ ×BU(1)p

and ϕ0 as in (2.7).

Proof. Consider the Serre spectral sequence for the fibration (2.7):

S(ξ×p)→ S(ξπ)
ϕ0−→ Bπ,

Ei,j
2 = H i(π,Hj(S(ξ×p);Fq)) with the action of π on H∗(S(ξ×p);Fq) by permutations of the cohomo-

logical Chern classes.

When q = p,

E0,j
2 = Hj(S(ξ×p);Fp)

π, Ei,0
2 = H i(Bπ;Fp).

Then in positive dimensions

H∗(S(ξ×p);Fq) = Fq[x1, . . . , xp]/(x1 · · ·xp)
is a permutation representation of π acting on monomials which have degree zero in at least one

indeterminate. This is a free Fq[π]-module since all the monomials that are fixed under this action

have been factored out after quotienting by the ideal (x1 · · ·xp). Hence the cohomology of π with

coefficients in this module is trivial in positive dimensions, i.e., Ei,j
2 = 0 when i, j > 0. Thus the

spectral sequence collapses and we have

H∗(S(ξπ);Fp) ≈ H∗(Bπ;Fp)⊕ H̃∗(S(ξ×p);Fp)
π.

Also if q �= p, we have

H∗(S(ξπ);Fq) ≈ H∗(S(ξ×p);Fq)
π.

Let Xπ be a stable summand of BU(1)p defined as follows. The action of π on BU(1)p induces

an action of π on the stable decomposition of BU(1)p as a wedge of all smash products of length
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1, . . . , p − 1, say Yπ, and a smash product of length p. Then choose Xπ such that NXπ = Yπ, where

N = 1 + t+ · · ·+ tp−1. By the stable equivalence

S(ξ×p)→ BU(1)p → Yπ, (2.8)

we can consider Xπ as a stable summand of S(ξ×p). For any choice of Xπ, consider the composition

of stable maps

fπ : S(ξπ)→ Xp
hπ

Tr−→ Eπ ×BU(1)p → BU(1)p → Xπ. (2.9)

We must show that the stable map ϕ0 ∨ fπ induces an isomorphism in cohomology for any group of

coefficients Fq, q is a prime, and hence gives a stable equivalence by the stable Whitehead lemma. It

follows from the above arguments that

H̃∗(S(ξπ);Fp) = ϕ∗
0H̃

∗(Bπ;Fp)⊕ Tr∗0 H̃∗(S(ξ×p);Fp),

and

H̃∗(S(ξπ);Fq) = Tr∗0 H̃∗(S(ξ×p);Fq),

when q �= p. The restriction of Tr0 on Xπ induces a monomorphism on ImTr∗0 since by the transfer

property (iv),

ρ∗0Tr
∗
0 = N,

and the restriction of N on H̃∗(Xπ;Fq) is a monomorphism. Hence (ϕ0∨Tr0 |Xπ)
∗ is an isomorphism

and so is (ϕ0 ∨ fπ)∗ by the commutative diagram

S(ξπ) ��

Tr0
��

Xp
hπ

Tr
��

S(ξ×p) �� Eπ ×BU(1)p

(2.10)

This proves Lemma 2.5.

Proof of Theorem 2.4. (a) We consider the restriction of any element y ∈MU∗(Xp
hπ) to MU∗(S(ξπ)).

By Lemma 2.5, we see that this restriction has the form ϕ∗
0(u) + f∗π(w) for some u ∈ M̃U

∗
(Bπ),

w ∈MU∗(Xπ). Since the composition

S(ξπ)→ Xp
hπ

ϕ−→ Bπ

coincides with ϕ0, ϕ
∗(u) also restricts to ϕ∗

0(u). By diagram (2.10), there is an element v ∈
MU∗(BU(1)p) such that Tr∗(v) restricts to f∗π(w). By the exactness

y = ϕ∗(u) + Tr∗(v) + y1cp,

for some y1 ∈ MU∗(Xp
hπ). For use in the proof of (c) we observe that (2.2) and (2.8) imply that v

can be chosen in the direct summand MU∗[[x1, . . . , xp]]/(x1 · · ·xp). Thus we can assume that this

expression for y is unique and if v �= 0 then Tr∗(v) restricts nontrivially in MU∗(S(ξπ)).
Then we suppose that cy = 0. We know that ρ∗(θ) = C, hence ρ∗(c) = 0 and

cTr∗(v) = Tr∗(ρ∗(c)v) = 0

by the Frobenius reciprocity. So we have

cϕ∗(u) + cy1cp = 0.

We prove that

ϕ∗(u) ∈ ImTr∗ .
Applying i∗ we have

0 = i∗(cϕ∗(u)) + i∗(cy1cp) = zu
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since

i∗ϕ∗ = id, c = ϕ∗(z), i∗(cp) = 0.

Hence

u ∈ Ann(z) = ImTr∗Z/p
by the naturality of the transfer ϕ∗(u) ∈ ImTr∗. Thus, cϕ∗(u) = 0 and therefore cy1cp = 0. Multi-

plication by cp is injective by Lemma 2.5, hence cy1 = 0. Since dim(y1) = dim(y)− 2p, iterating this

argument gives us statement (a).

Item (b) follows from the fact that the right homomorphism in the short exact sequence from

Lemma 2.5 is multiplication by the Euler class cp(ξπ).

(c) Let y ∈ Ker ρ∗. Since ϕρ = ∗ we have

0 = ρ∗(Tr∗(v)) + ρ∗(y1cp).

If the first summand is not zero, it restricts nontrivially in MU∗(S(ξ×p)) by the definition of v.

However, the second summand restricts to zero since

ρ∗(cp) = x1 · · ·xp, ρ∗(y1cp) = ρ∗(y1)x1 · · ·xp,
x1 · · ·xp restricts to zero as the Euler class. Hence both summands are zero. Furthermore, multipli-

cation by x1 · · ·xp is a monomorphism hence ρ∗(y1) = 0. Thus

y = ϕ∗(u) + y1cp = ϕ∗(u) + (ϕ∗(u1) + y2cp)cp = ϕ∗(u) + ϕ∗(u1)cp + y2c
2
p.

Repetition of this process proves c).

(d) The fact that c, c1, and c2 multiplicatively generate MU∗B(π � U(1)) follows from Lemma 2.5.

The relations c1 = c∗1, c2 = c∗2 follow from the bundle relation

ξπ ⊗C θ = (ξ ⊗C ρ∗(θ))π = ξπ,

which in turn follows from transfer property (i).

So we must prove that the Chern classes c, c1, and c2 with these relations are a complete system of

generators and relations. Let us use the splitting principle to write formally

ξπ = η1 + η2, u1 = c1(η1), u2 = c1(η2).

Let

F (x, y) =
∑

αijx
iyj

be a formal group law. Using the bundle relation above and applying the Whitney formula for the

first and second Chern classes, we obtain two relations of the form

F (u1, c) + F (u2, c) = c1, F (u1, c)F (u2, c) = c2; (2.11)

or in terms of c, c1 = u1 + u2, and c2 = u1u2,

F (u1, c) + F (u2, c)− c1 = c
(
2 +

∑
βijkc

icj1c
k
2

)
= 0, (2.12)

F (u1, c)F (u2, c)− c2 = c
(
c1 +

∑
γijkc

icj1c
k
2

)
= 0 (2.13)

for some coefficients βijk, γijk ∈MU∗(pt).
We claim that relations (2.12) and (2.13) are equivalent to the following two obvious transfer

relations for Tr∗ :MU∗[[x, tx]]→MU∗(B(π � U(1))):

cTr∗(1) = 0, cTr∗(x) = 0.
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Rewrite relations (2.12) and (2.13) as follows:

ca = 0, where a = 2 + α11c1 +
∑

k≥2

αk1(u
k
1 + uk2) + o(c),

cb = 0, where b = c1 + 2α11c2 +
∑

k≥2

αk1(u
k−1
1 + uk−1

2 )c2 + o(c),

and the αij are the coefficients of the formal group law.

By the first part of Theorem 2.4, a ∈ ImTr∗. Also by transfer property (vi)

ρ∗(a) = ρ∗(Tr∗(1) + α11Tr
∗(x) +

∑

k≥2

αk1Tr
∗(xk)).

Thus by Lemma 2.5

Tr∗(1) + α11Tr
∗(x) +

∑

k≥2

αk1Tr
∗(xk) =

F (u1, c) + F (u2, c)− c1
c

;

similarly, b ∈ ImTr∗ and

Tr∗(x) + α11Tr
∗(1)c2 +

∑

k≥2

αk1Tr
∗(xk−1)c2 =

F (u1, c)F (u2, c)− c2
c

.

Now since

xk = xk−1(x+ tx)− xk−2(xtx),

transfer property (i) and the calculation of Tr∗(x) is sufficient for the calculation of Tr∗(xk), k ≥ 2

(see also Corollary 2.8 and Remark 2.2). So we have

Tr∗(1)(1 + g0) + Tr∗(x)h0 =
F (u1, c) + F (u2, c)− c1

c
, (2.14)

Tr∗(1)g1 +Tr∗(x)(1 + h1) =
F (u1, c)F (u2, c)− c2

c
, (2.15)

where g0, h0, g1, h1 ∈MU∗(B(π � U(1))). This proves (d).

This completes the proof of Theorem 2.4.

Formula (2.15) for calculating Tr∗(x) is complicated; let us give a simpler form. Consider again

(2.13). Note that the coefficient γ00k ∈MU∗(pt) contains a factor 2: the element

c1 +
∑

γijkc
icj1c

k
2

annihilates c and hence belongs to ImTr∗. On the other hand,

ρ∗Tr∗ = 1 + t, ρ∗(c) = 0, ρ∗(c1) = x+ tx, ρ∗(c2) = xtx,

hence applying ρ∗ we obtain that

x+ tx+
∑

γ0jk(x+ tx)j(xtx)k

belongs to Im(1 + t). So

γ00k(xtx)
k = 2γk(xtx)

k,

that is, γ00k = 2γk for some coefficient γk.

Recall that, on the other hand, F (c, c) = 0, that is, 2c = o(c2). So γ00kc = o(c2), hence taking into

account the relation F (c, c) = 0 we can rewrite (2.13) after division by

1 +
∑

i,k≥0

γi1kc
ick2
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(the coefficient at cc1) as follows:

cc1 = d0c+ d2cc
2
1 + · · ·+ dncc

n
1 + . . . , (2.16)

where dk = dk(c, c2) ∈ MU∗[[c, c2]] and d0(0, c2) = 0; the subscript n indicates the coefficient at ccn1 .

Since

ρ∗(Tr∗(x)− c1) = 0,

it follows from Theorem 2.4c) that there exist elements

δj ∈ M̃U
∗
(Bπ)

such that

Tr∗(x) = c1 +
∑

j≥0

ϕ∗(δj)c
j
2.

Using the inclusion i : Bπ → B(π � U(1)) we have

i∗(c1) = i∗0(c), i∗Tr∗(x) = 0, i∗(c2) = 0;

therefore,

ϕ∗(δ0) = −c.
For the calculation of the other elements δj recall that cTr∗(x) = 0, hence

ccn1 = −cϕ∗(δn), n ≥ 1, (2.17)

where

δ = −c+
∑

j≥1

δjc
j
2.

Combining (2.16) and (2.17), we obtain the following assertion.

Proposition 2.6. The elements δj, j > 0, can be determined from the recurrence relations which

arise from the following formula in MU∗(Bπ)[[c2]]:

δ = d0 +
∑

i≥2

diδ
i.

Proof. By definition, the element

δ − d0 −
∑

i≥2

diδ
i

belongs to Ker ρ∗. On the other hand, this element is annihilated by c, hence

δ − d0 −
∑

i≥2

diδ
i ∈ ImTr∗ ∩Ker(ρ∗) = 0

by Lemma 2.5.

Corollary 2.7. For the elements δj ∈ M̃U
∗
(BZ/2) constructed in Proposition 2.6, the following

formula holds in MU∗B(Z/2 � U(1)):

Tr∗(x) = c1 − c+
∑

j≥1

ϕ∗(δj)c
j
2.

In fact, we have proved Theorem 2.3 for p = 2. The general case, similar but more cumbersome,

will be examined below.
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Proof of Theorem 2.3. Note that by the definition of ωk, the difference Tr∗(ωk)− ck is an element of

Ker(ρ∗). Thus, Theorem 2.4(c) implies the existence of the elements δ
(k)
i in Theorem 2.3.

First, let us elucidate the meaning of the relations

ξπ ⊗C θ = ξπ

in the general case of B(π � U(1)).

Again, we can use the splitting principle and write formally

ξπ = η1 + η2 + · · ·+ ηp, um = c1(ηm), m = 1, . . . , p.

Applying the Whitney formula for the relation

η1 ⊗C θ + · · ·+ ηp ⊗C θ = η1 + · · ·+ ηp

and taking into account the fact that cm = cm(ξπ) is an elementary symmetric function σm(u1, . . . , up),

we have

σm(F (u1, c), . . . , F (up, c)) = cm, m = 1, . . . , p, (2.18)

or, in terms of c, c1, . . . , cp,

c
(
p+

∑
β0i0,i1,...,ipc

i0ci11 . . . c
ip
p

)
= 0

and

c
(
(p− k)ck +

∑
βki0,i1,...,ipc

i0ci11 . . . c
ip
p

)
= 0 (2.19)

for k = 1, . . . , p− 1 and some β0i0,i1,...,ip , β
k
i0,i1,...,ip

∈MU∗(pt).
We claim that these relations are equivalent to the obvious relations

cTr∗(1) = 0, cTr∗(ωk) = 0

for the elements ωk ∈MU∗(BU(1))p, k = 1, . . . , p− 1, defined above.

For the proof of our claim, multiply the kth relation from (2.19) by pk = (p− k)−1 in Fp. Then by

Theorem 2.4, Ann(c) coincides with ImTr∗ and hence (2.18) implies that

pk
(
σk+1(F (u1, c), . . . , F (up, c))− ck+1

)
/c = Tr∗(ak)

for some ak which we have to find. Let us write

ρ∗
(
pk

(
σk+1(F (u1, c), . . . , F (up, c))ck+1

)
/c
)
= g(k)(σ1, . . . , σp)

= σk
(
1 + g

(k)
k (σ1, . . . , σp)

)
+

∑

j �=k
1≤j≤p−1

σjg
(k)
j

(
σj , σj+1, . . . , σ̌k, . . . , σp

)

= N(ωk)
(
1 + g

(k)
k (σ1, . . . , σp)

)
+

∑

j �=k
1≤j≤p−1

N(ωj)g
(k)
j

(
σj , σj+1, . . . , σ̌k, . . . , σp

)
.

Here the symbol σ̌k indicates absence of the corresponding term. So we have

pk
(
σk+1(F (u1, c), . . . , F (up, c))− ck+1

)
/c

= Tr∗(ωk)
(
1 + g

(k)
k (c1, . . . , cp)

)
+

∑

j �=k
1≤j≤p−1

Tr∗(ωj)g
(k)
j

(
cj , cj+1, . . . , čk, . . . , cp

)

and

[
σ1(F (u1, c), . . . , F (up, c))− c1

]
/c
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= Tr∗(1)
(
1 + g

(0)
0 (c1, . . . , cp)

)
+

∑

1≤j≤p−1

Tr∗(ωj)g
(0)
j (cj , cj+1, . . . , cp).

This proves our claim.

For calculating δ
(k)
i , we start with Eqs. (2.19) and rewrite them as follows:

cfk(c, c1, . . . , cp) = 0, k = 1, . . . , p− 1. (2.20)

These are equations in a power series algebra MU∗(Bπ)[[cp]], since we know cck ∈ cMU∗(Bπ)[[cp]].
Now we find explicitly formal series

δ(k)(cp) =
∑

i≥0

δ
(k)
i (c)cp

i (2.21)

such that

Tr∗(ωk) = ck + δ(k)(cp)

and hence

ccjk = −c(δ(k)(cp))j , j ≥ 1. (2.22)

For this, we replace Eqs. (2.20) by the equations

cf̃k(c, δ
(1)(cp), . . . , δ

(p−1)(cp), cp) = 0, (2.23)

where f̃k ∈ Ker ρ∗π is a series whose coefficient at δ(k) is invertible.

In fact, f̃k = 0 since we know that

Ann(c) = ImTr∗, Ker(ρ∗) ∩ ImTr∗ = 0

by Lemma 2.5.

Then equating each coefficient of the resulting series

gk(cp) = f̃k(c, δ
(1)(cp), . . . , δ

(p−1)(cp), cp) = 0 (2.24)

in the ringMU∗(Bπ)[[cp]] to zero, we obtain p− 1 infinite strings of equations inMU∗(Bπ). Assuming

that δ
(l)
i are already found for i < n, we get

δ(k)n = ψn,k

(
(δ

(1)
i )i≤n, . . . , (δ

(k)
i )i<n, . . . , (δ

(p−1)
i )i≤n

)
, (2.25)

which is a system of linear equations in δ
(l)
n , l = 1, . . . , p−1, with invertible determinant and coefficients

in MU∗[[c]]. Since δ
(l)
0 are already known as lth Chern classes of the bundle 1 + θ + · · · + θp−1, by

induction on n we can solve formally (2.25) to get

δ(k)n (c) = ψ̃n,k((δ
(l)
i )i<n). (2.26)

This yields

δ(k)n = δ(k)n (z) ∈MU∗(Bπ),
obviously satisfying our equations.

Now for the remaining equation (2.23) we proceed as follows. Let us look at the term

cfk(0, 0, . . . , 0, cp) in Eqs. (2.20). Note that fk(0, 0, . . . , 0, cp) is divisible by p:

fk ∈ Ann(c) = ImTr∗ ⇒ ρ∗πfk ∈ ImN ⇒ fk(0, . . . , 0, σp) ∈ ImN ⇒ fk(0, . . . , 0, σp).

Next using the relation [p]F (c) = 0 we know that pc is divisible by c2; hence each occurrence of

pc in these equations can be replaced by terms with higher powers of c. So cfk(0, 0, . . . , 0, cp) can be

replaced by a term divisible by c2.

Also the kth relation from (2.20) contains the term c(p − k)ck, and for the condition (2.24) we

multiply the kth equation from (2.20) by (p − k)−1, the inverse of p− k in Fp, and as above we can
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replace c(p− k)ck by cck+(terms divisible by c2). Then we use (2.22) and substitute the series δ(k) in

the resulting equations, thus obtaining (2.23).

This completes the proof for E = MU , which is the universal example of complex oriented coho-

mology theories. From this result we can descend to all E.

We now turn to calculation of Tr∗ in general.

Corollary 2.8. For all primes p, Theorem 2.3 enables us to explicitly calculate the transfer homo-

morphism for those polynomials a ∈ M̃U
∗
[[x1, . . . , xp]] for which Na = a+ta+· · ·+tp−1a is symmetric

in x1, . . . , xp.

Proof. If

Na = σ1a1(σ1, . . . , σp) + · · ·+ σp−1ap−1(σ1, . . . , σp),

then

Tr∗(a) = Tr∗(ω1)a1(c1, . . . , cp) + · · ·+Tr∗(ωp−1)ap−1(c1, . . . , cp)).

To see this, we set

â = ω1a1(σ1, . . . , σp) + · · ·+ ωp−1ap−1(σ1, . . . , σp).

Then N(a− â) = 0, that is, a− â ∈ Im(1− t), hence Tr∗(a) = Tr∗(â).

Remark 2.9. For p = 2, we have the recurrence formulas for Tr∗(xk), k ≥ 1:

Tr∗(x) = Tr∗(ω1), Tr∗(xk) = Tr∗(xk−1)c1 − Tr∗(xk−2)c2.

This follows from the formula

xk = xk−1(x+ tx)− xk−2(xtx).

3. Transferred Chern Classes for Σp-Coverings

If we consider a p-local, complex, oriented cohomology E∗, then by standard transfer arguments

(see Lemma 3.2 below), E∗(BΣp) is isomorphic to the subring of E∗(Bπ) invariant under the action

of the normalizer of π in Σp. The results of this section imply that the elements δ
(k)
i ∈ Ẽ∗(Bπ) from

Theorem 2.3 are invariant under this action. This defines elements δ̃
(k)
i ∈ Ẽ∗(BΣp) which we use for

calculating the transfer.

In this section, we consider BP ∗(Xp
hΣp

) for X = CP∞, and for the covering projection

ρΣp : EΣp ×Xp → Xp
hΣp

,

we give the formula for the transfer homomorphism

TrΣp
∗ : BP ∗(Xp)→ BP ∗(Xp

hΣp
) (3.1)

using the elements δ̃
(k)
i .

We need definitions similar to those of Sec. 2, with the cyclic group replaced by the symmetric

group. The p-fold product ξ×p of the canonical line bundle over Xp extends to an p-dimensional

bundle

ξΣp = EΣp ×Σp ξ
×p (3.2)

over Xp
hΣp

classified by the inclusion

Xp
hΣp

= B(Σp � U(1)) ↪→ BU(p).

Let ci = ci(ξΣp). Then

ρΣp
∗(ci) = ci(ξ

×p) = σi,

the ith symmetric polynomial in the xj , where BP
∗(Xp) = BP ∗[[x1, . . . , xp]].

22



Then we have the projection

ϕ : Xp
hΣp
→ BΣp (3.3)

induced by the factorization Σp � U(1)/U(1)p = Σp and the inclusion

i : BΣp → Xp
hΣp

, (3.4)

induced by the inclusion of Σp in Σp � U(1).

Definition 3.1. Let c̃i = TrΣp
∗(x1x2 · · ·xi) for i = 1, . . . , p− 1.

Lemma 3.2. The following relation holds :

ρΣp
∗(c̃i) = i!(p− i)!σi.

Proof. We have

ρΣp
∗(c̃i) = ρΣp

∗Tr∗Σp
(x1x2 · · ·xi) = NΣp(x1x2 · · ·xi).

For each subset of i integers {j1, j2, . . . , ji} such that 1 ≤ jk ≤ p, there are i! bijections

{1, 2, . . . , i} → {j1, j2, . . . , ji}
and (p− i)! bijections

{i+ 1, i+ 2, . . . , p} → {1, 2, . . . , p}\{j1, j2, . . . , ji}.
Thus, there are i!(p− i)! summands of xj1xj2 . . . xji in NΣp(x1x2 . . . xi).

We recall that

BP ∗(Bπ) = BP ∗[[z]]/([p]z)
with |z| = 2. The corresponding calculation for BP ∗(BΣp) is also known (see [35]). For the reader’s

convenience, we derive this result in a form useful for our purposes.

Lemma 3.3. As a BP ∗-algebra,

(i) BP ∗(BΣp) = BP ∗[[y]]/(yTr∗Σp
(1)),

where y and Tr∗Σp
(1) are uniquely determined by ρ∗π,Σp

(y) = zp−1, and

(ii) ρ∗π,Σp
(Tr∗Σp

(1)) = (p− 1)! Tr∗π(1) = (p− 1)![p](z)/z.

In particular, |y| = 2(p− 1).

Proof. (ii) If we apply the double coset formula (transfer property (vi)) to

BP ∗(Be)
Tr∗e,Σp−→ BP ∗(BΣp)

ρ∗π,Σp−→ BP ∗(Bπ),

the statement follows from Quillen’s formula.

(i) The relation yTr∗Σp
(1) = 0 is a consequence of the Frobenius reciprocity. To see that it is the

defining relation, we recall that the cohomology of BΣp with simple coefficients in Z(p) is

H∗(BΣp;Z(p)) = Z(p)[y]/(py),

where |y| = 2(p − 1). This easily follows from the mod-p cohomology and the Bockstein spectral

sequence.

Also

H∗(Bπ;Z(p)) = Z(p)[z]/(pz),

where |z| = 2. The map

ρπ,Σp : Bπ → BΣp

23



yields

ρ∗π,Σp
(y) = xp−1.

Now the Atiyah–Hirzebruch–Serre spectral sequence for BP ∗(BΣp) is

E2 = H∗(BΣp;BP
∗) = BP ∗[y]/(py) =⇒ BP ∗(BΣp).

Since y is even-dimensional, the sequence collapses at E2 = E∞. Thus, BP ∗(BΣp) is generated by y

as a BP ∗-algebra.
For the group W = NΣp(π)/π ≈ Z/(p − 1), |W | is prime to p, hence by the standard transfer

argument

ρ∗π,Σp
: BP ∗(BΣp)→ BP ∗(Bπ)

is an injective map of BP ∗ algebras. Since

ρ∗π,Σp
(yTr∗Σp

(1)) = p!zp−1 + terms of higher filtration,

we see that

yTr∗Σp
(1) = 0

is the unique relation.

Relating π and Σp, we have a lift of ρπ,Σp

Xp
hπ

ρ̃π,Σp ��

ϕ

��

Xp
Σp

ϕ

��
Bπ

ρπ,Σp �� BΣp

Lemma 3.4. We have

ρ̃∗π,Σp
(c̃k) = k!(p− k)! Tr∗π(ωk).

Proof. Note that modulo Im(1− t), we have

Σg∗(x1x2 · · ·xk) = k!(p− k)!ωk

summed over Σp/π. Applying the double coset formula we have

ρ∗π,Σp
(c̃k) = ρ∗π,Σp

Tr∗Σp
(x1x2 · · ·xk) = Tr∗π

∑

g∈Σp/π

g∗(x1x2 · · ·xk) = k!(p− k)! Tr∗π(ωk).

The lemma is proved.

Let

c = ϕ∗(y) ∈ BP 2(p−1)(Xp
hΣp

).

Lemma 3.5. ImTr∗Σp
is contained in the BP ∗-algebra generated by c, c̃1, . . . , c̃p−1, cp.

Proof. By the Künneth isomorphism,

BP ∗(Xp) = BP ∗(X)⊗p = F ⊕ T (3.5)

as a π-module, where F is free and T is trivial. Explicitly, a BP ∗-basis for T is {xi1 · · ·xip, i ≥ 0},
while a BP ∗-basis for F is {xi11 · · ·xipp , ij ≥ 0}, where not all the exponents are equal.

By Lemma 3.3, Tr∗Σp
(1) is a power series in c. Now recall (see [22, p. 44]) that we can consider

BP ∗(Xp), X = CP∞, as a free BP ∗[[σ1, . . . , σp]]-module generated by 1 and the elements xi11 · · ·xipp ∈
F , with 0 ≤ ij ≤ p − j. So by the Frobenius reciprocity, it suffices to calculate the transfer on these
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monomials. Summed over the symmetric group
∑
g∗(xi11 · · ·xipp ) is a symmetric function and hence

has the form
∑

π

∑

Σp/π

g∗(xi11 · · ·xipp ) = σ1s1 + · · ·+ σp−1sp−1 =
∑

π

(ω1s1 + · · ·+ ωp−1sp−1)

for the elements ωk from Theorem 2.4 and some symmetric functions s1, . . . , sp−1. Hence modulo

kerNπ = Im(1− t), t ∈ π, we have the following equation in F :
∑

Σp/π

g∗(xi11 · · ·xipp ) = ω1s1 + · · ·+ ωp−1sp−1.

The left sum consists of (p− 1)! elements each having the same transfer value. Also ωk is the sum of

p−1

(
p

k

)
elements xi1 · · ·xik ; on each of these elements the transfer evaluates to Tr∗Σp

(x1 · · ·xk) = c̃k.

Thus, the Frobenius reciprocity and Lemma 3.4 are all that is needed for calculating Tr∗Σp
.

Recall the elements δ
(k)
i ∈ B̃P ∗

(Bπ) derived from Theorem 2.3 by the naturality. By the standard

transfer argument again, the map induced by

ρ̃π,Σp : Xp
hπ → Xp

hΣp
,

the lift of ρπ,Σp : Bπ → BΣp, is also injective. Moreover, for BP ∗(Xp
hΣp

) the ring structure is

completely determined by the following theorem.

Theorem 3.6. As a BP ∗-algebra,

BP ∗(Xp
hΣp

) = BP ∗[[c, c̃1, . . . , c̃p−1, cp]]/(cTr
∗
Σp

(1), cc̃i)

and we have the formula

c̃k − k!(p− k)!ck = Σi≥0ϕ
∗(δ̃(k)i )cip, k = 1, . . . , p− 1,

where the elements δ̃
(k)
i ∈ B̃P ∗

(BΣp) are determined by

ρ∗π,Σp
(δ̃

(k)
j ) = k!(p− k)!δ(k)j , j ≥ 0.

For the proof, we follow that of Theorem 2.4. Let

S(ξΣp) = EΣp ×Σp S(ξ
×p)

be the sphere bundle of the bundle ξΣp of (3.2)). Xp
hΣp

is homotopy equivalent to the disk bundle

D(ξΣp) = EΣp ×Σp D(ξ×p).

Then we have the obvious inclusion

i0 : BΣp → S(ξΣp)

and the projection

ϕ0 : S(ξΣp)→ BΣp

with fiber S(ξ×p); ϕ0i0 is the identity. Thus, stably BΣp is a wedge summand of S(ξΣp). As for the

other summand, let

XΣp = ∨p−1
i=1EΣi×ΣiBU(1)∧i.

By the standard transfer argument localized at p, XΣp is a stable summand of

p−1∨

i=1

EΣi ×BU(1)∧i

and hence of EΣp ×BU(1)×p. From this we derive the following result.
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Lemma 3.7. One has a stable equivalence localized at p

ϕ0 ∨ fΣp : S(ξΣp)→ BΣp ∨XΣp ,

with fΣp , the composition of stable maps

fΣp : S(ξΣp)→ Xp
hΣp

TrΣp−−−→ EΣp ×BU(1)p → XΣp .

Proof. The inclusion i0 splits off ϕ∗
0H

∗(BΣp) in H
∗(S(ξΣp)). Furthermore, in mod-p cohomology

H∗(S(ξ×p)) = Fp[x1, . . . , xp]/(σp),

hence

H∗(S(ξ×p))Σp ≈ Fp[c̃1, . . . , c̃p−1],

by Lemma 3.2.

Then H := H̃∗(S(ξ×p)) is a free π module and H∗(Σp;H) ⊆ H∗(π;H). Thus

H∗(Σp;H) =

{
HΣp if ∗ = 0,

0 if ∗ > 0.

Therefore, there is an isomorphism

H∗(S(ξΣp))
ρ∗⊕i∗0−−−→ H̃∗(S(ξ×p))Σp ⊕H∗(BΣp),

where ρ : S(ξ×p)→ S(ξΣp) is the projection. We have to prove that the first summand is f∗Σp
H̃∗(XΣp).

By the naturality of the transfer we have the commutative diagram

S(ξ×p) �� BU(1)p �� XΣp

S(ξΣp) ��

Tr0

��

Xp
hΣp

TrΣp

��

Thus, fΣp coincides with f̃Σp , the map Tr0 followed by the horizontal maps in the above diagram. We

show that the restriction of Tr∗0 to the image of H∗(XΣp) is an isomorphism onto H∗(S(ξ×p))Σp .

Now considering the transfer for the Σi coverings

EΣi ×BU(1)∧i → EΣi ×Σi BU(1)∧i,

it follows from transfer properties (ii) and (vi) that H∗(EΣi×ΣiBU(1)∧i) is a submodule of H∗(EΣi×
BU(1)∧i) generated by Σi norms of monomials in x1, x2, . . . , xi, with nonincreasing degrees. From

this it is straightforward that H∗(XΣp) and H∗(S(ξ×p))Σp have the same ranks in each dimension.

Thus, we are reduced to showing the desired map is injective.

However, for any monomial x in x1, x2, . . . , xi, we have

Tr∗0(NΣi(x)) = i! Tr∗0(x)

by the naturality of the transfer. Thus, the restriction of Tr∗0 to the image of H∗(XΣp) will be a

monomorphism if Tr∗0 is nonzero on polynomials consisting of monomials with nonincreasing degrees.

This in turn will follow if the norm NΣp is non-zero on such polynomials. In fact we claim:

(1) NΣp is nonzero on any monomial xI = xi11 · · ·xip−1

p−1 , and

(2) different monomials with nonincreasing degrees in x1, . . . , xi, i < p are in different Σp orbits.
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Claim (2) is obvious. To prove (1), we set J = (j1, . . . , jp) and xJ = xj11 · · ·xjpp , all of whose

exponents are not equal. Then we will show that the coefficient of xJ in NΣp(x
J) is prime to p. The

isotropy subgroup of xJ is the finite product Σn1 × Σn2 × · · · < Σp, where nj is the number of terms

of J equaling j. This group has order n1!n2! . . . , which is prime to p. Hence

NΣp(x) = (n1!n2! . . . )x
J + other monomials.

This proves the claim. Thus, ϕ0∨fΣp induces an isomorphism and hence is a p-local stable equivalence.

This implies

Lemma 3.8. The long exact sequence for the pair (D(ξΣp), S(ξΣp)) gives the following short exact

sequence:

0← BP ∗(S(ξΣp))← BP ∗(Xp
hΣp

)← BP ∗((Xp
hΣp

)ξΣp )← 0.

Indeed, the left arrow is an epimorphism by Lemma 3.7 and hence the right arrow is a monomor-

phism.

Now the proof of Theorem 3.6 is completely analogous to that of Theorem 2.4 taking into account

additionally that any element y ∈ BP ∗(Xp
hπ) has the form

y = ϕ∗(u) + g(c̃1, . . . , c̃p−1) + y1cp

for some u ∈ BP ∗(Xp
hπ), where g is a formal power series and y1 ∈ BP ∗(Xp

hπ). This follows by

Lemmas 3.7 and 8.4.

4. Calculation of the Elements δ
(k)
i and δ̃

(k)
i in the Morava K-Theory

In this section, we work in the Morava K-theory K(s)∗ and give an alternative, better algorithm

for explicit calculations.

Fix a prime p and an integer s ≥ 0; then

K(s)∗ = Fp[vs, vs
−1],

where |vs| = −2(ps − 1). By a result of Würgler [38], there is no restrictions on p: although K(s) is

not a commutative ring spectrum for p = 2, we shall consider only spaces whose Morava K-theory is

even-dimensional. This implies the deviation from commutativity is zero.

We recall that

K(s)∗(Bπ) = K(s)∗[z]/(zp
s
),

where |z| = 2.

Similarly to Lemma 3.3, we obtain the following assertion.

Lemma 4.1. (i) The map ρπ,Σp : Bπ → BΣp induces an isomorphism of K(s)∗-algebras

ρ∗π,Σp
: K(s)∗(BΣp)

≈−→ {K(s)∗(Bπ)}W ,
where

W = NΣp(π)/π ≈ Z/(p− 1).

Computing invariants yields

K(s)∗(BΣp) = K(s)∗[y]/(yms),

where

ρ∗π,Σp
(y) = zp−1, ms = [(ps − 1)/(p− 1)] + 1.

(ii) Tr∗Σp
(1) = −vsyms−1.
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Then combining Theorem 3.6 and Remark 2.2 we obtain

K(s)∗(Xp
hΣp

) = K(s)∗[[c, c̃1, . . . , c̃p−1, cp]]/(c
ms , cc̃i).

Our main result in this section is the following proposition.

Proposition 4.2. We can construct explicit elements δ
(k)
i ∈ K(s)∗(Bπ) such that the following as-

sertions hold.

(1) in K(s)∗(Xp
hπ), we have

ck(ξπ) = Tr∗π(ωk)−
∑

0≤i≤ps

ϕ∗
π(δ

(k)
i )cip(ξπ);

(2) in K(s)∗(Xp
hΣp

), we have

ck(ξΣp) = Tr∗Σp
(x1 . . . xk)−

∑

0≤i≤ps

ϕ∗
Σp

(δ̃
(k)
i )cip(ξΣp)

with

ρ̃∗π,Σp
(δ̃

(k)
i ) = k!(p− k)!δ(k)i k;

(3) the value of Tr∗π(c1(ξi)) is determined by

c1(ξπ) = Tr∗π(c1(ξi)) + vs
∑

1≤j≤s−1

cp
s−pjcp

j−1

p (ξπ),

where ξi is the pullback of the canonical line bundle ξ by projection BU(1)p → BU(1) on the

ith factor.

We are grateful to D. Ravenel for supplying us with the proof of the following result.

Lemma 4.3. For the formal group law in the Morava K-theory K(s), s > 1, we have

F (x, y) ≡ x+ y − vs
∑

0<j<p

p−1

(
p

j

)
(xp

s−1
)j(yp

s−1
)p−j

modulo xp
2(s−1)

(or modulo yp
2(s−1)

).

Proof. This result can be derived from the recursive formula for the FGL given in [31, 4.3.9]. For the

FGL in the Morava K-theory it reads

F (x, y) =
∑

i≥0

F
veis wi(x, y)

pi(s−1)
,

where wi is a certain homogeneous polynomial of degree pi defined in [31, 4.3.5] and

ei =
pis − 1

ps − 1
.

In particular, ω0 = x+ y,

w1 = −
∑

0<j<p

p−1

(
p

j

)
xjyp−j ,

and wi /∈ (xp, yp).

We find it more convenient to express F (x, y) as

F (x, y) = F
(
x+ y, vsw1(x, y)

ps−1
, ve2s w2(x, y)

p2(s−1)
, . . .

)
.

Then for s > 1, we can reduce modulo the ideal ve2s (xp
2(s−1)

, yp
2(s−1)

) and get
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F (x, y) ≡ F
(
x+ y, vsw1(x, y)

ps−1
)

= F
(
x+ y + vsw1(x, y)

ps−1
, vsw1

(
x+ y, vsw1(x, y)

ps−1)ps−1

, . . .
)

≡ F
(
x+ y + vsw1(x, y)

ps−1
, vsw1

(
xp

s−1
+ yp

s−1
, vp

s−1

s w1(x, y)
p2(s−1)))

,

and modulo v1+ps−1

s (xp
2(s−1)

, yp
2(s−1)

) we have

F (x, y) ≡ x+ y + vsw1(x, y)
ps−1

.

The lemma is proved.

For brevity, we write σk = σk(x, F (x, z), . . . , F (x, (p− 1)z)).

Corollary 4.4. In K(s)∗(BU(1)×Bπ), the following formula holds:

σk = −
∑

0≤i≤ps

λ
(k)
i σip + p−1

(
p

k

)
xkvsz

ps−1,

where λ
(k)
i = λ

(k)
i (zp−1) are polynomials in zp−1 and λ

(j)
0 = 0, j = 1, . . . , p− 2, λ

(p−1)
0 = −zp−1.

Proof. For 1 ≤ k ≤ p − 1, equating the coefficients of xip, 1 ≤ i ≤ ps, we obtain a system of linear

equations with invertible matrix of the form Id+nilpotent. Thus, the elements λ
(k)
1 , . . . , λ

(k)
ps can be

defined as the solution of this system. Of course, equating the coefficients at xi for i �= p, 2p, . . . , ps+1,

we obtain other equations for λ
(k)
j , j = 1, . . . , ps. But these equations are derived from the old

equations above. These additional equations make the matrix upper triangular.

Now we prove Proposition 4.2 and show that one necessarily has δ
(k)
i = λ

(k)
i , i = 0, . . . , ps for λ

(k)
i

encountered in Corollary 4.4. Thus by Lemma 4.1, δ
(k)
i is invariant under the action of W and we can

define δ̃
(k)
i by

ρ̃∗π,Σp
(δ̃

(k)
i ) = k!(p− k)!δ(k)i .

The diagonal map Δ : BU(1) → BU(1)p induces an inclusion Bπ × BU(1) → Xp
hπ and the

commutative diagram

Eπ ×BU(1) ��

π×1

��

Eπ ×BU(1)p

ρπ
��

Bπ ×BU(1) �� Xp
hπ

Then

(1×Δ)∗(ωk) = p−1

(
p

k

)
xk, x = c1(ξ).

Hence by transfer properties (i) and (iv), we have for the transfer Tr = Tr(π × 1):

Tr∗((1×Δ)∗(ωk)) = p−1

(
p

k

)
xk Tr∗(1) = p−1

(
p

k

)
xkvsz

ps−1.

On the other hand, by the existence of the elements δ
(k)
i we have

Tr∗((1×Δ)∗(ωk))

= σk
(
x, F (x, z), . . . , F (x, (p− 1)z)

)
+

∑

i≥0

δ
(k)
i σip

(
x, F (x, z), . . . , F (x, (p− 1)z)

)
;
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ξπ restricts to
∑
i
ξ ⊗ θi on BU(1)×Bπ, and thus ck(ξπ) to

σk
(
x, F (x, z), . . . , F (x, (p− 1)z)

)
;

by Lemma 4.3 and the fact that zp
s
= 0, [i]z can be replaced by iz. By Corollary 4.4,

σk
(
x, F (x, z), . . . , F (x, (p− 1)z)

)

= −
∑

0≤i≤ps

λ
(k)
i σip

(
x, F (x, z), . . . , F (x, (p− 1)z)

)
+ p−1

(
p

k

)
xkvsz

ps−1.

Then the restriction of (1×Δ)∗ to Ker ρ∗ is a monomorphism (see [24]). This proves Proposition 4.2

and shows that δ
(k)
i = λ

(k)
i for 0 ≤ i ≤ ps and zero otherwise. Statement (2) follows from Lemma 3.4.

Then statement (3) follows from the following explicit formula for σ1.

Lemma 4.5. In K(s)∗(Bπ ×BU(1)), we have

σ1 = vs

(
zp

s−1x+
s−1∑

i=1

zp
s−piσp

i−1

p

)
.

Proof. One has

σ1 = x+ F (x, z) + · · ·+ F (x, (p− 1)z)

= x+ x+ z + vsw1

(
xp

s−1
, zp

s−1)
+ · · ·+ x+ (p− 1)z + vsw1

(
xp

s−1
, ((p− 1)z)p

s−1)

= px+
p(p− 1)

2
z + vs

(
p−1∑

i=1

w1(x, iz)

)ps−1

= vs

⎛

⎝
p−1∑

i=1

p−1∑

j=1

−p−1

(
p

j

)
ijxp−jzj

⎞

⎠
ps−1

= vs

⎛

⎝
p−1∑

j=1

−
(

p−1∑

i=1

ij

)
p−1

(
p

j

)
zjxp−j

⎞

⎠
ps−1

.

Now
p−1∑
i=1

ij is an integral linear combination of σk(1, 2, . . . , p − 1) with k ≤ i, hence by it is zero for

i < p− 1 and for i = p− 1 it is p− 1. Thus,

σ1 = −vs
(
(p− 1)p−1

(
p

p− 1

)
zp−1xp−(p−1)

)ps−1

= vsz
ps−ps−1

xp
s−1
. (4.1)

Now since F (x, z)p = xp + zp, we have

σpp = (x(x+ z) . . . (x+ (p− 1)z))p .

But again we have

x(x+ z) . . . (x+ (p− 1)z) = xp − xzp−1.

Substituting this we obtain

vs

(
zp

s−1x+
s−1∑

i=1

zp
s−piσp

i−1

p

)

= vs

(
zp

s−1x+ zp
s−pσp +

s−1∑

i=2

zp
s−pi(xp − zp−1x)p

i−1

)
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= vs

(
zp

s−1x+ zp
s−pσp +

s−1∑

i=2

zp
s−pi

(
xp

i − z(p−1)pi−1
xp

i−1
))

.

But it is straightforward to see that

s−1∑

i=2

zp
s−pi(xp

i − z(p−1)pi−1
xp

i−1
) = zp

s−ps−1
xp

s−1 − zps−pxp.

Hence

vs

(
zp

s−1x+
s−1∑

i=1

zp
s−piσp

i−1

p

)
= vs

(
zp

s−1x+ zp
s−pσp + zp

s−ps−1
xp

s−1 − zps−pxp
)
. (4.2)

Now we have

zp
s−pF (x, kz) = zp

s−p
(
x+ kz + vsw1(x

ps−1
, (kz)p

s−1
)
)
= zp

s−p(x+ kz),

hence

zp
s−pσp = zp

s−px(x+ z) . . . (x+ (p− 1)z) = zp
s−p(xp − zp−1x).

Substituting this into (4.2) we obtain

vs

(
zp

s−1x+
s−1∑

i=1

zp
s−piσp

i−1

p

)
= vsz

ps−ps−1
xp

s−1
,

which is σ1 by (4.1).

Now we calculate some of the elements δ
(k)
i and δ̃

(k)
i .

First, recall (see [21, 31]) that generators for

π∗BP

��

⊂ H∗BP

��
Z(p)[v1, v2, . . . ] ⊂ Z(p)[m1,m2, . . . ]

where

|vn| = 2(pn − 1) = |mn| ,
are given by

vn = pmn −
n−1∑

i=1

miv
pi

n−i.

Given a formal group law over a graded ring R∗,

F (x, y) =
∑

i,j

αR
ijx

iyj ∈ R∗[[x, y]], αR
ij ∈ R2(i+j−1),

there is a ring map

g :MU∗ → R∗,
which induces the formal group law, that is,

g∗(αMU
ij ) = αR

ij .

We use also the following well-known formulas:

F (x, y) = exp(log x+ log y), log x =
∑

n≥0

mnx
n+1

for calculating the elements δi in BP theory by the algorithm of Sec. 2.
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Example 4.6. For δ1 ∈ BP ∗(BZ/2) = BP ∗[[z]]/([2](z)), we have modulo z8:

δ1 = v21z
2 + (v31 + v2)z

3 + v1z
4 + (v61 + v31v2)z

6 + (v41v2 + v22 + v3)z
7.

5. Transfer and K(s)∗(Xp
hΣp

)

Let X be a CW-complex whose Morava K-theory K(s)∗(X) is even-dimensional and finitely gen-

erated as a module over K(s)∗.
In this section, we study the transfer homomorphism in this more general context. We extend some

results of Hopkins–Kuhn–Ravenel [23] to spaces. We consider the Atiyah–Hirzebruch–Serre (AHS)

spectral sequence:

E2
∗,∗(π,X) = H∗(π;K(s)∗Xp)⇒ K(s)∗(Xp

hπ). (5.1)

By the Künneth isomorphism,

K(s)∗Xp (−→≈ K(s)∗X)⊗p. (5.2)

Then K(s)∗Xp is a π-module, where π acts by permuting factors (see [23, Theorem 7.3]).

An element x ∈ K(s)∗(X) is said to be good if there is a finite cover Y → X together with an Euler

class y ∈ K(s)∗(Y ) such that x = Tr∗(y), where Tr∗ : K(s)∗(Y ) → K(s)∗(X) is the transfer. The

space X is said to be good if K(s)∗(X) is spanned over K(s)∗ by good elements.

Let γ = ϕ∗(z), where ϕ : Xp
hπ → Bπ is the projection, and let {xj , j ∈ J } be a K(s)∗-basis

for K(s)∗(X). Hunton showed [25] that if K(s)∗(X) is concentrated in even dimensions, then so is

K(s)∗(Xp
hπ). We adopt a stronger hypothesis that X is good and derive a stronger result, following

the argument of [23, Theorem 7.3] for classifying spaces.

Proposition 5.1. Let X be a good space.

(i) As a K(s)∗-module, K(s)∗(Xp
hπ) is free with basis

{
γi ⊗ (xj)

⊗p
∣∣∣ 0 ≤ i < ps, j ∈ J

}

and ⎧
⎨

⎩
∑

(i1,i2,...,ip)=I

1⊗ xi1 ⊗ xi2 ⊗ · · · ⊗ xip
∣∣∣∣ I ∈ Pp

⎫
⎬

⎭ ,

where I = {(i1, i2, . . . , ip)} runs over the set Pp of π-equivalence classes of p-tuples of indices

ij ∈ J at least two of which are not equal.

(ii) Xp
hπ is good.

Proof. (i) By the Künneth isomorphism,

K(s)∗(X)⊗p = F ⊕ T (5.3)

as a π-module, where F is free and T is trivial. Explicitly, a K(s)∗-basis for T is {(xi)⊗p, i ∈ J },
while a K(s)∗-basis for F is {xi1 ⊗ xi2 ⊗ · · · ⊗ xip , ij ∈ J }, where not all the factors are equal. Then

H∗(π;F ) =

{
F π if ∗ = 0,

0 if ∗ > 0

and

H∗(π;T ) = H∗(Bπ)⊗ T.
Thus,

E2
0,∗(π,X) = K(s)∗(Xp

hπ)
π = F π ⊕ T.
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To continue the proof, we recall the covering projection

ρπ : Eπ ×Xp → Xp
hπ,

its associated transfer homomorphism

Tr∗ = Tr∗π : K(s)∗(Xp)→ K(s)∗(Xp
hπ), (5.4)

and the induced homomorphism

ρπ
∗ : K(s)∗(Xp

hπ)→ K(s)∗(Xp).

Similar maps are defined for the group Σp. Then ρπ
∗Tr∗ = N , where N = Nπ is the trace map.

Thus, we have established the following lemma.

Lemma 5.2. If y ∈ K(s)∗(Xp) is good, then there exists a good element z ∈ K(s)∗(Xp
hπ) such that

ρ∗π(z) = N(y).

Lemma 5.3. If x ∈ K(s)∗(X) is good, then there is a good element z ∈ K(s)∗(Xp
hπ) such that

ρ∗π(z) = x⊗p.

Proof. By assumption, there is a finite covering f : Y → X and an Euler class e ∈ K(s)∗(Y ) such that

x = Tr∗(e). Now consider the covering

φ = f × · · · × f : Y p → Xp,

which extends to a covering

1× φ : Y p
hπ → Xp

hπ

and yields a map of coverings

Eπ × Y p ��

1×φ

��

Y p
hπ

1×φ

��
Eπ ×Xp �� Xp

hπ

The class e⊗p is an Euler class for Y p. Since the transfer is natural and commutes with tensor

products, we have

ρ∗π Tr
∗(1⊗ e⊗p) = Tr∗ ρπ∗(1⊗ e⊗p) = Tr∗(e⊗p) = Tr∗(e)⊗ · · · ⊗ Tr∗(e) = x⊗p.

The lemma is proved.

Corollary 5.4. E2
0,∗(π,X) consists of permanent cycles that are good.

Thus, as differential graded K(s)∗ modules, there is an isomorphism of spectral sequences
(
Er

∗,∗(π, pt)⊗K(s)∗ T
)⊕ F π ≈−→ Er

∗,∗(π,X).

It follows that as a K(s)∗-algebra K(s)∗(Xp
hπ) is generated by K(s)∗(Bπ), T , and F π.

(ii) The proof of [23, Theorem 7.3] carries over. This completes the proof of Proposition 5.1.

Remark 5.5. From the periodicity of the cohomology of a cyclic group [15, Proposition XII, 11.1],

we have the isomorphisms

Ht(π;K(s)∗(Xp))
·z−→ Ht+2(π;K(s)∗(Xp))

for t > 0 and

H0(π;K(s)∗(Xp))/ Im(N)
·z−→ H2(π;K(s)∗(Xp)).

Thus, multiplication by z is also injective on T at the E2 term.
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Remark 5.6. ρπ
∗Tr∗ = N ; thus, modulo ker(ρπ

∗) we have

Tr∗(xi1 ⊗ xi2 ⊗ · · · ⊗ xip) =
∑

σ∈π
1⊗ xσ(i1) ⊗ xσ(i2) ⊗ · · · ⊗ xσ(ip). (5.5)

Note that if the ij in (5.5) are equal, the right-hand side is zero. However,

Tr∗(xj⊗p) = 1⊗ xj⊗p · Tr∗(1).
Now we turn to K(s)∗(Xp

hΣp
).

Let c = ϕ∗(y), where ϕ : EΣp ×Σp X
p → BΣp is the projection.

Proposition 5.7. Let X be a good space. As a K(s)∗-module, K(s)∗(Xp
hΣp

) is free with basis
{
ci ⊗ (xj)

⊗p
∣∣∣ 0 ≤ i < ms, j ∈ J

}

and ⎧
⎨

⎩
∑

(i1,i2,...,ip)=I

1⊗ xi1 ⊗ xi2 ⊗ · · · ⊗ xip
∣∣∣∣ I ∈ Ep

⎫
⎬

⎭ ,

where I = {(i1, i2, . . . , ip)} runs over the set Ep of Σp-equivalence classes of p-tuples of indices ij ∈ J
at least two of which are not equal.

Since |W | is prime to p, the result follows from the AHS spectral sequence, as in the proof of

Proposition 5.1.

6. Transferred Chern Classes in the Morava K-Theory

6.1. Statements. Let p be a prime and π be the cyclic group of order p. For a given action of π

on a space X, consider the regular covering

ρ : Eπ ×X → Eπ ×π X.

For brevity we write Xhπ := Eπ ×π X. For the permutation action of π on X = Y p, we have

Y p
hπ = Eπ ×π Y

p.

Let t be a generator of π and Nπ = 1+ t+ · · ·+ tp−1 be the trace map. For a n-plane bundle ηn, the

corresponding classifying map

f : X → BU(n)

induces the classifying map (f, tf, . . . , tp−1f) for the bundle Nπη
n and thereby a map of orbit spaces

fηn : Xhπ → BU(n)phπ.

For the covering

ρπ : Eπ ×BU(n)p → BU(n)phπ
and the universal n-plane bundle ξn → BU(n), we consider the Atiyah transfer bundle (see [2])

ξnπ → BU(n)phπ,

i.e., the np-plane bundle

ξnπ = Eπ ×π (ξn)×p.

Then the map fηn classifies the Atiyah transfer bundle for ηn and ρ. So by the naturality of the

transfer [1] we can consider ρπ as the universal example.

Let K(s)∗, s ≥ 1, be the sth Morava K-theory at p. We recall that, by the Künneth isomorphism,

K(s)∗(BU(n)p) = F ⊕ T as a π-module, where F is free and T is trivial.

34



Definition 6.1. Let ω
(n)
k ∈ F be defined modulo kerNπ = Im(1− t) by

Nπ(ω
(n)
k ) = ck(Nπ(ξ

n)),

where ck are Chern classes, k ∈ {1, . . . , np} \ {p, 2p, . . . , np}.
By the naturality of the transfer Tr∗π = Tr∗π t, where

Tr∗π : K(s)∗(Eπ ×BU(n)p)→ K(s)∗(BU(n)phπ),

hence Tr∗π(ω
(n)
k ) is well defined.

We write ωk(η
n) for the pullback by map fηn of orbit spaces defined above.

Recall that

K(s)∗(Bπ) = Fp[vs, v
−1
s ][z]/(zp

s
),

where z = c1(θ) is the Chern class of the canonical complex line bundle over Bπ.

Lemma 6.2. We can define a polynomial in n+ 1 variables

A
(n)
k (zp−1, Z1, . . . , Zn) ∈ K(s)∗[z, Z1, . . . , Zn]

uniquely by the equation in K(s)∗B(π × U(n)):

Ck − vszps−1p−1
∑

i1+2i2···+nin=k
i0+i1+···+in=p

(
p

i0, i1, . . . , in

)
ci11 . . . c

in
n = A

(n)
k (zp−1, Cp, . . . , Cpn),

where

Ci = ci(ξ
n ⊕ θ ⊗ ξn ⊕ · · · ⊕ θp−1 ⊗ ξn),

cj = cj(ξ
n) are Chern classes, and k ∈ {1, . . . , np} \ {p, . . . , np}.

For example, in K(s)∗(Bπ ×BU(1)), p > 2, we have

C1 = vs

(
zp

s−1c1

s−1∑

i=1

zp
s−piCpi−1

p

)
;

thus

A
(1)
1 (zp−1, Z1) = vs

s−1∑

i=1

zp
s−piZpi−1

1 .

Then using the polynomials A
(n)
k , we evaluate the transferred classes ωk(η

n) for regular coverings.

Theorem 6.3. Let ρ : X → X/π be the regular cyclic covering of prime index p defined by a free

action of π on X and Tr∗ = Tr∗ρ be the associated transfer homomorphism. Let ηn → X be a complex

n-plane bundle, ηnπ → X/π be the pn-plane bundle defined by Atyiah transfer, and ψ → X/π be the

complex line bundle associated with ρ. Then

ck(η
n
π))− Tr∗(ωk(η

n)) = A
(n)
k

(
cp−1
1 (ψ), cp(η

n
π), . . . , cpn(η

n
π)
)
,

where k ∈ {1, . . . , np} \ {p, . . . , np}.
Example 6.4. ω1 = c1(η

n); hence if k = 1, we have

c1(η
n
π))− Tr∗(c1(ηn)) = A

(n)
1

(
cp−1
1 (ψ), cp(η

n
π), . . . , cpn(η

n
π)
)
.
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If, in addition, n = 1, then by above example we have for the line bundle η → X and the transferred

Chern class

c1(ηπ)− Tr∗(c1(η)) = vs

s−1∑

i=1

c1(ψ)
ps−picp(ηπ)

pi−1
.

For p = 2, we have

A
(1)
1 (c21(ψ), c2) = c1(ψ) + sums−1

i=1 c1(ψ)
2s−2ic2(ηπ)

2i−1
.

6.2. Proofs.

Remark 6.5. Neil Strickland suggested an elegant proof of Lemma 6.2 completely within the context

of subgroups of formal groups. This material is available from N.P.Strickland@sheffield.ac.uk.

It uses rather different techniques than our proof for which we now offer some motivation. The lemma

says that modulo image of the transfer

Tr∗ : K(s)∗B(U(n))→ K(s)∗B(π × U(n))

for the covering π × 1 : Eπ × BU(n) → Bπ × BU(n), the class Ck can be written as a polynomial

in zp−1 and Cp, . . . , Cnp, that this expression vanishes when restricted to K(s)∗BU(n), and that the

indeterminacy is obtained by applying the transfer to p−1Ck after restricting to K(s)∗(BU(n)). This

uses Frobenius reciprocity and the fact that

Tr∗(1) = [p](z)/z = vsz
ps−1

in the Morava K-theory.

Proof of Lemma 6.2. We begin by considering the case n = 1. Let σi be the ith symmetric functions

in p variables. Then

Ci = σi
(
x, F (x, z), . . . , F (x, (p− 1)z)

)
,

where x = c1(ξ
1) and z = c1(θ) are Chern classes in K(s)∗B(π×U(1)) = K(s)∗[[z, x]]/(zps). Consider

the equation

Ck = −
∑

0≤i≤ps

λkiC
i
p + p−1

(
p

k

)
xkzp

s−1, 1 ≤ k ≤ p− 1.

We prove that such λki uniquely exist as elements in K(s)∗[[z]]/(zps) and calculate these elements as

polynomials in zp−1. Then

A
(1)
k (zp−1, Cp) =

∑

0≤i≤ps

λkiC
i
p.

Since Ck is the Chern class of the bundle ξ ⊗ (1 + θ + θ2 + · · · + θp−1), it can be written as a series

in the Chern classes of ξ, i.e., x, and the Chern classes of 1 + θ + θ2 + · · · + θp−1. But the Chern

classes of the latter bundle are elementary symmetric functions in z, 2z, . . . , (p−1)z, the Chern classes

of θ, θ2, . . . , θp−1 all of which vanish except the (p − 1)th class which is −zp−1. Hence we can write

the classes Ck as series in x and zp−1. Lemma 4.1 allows us to write Ck as explicit polynomials in x

and zp−1. Now noting that Cp = xp mod zp−1, we obtain from the above equation a system of linear

equations in variables λkj by equating the coefficients at xi, i ≥ 0. Vanishing also implies λk0 = 0,

k = 1, . . . , p− 2, and

λp−10 = cp−1(1 + θ + · · ·+ θp−1) = −zp−1.

Then equating the coefficients at xp, . . . , xp
s+1

in the above equation after rewriting it in terms of x

and zp−1 as above, we have a system of ps linear equations in ps variables λki, i = 1, . . . , ps. The

determinant of this system is invertible since the diagonal coefficients are invertible and all other

coefficients lie in the (nilpotent) augmentation ideal. Thus the elements λki are uniquely defined.
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Of course, equating the coefficients at xi for i �= p, 2p, . . . , ps+1 will produce other equations in

λkj , j = 1, . . . , ps. But these equations are derived from the old equations above. These additional

equations make the matrix upper triangular. This defines A
(1)
k .

In the general n case we proceed analogously, noting that Cip = cpi mod zp−1, i = 1, . . . , n.

Our additional claim again is that the A
(n)
k are polynomials, that is, only a finite number of elements

λk,i1,...,in are nontrivial. Here we need the splitting principle and Lemma 4.3 to express explicitly the

elements Ci, i = 1, . . . , np, in terms of polynomials in zp−1 and c1, . . . , cn. For k ∈ {1, . . . , np} \
{p, . . . , np}, let

A
(n)
k (zp−1, Cp, . . . , Cpn) =

∑

0≤i1,...,in≤ps

λk,i1,...,inC
i1
p . . . Cin

np.

We define

λk,0...0 = ck(n+ nθ + · · ·+ nθp−1)

again by looking at reductions to K(s)∗(Bπ). The other n(ps + 1) − 1 elements λk,i1,...,in can be

defined as the solution of a system of n(ps + 1) − 1 linear equations with an invertible determinant.

This system is obtained from the equation after using Lemma 4.3 to rewrite it in terms of zp−1 and

c1, . . . , cn and equating coefficients of cpi11 . . . cpinn . The solution defines λk,i1,...,in , 0 ≤ ij ≤ ps. Again,

the additional equations in these elements arise from the coefficients of other monomials and are not

new. The desired polynomials are thus uniquely defined.

Proof of Theorem 6.3. Consider the homotopy orbit space

BU(n)phπ = Eπ ×π BU(n)p

as the universal example. The diagonal map BU(n)→ BU(n)p induces the inclusion

i : Bπ ×BU(n)→ Eπ ×π BU(n)p.

We use [24, Proposition 4.2], which implies that since BU(n) is a unitary-like space (i.e., K(s)∗BU(n)

has no nilpotent elements), the map (i ∨ ρπ)∗ is a monomorphism. Since ρ∗π Tr
∗ = Nπ, the difference

ck(η
n
π)− Tr∗(ω(n)

k )

belongs to ker ρ∗π and hence is detected by i∗. The result now follows from Lemma 6.2.

Note we can replace the cyclic group by the symmetric group Σp and use the polynomials A
(n)
k to

evaluate the disparity or “gap” between the Chern class ck(ξ
n
Σp

) and ImTr∗Σp
, for

ρΣp : EΣp × U(n)p → BU(n)phΣp
.

Namely, the Euler characteristic of the coset space

Σp � U(n)/π � U(n) = (p− 1)!

is prime to p. Hence the inclusion

ρπ,Σp : π → Σp

induces a monomorphism

K(s)∗(B(Σp � U(n)))→ K(s)∗(B(π � U(n))).

Hence Hunton’s result above holds for BU(n)phΣp
.

Now let ς
(n)
k ∈ F be defined modulo kerNΣp by

NΣp(ς
(n)
k ) = ck(Nπ(ξ

n)).

Again Tr∗Σp
(ς

(n)
k ) is well defined: as above, KerNπ = Im(1− t∗); therefore,
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a ∈ F ∩ kerNΣp ⇒
∑

g∈Σp/π

g∗a ∈ Im(1− t∗)

⇒ Tr∗Σp

( ∑

g∈Σp/π

g∗a
)

= 0 ⇒ (p− 1)! Tr∗Σp
(a) = 0 ⇒ Tr∗Σp

(a) = 0.

Then for the np-plane bundle over BU(n)phΣp

ξnΣp
= EΣp ×Σp (ξ

n)×p,

the difference

ck(ξ
n
Σp

)− Tr∗Σp
(ς

(n)
k )

belongs to ker ρ∗Σp
and hence is detected by the polynomials

A
(n)
k (y, cp(ξ

n
Σp

), . . . , cnp(ξ
n
Σp

)),

where

y ∈ K(s)∗(B(Σp)) = K(s)∗[[y]]/(yms)

and |y| = 2(p− 1) and ms = [(ps − 1/(p− 1))] + 1.

Theorem 6.6.

ck(ξ
n
Σp

)− Tr∗Σp
(ς

(n)
k ) = A

(n)
k

(
y, cp(ξ

n
Σp

), . . . , cnp(ξ
n
Σp

)
)

for k ∈ {1, . . . , np} \ {p, . . . , np}.

7. Stable Euler Classes

Now we turn to Gn = π � (Z/pn), where π = Z/p. Then BGn = Xp
hπ for X = BZ/pn. Consider the

AHS spectral sequence for

B(Z/pn)p → BGn
ϕ→ Bπ.

Then

Ep,q
2 = H∗(π;K∗(s)(B(Z/pn)p)

)
,

where

K∗(s)
(
B(Z/pn)p

)
=

(
K(s)∗[z]/(zp

ns
)
)⊗p

= F ⊕ T
and F and T , as in (5.3) above, are free (respectively, trivial) π-modules.

Let γ = ϕ∗(z), where K(s)∗(Bπ) = K(s)∗[z]/(zps) as above.

Proposition 7.1. As a K(s)∗-module, K(s)∗(BGn) is free with basis
{
γi ⊗ (zj)⊗p, 0 ≤ i < ps, 0 ≤ j < pns

}

and ⎧
⎨

⎩
∑

(i1,i2,...,ip)=I

1⊗ zi1 ⊗ zi2 ⊗ · · · ⊗ zip
∣∣∣∣ I ∈ Pp(n)

⎫
⎬

⎭ ,

where I = {(i1, i2, . . . , ip)} runs over the set Pp(n) of π-equivalence classes of p-tuples of integers

{0 ≤ ij < pns} at least two of which are not equal.

Proof. This spectral sequence calculation is exactly analogous to that of Proposition 5.1.
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Remark 7.2. (i) For X = CP∞, Proposition 7.1 gives another derivation of K(s)∗(Xp
hπ). Since

CP∞∧
p =

[
colim

n
B(Z/pn)

]∧
p
,

we have

K(s)∗(Xp
hπ) = lim

n
K(s)∗(BGn).

(ii) Gn is good for K(s)∗ by [23, Theorem 7.3].

By analogy with Sec. 4 we have the following lemma.

Lemma 7.3. (i) Im(Tr∗) · γ = 0.

(ii) Tr∗(1) = vsγ
ps−1.

(iii) If y ∈ T , then Tr∗(y) = y · Tr∗(1).
7.1. p-Groups with cyclic subgroup of index p. In this section, we consider the class of p-

groups with a (necessarily normal) cyclic subgroup of index p. It is known (see [13, Theorem 4.1,

Chap. IV]) that every p-group of this form is isomorphic to one of the following groups:

(a) Z/q (q = pn, n ≥ 1);

(b) Z/q × Z/p (q = pn, n ≥ 1);

(c) Z/q�Z/p (q = pn, n ≥ 2), where the canonical generator of Z/p acts on Z/q as multiplication

by 1 + pn−1. This group is called the modular group if p ≥ 3 and the quasi-dihedral group if

p = 2 and n ≥ 4.

For p = 2, there are three additional families.

(d) Dihedral 2-groups D2m = Z/m � Z/2 (m ≥ 2), where the generator of Z/2 acts on Z/m as

multiplication by −1. If m = 2n, D2m is a 2-group. Note that D4 belongs to (b) and D8 belongs

to (c).

(e) Generalized quaternion 2-groups. Let H be the algebra of quaternions R⊕Ri⊕Rj ⊕Rk. For

m ≥ 2, the generalized quaternion group Q4m is defined as the subgroup of the multiplicative

group H∗ generated by x = eπi/m and y = j. The subgroup Z/2m generated by x is normal

and has index 2. If m is a power of 2, Q4m is a 2-group. In the extension

0→ Z/2m→ Q4m → Z/2→ 0,

the generator of Z/2 acts on Z/2m as −1. In particular, Q8 is the group of quaternions

{±1,±i,±j,±k}.
(f) Semi-dihedral groups Z/q � Z/2 (q = pn, n ≥ 3), where the generator of Z/2 acts on Z/q as

multiplication by −1 + 2n−1.

Now we consider the problem of calculation of the stable Euler class, Tr∗G(1), for the universal

G-covering EG→ BG.

For the case (a), there is the well-known formula of Quillen (2.1)

Tr∗Z/q(1) = [q]F (z)/z

in MU∗(BZ/q) =MU∗[[z]]/([q]F (z)).
For the case (b), the answer follows from transfer property (ii):

TrG = TrZ/q ∧TrZ/p .
In the cases (d), (e), and (f), Tr∗G is the composition of two transfers Tr∗Z/q and Tr∗C,G :MU∗(BC)→

MU∗(BG), where C is the corresponding cyclic subgroup. So we must calculate Tr∗C,G(z
i), i ≥ 1, and

we can apply our results for BZ/2 � U(1), namely Remark 2.9.

Similarly for the case (c), TrG is the composition TrZ/q,GTrZ/q and we can apply Corollary 2.8.

39



This task is trivial for wreath products Z/p �Z/pn since Tr∗Z/pn(1) is symmetric in z1, . . . , zp in the

ring

MU∗((BZ/pn)p) =MU∗[[z1, . . . , zp]]/([pn](z1), . . . , [pn](zp))

and hence invariant under the Z/p action. So in this case we need only Quillen’s formula.

Finally, we note that if G is the modular group of case (c), Brunetti [12] has completely calculated

the ring K(s)∗(BG). The relations are quite simple, but the generators are technically complicated.

In a future paper, we plan to use transferred Chern classes to give a more natural presentation.

7.2. Other examples. Consider the semi-direct products

G = (Z/p)n � Z/p,

where the generator α of Z/p acts on Hn = Z/p[T ]/(Tn) by 1 − α = T , 1 ≤ n ≤ p. Then every

Z/p[Z/p]-module is a direct sum of the modules Hn. As shown by Yagita [40] and Kriz [28], these

semi-direct products are good in the sense of Hopkins–Kuhn–Ravenel.

We recall that

K(s)∗(B(Z/p)n) = K(s)∗[[z1, . . . , zn]]/(z
ps

i ),

where zi is the Euler class of a faithful complex line bundle θi on the ith factor. Then Z/p acts on

K(s)∗[z1, . . . , zn]/(z
ps

i ) by

α : zi → FK(s)(zi, zi+1), zn+1 := 0,

where FK(s) denotes the formal group law for the Morava K-theory.

Our aim is to show how to calculate the stable Euler classes in terms of characteristic classes and

the formal group law.

The transfer Tr∗ : K(s)∗EG→ K(s)∗BG is the composition of two transfers

Tr∗1 : K(s)∗E((Z/p)n)→ K(s)∗B((Z/p)n)

and

Tr∗2 : K(s)∗B((Z/p)n)→ K(s)∗BG.

Recall also that

Tr∗1(1) = zp
s−1

1 · · · zps−1
n .

It is easy to see that in K(s)∗((BZ/p)n), we have

ep
s−1(αi1(θ1)) · · · eps−1(αin(θ1)) = zp

s−1
1 · · · zps−1

n ,

where e is the Euler class and 1 ≤ i1 < · · · < in ≤ p. Then recall the elements ωn from Theorem 2.3

and let ωn(l) be the sum of the same monomials after raising to the power l. Since ωn(l) consist of

p−1

(
p

n

)
summands and p−1

(
p

n

)
=

(−1)n
n

mod p, we have that in K(s)∗((BZ/p)n)

η∗π(ωn(p
s − 1)) = (−1)nzps−1

1 · · · zps−1
n /n,

where the map ηπ defined in Sec. 2 sends ξi = ti−1ξ1 to αi−1θ1. Hence

Tr∗G(1) = Tr∗2(Tr
∗
1(1)) = Tr∗2((−1)nnη∗π(ωn(p

s − 1))) = (−1)nnTr∗2(η∗π(ωn(p
s − 1))),

and we apply Corollary 2.7.
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8. Morava K-Theory Rings for p-Groups

with Maximal Cyclic Subgroup in Chern Classes

The rank of the Morava K-theory ring of the classifying space of a finite group as a free K(s)∗

module is given by the Hopkins–Kuhn–Ravenel generalized character theory [23]. For many finite p-

groups, the Morava K-theory ring is generated by transferred Chern classes (in general, this is invalid;

see [28]).

In [4, 5] we studied the Chern classes of a transferred bundle in terms of transferred classes of the

bundle. As an application, we derived formulas for the stable Euler classes TrG(1) for these groups

and sought to simplify presentations of K(s)∗(BG) when G is modular or quasi-dihedral.

We consider the group

Gpm+2 =
〈
a, b

∣∣ apm+1
= bp = 1, bab−1 = ap

m+1
〉
, m > 1.

This group is called the modular group Mpm+2 if p ≥ 3 and the quasi-dihedral group QD2m+2 if p = 2

and m ≥ 3.

In [36, 40], it was shown that K(s)∗(BG) is generated as a K(s)∗(pt)-module by Chern classes

of complex vector bundles. The multiplicative structure has been determined only modulo certain

indeterminacy. In order to obtain explicit ring structure, it was suggested in [12, 35] to use some

artificial generators not equal to Chern classes.

Our aim here is to apply the formulas for the transferred Chern classes derived in [5] and determine

K∗(BG) for the modular and quasi-dihedral groups completely in terms of Chern classes. The dihedral,

semi-dihedral, and generalized quaternion groups are considered in [6].

The group Gpm+2 is the semidirect product Z/pm+1
� Z/p and there is the exact sequence

1→ Z/pm+1 → Gpm+2 → Z/p→ 1,

where

Z/pm+1 = 〈a〉, Z/p = 〈b〉.
For the canonical complex line bundle ξ → BZ/pm+1 and its first Chern class u, we have

b(ξ) = ξ⊗
1+pm

, b(u) = [1 + pm](u).

Let

ξπ → BGpm+2

be the p-plane bundle transferred from ξ (see [1, 2]),

ci = ci(ξπ), i = 1, . . . , p,

be the Chern classes, and let

c = c1(θ)

be the Chern class of the line complex bundle, the pullback by the projection Gpm+2 → Z/p. Then it

is proved in [36] that

K(s)∗(BGpm+2) = K(s)∗[c, c1, . . . , cp]/relations (8.1)

and the relations are given modulo some ideal.

In [4, 5] we introduced and calculated the following polynomials Ai in two variables:

Ai(z
p−1, Z) ∈ K(s)∗[z, Z]/[p]F (z), s > 1, i = 1, . . . , p− 1,

uniquely determined by the equations

σi = Ai(z
p−1, σp) + p−1

(
p

i

)
vsy

izp
s−1,
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where

σk = σk(y, F (y, z), . . . , F (y, (p− 1)z)), k = 1, . . . , p,

is ith elementary symmetric function and F is the formal group law.

For p = 2, we have

A1(z, Z) = z + vs

s−1∑

i=1

z2
s−2iZ2i−1

.

Our main result is the following theorem.

Theorem 8.1. We have

K(s)∗(BGpm+2) ∼= K(s)∗[c, c1, . . . , cp]/R
and the ideal R is generated by

cp
s
, xp

s
, cc∗i , xc

∗∗
i , c

∗
i c

∗∗
j , i+ j �= p− 1, c∗i c

∗∗
p−1−i − p−2

(
p

i

)(
p

i+ 1

)
vsx

ps−1cp−1,

where

x = v(p
ms−1)/(ps−1)

s cp
ms−1

p , c∗i = ci −Ai(c
p−1, cp), c∗∗i = ci −Ai(x

p−1, cp).

It is natural to compare our description of K(s)∗(BGpm+2) and the one given in [12], in terms of

alternative generating set. Note that we have a smaller number of generating relations, even if less

explicit.

Corollary 8.2. (i) We have

K(s)∗(BQD2m+2) ∼= K(s)∗[c, c1, c2]/
(
c2

s
, x2

s
, cc∗1, xc

∗∗
1 , c

∗
1c

∗∗
1

)
,

where

x = v(2
ms−1)/(2s−1)

s c2
ms−1

2

and

c∗1 = c1 + c+ vs

s−1∑

i=1

c2
s−2ic2

i−1

2 , c∗∗1 = c1 + x+ vs

s−1∑

i=1

x2
s−2ic2

i−1

2 .

(ii) c2x = cx2, c21 = c2 + x2 + cx+ v2s(cxc2)
2s−1

.

More precisely, the following assertion holds.

Proposition 8.3. (i) A K(s)∗-basis for K(s)∗(BGpm+2) is

c1, . . . , cp−1;

cip, i = 1, . . . , p(m+1)s−1 − 1;

ckc
j
p, k = 1, . . . , p− 1, j = 1, . . . , pms−1 − 1;

clcmp , l = 1, . . . , ps − 1, m = 0, . . . , pms−1 − 1;

cncqp, n = 1, . . . , p− 1, q = pms−1, . . . , p(m+1)s−1 − 1.

(ii) The relations

cc∗p−1 = 0, xc∗∗p−1 = 0

imply

cpx = cxp.

Then for i, j = 1, . . . , p− 1, the relations

cc∗i = 0, xc∗∗i = 0,
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c∗i c
∗∗
p−1−i = p−2

(
p

i

)(
p

p− 1− i
)
vsx

ps−1cp−1,

c∗i c
∗∗
j = 0, j �= p− 1− i,

give basic expressions for cci, cic
pms−1

p , and cicj, respectively.

Proposition 8.3 agrees with the rank of K(s)∗(BG2m+2) as a free K(s)∗ module. This num-

ber is pms−1(ps+1 + ps − 1) and is given by the generalized character theory [23]. In particular,

K(s)odd(BGpm+2) = 0 by (39). Hence

rankK(s)K(s)even(BGpm+2) = χs,p(Gpm+2)

and the rank follows from the formula for χs,p(Gpm+2) (see [12, Lemma 2.2]).

Now we prove the relations of Theorem 8.1 and show that they give the decompositions of Propo-

sition 8.3. Then by the rank argument this will imply that the system of relations is complete.

We recall some results from [5] (see also [4]).

Let X → X/π be a regular cyclic covering of prime index p defined by a free action of cyclic group

π on X and let

Tr∗π : K(s)∗(X)→ K(s)∗(X/π)
be its associated transfer homomorphism [17, 27]. Let η → X be a complex line bundle and ηπ → X/π

be the transferred η.

In [5] we proved that modulo ImTr∗π, the Chern classes ci(ηπ), 1 ≤ i < p, can be written in terms

of the polynomials Ai from Theorem 8.1. Namely, we have constructed certain classes ωi(η) such that

ci(ηπ) = Ai((c1ψ)
p−1, cp(ηπ)) + Tr∗π(ωi(η)), (8.2)

where ψ → X/π is the complex line bundle associated with the covering X → X/π. We will need the

following two consequences.

Let

ξ → BZ/pm+1, ξπ → BGpm+2 , θ → BGpm+2

be the bundles of the Introduction and let c = c1(θ), u = c1(ξ), and ck = ck(ξπ), k = 1, . . . , p be their

corresponding Chern classes.

Lemma 8.4. ci = Ai(c
p−1, cp) + Tr∗(ωi(ξ)), i = 1, . . . , p− 1.

In the notation of Theorem 8.1, c∗i = Tr∗(ωi(ξ)). For instance, c
∗
1 = Tr∗(u). The values Tr∗(uk) for

2 ≤ k ≤ p− 1 can be calculated as follows.

Lemma 8.5. (i) We have

Tr∗π(u
k) =

k−1∑

i=1

(−1)i+1Tr∗(uk−i)ci + (−1)k+1kc∗k.

(ii) Modulo the ideal in K(s)∗(BGpm+2) generated by cp, c1, . . . , cp−1, we have

Tr∗(uk) = 0, 2 ≤ k < p− 1, Tr∗(up−1) = −cp−1.

Proof. (i) As in the Introduction, let u, b(u), . . . , bp−1(u) be the Chern classes of the bundles ξ,

b(ξ), . . . , bp−1(ξ). Then

uk =
k−1∑

i=1

(−1)i+1uk−iσi(u, b(u), . . . , b
p−1(u)) + (−1)k+1uσk−1(b(u), . . . , b

p−1(u)).

It follows from the definition of ωi (see [4]) that uσk−1(b(u), . . . , b
p−1(u)) contains k summands,

each with transfer value Tr∗(ωk) = c∗k.
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(ii) This follows from (i) and the fact that modulo cp, we have

Ak(c
p−1, cp) = 0, 2 ≤ k < p− 1, Ap−1(c

p−1, cp) = −cp−1.

The lemma is proved.

We will need also the following simple facts which follow immediately from the definitions.

Lemma 8.6. Let Z/pm = 〈ap〉 and Z/pm+1 = 〈a〉 be subgroups of Gpm+2. Let ρ : BZ/pm → BZ/pm+1

be the standard p-covering and Trρ be the corresponding transfer map. Then the following assertions

hold.

(i) The line bundle associated with ρ is ξ⊗pm. The transferred trivial bundle 1ρ is

1 + ξ⊗pm + · · ·+ ξ⊗(p−1)pm .

(ii) The bundle

π∗(ξπ) = ξ ⊗ (1 + ξ⊗pm + · · ·+ ξ⊗(p−1)pm)

is the transferred bundle of ρ∗(ξ). Further,

c1(ξ
⊗pm) = v(p

ms−1)/(ps−1)
s up

ms
= π∗(x), Tr∗ρ(1) = −vsπ∗(x)p

s−1.

(iii) We have

ci(π
∗(ξπ)) = Ai

(
(π∗(x))p−1, cp(π

∗(ξπ))
)
+Tr∗ρ(ωi(ρ

∗(ξ)))

and since the bundle ρ∗(ξpm) is trivial,

ωi(ρ
∗(ξ)) = p−1

(
p

i

)
ρ∗(ui).

The proof of Theorem 8.1 is organized as follows. In a sequence of lemmas below, we prove all

relations of Theorem 8.1. The relations given by Lemma 8.7(ii) and Lemma 8.10 are not yet the

decompositions of cci and cicj , i, j = 1, . . . , p−1, in the basis of Proposition 8.3: there will arise terms

divisible by the factor cpx, but to eliminate these we just have to apply cpx = cxp of Lemma 8.9.

Lemma 8.8(ii) gives the proper decomposition of xci. Together with cp
s
= xp

s
= 0 (Lemma 8.7(i)

and Lemma 8.8(i)) and x = v
(pms−1)/(ps−1)
s cp

ms−1

p (Lemma 8.11(ii)), these relations give the proper

decompositions of all other monomials in c, c1, . . . , cp. This system of relations is complete.

Lemma 8.7. (i) cp
s
= 0;

(ii) cci = cAi(c
p−1, cp), i = 1, . . . , p− 1.

Proof. (i) We have θ⊗p = 1. Hence c1(θ
⊗p) = cp

s
= 0.

The relations (ii) follow from Lemma 8.4 since π∗(c) = 0 and by the Frobenius reciprocity of the

transfer

cTr∗(ωi(ξ)) = Tr∗(π∗(c)ωi(ξ)) = 0.

On the other hand, we have the bundle relation

θ ⊗ ξπ = ξπ. (8.3)

Equating the Chern classes in (8.3) and applying the splitting principle we get the same relations after

simplifying them. This was proved for the universal example in [4].

Lemma 8.8. Let x = c1((det ξπ)
⊗pm−1

). Then

(i) xp
s
= 0;

(ii) xci = xAi(x
p−1, cp), i = 1, . . . , p− 1.
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Proof. Assertion (i) immediately follows from Lemma 8.7(i) and the definition of x.

(ii) We have the bundle relation

(det ξπ)
⊗pm−1 ⊗ ξπ = ξπ (8.4)

which comes from the Frobenius reciprocity:

(det ξπ)
⊗pm−1 ⊗ ξπ = (π∗((det ξπ)⊗pm−1

)⊗ ξ)π = (ξ⊗pm+1)π = (b∗(ξ))π = ξπ.

For the last equality, we recall from the Introduction the action of b ∈ Z/p in BZ/pm+1 and that

transfer is constant on the orbit elements.

Now we can equate the Chern classes in (8.3) and proceed as in the proof of Lemma 8.7.

Lemma 8.9. (i) cpx = cxp;

(ii) cix
ps−1 = 0, i < p;

(iii) cpxp
s−1 = 0.

Proof. (i) Multiplying the relations of Lemmas 8.7 and 8.8 by x and c, respectively, for i = p− 1 and

then equating the right-hand sides, we have

cxAp−1(c
p−1, cp) = cxAp−1(x

p−1, cp).

Then note that, up to an invertible factor, the difference Ap−1(c
p−1, cp) − Ap−1(x

p−1, cp) coincides

with cp−1 − xp−1. Thus, cx(cp−1 − xp−1) = 0.

(ii) By Lemma 8.8

cix
ps−1 = cixx

ps−2 = xAi(x
p−1, cp)x

ps−2.

By definition, Ai(0, cp) = 0. Thus, the right-hand side contains the factor xp
s
hence is trivial again

by Lemma 8.8.

(iii) Since cpxp
s−1 = cpxp

s−2x divisible by xp
s
, it is zero by Lemma 8.8.

Lemma 8.10. We have c∗i c
∗∗
j = 0, j �= p− 1− i, and

c∗i c
∗∗
p−1−i = p−2

(
p

i

)(
p

p− 1− i
)
vsx

ps−1cp−1.

Proof. We use the Frobenius reciprocity of the transfer and formulas for transferred classes. Let Trρ
be the transfer map of the covering

ρ : BZ/pm → BZ/pm+1

and let Trπ = Tr be the transfer map of π as above. Then (ci − Ai(c
p−1, cp))(cj − Aj(x

p−1, cp)) is

equal to

Tr∗π(ωi)
(
cj −Aj(x

p−1, cp)
)

by Lemma 8.4

= Tr∗π
(
ωi(ξ)π

∗(cj −Aj(x
p−1, cp))

)
by the Frobenius reciprocity

= Tr∗π
(
ωi(ξ) Tr

∗
ρ ωj(ρ

∗(ξ))
)

by Lemma 8.6(iii)

= Tr∗π
(
Tr∗ρ

(
ρ∗(ωi(ξ))(ωj(ρ

∗(ξ)))
))

by the Frobenius reciprocity

= Tr∗π
(
Tr∗ρ

(
p−2

(
p

i

)(
p

j

)
ρ∗(ui+j)

))
by Lemma 8.6(iii)

= p−2

(
p

i

)(
p

j

)
Tr∗π

(
Tr∗ρ(1)(u

i+j)
)

by the Frobenius reciprocity

= −p−2

(
p

i

)(
p

j

)
Tr∗π

(
vsπ

∗(x)p
s−1(ui+j)

)
by Lemma 8.6(ii)
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= −p−2

(
p

i

)(
p

j

)
vsx

ps−1Tr∗π(u
i+j) by the Frobenius reciprocity.

Then by Lemma 8.5(ii), Tr∗(ui+j) is in the ideal (cp, c1, . . . , cp−1) if 0 ≤ i + j ≤ p − 1 and hence

annihilates xp
s−1 by Lemma 8.9. If j = p− 1− i, then

Tr∗(ui+j) = −cp−1 mod (cp, c1, . . . , cp−1)

by Lemma 8.5(ii) and the result follows.

Finally, let i+ j = p+ q, q = 0, . . . , p− 2. Note that

ρ∗(π∗(cp)) = ρ∗(up).

Then

Tr∗π
(
Tr∗ρ

(
ρ∗(ui+j)

))
= Tr∗π

(
Tr∗ρ

(
ρ∗(π∗(cp))ρ∗(uq)

))

= Tr∗π
(
Tr∗ρ(1)π

∗(cp)uq)
)
= Tr∗π

(
π∗(xp

s−1)π∗(cp)uq
)
= xp

s−1cpTr
∗
π(u

q) = 0.

Here, as above, Tr∗π(uq) is in the ideal (cp, c1, . . . , cp−1) and hence annihilates xp
s−1.

Now let us evaluate x in Theorem 8.1.

Lemma 8.11. (i) cp
s

i = 0 for i = 1, . . . , p− 1 and odd p and c2
s+1

1 = 0, for p = 2. cp
s

p restricts to

up
s+1

in K(s)∗(BZ/pm+1).

(ii) We have

x = v(p
ms−1)/(ps−1)

s cp
ms−1

p .

Proof. First, let p be odd.

(i) Lemma 8.4 and Lemma 8.5(i) imply that, modulo c, the classes c1, . . . , cp−1 can be written in

Tr∗(u), . . . ,Tr∗(up−1) and vice versa. Then by Lemma 8.7, cp
s
= 0; hence it suffices to prove that

Tr∗(uk)p
s
= 0.

ci restricts to the ith elementary symmetric function in the variables u, [1 + pm](u), . . . , [1 + (p −
1)pm](u) in K(s)∗(BZ/pm+1).

Note that

([pm](u))p
s
= up

(m+1)s
= 0

and recall (see [4, 31]) that

[1 + ipm](u) = u+ i[pm](u) + vsw1(u, i[p
m](u))p

s−1
,

where w1 is a homogeneous polynomial:

w1(u, v) = −
∑

0≤j≤p

p−1

(
p

j

)
ujvp−j .

Thus, ci and Tr∗(ui), i = 1, . . . , p− 2, restrict trivially in K(s)∗(BZ/pm+1) modulo ([pm](u))p
s−1

and

cp−1 and Tr∗(up−1) restrict trivially modulo ([pm](u))p−1.

Similarly, cp restricts to up modulo ([pm](u))p
s−1

. Then

(ps−1)(ps − 1), (p− 1)(ps − 1) > ps.

Hence Tr(uk)p
s−1 restricts trivially in K(s)∗(BZ/pm+1) and by the Frobenius reciprocity

Tr∗(uk)(Tr∗(uk))p
s−1 = Tr∗(uk · 0) = 0.

(ii) Let det ξπ be the determinant. The Chern class γ = c1(det ξπ) can be written in terms of the

classes c1, . . . , cp in the standard way.
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After raising to the power pms−s ≥ ps, we have that (i) implies

γp
ms−s

= vp
ms−s

s cp
ms−1

p . (8.5)

Then v
(p(m−1)s−1)/(ps−1)
s γp

ms−s
is the Chern class of the bundle

(det(ξπ))
⊗pm−1

and (ii) follows.

For p = 2, note that for the Chern class of det ξπ, as the standard series in c1 and c2, we have

modulo c1
γ = vsc

2s−1

2 .

Again

x = v(2
(m−1)s−1)/(2s−1)

s γ2
ms−s

and it suffices to prove that c2
s+1

1 = 0. By the definition of quasi-dihedral group m > 2, 2ms−s > 2s+1

and we can proceed as in case of odd p.

Recall that c2
s
= x2

s
= 0 by Lemma 8.7(i) and Lemma 8.8(i). Also by Lemma 8.10, c2x = cx2

hence we have for i+ j ≥ 2s + 1

cixj = 0. (8.6)

Now the formulas for c∗1 and c∗∗1 simplify c∗1c∗∗1 = 0 as

c21 = c1c+ c1x+ cx = c2 + x2 + cx+ v2s(cxc2)
2s−1

. (8.7)

Hence after raising (8.3) to the power 2s−1, we have

c2
s

1 = c2
s−1
x2

s−1
. (8.8)

Thus,

c2
s+1

1 = x2
s−1
c2

s−1
c1 = x2

s−1
c2

s−1−1cc1 = x2
s−1
c2

s−1−1c2 = 0

by (8.8), cc1 = 0 modulo c2, and (8.6) the result follows.

9. Dihedral, Semidihedral, and Generalized Quaternion Groups

Now let

G =
〈
a, b

∣∣ a2m+1
= 1, b2 = ae, bab−1 = ar

〉
, m ≥ 1,

and either

(i) e = 0 and r = −1 (the dihedral group D2m+2 of order 2m+2), or

(ii) e = 2m and r = −1 (the generalized quaternion group Q2m+2), or

(iii) m ≥ 2, e = 0, and r = 2m − 1 (the semidihedral group SD2m+2).

Consider the following Chern classes c, x, c1, and c2 of dimensions |c| = |x| = |c1| = 2 and |c2| = 4:

c = c1(η1), η1 : G/〈a〉 ∼= Z/2→ C
∗, b �→ −1,

x = c1(η2), η2 : G/〈a2, b〉 ∼= Z/2→ C
∗, a �→ −1,

and ci = ci(ξπ1), where

ξπ1 → B〈a, b〉
is the plane bundle transferred from the canonical line bundle

ξ → B〈a〉,
for the double covering

π1 : B〈a〉 → B〈a, b〉
corresponding to η1.
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Theorem 9.1. (i) K(s)∗(BG) = K(s)∗[c, x, c2]/R and the relations R are determined by

c2
s
= x2

s
= 0, (9.1)

vscc
2s−1

2 = vs

s−1∑

i=1

c2
s−2i+1c2

i−1

2 +

⎧
⎪⎨

⎪⎩

0 if G is dihedral,

c2 if G is quaternion,

cx if G is semidihedral;

(9.2)

v2sc
2s

2 =

{
cx+ x2 if G = D8,

c2 + cx+ x2 if G = Q8

(9.3)

and for m > 1

v2κ(m)
s c2

ms

2 = cx+ x2 (9.4)

for G of all three types;

vsxc
2s−1

2 = vs

s−1∑

i=1

x2
s−2i+1c2

i−1

2 +

{
cx+ x2 if G = D8,

x2 if G = Q8;
(9.5)

for m > 1,

vsxc
2s−1

2 = vsx
s−1∑

i=1

c2
s−2ic2

i−1

2 +
ms∑

i=1

v1+κ(m)+2ms−2i

s c
(2ms+1)2s−1−(2s−1)2i−1

2

+

⎧
⎪⎨

⎪⎩

0 if G is dihedral,

cx if G is quaternion

or semidihedral,

where

κ(m) =
2ms − 1

2s − 1
.

(ii) c2x = cx2, c2
ms+1

1 = 0, and c
(2ms+1)2s−1

2 = 0.

Together with the covering π1, we can consider the covering

π2 : B〈a2, b〉 → B〈a, b〉
corresponding to η2. Then let

ηπ2 → BG

be the transferred line bundle associated with double covering

〈a4, b〉 → 〈a2, b〉.
The bundles ξπ1 and ηπ2 coincide if m = 1, but if m > 1, then

ηπ2 = (ξ⊗2m−1
)π1 . (9.6)

The following bundle relations hold.

Lemma 9.2. (i) η⊗2
i = C, η1 ⊗ ξπ1 = ξπ1 ;

(ii) ηi ⊗ ηπ2 = ηπ2 ;

(iii) η⊗2
π2

= C⊕ η1 ⊕ η2 ⊕ η1 ⊗ η2;
(iv) det ξπ1 is η1 if G is dihedral, the trivial bundle C if G is quaternion, and η1 ⊗ η2 if G is

semidihedral, and for m > 1, we have det ηπ2 = η1 in all three cases ;
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(v) we have

((ξ⊗2i)π1)
⊗2 = (ξ⊗2i+1

)π1 ⊕ C⊕ η1
for 1 ≤ i < m− 1. The bundle

ξπ1 ⊗ ξπ1 = (ξ⊗2)π1 ⊕ (ξ ⊗ ξ⊗r)π1

is

(ξ⊗2)π1 ⊕ C⊕ η1
if G is dihedral or quaternion and is

(ξ⊗2)π1 ⊕ η1 ⊗ η2 ⊕ η2
if G is semidihedral.

Proof. These relations are the consequences of the Frobenius reciprocity of the transfer in complex

K-theory. For example,

η⊗2
π2

= (ξ2
m−1

)⊗2
π1

= (ξ2
m−1 ⊗ π∗1((ξ2

m−1
)π1))π1 = (ξ

2m ⊕ C)π1

= η2 ⊗ (C)π1 ⊕ C⊕ η1 = η2 ⊗ (C⊕ η1)⊕ C⊕ η1.
The lemma is proved.

We recall the transfer formula from [5] (see also [4]).

Let X → X/π be a regular double covering defined by a free involution on X, ξ → X be a complex

line bundle, ξπ the transferred bundle, and let

Tr∗π : K(s)∗(X)→ K(s)∗(X/π)

be the associated transfer homomorphism [17, 27]. Then

c1(ξπ) = c1(ψ) + vs

s−1∑

i=1

c1(ψ)
2s−2ic2(ξπ)

2i−1
+Tr∗π(c1(ξ)), (9.7)

where ψ → X/π is the complex line bundle associated to the covering X → X/π.

The following lemma is an easy consequence of the recursive formula for the FGL given in [31, 4.3.9]

(see also [4, Lemma 5.3]).

Lemma 9.3. (i) For the Honda formal group law at p = 2, s > 1, we have

F (y, z) = y + z + vs(yz)
2s−1

modulo y2
2(s−1)

(or modulo z2
2(s−1)

).

(ii) We have

F (y, z) = y + z + vsΦ(vs, y, z)
2s−1

,

where

Φ(vs, y, z) = yz + vs(yz)
2s−1

(y + z)

modulo (yz)2
s−1

(y + z)2
s−1

.

For two line bundles with the Chern classes y and z, respectively, Φ(vs, y, z) can be regarded as the

K(s)∗ orientation class of their sum.

Lemma 9.4. Let m > 1 and either r = −1 or r = 2m − 1. We have in K(s)∗[u]/(u2(m+1)s
)

u2
ms

=

ms∑

i=1

v2
ms−2i

s (u[r](u))2
(m+1)s−1−(2s−1)2i−1

+ [r](u)(u+ [r](u))2
ms−1.
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Proof. The obvious decomposition in F2[y, z]

y2
k
=

k∑

i=1

(y + z)2
k−2i(yz)2

i−1
+ y(y + z)2

k−1

for y = u, z = [r](u), and k = ms implies

u2
ms

=
ms∑

i=1

(u+ [r](u))2
ms−2i(u[r](u))2

i−1
+ u(u+ [r](u))2

ms−1.

We equate the monomials

(u+ [r](u))2
ms−2i = (u+ [r](u))2

i+···+2ms−1

to the monomials

v2
ms−2i

s (u[r](u))(2
ms−2i)2s−1

= v2
i+···+2ms−1

s (u[r](u))(2
i+···+2ms−1)2s−1

by the equation

(u+ [r](u))2 = v2s(u[r](u))
2s

modulo some irrelevant factor as follows.

The nilpotence degree for u is 2(m+1)s, hence is 2(m+1)s−1 for u[r](u). Since it is 2s for F (u, [2m−1])

(whereas F (u, [−1](u)) = 0), the nilpotence degree for u+ [r](u) is 2ms by Lemma 9.3(ii).

Therefore, it suffices to show

(u+ [r](u))2 = v2s(u[r](u))
2s mod (u+ [r](u))4.

Lemma 9.3(ii) implies

(u+ [r](u))2 = v2s(u[r](u))
2s + F (u, [r](u))2 mod (u+ [r](u))2

s

and the dihedral and quaternion cases follow.

For the semidihedral group, we have

F (u, [2m − 1](u)) = vκ(m)
s u2

ms
.

Also,

u2
ms+1

= (u[r]u)2
ms

as u2
ms

= ([r](u))2
ms

. Therefore, we obtain, modulo (u+ [r](u))2
s
ignoring powers of vs,

(u[r](u))2
s
= (u+ [r](u))2 + (u[r](u))2

ms
;

moreover,

F (u, [r](u))2 = (u[r](u))2
ms

= ((u+ [r](u))2 + (u[r](u))2
ms

)2
ms−s

= 0

as ms− s+ 1 > s. The lemma is proved.

As mentioned in Sec. 7, it was proved in [36] that as a K(s)∗(pt)-module, K(s)∗ of the spaces we

consider is generated by the Chern classes c, x, and c2 defined above. Let c̃1 and c̃2 be the Chern

classes of the bundle ηπ2 .

Lemma 9.2(i) implies c2
s
= 0 and x2

s
= 0 as [2](c) = vsc

2s = 0 and similarly for x.

Let

c∗1 = c1 + c+ vs

s−1∑

i=1

c2
s−2ic2

i−1

2 , c∗∗1 = c̃1 + x+ vs

s−1∑

i=1

x2
s−2i c̃2

i−1

2 . (9.8)

By (9.7),

c∗1 ∈ ImTr∗π1
, c∗∗1 ∈ ImTr∗π2

;
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hence

c2
s

1 ∈ ImTr∗π1
, c̃2

s

1 ∈ ImTr∗π2

as c2
s
= x2

s
= 0.

By the Frobenius reciprocity, cc∗1 = 0; hence by (9.7)

c2
s−1
c2

s−1

1 = 0, x2
s−1
c2

s−1

1 = c2
s−1
x2

s−1

modulo Tr∗π1
(u), u = c1(ξ). From (8.8) we obtain

c2
s−1

1 = c2
s−1

mod Tr∗π1
(u).

Hence

c1(det ξπ1) = c1 + vsc
2s−1

2 mod Tr∗π1
(u). (9.9)

Then note that

F (c, x) = c+ x+ vsc
2s−1

x2
s−1

;

hence combining (9.8) and (9.9) we obtain, modulo Tr∗π1
(u) and c2

s−1
x2

s−1
,

vsc
2s−1

2 + vs

s−1∑

i=1

c2
s−2ic2

i−1

2 =

⎧
⎪⎨

⎪⎩

0 if G is dihedral,

c if G is quaternion,

x if G is semidihedral.

(9.10)

Also we have

c1(det ηπ2) = c̃1 + vsc̃
2s−1

2 + vsc̃
2s

1 . (9.11)

To prove (9.11) we need the relations (ii) of Theorem 9.1. These are consequences of the following

relations (9.12)–(9.15).

Lemma 9.2(v) and (9.6) implies that modulo c and x, the Chern classes c̃1 and c̃2 coincide with the

first and second Chern classes of (ξπ1)
⊗2m−1

, respectively:

c̃1 = v
2(m−1)s−1

2s−1
s c2

(m−1)s

1 , c̃2 = v
2(2(m−1)s−1)

2s−1
s c2

(m−1)s

2 . (9.12)

On the other hand, consecutively equating Chern classes of both sides of the equation in Lemma 9.2(iii),

we obtain, respectively,

c̃2
s

1 = c2
s−1
x2

s−1
(9.13)

for m = 1,

v22c
2s

2 =

{
cx+ x2 if G = D8,

c2 + cx+ x2 if G = Q8

(9.14)

for m > 1,

v22 c̃
2s

2 = cx+ x2

in all cases, and

c2x+ cx2 = 0, (9.15)

and we obtain formula (9.3) from Theorem 9.1 and relations (ii). Here we use the splitting principle

and write formally

ηπ2 = λ1 ⊕ λ2, η⊗2
π2

= λ⊗2
1 ⊕ λ⊗2

2 ⊕ 2λ1 ⊗ λ2.
Also we take into account that the determinant λ1 ⊗ λ2 is known by Lemma 9.2(iv). Let m > 1 and

λ1 ⊗ λ2 = η1. Then by the first equation for the Chern classes

vsc̃
2s

1 = c+ x+ c+ x+ vsc
2s−1

x2
s−1 ⇒ (9.13).

By (9.12) and formula (9.1) of Theorem 9.1,

c̃2
s

1 ∈ ImTr∗π1
.
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Also as before,

c̃2
s

1 ∈ ImTr∗π2
.

Hence

cc̃2
s

1 = xc̃2
s

1 = 0

and, by (9.13),

cixj = 0 for i+ j > 2s.

Multiplying (9.8) by c2
s−1
x2

s−1
we obtain c2

ms+1
1 = 0; therefore, Lemma 9.3 implies

c
(2ms+1)2s−1

2 = 0.

Then the second equation yields

v2s c̃
2s

2 + c2 = cx+ (c+ x)(c+ x+ vsc
2s−1

x2
s−1

) ⇒ (9.14).

The third equation yields

0 = vsc̃
2s

1 c
2 = cx(c+ x+ vsc

2s−1
x2

s−1
) = cx(c+ x)

and (9.15) follows. Similarly, for m = 1, but c̃i = ci, and for G = Q8, the determinant λ1 ⊗ λ2 is

trivial.

To prove formula (9.2) of Theorem 9.1 for m > 1, we raise (9.9) to the power 2ms−s > 2s. We

obtain

c2
ms−1

2 = 0 mod Tr∗π1
(u). (9.16)

By the Frobenius reciprocity of the transfer, (9.16) implies

cc2
ms−1

2 = 0. (9.17)

Then, as above,

cixj = 0 for i+ j ≥ 2s + 1.

Multiplying (9.10) by c, we obtain formula (9.2) of Theorem 9.1.

Now let m = 1. Then c̃i = ci and cc∗1 = 0 by (9.7). Hence multiplying (9.11) by c, we obtain

formula (9.2) of Theorem 9.1.

Proof of formula (9.5) of Theorem 9.1. Let m > 1. By the above definitions, we have

π∗1(ξπ1) = ξ ⊕ ξ⊗r, π∗(η2) = ξ⊗2m .

Then Lemma 9.3 implies

v−κ(m)
s π∗1(x) = u2

ms
= π∗1

(
ms∑

i=1

v2
ms−2i

s c
2(m+1)s−1−(2s−1)2i−1

2

)
+ [r](u)π∗1(c

2ms−1
1 ). (9.18)

We apply transfer to (9.18) after multiplying by u. By (9.7), c2
ms−1

1 ∈ ImTr∗π1
is in the annihilator

of c, hence

Tr∗π1
(u [r](u))c2

ms−1
1 = Tr∗π1

(1)c2c
2ms−1
1 = vsc

2s−1c2c
2ms−1
1 = 0

and we obtain

Tr∗π1
(u)

(
x+

ms∑

i=1

vκ(m)+2ms−2i

s c
2(m+1)s−1−(2s−1)2i−1

2

)
= 0. (9.19)

Now multiplying (9.10) by

x+
ms∑

i=1

vκ(m)+2ms−2i

s c
2(m+1)s−1−(2s−1)2i−1

2
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and using (9.17) and (9.19), we obtain the dihedral and quaternion cases. For the semidihedral group,

it remains to show that

x

(
x+

ms∑

i=1

vκ(m)+2ms−2i

s c
2(m+1)s−1−(2s−1)2i−1

2

)
= cx. (9.20)

For simplicity, we introduce the notation

Σ =

ms∑

i=1

vκ(m)+2ms−2i

s c
2(m+1)s−1−(2s−1)2i−1

2 .

Then

Σ(x+Σ) = 0

since (9.16) implies Σ = 0 modulo Tr∗π1
(u) and

Σ2 = v2κ(m)
s c2

ms

2

since the nilpotence degree of c2 is 2(m+1)s−1 + 2s−1.

Thus,

xΣ = v2κ(m)
s c2

ms

2

and (9.20) follows from formula (9.3) of Theorem 9.1.

Now let m = 1. Then

c̃i = ci, cc∗1 = 0, xc∗∗1 = 0

by (9.7); det ηπ2 is η1 (for G = D8) or the trivial bundle (for G = Q8). Hence multiplying (9.11) by

x, we obtain formula (9.5) of Theorem 9.1.

It remains to show that the given relations give a ring of correct rank, which is

2(m+1)s−1 + 22s − 2s−1

according to the generalized character theory [23]. This follows by counting the obvious explicit bases

of these rings according to Theorem 9.1:

(i) for G = D8 or Q8,{
cicj2, x

icj2, c
ixcj2, c

k
2

∣∣∣ 1 ≤ i < 2s, 0 ≤ j < 2s−1, 0 ≤ k < 2s
}
;

(ii) for m > 1 and all three cases,
{
cicj2, c

ixcj2, c
k
2

∣∣∣ 1 ≤ i < 2s, 0 ≤ j < 2s−1, 0 ≤ k < (2ms + 1)2s−1
}
.

Of course, there are alternative bases: for example, if we consider cx as the decomposable in

Theorem 9.1, then for m > 1, the K(s)∗-base for K(s)∗(BG) is:
(i) for G = D2m+2 ,

{
cicj2, x

icj2, c
k
2

∣∣∣ 1 ≤ i < 2s − j, 0 ≤ j < 2s − 1, 0 ≤ k < (2ms + 1)2s−1
}
;

(ii) for G = Q2m+2 ,
{
cci2, xc

i
2, c

j
2

∣∣∣ 0 ≤ i < (2s − 1)2s−1, 0 ≤ j < (2ms + 1)2s−1
}
;

(iii) and for G = SD2m+2 ,
{
cicj2, xc

k
2, c

l
2

∣∣∣ 1 ≤ i < 2s − j, 0 ≤ j < 2s − 1, 0 ≤ k < (2s − 1)2s−1, 0 ≤ l < (2ms + 1)2s−1
}
.

A natural question arises concerning the relationship between our calculations and those of [35, 36],

in terms of an alternative generating set.
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Example 9.5 (K(2)∗(BD8)). This example shows that the ring structures given in [35] must be

corrected. For D8, they are correct modulo the minimal (one-dimensional) ideal lying in the kernel of

the restriction maps corresponding to all proper subgroups.

Let A be the version of K(2)∗(BD8) of Theorem 9.1 and B be its version from [35]. Then

A = F2[v
±1
2 ][c, x, c2]/

(
c4, x4, c3c2 + cc22, v2x

3c2 + v2xc
2
2 + cx+ x2, v22c

4
2 + cx+ x2

)
,

B = F2[v
±1
2 ][y1, y2, ĉ2]/

(
y41, y

4
2, v

2
2 ĉ

4
2 + v2y1ĉ

2
2, v2y1ĉ

2
2 + v2y2ĉ

2
2, v2y2ĉ

2
2 + y1y2

)
.

Choose the following basis in A over F2[v
±1
2 ]:

〈
1, c, x, c2, cx, x2, c2, c

3, x3, cc2, xc2, cx
2, cx2c2,

c2c2, x
2c2, cxc2, c

2
2, cc

2
2, xc

2
2, cxc

2
2, c

3
2, xc

3
2

〉

and assume that there is a graded isomorphism f : B → A. Then by dimension considerations,

f(y1) = ε11c+ ε12x+ ε13v2c
2
2 + ε14v2x

2c2 + ε15v2cxc2 + ε16v2c
2c2 + ε17v

2
2xc

3
2,

f(y2) = ε21c+ ε22x+ ε23v2c
2
2 + ε24v2x

2c2 + ε25v2cxc2 + ε26v2c
2c2 + ε27v

2
2xc

3
2,

f(ĉ2) = α1c2 + α2c
2 + α3cx+ α4x

2 + α5v2xc
2
2 + α6v2cc

2
2 + α7v2cx

2c2,

where εij , αk ∈ F2.

Then y41 = 0 implies

(
ε11c+ ε12x+ ε13v2c

2
2 + ε14v2x

2c2 + ε15v2cxc2 + ε16v2c
2c2 + ε17v

2
2xc

3
2

)4

= ε13c
8
2 = ε13x

2c2 + ε13cxc2 + ε13v2xc
3
2 = 0,

hence ε13 = 0.

Similarly, y42 = 0 implies ε23 = 0.

Next,

f((y1 − y2)ĉ22)c52 = 0

implies

(ε12 + ε22)α1cxc
2
2 = 0.

Necessarily α1 �= 0, since otherwise c2 would not be in the image of f . Thus we have

ε12 = ε22.

Moreover, these are not zero as otherwise x would not be in the image of f . Thus we have

f(y1) = ε11c+ x+ ε14v2x
2c2 + ε15v2cxc2 + ε16v2c

2c2 + ε17v
2
2xc

3
2,

f(y2) = ε21c+ x+ ε24v2x
2c2 + ε25v2cxc2 + ε26v2c

2c2 + ε27v
2
2xc

3
2,

f(ĉ2) = c2 + α2c
2 + α3cx+ α4x

2 + α5v2xc
2
2 + α6v2cc

2
2 + α7v2cx

2c2.

Taking this into account, we see that

f(y1ĉ
2
2 − y1y2)c22 = 0

implies

ε11 + ε21 + ε24 + ε27 = 0

and

f(y2ĉ
2
2 − y1y2)c22 = 0

implies

ε11 + ε21 + ε14 + ε17 = 0,
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whereas

f(y1y2 − ĉ42)c22 = 0

implies

ε11 + ε21 + ε14 + ε24 + ε17 + ε27 = 1.

Hence

ε11 + ε21 = ε14 + ε17 = ε24 + ε27 = 1.

But these relations imply that

(f(y1)f(ĉ2)
2 − f(y2)f(ĉ2)2)x = cxc22,

which should actually be zero as (y1 − y2)ĉ22 = 0.

10. Symplectic Cobordism

Here the decompositions of the products of Ray elements and low-dimensional free generators of

the symplectic cobordism ring are obtained. In particular, it is stated that most of the 4n-dimensional

generators with n small belong after multiplication on Ray elements φi, i ≥ 0, to the ideal spanned

by low-dimensional Ray elements.

Let ν → BZ/2 be the canonical real line bundle and ζ → BSp(1) be the canonical symplectic line

bundle. Since there is an additive isomorphism

MSp∗(BZ/2 ∧ BSp(1)) ≈ MSp∗(BZ/2)[x],

where x = e(ζ) is the Euler class of ζ, we see that the Euler class of the symplectic virtual bundle

((ν − 1)⊗R (ζ − 4)) has the form

e((ν − 1)⊗R (ζ − 4)) =
∑

i≥1

αix
i

for some elements αi ∈ MSp4−4i(BZ/2).

For the restrictions of αi to the symplectic cobordism ring of the n-dimensional real projective space

RPn, the notation θi(n) is used. These elements αi and θi(n) have been studied by Buchstaber in [14].

Since RP 1 = S1 and ˜MSp1(S1) ≈ Z, the restriction of θi(n) has the form θi(1) = s1θi for the

generator s1 ∈ ˜MSp1(S1) and for some coefficients θi ∈ MSp3−4i(pt). These elements θi are called

Ray elements. The elements θ1 and θ2i, i ≥ 1, are indecomposable and have order 2 (see [31]) and

θ2i+1 = 0 (see [34]). Let us write φ0 = θ1 and φi = θ2i.

Let ζi be the pullback bundle by the projection of BSp(1)×3 on the ith factor.

Then

ζ1 ⊗C ζ2 ⊗C ζ3 = (ζ1 ⊗H ζ2)⊗R ζ3

is the symplectic bundle over BSp(1)×3.

By the calculation with the Hurevicz homomorphism, we see that in terms of the coefficients aklm
of the first Conner–Floyd symplectic Pontryagin class

pf1(ζ1 ⊗C ζ2 ⊗C ζ3) =
∑

k+l+m≥1

aklmpf
k
1 (ζ1)pf

l
1(ζ2)pf

m
1 (ζ3)

the structure of MSp4k, n ≤ 4, from [32, 37] can be interpreted as follows:

k MSp4k Generators

1 Z a011 ∼= 2x1
2 Z + Z a012 ∼= 2x2, a111 ∼= x21
3 Z + Z + Z a022 ∼= 2x3, a011a111 ∼= 2x31, a211

∼= x1x2,

4
⊕5 Z a014 ∼= 2x4, a011a211 ∼= a012a111 ∼= 2x21x2, a122

∼= x22, a
2
111
∼= x41, 2y
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where ∼= is the equality mod 2MSp∗.
In the following two subsections, we calculate the Hurevicz homomorphism and the Becker–Gottlieb

transfer and prove the following theorem.

Theorem 10.1. For all i ≥ 0 and j = 1, 2, 3, 4, we have:

(a) φi(2xj) = 0;

(b) φi(x
2
1) and φi(x

2
2) belong to the ideal φ0MSp∗;

(c) φi(x1x2) belong to the ideal φ0MSp∗+φ1MSp∗.

10.1. The Hurevicz homomorphism. Let

h : π∗(MSp)→ H∗(MSp) = Z[q1, q2, . . . ]

be the Hurevicz homomorphism. Since π4n(MSp) is torsion free for small n (see [32, 37]), the Hure-

vicz homomorphism is monomorphism in these dimensions. So in low dimensions 4n the Hurevicz

homomorphism determines all relations. Our aim here is to express the coefficients aklm from the

Introduction by the generators x’s.

The Hurevicz homomorphism for these aklm are calculated in [26]. In low dimensions we have

h(a100) = h(a010) = h(a001) = 4, h(a200) = h(a020) = h(a002) = 0,

h(a110) = h(a101) = h(a011) = 24q1, h(a111) = 360q2,

h(a210) = · · · = h(a012) = 60q2 − 24q21, h(a300) = · · · = h(a003) = 0,

h(a220) = · · · = h(a022) = 280q3 − 120q1q2 + 24q31,

h(a310) = · · · = h(a013) = 112q3 − 96q1q2 + 48q31,

h(a211) = · · · = h(a112) = 1680q3 − 360q1q2,

h(a122) = · · · = h(a122) = 75600q4 − 3360q1q3 + 360q21q2,

h(a410) = · · · = h(a140) = 180q4 − 360q1q3 + 420q21q2 − 120q22 − 120q41.

Then the Hurevicz images of generators x’s from the Introduction are calculated in [33]. Namely,

h(2x1) = 24q1, h(2x2) = 20q2 − 8q21, h(x21) = 144q21,

h(2x3) = 56q3 − 72q1q2 + 24q31, h(x1x2) = 120q1q2 − 48q31;

h(x31) = 3456q31, h(2x4) = 12q4 − 24q1q3 − 8q22 + 28q21q2 − 8q41,

1

2
(x22 + x1x3) = 50q22 + 168q1q3 − 256q21q2 + 80q41,

h(x22) = 100q22 − 80q21q2 + 16q41, h(2x21x2) = 2880q21q2 − 1152q41, h(x41) = 20736q41.

We are interested of mod 2 nonzero coefficients a011, a111, a022, a122, a112, a120, and a140.

By the above equalities we have

a011 = 2x1, a111 = 18(2x2) + x21, a120 = 3(2x2),

a022 = 5(2x3) + 2(x1x2), a211 = 30(2x3) + 15(x1x2),

a122 = 1050(2x4) + 130

(
1

2

(
1

4
x1x3 +

1

4
x22

))
+ 19(x22) + 2(2x21), a140 = 15(2x4).

So we have the following assertion.

Proposition 10.2. The following relations hold mod2MSp∗:

a011 = 2x1, a111 = x21, a022 = 2x3, a122 = x22,
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a112 = x1x2, a120 = 2x2, a140 = 2x4.

10.2. Calculations with transfer. Let ξ be a universal U(1) bundle and Λ be a universal Spin(3)

bundle. Then the bundle π : BU(1)→ BSp(1) is the sphere bundle of Λ and

π∗(ζ) = ξ + ξ̄, π∗(Λ) = ξ2 +R, ζ ⊗H ζ = Λ+R,

where ζ is a universal Sp(1) bundle as above. Let N be the normalizer of the torus U(1) in Sp(1).

The classifying space BN coincides with the orbit space of complex projective space CP (∞) under

free involution I, which acts by

I : [z0, z1, . . . ]→ [−̄z1, z̄0]
on homogeneous coordinates.

The bundle p : BN → BSp(1) coincides with the projective bundle of Λ, hence we have the canonical

splitting

p∗(Λ) = μ+ ν,

where μ and ν are a plane and linear real bundles. Of course, for the double covering q : BU(1)→ BN

we have q∗(μ) = ξ2 and q∗(ν) = R.

Let τ(π) and τ(p) be the transfer maps of the bundles π and p. The following lemma follows

from [18].

Lemma 10.3.

π∗τ(π)∗ = 1 + I∗, π∗(p)∗ = q∗.

The following lemma follows from the definitions.

Lemma 10.4. For the Atiyah transfer ! of the double covering

1× q : BU(1)×BU(1)→ BU(1)×BN
we have (

ξ1ξ
2
2 +

¯ξ1ξ22

)

!
= (ξ1 + ξ̄1)⊗R μ.

Let f be the map f : BN → BZ2 induced by projection of N on the Weyl group Z2 and let τ∗(1×q)
be the Becker–Gottlieb transfer homomorphism for the above double covering 1× q.
Lemma 10.5. For some elements γi from MSp∗(RP (∞)), the following formula holds:

τ∗(1× q)
(
pf1

(
ξ1ξ

2
2 + ξ̄1ξ̄22

))
= pf1

(
rξ1 ⊗R p

∗(ζ2)
)
+

∑

i≥0

f∗(γi)pf i2
(
rξ1 ⊗R ζ2

)
.

Proof. Taking into account Lemma 3.2, we show that the proof follows from the following formula [34].

Let Q be the double covering Q : X → B, η → X be the symplectic line bundle, η! → B be the Atiyah

transfer image of η, τ(Q) be the Becker–Gottlieb transfer map for Q, and F : X → RP (∞) be the

classifying map of the real line bundle associated with the double covering Q. Then for some elements

γi from MSp∗(RP (∞)), the following formula holds:

τ(Q)∗(pf1(η)) = pf1(η!) +
∑

i≥0

f∗(γi)pf i2(η!).

The lemma is proved.

Lemma 10.6.

φjτ
∗(π)(a) = 0 ∀a ∈ MSp∗(BU(1)).
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Proof. Let δ(π) be the Boardman map [11]. Then we know from [9] that

τ∗(π)(a) = δ(π)(ae(ξ22)),

where e(ξ22) is the Euler class of the bundle ξ22 , which is the bundle of tangents along the fibers. Then

from [19, 20] we have

θje(ξ
2
2) = 0;

this proves Lemma 10.6.

Recall from [20, 29] that the bundle Λ is MSp-orientable and the corresponding Euler class has the

form

e(Λ) =
∑

j≥1

θjpf1(ζ1)
j .

We denote the restrictions of π and p to symplectic projective space HP (4) by the same symbols.

The total spaces of these bundles coincides with complex projective space CP (9) and orbit space

CP (9)/I under free involution I which acts by

[z0, z1, . . . , z8, z9]→ [−̄z1, z̄0, . . . ,−z9, z̄8]
in homogeneous coordinates.

Proposition 10.7. For the bundle 1× π : BU(1)×BU(1)→ BU(1)× BSp(1), we have

φjτ
∗(1× π)(pfi(rξ1 ⊗R ζ2) = 0

for all j ≥ 0 and i = 1, 2.

Proof. In MSp∗(BU(1)× BSp(1)) = MSp∗(BU(1))[[pf1(ζ2)]] we have

pfi(rξ1 ⊗R ζ2) =
∑

k≥0

ω
(i)
k pfk1 (ζ2).

Then

φjτ
∗

⎛

⎝
∑

k≥0

ω
(i)
k pfk1 (ζ2)

⎞

⎠ =
∑

k≥0

φkτ
∗(ω(i)

k pfk1 (ζ2)) = 0.

The last equation follows from Lemma 10.6.

Proposition 10.8. In MSp∗(HP (4)×HP (4)), the following relations hold for all j ≥ 0:

(a) φ0pf1(ζ1) + φ1pf
2
1 (ζ1) + φ2pf

4
1 (ζ1) divides φjpf1(ζ1 ⊗C ζ

2
2 );

(b) φjpf1(ζ1 ⊗R ζ2) = 0.

Proof. (a) The bundle

CP (9)×HP (4)→ HP (4)×HP (4)
coincides with the sphere bundle of the pullback of

Λ→ HP (4)

by the projection on the first factor

HP (4)×HP (4)→ HP (4).

Thus, we must prove that φjpf1(ζ1⊗C ζ
2
2 ) goes to zero in MSp∗(CP (9)×HP (4)) by the homomorphism

π × 1.

The transfer

τ = τ(1× π)
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of the bundle

CP (9)× CP (9)→ CP (9)×HP (4)
is the composition of two transfers

τ1 = τ(1× q), τ2 = τ(1× p)
corresponding to

CP (9)× CP (9)→ CP (9)× CP (9)/I
and

CP (9)× CP (9)/I → CP (9)×HP (4),
respectively.

By the definitions, we have

pf1

(
(ξ1 + ξ̄1)⊗C ζ

2
2

)
= pf1

(
(ξ1 + ξ̄1)⊗R Λ +R

)
= pf1

(
(ξ1 + ξ̄1)⊗R Λ

)
+ pf1

(
ξ1 + ξ̄1

)
.

Applying Lemmas 10.4 and 10.5, we have

τ∗1
(
pf1

(
ξ1ξ

2
2 + ξ̄1ξ̄22

))
= pf1

(
(ξ1 + ξ̄1)⊗R μ

)
+

∑

i≥0

f∗(γi)pf i2
(
(ξ1 + ξ̄1)⊗R μ

)
.

Then by definitions

pf1

(
(ξ1 + ξ̄1)⊗R μ

)
= (1× p)∗pf1

(
(ξ1 + ξ̄1)⊗R Λ

)
− pf1

(
(ξ1 + ξ̄1)⊗R ν

)
,

τ∗
(
pf1

(
ξ1ξ

2
2 + ξ̄1ξ̄22

))
= τ∗2

(
(pf1(ξ1 + ξ̄1)⊗R μ)

)
+ τ∗2

⎛

⎝
∑

i≥0

f∗(γi)pf i2
(
(ξ1 + ξ̄1)⊗R μ

)
⎞

⎠ ,

and

τ∗2
((
pf1(ξ1 + ξ̄1)⊗R μ

))
= τ∗2 (1× p)∗

(
pf1

(
(ξ1 + ξ̄1)⊗R Λ

))
− τ∗2

(
pf1(ξ1 + ξ̄1)⊗R ν

)

= pf1

(
(ξ1 + ξ̄1)⊗R Λ

)
τ∗2 (1× p∗)(1)− τ∗2

(
pf1(ξ1 + ξ̄1)⊗R ν

)
.

Now we must prove that

τ∗2 (1× p∗)(1) = 1, τ∗2
(
pf1(ξ1 + ξ̄1)⊗R ν

)
= pf1(ζ1),

τ∗2

⎛

⎝
∑

i≥0

f∗(γi)pf i2
(
ξ1 + ξ̄1)⊗R μ

⎞

⎠ = 0.

Then since (ξ1 + ξ̄1)⊗R ν) is the pullback of the bundle

ζ × η → BSp(1)×BZ2

by the map π × f , we have

pf1

(
(ξ1 + ξ̄1)⊗R ν

)
= pf1

(
ξ1 + ξ̄1

)
+

∑

i≥0

f∗(δi)pf i1(ξ1 + ξ̄1).

Similarly,

(ξ1 + ξ̄1)⊗R μ

is the pullback of the bundle

ζ × η(2)→ BSp(1)×BO(2)
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and hence

pf2

(
(ξ1 + ξ̄1)⊗R μ

)
= pf2(2μ) +

∑

i≥0

σipf
i
1(ξ1 + ξ̄1).

So we have

τ∗
(
pf1

(
ξ1ξ

2
2 + ξ̄1ξ̄22

))
= pf1

(
(ξ1 + ξ̄1)⊗R Λ

)
τ∗2 (1× p∗)(1)

− τ∗2 (pf1(ζ1)) + τ∗2
(
pf1(ξ1 + ξ̄1)⊗R ν

)
+ τ∗2

⎛

⎝
∑

i≥0

(αipf1(ζ1))

⎞

⎠

for some αi ∈ MSp∗(CP (9)/I).
It is known from [37] that up to dimension 32, MSp4n is torsion-free. Therefore, MSp4n(HP (4)) is

torsion-free for 4n ≥ −12. Now Lemma 10.3 asserts that for any element a from

ker q∗MSp4n(CP (9)/I)→ MSp4n(CP (9)), 4n ≥ −12,
which comes from MSp∗(BN), we have

τ∗(p)(a) = 0.

Also

τ∗(p)(1) = 1, τ∗(π)(1) = 2.

But the minimal degree of the elements αi is −12. This proves Proposition 10.8(a).

The proof of (b) follows from Lemma 10.3. For the bundle π × 1 from Proposition 10.7 we have

(π × 1)∗τ∗(π × 1)
(
pf1(rξ1 ⊗ ζ2)

)
= (1 + I)∗

(
pf1

(
(ξ1 + ξ̄1)⊗C ζ2

))

= 2pf1

(
(ξ1 + ξ̄1)⊗C ζ2

)
= (π × 1)∗(ζ1 ⊗R ζ2).

The proof now follows from Proposition 10.7.

Proof of Theorem 10.1. From Propositions 10.2 and 10.8(a) we have in MSp∗(HP (4) × HP (4) the

relation of the form

θj

(
(2x1)v

2 + (x21)uv
2 + (2x3)v

4 + (x1x2)u
2v2 + (x22)uv

4 + · · ·
)
=

∑

i≥1

(θiv
i)

⎛

⎝
∑

k,l≥0

b
(j)
kl u

kvl

⎞

⎠

for u = pf1(ζ1), v = pf1(ζ2), j ≥ 1, and some elements

b(j) =
∑

k,l≥0

b
(j)
kl u

kvl) ∈ MSp ∗(BSp(1)2).

Since θ2i+1 = 0 (see [34]) by the equality of the coefficients at the monomials uv2, u2v2, and uv4,

we obtain (b) and (c).

Similarly from Propositions 10.2 and 10.8(b) we have

θj(a110)v
2 + a120uv

2 + a220u
2v2 + a140uv

4 + . . . ) = 0,

i.e.,

θj((2x1)v
2 + (2x2)uv

2 + (2x3)v
4 + (2x4)uv

4 + . . . ) = 0,

and we have (a).

60



10.3. On symplectic cobordisms of real projective plane. Let r be the generator of

MSp2(RP 2) = Z/2. Recall two formulas in MSp∗(RP 2) from [20]:

2θi(2) = θ1θir

and

θi(2)θi(2) = θiθjr.

As above, let φ0 = θ1 and φi = θ2i.

Theorem 10.9. In MSp∗(RP 2), the following relations hold :

θ8n+7(2) = 0, θ8n+3(2) = φ22n+1r, θ4k+1(2) =
k−1∑

i=0

φ2i+1φ2(k−i)r

for n ≥ 0 and k ≥ 1.

Proof. We use the Becker–Gottlieb transfer map. Namely, we need two formulas. First, as was proved

by Buchstaber [20] for the transfer map τ(π) of the double covering π : S∞ → RP∞, we have

τ∗(π)(1) = 2 +

∞∑

k=1

aky
k−1, (10.1)

where y is the Euler class of the bundle ν from the definition of the elements θi(n). So for the covering

π : S2 → RP 2, this implies

τ∗(π)(1) = 2 + θ1(2). (10.2)

The second formula we need is the following [34].

Let p be a double covering p : X → B, η be the symplectic line bundle η → X, ηp be the transferred

η, τ(p) be the transfer map of p, and f : B → RP∞ be the classifying map of the real bundle ν over

B associated with the covering p. Then for some elements γi ∈ MSp4−8i(RP∞) the following formula

holds in MSp∗(B):

τ(p)∗(P1(η)) = P1(ηp) +
∑

i≥0

f∗(γi)P2(ηp), (10.3)

where Pi are symplectic Pontryagin classes. Applying (10.3) to the transfer map τ = τ(π × 1) for the

double covering

π × 1 : S2 ×HP∞ → RP 2 ×HP∞

and taking into account the fact that for the transferred bundle ζp = ζ + ν ⊗R ζ we have

P1(ζp) = x+ x+
∑

i≥1

θi(2)x
i, p2(ζp) = x(x+

∑

i≥1

θi(2)x
i),

we obtain

τ∗(x) = x+ x+
∑

i≥1

θi(2)x
i +

∑

j≥1

f∗(γi)

⎛

⎝1 +
∑

i≥1

θi(2)x
i−1

⎞

⎠
j

x2j .

On the other hand, by (10.1) we have

τ∗(x) = (2 + θi(2)))x.

We obtain

∑

i≥2

θi(2)x
i = −

∑

j≥1

f∗(γi)

⎛

⎝1 +
∑

i≥1

θi(2)x
i−1

⎞

⎠
j

x2j . (10.4)

The theorem is proved.
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The diagonal of RP 2∧RP 2 coincides with RP 1∧RP 1, i.e., with S2, and the diagonal map RP 2 →
RP 2 ∧RP 2 factors as composition of the projection RP 2 → S2 onto top cell with the inclusion of the

bottom cell. Then the triple diagonal map RP 2 → RP 2 ∧RP 2 ∧RP 2 is null-homotopic. This means

that for any α, β ∈ MSp∗(RP 2), we have αβ = α1β1r, where s1α1 and s1β1 are restrictions of α and

β to RP 1 = S1. In particular, all triple products in MSp∗(RP 2) are zero.

After remarks on double and triple products, the proof is completed by (10.3) and induction on i.

11. Some Examples and Tables

First, recall from [31] that generators for

π∗BP��

��

⊂ H∗BP��

��
Z(p)[v1, v2, . . . ] ⊂ Z(p)[m1,m2, . . . ]

where

|vn| = 2(pn − 1) = |mn| ,
are given by

vn = pmn−
n−1∑

i=1

miv
pi

n−i.

We use the above formula with the following well-known formulas

F (x, y) = exp(log x+ log y), log x =
∑

n≥0

mnx
n+1

for calculating αij = αBP
ij .

11.1. Coefficients of formal group law in BP theory.

α11 = −v1,
α12 = v21,

α13 = −2v31 − 2v2,

α22 = −4v31 − 3v2,

α14 = 3v41 + 4v1v2,

α23 = 10v41 + 11v1v2,

α15 = −4v51 + 6v21v2,

α24 = −21v51 − 28v21v2,

α33 = −34v51 − 43v21v2,

α16 = 6v61 + 12v31v2 + 4v22,

α25 = 43v61 + 75v31v2 + 18v22,

α34 = 101v61 + 164v31v2 + 34v22,

α17 = −10v71 − 24v41v2 − 14v1v
2
2 − 4v3,

α26 = −88v71 − 190v41v2 − 89v1v
2
2 − 14v3,

α35 = −275v71 − 551v41v2 − 226v1v
2
2 − 28v3,
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α44 = −394v71 − 765v41v2 − 302v1v
2
2 − 35v3,

α18 = 15v81 + 40v51v2 + 28v21v
2
2 + 8v1v3,

α27 = 169v81 + 420v51v2 + 257v21v
2
2 + 46v1v3,

α36 = 680v81 + 1586v51v2 + 879v21v
2
2 + 126v1v3,

α45 = 1303v81 + 2933v51v2 + 1543v21v
2
2 + 203v1v3,

α19 = −22v91 − 66v61v2 − 58v31v
2
2 − 12v21v3 − v32,

α28 = −312v91 − 880v61v2 − 688v31v
2
2 − 104v21v3 − 72v32,

α37 = −1573v91 − 4192v61v2 − 3001v31v
2
2 − 382v21v3 − 260v32,

α46 = −3861v91 − 9900v61v2 − 6707v31v
2
2 − 791v21v3 − 523v32,

α55 = −5156v91 − 13042v61v2 − 8671v31v
2
2 − 1001v21v3 − 654v32.

11.2. Example n = 2. Let

αij = α
G(2)
ij .

Then using the map

BP → G(n),

where

BP ∗ = Z(p)[v1, v2, . . . ], G(n)∗ = Z(p)[vn.v
−1
n ],

which satisfies vr → vr if r = n and vr → 0 otherwise, we have

α13 = −2v2, α22 = −3v2, α16 = 4v22, α25 = 18v22, α34 = 34v22,

and otherwise αij = 0 for i+ j = 8.

11.3. Initial segments of the formal group law in Morava theory K(s)∗. For p = 2 and

s = 2:

x+ y + v2x
2y2

+ v2
3
(
x6y4 + x4y6

)

+ v2
5
(
y12x4 + y4x12

)

+ v2
7
(
y10x12 + y12x10 + y14x8 + y8x14

)

+ v2
9
(
y20x8 + y8x20

)

+ v2
11

(
y8x26 + y10x24 + y24x10 + y26x8

)

+ v2
13

(
y12x28 + y28x12

)

+ v2
15

(
y30x16 + y16x30 + y18x28 + y20x26 + y22x24 + y24x22 + y26x20 + y28x18

)

+ v2
17

(
y20x32 + y32x20

)

+ v2
19

(
y16x42 + y18x40 + y40x18 + y42x16

)

+ v2
21

(
y8x56 + y20x44 + y40x24 + y56x8 + y24x40 + y44x20

)

+ v2
23

(
y16x54 + y18x52 + y20x50 + y22x48 + y48x22 + y50x20 + y52x18 + y54x16

)

+ v2
25

(
y28x48 + y16x60 + y48x28 + y60x16

)

+ v2
27

(
y24x58 + y26x56 + y56x26 + y58x24

)

+ v2
29

(
y16x72 + y28x60 + y32x56 + y40x48 + y48x40 + y60x28 + y56x32 + y72x16

)
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+ v2
31

(
y32x62 + y34x60 + y38x56 + y36x58 + y40x54 + y42x52 + y44x50 + y48x46

+y46x48 + y50x44 + y52x42 + y54x40 + y56x38 + y58x36 + y60x34 + y62x32
)
+ . . . .

For p = 2 and s = 3:

x+ y + v3x
4y4

+ v3
5
(
y20x16 + y16x20

)

+ v3
9
(
y16x48 + y48x16

)

+ v3
21

(
y80x68 + y84x64 + y64x84 + y68x80

)

+ v3
25

(
y112x64 + y64x112

)
+ . . . .

For p = 2 and s = 4:

x+ y + v4y
8x8

+ v4
9
(
y72x64 + y64x72

)

+ v4
17

(
y64x192 + y192x64

)

+ v4
73

(
y520x576 + y512x584 + y584x512 + y576x520

)
+ . . . .

For p = 2 and s = 5:

x+ y + v5y
16x16

+ v5
17

(
y272x256 + y256x272

)

+ v5
33

(
y768x256 + y256x768

)
+ . . . .

For p = 3 and s = 2:

x+ y + v2
(
2x6y3 + 2x3y6

)

+ v2
4
(
2 y12x21 + y9x24 + y15x18 + y18x15 + y24x9 + 2 y21x12

)

+ v2
7
(
2 y21x36 + 2 y18x39 + 2 y36x21 + y30x27 + y27x30 + 2 y39x18

)

+ v2
10

(
2 y45x36 + 2 y36x45 + 2 y18x63 + 2 y9x72 + 2 y72x9 + 2 y63x18

)

+ v2
13

(
y48x57 + 2 y27x78 + y57x48 + 2 y33x72 + y30x75 + 2 y60x45 + y36x69

+ 2 y39x66 + 2 y66x39 + 2 y45x60 + y42x63 + 2 y51x54 + 2 y54x51 + y75x30

+ 2 y78x27 + y63x42 + y69x36 + 2 y72x33
)

+ v2
16

(
2 y90x39 + 2 y93x36 + 2 y39x90 + 2 y36x93 + y63x66 + y66x63

)

+ v2
19

(
2 y36x117 + y27x126 + y81x72 + y72x81 + 2 y54x99 + 2 y99x54 + y126x27 + 2 y117x36

)

+ v2
22

(
y69x108 + y63x114 + 2 y57x120 + y60x117 + 2 y66x111 + y54x123 + y123x54

+ 2 y81x96 + y108x69 + 2 y96x81 + 2 y111x66 + y114x63 + y117x60 + 2 y120x57

+ y93x84 + y84x93 + 2 y87x90 + 2 y90x87
)

+ v2
25

(
2 y57x144 + 2 y54x147 + 2 y75x126 + 2 y72x129 + y84x117 + y81x120

+ y99x102 + 2 y93x108 + 2 y90x111 + y102x99 + 2 y111x90 + 2 y108x93 + y117x84

+ y120x81 + 2 y129x72 + 2 y126x75 + 2 y144x57 + 2 y147x54
)

+ v2
28

(
2 y54x171 + 2 y90x135 + 2 y135x90 + 2 y171x54

)
+ . . . .
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For p = 3 and s = 3:

x+ y + v3
(
2x9y18 + 2x18y9

)

+ v3
10

(
y81x180 + 2 y90x171 + y99x162 + y162x99 + 2 y171x90 + y180x81

)

+ v3
19

(
2 y171x324 + 2 y162x333 + y243x252 + 2 y333x162 + y252x243 + 2 y324x171

)

+ v3
28

(
2 y567x162 + 2 y162x567 + 2 y648x81 + 2 y81x648 + 2 y324x405 + 2 y405x324

)
+ . . . .

For p = 7 and s = 2:

x+ y + v2
(
4 y35x14 + 6 y42x7 + 4 y14x35 + 2 y28x21 + 2 y21x28 + 6 y7x42

)

+ v2
8
(
4 y105x280 + 3 y98x287 + 3 y126x259 + 4 y119x266 + 2 y154x231 + 3 y140x245

+ 5 y147x238 + 4 y133x252 + y91x294 + 2 y182x203 + 5 y175x210 + 2 y168x217

+ 5 y161x224 + 2 y217x168 + 5 y210x175 + 2 y203x182 + 5 y196x189 + 5 y189x196

+ 4 y252x133 + 3 y245x140 + 5 y238x147 + 2 y231x154 + 5 y224x161

+ 3 y273x112 + 4 y266x119 + 3 y259x126 + 6 y315x70 + y308x77 + 6 y301x84

+ y294x91 + 3 y287x98 + 4 y280x105 + y336x49 + 6 y329x56 + y322x63

+y49x336 + y63x322 + 6 y56x329 + 6 y70x315 + y77x308 + 6 y84x301 + 3 y112x273
)

+ v2
15

(
4 y413x308 + 6 y427x294 + 2 y420x301 + 2 y448x273 + 6 y441x280 + 4 y98x623

+ 4 y462x259 + 4 y455x266 + 4 y308x413 + 6 y490x231 + 5 y119x602 + 6 y476x245

+ 4 y315x406 + 6 y126x595 + 2 y469x252 + 2 y322x399 + 2 y518x203 + 4 y511x210

+ 4 y504x217 + 2 y497x224 + 2 y553x168 + y546x175 + 3 y539x182 + 6 y525x196

+ 5 y609x112 + 5 y602x119 + 6 y595x126 + 4 y588x133 + 3 y574x147 + 4 y133x588

+ y567x154 + 2 y560x161 + 3 y147x574 + 4 y623x98 + 6 y616x105

+ 6 y329x392 + y154x567 + 2 y168x553 + 2 y161x560 + 3 y182x539 + y175x546

+ 6 y196x525 + 4 y210x511 + 2 y203x518 + 4 y217x504 + 6 y231x490 + 2 y224x497

+ 6 y392x329 + 2 y252x469 + 4 y259x462 + 6 y245x476 + 4 y406x315 + 2 y399x322

+ 2 y273x448 + 2 y301x420 + 4 y266x455 + 6 y280x441 + 6 y294x427 + 6 y105x616

+5 y112x609
)
+ . . . .

11.4. Examples of the polynomials A1
k. Below are some A1

k(z, Z) from Sec. 5, y = zp−1 and

σp = Z.

For p = 3 and s = 2:

σ1 = v2y
3σ3 + v2y

4x,

σ2 = 2 v2
2y3σ3

4 + 2 v2y
2σ3

2 + x2v2y
4 + 2 y.

For p = 5 and s = 3:

σ1 = v3y
25σ5

5 + v3y
30σ5 + v3y

31x,

σ2 = 4 v3
2y25σ5

30 + 4 v3
2y30σ5

26 + 3 v3y
19σ5

10 + v3y
24σ5

6 + 3 v3y
29σ5

2 + 2 v3y
31x2,

σ3 = 2 v3
3y25σ5

55 + 2 v3
3y30σ5

51 + v3
2y19σ5

35 + 2 v3
2y24σ5

31 + v3
2y29σ5

27

+ 2 v3y
13σ5

15 + v3y
18σ5

11 + v3y
23σ5

7 + 2 v3y
28σ5

3 + 2x3v3y
31,
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σ4 = 4 v3
4y25σ5

80 + 4 v3
4y30σ5

76 + 4 v3
3y19σ5

60 + 3 v3
3y24σ5

56

+ 4 v3
3y29σ5

52 + 4 v3
2y13σ5

40 + 2 v3
2y18σ5

36 + 2 v3
2y23σ5

32 + 4 v3
2y28σ5

28

+ 4 y7v3σ5
20 + y12v3σ5

16 + 4 y17v3σ5
12 + y22v3σ5

8 + 4 y27v3σ5
4 + x4v3y

31 + 4 y.
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