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Abstract Let ψ denote the genus that corresponds to the formal group law having
invariant differential ω(t) equal to

√
1 + p1t + p2t2 + p3t3 + p4t4 and let κ classify

the formal group law strictly isomorphic to the universal formal group law under
strict isomorphism xCP(x). We prove that on the rational complex bordism ring the
Krichever-Höhn genusφK H is the compositionψ◦ κ−1. We construct certain elements
Ai j in the Lazard ring and give an alternative definition of the universal Krichever
formal group law. We conclude that the coefficient ring of the universal Krichever
formal group law is the quotient of the Lazard ring by the ideal generated by all
Ai j , i, j ≥ 3.
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1 Rational Krichever-Höhn genus

For the current state of complex cobordism and formal group laws we refer the reader
to the excellent survey [5].

A formal group law over a commutative ring with unit R is a power series F(x, y) ∈
R[[x, y]] satisfying

(i) F(x, 0) = F(0, x) = x ,
(ii) F(x, y) = F(y, x),

(iii) F(x, F(y, z)) = F(F(x, y), z).

Communicated by Nick Inassaridze.

M. Bakuradze (B)
Faculty of Exact and Natural Sciences,
Iv. Javakhishvili Tbilisi State University,
Tbilisi, Georgia
e-mail: malkhaz.bakuradze@tsu.ge

123



86 M. Bakuradze

Let F and G be formal group laws. A homomorphism from F to G is a power
series ν(x) ∈ R[[x]] with constant term 0 such that

ν(F(x, y)) = G(ν(x), ν(y)).

It is an isomorphism if ν′(0) (the coefficient at x) is a unit in R, and a strict
isomorphism if the coefficient at x is 1.

If F is a formal group law over a commutative Q-algebra R, then it is strictly
isomorphic to the additive formal group law x + y. In other words, there is a strict
isomorphism l(x) from F to the additive formal group law, called the logarithm of F ,
so that F(x, y) = l−1(l(x)+ l(y)). The inverse to logarithm is called the exponential
of F .

The logarithm l(x) ∈ R ⊗ Q[[x]] of a formal group law F is given by

l(x) =
x∫

0

dt

ω(t)
, ω(x) = ∂F(x, y)

∂y
(x, 0).

There is a ring L , called the universal Lazard ring, and a universal formal group
law F(x, y) = ∑

ai j xi y j defined over L . This means that for any formal group
law G over any commutative ring with unit R there is a unique ring homomorphism
r : L → R such that G(x, y) = ∑

r(ai j )xi y j .
The formal group law of geometric cobordism was introduced in [12]. Following

Quillen we will identify it with the universal Lazard formal group law as it is proved in
[13] that the coefficient ring of complex cobordism MU∗ = Z[x1, x2, . . .], |xi | = 2i
is naturally isomorphic as a graded ring to the universal Lazard ring.

The Krichever-Höhn genus or the general four variable complex elliptic genus [7,8]

φK H : MU∗ ⊗ Q → Q[q1, . . . , q4]

is a graded Q-algebra homomorphism defined by the following property: if one denotes
by fKr (x) the exponential of the Krichever [6] universal formal group law FKr , then
the series

h(x) := f ′
Kr (x)

fKr (x)

satisfies the differential equation

(h′(x))2 = S(h(x)), (1.1)

where S(x) = x4 + q1x3 + q2x2 + q3x + q4, the generic monic polynomial of degree
4 with formal parameters qi of weights |qi | = 2i .

This genus is the universal genus on the rational bordism ring of SU -manifolds
which is multiplicative in fiber bundles of SU -manifolds with compact connected
structure group.
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Computing the Krichever genus 87

To generalize the Ochanine elliptic genus from �SO∗ ⊗ Q to Q[μ, ε] (see [9]),
a new elliptic genus ψ is defined in [10],

ψ : MU∗ ⊗ Q → Q[p1, p2, p3, p4],

to be the genus whose logarithm equals

x∫

0

dt

ω(t)
, ω(t) =

√
1 + p1t + p2t2 + p3t3 + p4t4

and pi are again formal parameters |pi | = 2i .
It is proved in [10] that the ψ-genus is the universal genus on the rational complex

bordism ring which is multiplicative in projectivizations P(E) of complex vector
bundles E → B over Calabi-Yau 3-folds B (i.e. B is a compact Kähler manifold with
vanishing first Chern class).

Clearly to calculate the values of ψ on CPi , the generators of the rational complex
bordism ring MU∗ ⊗ Q = Q[CP1,CP2, . . . ] we need only the Taylor expansion of
(1 + y)−1/2 as by above definition

(1 + p1x + p2x2 + p3x3 + p4x4)−1/2 = log′
ψ =

∑

i≥1

ψ(CPi )x
i .

A straightforward calculation shows that ψ is surjective [10]:

ψ(CP1) = −1

2
p1;

ψ(CP2) = 3

8
p2

1 − 1

2
p2;

ψ(CP3) = − 5

16
p3

1 + 3

4
p1 p2 − 1

2
p3;

ψ(CP4) = 35

128
p4

1 − 15

16
p2

1 p2 + 3

8
p2

2 + 3

4
p1 p3 − 1

2
p4.

It is natural to ask whether we can similarly calculateφK H in an elementary manner,
different from that relying on the formulas in [3] and [7].

Let κ be the classifying map of the formal group law F̃ over the rational Lazard
ring defined as follows.

Let CP(x) = 1 + ∑
i≥1 CPi x i , where CPi is the bordism class of the complex

projective space CPi and let

ν(x) := xCP(x)

be the strict isomorphism F → F̃ , where F is the universal formal group law, so that

ν(F(x, y)) = F̃(ν(x), ν(y)).
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88 M. Bakuradze

Now let

κ : MU∗ ⊗ Q → MU∗ ⊗ Q

be the classifying map of F̃ and let log(x) and mog(x) be the logarithm series of F
and F̃ respectively then by definition

mog(x) = log(ν−1(x)), κ(log(x)) = mog(x).

Therefore the value κ(CPi ) is determined by equating the coefficients at xi in

∑

i≥1

κ(CPi )

i + 1
xi+1 =

∑

i≥1

CPi

i + 1
(ν−1(x))i+1. (1.2)

For instance

κ(CP1) = −CP1;
κ(CP2) = 3CP2

1 − 2CP2;
κ(CP3) = −10CP3

1 + 12CP1CP2 − 3CP3;
κ(CP4) = 35CP4

1 − 60CP2
1CP2 + 20CP1CP3 + 10CP2

2 − 4CP4.

The following theorem shows how φK H is related to ψ .

Theorem 1.1 Let F be the universal formal group law and F̃ its strictly isomorphic
formal group law under strict isomorphism ν(x) = xCP(x). Let t : Q[p1, . . . , p4] →
Q[q1, . . . , q4] be the ring isomorphism defined by t (pi ) = qi and κ : MU∗ ⊗ Q →
MU∗ ⊗ Q the classifying map of F̃ . Then

i) the pair (t,
∑

i≥0 φK H (CPi )xi+1) is the strict isomorphism from φK H (F) to
ψ(F), i.e., the series

∑
i≥0 φK H (CPi )xi+1 is the strict isomorphism fromφK H (F)

to tψ(F) in the usual sense.
ii) A method to compute φK H is given by the formula φK H = t ◦ ψ ◦ κ−1.

To establish the theorem, we need the following two lemmas.

Lemma 1.2 Let exp be the exponent of F. The series 1
h(x) = exp(x)/exp′(x) is

invertible. Furthermore, the inverse j (x) of this series coincides with then mog(x),
the logarithmic series of F̃ .

Proof Note that

j−1(log(x)) = exp(log(x))

exp′(log(x))
= xCP(x).

Hence by definition of ν(x) one has
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Computing the Krichever genus 89

j−1(mog(x)) = j−1(log(ν−1(x))) = ν−1(x)CP(ν−1(x)) = x,

as xCP(x) = ν(x). 	

Lemma 1.3 Let ω̃ = 1

mog′(x) be the invariant differential form of the formal group

law F̃ above. Then the condition of Krichever-Höhn (1.1) is satisfied if and only if
ω̃(x)2 is a polynomial of degree 4.

Proof Since the series j (x) is invertible, the condition (1.1) is equivalent to

(h′( j (x)))2 = S(h( j (x))).

But h( j (x)) = 1/x , hence

(h ◦ j)′(x) = h′( j (x)) j ′(x) = −1/x2,

so that by Lemma 1.2

h′( j (x)) = −ω̃(x)/x2.

It follows that the condition (1.1) is equivalent to

ω̃(x)2 = x4S(1/x),

where on the right hand side one clearly has a degree four polynomial. 	

Now let us prove Theorem 1.1. Lemma 1.3 implies that φK H (F̃) is of type

ψ(F), that is corresponding invariant form ω(x)2 is a polynomial of degree 4.
By definition the formal group law ψ(F) is universal with this property. There-
fore there is classifying map of φK H (F̃), that is unique ring homomorphism t :
Q[p1, . . . , p4] → Q[q1, . . . , q4] such that t (ψ(F)) = φK H (F̃) = φK H (κ(F)).
Therefore t ◦ ψ = φK H ◦ κ . This proves (i). For (ii) note that by definition κ is iso-
morphism and we get t ◦ ψ ◦ κ−1 = φK H . Finally t (pi ) = qi as t is unique and it
sends 1 + p1t + p2t2 + p3t3 + p4t4 to 1 + q1t + q2t2 + q3t3 + p4t4.

2 Integral Krichever genus

Now we turn to the universal Krichever formal group law FKr [8] and prove that
it coincides with the universal formal group law by Buchstaber FB (with a minor
specialisation that does not affect the formal group law).

In [4] Buchstaber has given the analytical solution of a functional equation for the
exponent of the formal group law of the form

FB(x, y) =
∑

αi j x i y j = A(y)x2 − A(x)y2

B(y)x − B(x)y
. (2.1)

Note that if our series A and B have the form
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90 M. Bakuradze

A(t) = A0 + A1t + A2t2 + O(t3),

B(t) = B0 + B1t + B2t2 + O(t3),

then the coefficient B1 = B ′(0) does not affect the formal group law.

Lemma 2.1 Let ω(x) = ∂F(x,y)
∂y (x, 0) be the invariant form of the universal formal

group law F, and let F be the formal group law of the form (2.1), with B ′(0) = A′(0).
Then the invariant form of F equals B(x), i.e., B(x) is the image of ω(x) under the
ring homomorphism classifying the formal group law F .

Proof To see this note that

F(x, y) = A0

B0
(x + y)+ O(xy).

So if F(x, y) is a formal group law we must have A0 = B0, and after dividing the
numerator and denominator appropriately we may assume that A0 = B0 = 1. We
then furthermore calculate

F(x, y) = x + y + A1xy +
∞∑

i=2

Bi (x
i y + xyi )+ O(x2 y2).

We thus have

α1i = Bi , i ≥ 2, α11 = A1 = A′(0) = B ′(0)

and

1 +
∑

i≥1

α1i t
i

is restricted (1 + ∑
i≥1[CPi ]t i )−1 = ω(t). 	


Let us now present a minor modification of the analysis of FB performed in [11]
and as Lemma 2.1 suggests to introduce

A(x, y) =
∑

Ai j xi y j = F(x, y)(xω(y)− yω(x)). (2.2)

We define the universal Nadiradze formal group law FN by the obvious classifying
map of the Lazard ring to its quotient ring by the ideal generated by all Ai j with
i, j ≥ 3.

Proposition 2.2 Let L denote the Lazard ring.

i) In L[[x]], the identityω′(x)−ω′(0) = 2xω̂(x) holds, where ω̂(x) = ∑
i≥1 ωi x i−1.
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Computing the Krichever genus 91

ii) The formal series A(x, y) satisfies the identity

A(x, y) = (
xω(y)+ yω(x)− ω′(0)xy

)
(xω(y)− yω(x))

+ (
ω(x)ω̂(x)− ω(y)ω̂(y)

)
x2 y2

in L[[x, y]]/(xy)3.

Proof Let f and g be the exponent and logarithm of F , respectively. Hence F(x, y) =
f (g(x)+ g(y)) and

f ′(x) = 1/g′( f (x)) = ω( f (x)), f ′(g(x)) = ω( f (g(x)) = ω(x). (2.3)

Let ω(x) = 1 + b1x + b2x2 + · · · . Since g′′(0) = − f ′′(0) = −ω′(0) = −b1, we
conclude

∂2 F

∂y2 (x, 0) = f
′′
(g(x))+ f ′(g(x))g′′(0) = ω′(x)ω(x)− ω′(0)ω(x). (2.4)

This implies (i), since the left hand side of (2.4) has factor 2, and ω(x) is invertible.
(ii) Because of antisymmetry we have modulo (xy)3

A(x, y) = A(y)x2 − A(x)y2 =
∑

(Ai2x2 yi − Ai2xi y2).

We want to calculate −∑
Ai2xi in terms of ω(x).

Applying ∂2

∂y2 (x, 0) to (2.2) and taking into account (2.3) and (2.4) we obtain

−2
∑

Ai2xi = xω(x)ω′(x)− xω′(0)ω(x)+ 2xω′(0)ω(x)− 2ω2(x)+ 2b2x2.

Since the coefficients are in the Lazard ring, this reasoning implies

−
∑

Ai2xi = xω(x)
ω′(x)− ω′(0)

2
+ xω′(0)ω(x)− ω2(x)+ b2x2.

Consequently

∑
(Ai2x2 yi − Ai2xi y2) = (xω(y)+ yω(x))(xω(y)− yω(x))− ω′(0)xy(xω(y)

−yω(x))+ ω(x)ω̂(x)x2 y2 − ω(y)ω̂(y)x2 y2. 	


In order to compute the Krichever genus on the coefficients of the formal group
law of geometric cobordism, in [6], the universal Krichever formal group law FKr is
defined as

FKr (x, y) = xb(y)+ yb(x)− b′(0)xy + b(x)β(x)− b(y)β(y)

xb(y)− yb(x)
x2 y2, (2.5)
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92 M. Bakuradze

where β(x) = b′(x)−b′(0)
2x . In [6], it is moreover proved that

b(x) = ∂FKr

∂y
(x, 0).

Lemma 2.1 and Proposition 2.2 (ii) imply that FKr can alternatively be defined by the
classifying map of FN if B(x) is written as b(x). Thus FN = FKr .

Following [4], the authors of [3] consider the following formal group law corre-
sponding to the Krichever genus

Fb(u1, u2) = u1c(u2)+ u2c(u1)− au1u2 − d(u1)− d(u2)

u1c(u2)− u2c(u1)
u2

1u2
2.

It follows from Lemma 2.1 and Proposition 2.2 (ii) that, if we take c′(0) = a, the
Krichever genus Fb(x, y) coincides with (2.5), that is c(x) = b(x) and d(x) =
−b(x)β(x).

Thus we get the following

Theorem 2.3 Let F be the universal formal group law, let ω(x) = ∂F(x,y)
∂y (x, 0) be

its invariant form, and let

∑
Ai j xi y j = F(x, y)(xω(y)− yω(x)).

The Buchstaber, Krichever and Nadiradze formal group laws coincide, that is,

Fb = FKr = FN ,

and the coefficient ring is the quotient of the Lazard ring by the ideal generated by all
Ai j with i, j ≥ 3.

In [1], we calculated the coefficient ring of the Nadiradze formal group law FN

up to dimension 26. Namely, there is a set of polynomial generators z1, z2, . . . of the
Lazard ring for which the low degree defining relations are

5z5 = z2z3 + 2z1z4, 2z6 = 0, z1z6 = 0, z3z6 = 0, z10 = 0, z5z6 = 0, z12 = 0,

and 7z7, 2z8, 3z9, 11z11, and 13z13 are decomposable. For reasons of space, we omit
here these long decompositions. We note that our calculations agree with the results
in [6] on the structure of the coefficient ring of FKr obtained in terms of the associa-
tivity equation. The new information here concerning the Krichever group and hence
the Krichever genus is that, in dimensions 20 and 24, there are no indecomposable
elements, because in these dimensions z10 = 0 and z12 = 0.

The question arises in which dimensions any element is multiplicatively decom-
posable.
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