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THE BOUNDARY CONTACT PROBLEM FOR
HEMITROPIC ELASTIC SOLIDS WITH FRICTION

ARISING ALONG THE NORMAL

A. GACHECHILADZE AND R. GACHECHILADZE

Abstract. We investigate boundary-contact problem of statics of
the theory of elasticity for homogeneous hemitropic elastic medium
with regard friction. We consider two cases, the so-called coercive
case(when elastic media is fixed along some parts of the boundary),
and the semi-coercive case (the boundary is not fixed anywhere).
The problem is equivalently reduced to a spatial variational inequal-
ity. Based on variational inequality approach,we prove existence and
uniqueness theorems for weak solutions. We prove that the solutions
continuously depend on the data of the original problem. In the
semi-coercive case, the necessary condition of solvability of the corre-
sponding contact problem is written explicitly. This condition under
some certain restrictions is sufficient as well.

îâäæñéâ. êŽöîëéöæ öâïûŽãèæèæŽ áîâçŽáëĲæï åâëîææï ïðŽðæ-
çæï ïŽïŽäôãîë-ïŽçëêðŽóðë ŽéëùŽêŽ âîåàãŽîëãŽêæ ßâéæðîëìñèæ
ïýâñèâĲæïŽåãæï ýŽýñêæï àŽåãŽèæïûæêâĲæå. Žé öâéåýãâãŽöæ ýŽýñêæï
úŽèŽ ûŽîéëæóéêâĲŽ ïýâñèæï êëîéŽèæï éæéŽîåñèâĲæå àŽáŽŽáàæèâ-
ĲæïŽï, êŽùãèŽá éýâĲæï éæéŽîåñèâĲæïŽ. àŽêýæèñèæŽ îëàëîù çë-
âîùæðæñèæ (îëáâïŽù ïýâñèæ ïŽäôãîæï àŽîçãâñèæ áŽáâĲæåæ äë-
éæï êŽûæèæå øŽéŽàîâĲñèæŽ), æïâ ŽîŽçëâîùæðæñèæ öâéåýãâãŽ. Žéë-
ùŽêæï ïæãîùæå ãŽîæŽùæñè ñðëèëĲŽäâ âçãæãŽèâêðñîŽá áŽõãŽêæï
éâöãâëĲæå öâïûŽãèæèæŽ ïñïðæ ŽéëêŽýïêæï ŽîïâĲëĲæï, âîåŽáâîåë-
Ĳæï áŽ ŽéëêŽýïêæï éëêŽùâéâĲäâ ñûõãâðŽá áŽéëçæáâĲñèâĲæï ïŽçæå-
ýæ. ŽîŽçëîùæðæñè öâéåýãâãŽöæ ùýŽáæ ïŽýæå ŽéëûâîæèæŽ Žéë-
êŽýïêæï ŽîïâĲëĲæï ŽñùæèâĲâèæ áŽ ïŽçéŽîæïæ ìæîëĲŽ. âï ìæîëĲŽ
àŽîçãâñè áŽéŽðâĲæå öâäôñáãâĲöæ ûŽîéëŽáàâêï ïŽçéŽîæï ìæîë-
ĲŽïŽù.

1. Introduction

In the present work we investigate unilateral contact problems for homo-
geneous hemitropic elastic solids with friction. We consider the case when
the friction forces arise not under tangential but under normal displacement
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(see [5]). The model of the theory of elasticity is presented in which, unlike
the classical theory, an elementary particle of a body along with displace-
ments undergoes rotation, and hence the motion of an elementary particle
is characterized by the independent displacement vector and micro-rotation
vector.

The origin of the rational theories of polar continua goes back to brothers
E. and F. Cosserat [3], [4], who gave a development of the mechanics of
continuous media in which each material point has the six degrees of freedom
defined by 3 displacement components and 3 microrotation components (for
the history of the problem see [6], [19], [24], [28], and the references therein).

A micropolar solid which is not isotropic with respect to inversion is
called hemitropic, noncentrosymmetric, or chiral.

Refined mathematical models describing the hemitropic properties of
elastic materials have been proposed by Aero and Kuvshinski [1], [2]. In the
mathematical theory of hemitropic elasticity there are introduced the asym-
metric force stress tensor and moment stress tensor, which are kinematically
related with the asymmetric strain tensor and torsion (curvature) tensor via
the constitutive equations. All these quantities are expressed in terms of
the components of the displacement and microrotation vectors. In turn, the
displacement and microrotation vectors satisfy a coupled complex system
of second order partial differential equations. We note that the governing
equations in this model become very involved and generate 6 × 6 matrix
partial differential operator of second order. Evidently, the corresponding
6× 6 matrix boundary differential operators describing the force stress and
couple stress vectors have also involved structure in comparison with the
classical case. Particular problems of the elasticity theory of hemitropic con-
tinuum have been considered in [20], [21], [28], [29]. The frictionless contact
problems of statics for hemitropic solids have been studied in [11], [12],
[15], while the contact problems of statics with friction are analyzed in the
references [10], [13], [14]. The basic boundary value and transmission prob-
lems of hemitropic elasticity have been studied by the potential method for
smooth and non-smooth Lipschitz domains in [25]. Similar unilateral prob-
lems of the classical linear elasticity theory with various modifications have
been considered in many monographs and papers, [5], [7], [8], [9],[17], [18],
[30] (see also the references therein).

The paper is organized as follows. First we collect the basic field equa-
tions of statics of the theory of elasticity for hemitropic media in vector and
matrix forms, introduce the generalized stress operator and potential energy
quadratic form. Then we present a reasonable mathematical model of the
boundary conditions that apply to hemitropic solids in contact with friction.
We first consider the case when some part of the boundary is mechanically
fixed. Here we show how the original problem can be reformulated as a co-
ercive spatial variational inequality. We present a detailed analysis of these
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inequalities and investigate existence and uniqueness of a weak solution of
the original contact problem. Further, we treat a more complicated case
when only traction-contact conditions are considered on the whole bound-
ary. In this case, the corresponding mathematical problem is not solvable,
in general. We derive the necessary conditions of solvability and formulate
also some sufficient conditions of solvability in explicit form.

2. Field Equations and Green’s Formulas

2.1. Basic Equations. Let Ω ⊂ R3 be a bounded, simply connected do-
main with C∞ smooth boundary S := ∂Ω, Ω = Ω ∪ S. Throughout the
paper n(x) = (n1(x), n2(x), n3(x)) denotes the outward unit normal vector
at the point x ∈ S.

We assume that Ω is occupied by a homogeneous hemitropic elastic ma-
terial. Denote by u = (u1, u2, u3)> and ω = (ω1, ω2, ω3)> the displacement
vector and the micro-rotation vector, respectively; here and in what follows
the symbol (·)> denotes transposition.

In the hemitropic elasticity theory we have the following constitutive
equations for the force stress tensor {τpq} and the couple stress tensor
{µpq} :

τpq = τpq(U) := (µ + α) ∂puq + (µ− α) ∂qup + λδpq div u + δ δpq div ω+

+ (κ + ν) ∂pωq + (κ − ν) ∂qωp − 2α

3∑

k=1

εpqk ωk, (2.1)

µpq = µpq(U) := δ δpq div u + (κ + ν)
[
∂puq −

3∑

k=1

εpqk ωk

]
+ β δpq div ω+

+ (κ − ν)
[
∂qup −

3∑

k=1

εqpk ωk

]
+ (γ + ε) ∂pωq + (γ − ε) ∂qωp, (2.2)

where U = (u, ω)>, δpq is the Kronecker delta, ∂ = (∂1, ∂2, ∂3) with ∂j =
∂/∂xj , εpqk is the permutation (Levi-Civitá) symbol, and α, β, γ, δ, λ, µ,
ν, κ and ε are the material constants [1], [26].

The components of the force stress vector τ (n) = (τ (n)
1 , τ

(n)
2 , τ

(n)
3 )> and

the couple stress vector µ(n) = (µ(n)
1 , µ

(n)
2 , µ

(n)
3 )>, acting on a surface ele-

ment with a normal vector n = (n1, n2, n3), read as

τ (n)
q =

3∑
p=1

τpq np, µ(n)
q =

3∑
p=1

µpq np, q = 1, 2, 3. (2.3)
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Denote by T (∂, n) the generalized 6 × 6 matrix differential stress operator
[26]

T (∂, n) =

[
T (1)(∂, n) T (2)(∂, n)

T (3)(∂, n) T (4)(∂, n)

]

6×6

, T (j) =
[
T (j)

pq

]
3×3

, j = 1, 4,

where

T (1)
pq (∂, n) = (µ + α) δpq ∂n + (µ− α)nq ∂p + λ np ∂q,

T (2)
pq (∂, n) = (κ+ν) δpq ∂n+(κ−ν)nq ∂p+δ np ∂q−2 α

3∑

k=1

εpqk nk,

T (3)
pq (∂, n) = (κ+ν) δpq ∂n + (κ−ν)nq ∂p+δ np ∂q,

T (4)
pq (∂, n) = (γ + ε) δpq ∂n+(γ−ε)nq ∂p+β np ∂q−2 ν

3∑

k=1

εpqk nk.

(2.4)

Here ∂n = ∂/∂n denotes the directional derivative along the vector n (nor-
mal derivative).

From formulas (2.1), (2.2) and (2.3) it can be easily checked that
(
τ (n), µ(n)

)>
= T (∂, n)U.

The equilibrium equations of statics in the theory of hemitropic elasticity
read as [26]

3∑
p=1

∂p τpq(x) + %Fq(x) = 0,

3∑
p=1

∂p µpq(x) +
3∑

l,r=1

εqlr τlr(x) + % Ψq(x) = 0, q = 1, 2, 3,

where F = (F1, F2, F3)> and Ψ = (Ψ1, Ψ2,Ψ3)> are the body force and
body couple vectors per unit mass and % is the mass density of the elastic
material. Using the constitutive equations (2.1) and (2.2) we can rewrite
the equilibrium equations in terms of the displacement and micro-rotation
vectors,

(µ + α)∆ u(x) + (λ + µ− α) grad div u(x) + (κ + ν)∆ ω(x)+

+ (δ + κ − ν) grad div ω(x) + 2α curl ω(x) + %F (x) = 0,

(κ + ν) ∆ u(x) + (δ + κ − ν) grad div u(x) + 2α curl u(x)+ (2.5)

+ (γ + ε)∆ ω(x) + (β + γ − ε) grad div ω(x) + 4ν curlω(x)−
− 4α ω(x) + % Ψ(x) = 0,

where ∆ = ∂2
1 + ∂2

2 + ∂2
3 is the Laplace operator.
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Let us introduce the matrix differential operator generated by the left
hand side expressions of the system (2.5):

L(∂) :=


 L(1)(∂) L(2)(∂)

L(3)(∂) L(4)(∂)




6×6

,

where
L(1)(∂) := (µ + α)∆ I3 + (λ + µ− α) Q(∂),

L(2)(∂) = L(3)(∂) := (κ + ν)∆ I3 + (δ + κ − ν)Q(∂) + 2 α R(∂),

L(4)(∂) := [(γ + ε) ∆− 4 α] I3 + (β + γ − ε)Q(∂) + 4 ν R(∂).

Here and in the sequel Ik stands for the k × k unit matrix and

Q(∂) := [ ∂k∂j ]3×3, R(∂) :=




0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0




3×3

.

Equations (2.5) can be written in matrix form as

L(∂)U(x) + G(x) = 0, x ∈ Ω,

where U = (u, ω)> and G = (%F, %Ψ)>.

2.2. Green’s formulas. For real-valued vector functions U = (u, ω)> and
U ′ = (u′, ω′)> from the class [C2(Ω)]6 the following Green formula holds
[26] ∫

Ω

[
L(∂)U · U ′ + E(U,U ′)

]
dx =

∫

S

{
T (∂, n)U

}+ · {U ′}+
dS, (2.6)

where { · }+ denotes the trace operator on S from Ω, while E(· , ·) is the
bilinear form defined by the equality:

E(U,U ′) = E(U ′, U) =
3∑

p,q=1

{
(µ + α)u′pqupq + (µ− α)u′pquqp+

+ (κ + ν)(u′pqωpq + ω′pqupq) + (κ − ν)(u′pqωqp + ω′pquqp)+

+ (γ + ε)ω′pqωpq + (γ − ε)ω′pqωqp+

+ δ(u′ppωqq + ω′qqupp) + λu′ppuqq + βω′ppωqq

}
, (2.7)

where upq and ωpq are the so called strain and torsion (curvature) tensors
for hemitropic bodies,

upq = upq(U) = ∂puq −
3∑

k=1

εpqkωk, ωpq = ωpq(U) = ∂pωq, (2.8)

p, q = 1, 2, 3.
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Here and in what follows a·b denotes the usual scalar product of two vectors
a, b ∈ Rm : a · b =

∑m
j=1 aj bj .

From formulas (2.7) and (2.8) we get

E(U,U ′) =
3λ + 2µ

3

(
div u +

3δ + 2κ
3λ + 2µ

div ω

)(
div u′ +

3δ + 2κ
3λ + 2µ

div ω′
)

+

+
1
3

(
3β + 2γ − (3δ + 2κ)2

3λ + 2µ

)
(div ω)(div ω′)+

+
(

ε− ν2

α

)
curl ω · curl ω′+

+
µ

2

3∑

k,j=1, k 6=j

[
∂uk

∂xj
+

∂uj

∂xk
+
κ
µ

(∂ωk

∂xj
+

∂ωj

∂xk

)]
×

×
[
∂u′k
∂xj

+
∂u′j
∂xk

+
κ
µ

(∂ω′k
∂xj

+
∂ω′j
∂xk

)]
+

+
µ

3

3∑

k,j=1

[
∂uk

∂xk
− ∂uj

∂xj
+
κ
µ

(∂ωk

∂xk
− ∂ωj

∂xj

)]
×

×
[
∂u′k
∂xk

− ∂u′j
∂xj

+
κ
µ

(∂ω′k
∂xk

− ∂ω′j
∂xj

)]
+

+
(
γ − κ

2

µ

) 3∑

k,j=1, k 6=j

[
1
2

(∂ωk

∂xj
+

∂ωj

∂xk

)(∂ω′k
∂xj

+
∂ω′j
∂xk

)
+

+
1
3

(∂ωk

∂xk
− ∂ωj

∂xj

)(∂ω′k
∂xk

− ∂ω′j
∂xj

)]
+

+ α
(

curl u +
ν

α
curl ω − 2 ω

)
·

(
curl u′ +

ν

α
curl ω′ − 2 ω′

)
.

The potential energy density function E(U,U) is a positive definite qua-
dratic form with respect to variables upq(U) and ωpq(U), i.e., there exists
a positive number c0 > 0 depending only on the material constants, such
that

E(U,U) ≥ c0

3∑
p,q=1

[
u2

pq + ω2
pq

]
.

The necessary and sufficient conditions for the quadratic form E(U,U) to
be positive definite are the following inequalities (see [2], [6], [15])

µ>0, α>0, γ >0, ε>0, λ+2µ>0, µ γ−κ2 >0, α ε−ν2 >0,

(λ + µ)(β + γ)− (δ + κ)2 >0, (3λ + 2µ)(3β + 2γ)− (3δ + 2κ)2 >0,

d1 := (µ + α)(γ + ε)− (κ + ν)2 > 0,

d2 := (λ + 2µ)(β + 2γ)− (δ + 2κ)2 > 0,
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µ
[
(λ + µ) (β + γ)− (δ + κ)2

]
+ (λ + µ)(µγ − κ2) > 0,

µ
[
(3λ + 2µ) (3β + 2γ)− (3δ + 2κ)2

]
+ (3λ + 2µ) (µγ − κ2) > 0.

The following assertion describes the null space of the energy quadratic
form E(U,U) (see [26]).

Lemma 2.1. Let U = (u, ω)> ∈ [C1(Ω)]6 and E(U,U) = 0 in Ω. Then

u(x) = [a× x] + b, ω(x) = a, x ∈ Ω,

where a and b are arbitrary three-dimensional constant vectors and symbol
[· × ·] denotes the cross product of two vectors.

Vectors of type ([a × x] + b, a) are call generalized rigid displacement
vectors. Observe that a generalized rigid displacement vector vanishes, i.e.
a = b = 0, if it is zero at a single point.

Throughout the paper Lp(Ω) (1 ≤ p ≤ ∞), L2(Ω) = H0(Ω) and Hs(Ω) =
Hs

2(Ω), s ∈ R, denote the Lebesgue and Bessel potential spaces (see, e.g.,
[22], [31]). The corresponding norms we denote by symbols ‖ · ‖Lp(Ω) and
‖ · ‖Hs(Ω). Denote by D(Ω) the class of C∞(Ω) functions with support
in the domain Ω. If M is an open proper part of the manifold ∂Ω, i.e.,
M ⊂ ∂Ω, M 6= ∂Ω, then by Hs(M) we denote the restriction of the space
Hs(∂Ω) on M ,

Hs(M) :=
{
rM ϕ : ϕ ∈ Hs(∂Ω)

}
,

where r
M

stands for the restriction operator on the set M . Further, let

H̃s(M) :=
{
ϕ ∈ Hs(∂Ω) : supp ϕ ⊂ M

}
.

From the positive definiteness of the energy form E(·, ·) with respect to the
variables (2.8) it follows that

B(U,U) :=
∫

Ω

E(U,U)dx ≥ 0. (2.9)

Moreover, there exist positive constants C1 and C2, depending only on the
material parameters, such that the following Korn’s type inequality (cf. [8]
Part I, §12.)

B(U,U) ≥ C1

∥∥U
∥∥2

[H1(Ω)]6
− C2

∥∥U
∥∥2

[H0(Ω)]6
(2.10)

holds for an arbitrary real-valued vector function U ∈ [H1(Ω)]6.

Remark 2.2. If U ∈ [H1(Ω)]6 and on some open part S∗ ⊂ ∂Ω the trace
{U}+ vanishes, i.e., r

S∗ {U}+ = 0, then we have the strict Korn’s inequality

B(U,U) ≥ c
∥∥U

∥∥2

[H1(Ω)]6

with some positive constant c > 0 which does not depend on the vector
U . This follows from (2.10) and the fact that in this case B(U,U) > 0 for
U 6= 0 (see, e.g., [27], [23], Ch. 2, Exercise 2.17).
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Remark 2.3. By standard limiting arguments Green’s formula (2.6) can
be extended to Lipschitz domains and to vector functions U ∈ [H1(Ω)]6

with L(∂)U ∈ [L2(Ω)]6 and U ′ ∈ [H1(Ω)]6 (see, [27], [22]),
∫

Ω

[
L(∂)U · U ′ + E(U,U ′)

]
dx =

〈{T (∂, n)U}+ , {U ′}+〉
∂Ω

, (2.11)

where 〈 · , · 〉∂Ω denotes the duality between the spaces [H−1/2(∂Ω)]6 and
[H1/2(∂Ω)]6, which generalizes the usual inner product in the space
[L2(∂Ω)]6. By this relation the generalized trace of the stress operator
{T (∂, n)U}+ ∈ [H−1/2(∂Ω)]6 is correctly determined.

3. Contact Problems with Friction

3.1. Pointwise and Variational Formulation of the Contact Prob-
lem. Let the boundary S of the domain Ω be divided into two open,
connected and non-overlapping parts S1 and S2 of positive measure, S =
S1 ∪ S2, S1 ∩ S2 = ∅. Assume that the hemitropic elastic body occupying
the domain Ω is in contact with another rigid body along the subsurface S2.

Definition 3.1. The vector-function U = (u, ω)> ∈ [H1(Ω)]6 is said to
be a weak solution of equation

L(∂)U + G = 0, G ∈ [L2(Ω)]6, (3.1)

in the domain Ω if

B(U,Φ) =
∫

Ω

G · Φ dx ∀Φ ∈ [D(Ω)]6,

where B is given by formula (2.9).

In the sequel, for the force stress and couple stress vectors we use the
following notation:

T U := T (1)u + T (2)ω, MU := T (3)u + T (4)ω,

where T (j), j = 1, 4, is defined by formula (2.4).
For the normal and tangential components of the force stress vector we

will use, respectively, the following notation

(T U)n := T U · n, (T U)s := T U − n(T U)n.

Further, let

G = (%F, %Ψ)> ∈ [L2(Ω)]6, ϕ ∈ [H−1/2(S2)]3, gi ∈ L∞(S2), i = 1, 2

and g1 ≤ 0 ≤ g2.
Consider the following contact problem of statics with a friction (cf. [5],

ch. 3, sect. 5.4.1).
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Problem (A). Find a weak solution U = (u, ω)> ∈ [H1(Ω)]6 of the
equation (3.1) satisfying the following conditions:

r
S1
{U}+ = 0 on S1; (3.2)

r
S2
{MU}+ = ϕ on S2; (3.3)

r
S2
{(T U)s}+ = 0 on S2; (3.4)

if g1 < r
S2
{(T U)n}+ < g2, then r

S2
{un}+ = 0, on S2, (3.5)

if g1 = r
S2
{(T U)n}+, then r

S2
{un}+ ≥ 0, on S2 (3.6)

and

if g2 = r
S2
{(T U)s}+, then r

S2
{un}+ ≤ 0, on S2, (3.7)

where {·}+ denotes the trace operator on Si(i = 1, 2) from Ω.
This problem can be reformulated as a variational inequality. To this

end, we introduce the following continuous convex functional on the space
[H1(Ω)]3

j(v) =
∫

S2

(− g1[{vn}+]+ + g2[{vn}+]−
)
dS ∀v ∈ [H1(Ω)]3, (3.8)

where [f ]+ := max(f, 0) and [f ]− := max(−f, 0) for f ∈ H1/2(S2), and a
closed convex subset of [H1(Ω)]6

K :=
{
V = (v, w)> ∈ [H1(Ω)]6 : rS1

{V }+ = 0
}
.

Consider the following variational inequality: Find U = (u, ω)> ∈ K such
that the spatial variational inequality

B(U, V − U) + j(v)− j(u) ≥ (G, V − U) + 〈ϕ, rS2
{w − ω}+〉S2 (3.9)

holds for all V = (v, w)> ∈ K.
Here and in what follows, the symbol 〈 · , · 〉 denotes the duality re-

lation between the corresponding dual pairs X∗(M) and X(M). In par-
ticular, 〈 · , · 〉S2 in (3.9) denotes the duality relation between the spaces
[H−1/2(S2)]3 and [H̃1/2(S2)]3. In addition, the symbol ( · , · ) will denote
the inner product in the space L2(Ω).

3.2. Equivalence theorem. Here we prove the following equivalence re-
sult.

Theorem 3.2. If U = (u, ω)> ∈ [H1(Ω)]6 is a solution of problem (A),
then U is a solution of the variational inequality (3.9), and vice versa.

Proof. Let U = (u, ω)> ∈ [H1(Ω)]6 be a solution of problem (A), and
V = (v, w)> ∈ K. By virtue of the interior regularity theorems (see [8]), we
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have U ∈ [H2(Ω′)]6 for every domain Ω′ ⊂ Ω. Hence, by means of Green’s
formula (2.11), we get
〈{T (∂, n)U}+, {V −U}+〉

S
+(G, V −U) = B(U, V −U) ∀V = (v, w)> ∈ K.

Since rS1
{V − U}+ = 0, we have

〈
r

S2
{T (∂, n)U}+, r

S2
{V − U}+〉

S2
= B(U, V − U)− (G, V − U).

Taking into account the boundary conditions (3.3) and (3.4) this equation
can be rewritten as

〈r
S2
{(T U)n}+, rS2

{vn − un}+〉S2 + j(v)− j(u) =

= B(U, V − U)−(G, V − U)−〈
ϕ, r

S2
{w − ω}+〉

S2
+j(v)−j(u). (3.10)

Let us show that, if conditions (3.5), (3.6) and (3.7) are fulfilled, then the
left-hand side of the above equality is nonnegative. Indeed, let condition
(3.5) be fulfilled. Then the left-hand side of the equality (3.10) can be
rewritten as

〈
r

S2
{(T U)n}+, r

S2
{vn}+

〉
S2

+
〈−g1, rS2

[{vn}+]+
〉

S2
+

+
〈
g2, rS2

[{vn}+]−
〉

S2
=

=
〈
r

S2
{(T U)n}+, r

S2
[{vn}+]+ − r

S2
[{vn}+]−

〉
S2

+

+
〈−g1, rS2

[{vn}+]+
〉

S2
+

〈
g2, rS2

[{vn}+]−
〉

S2
=

=
〈
rS2
{(T U)n}+ − g1, rS2

[{vn}+]+
〉

S2
+

+
〈
g2 − r

S2
{(T U)n}+, r

S2
[{vn}+]−

〉
S2
≥ 0.

Assume now that condition (3.6) is fulfilled. Then rS2
[{un}+]+ = rS2

{un}+
and r

S2
[{un}+]− = 0. Therefore

〈
r

S2
{(T U)n}+, r

S2
[{vn}+]+ − r

S2
[{vn}+]− − r

S2
{un}+

〉
S2

+

+
〈−g1, rS2

[{vn}+]+− r
S2
{un}+

〉
S2

+
〈
g2, rS2

[{vn}+]−
〉

S2
=

=
〈
rS2
{(T U)n}+ − g1, rS2

[{vn}+]+−
− r

S2
{un}+

〉
S2

+
〈
g2 − r

S2
{(T U)n}+, r

S2
[{un}+]−

〉
S2
≥ 0.

Finally, let the condition (3.7) be fulfilled. Then rS2
[{un}+]+ = 0 and

r
S2

[{un}+]− = −r
S2
{un}+. Therefore

〈
rS2
{(T U)n}+, rS2

[{vn}+]+ − rS2
[{vn}+]− − rS2

{un}+
〉

S2
+

+
〈−g1, rS2

[{vn}+]+
〉

S2
+

〈
g2, rS2

[{vn}+]− + r
S2
{un}+

〉
S2

=

=
〈
g2 − rS2

{(T U)n}+, rS2
[{vn}+]− + rS2

{un}+
〉

S2
+

+
〈
g2 − g1, rS2

[{vn}+]+
〉

S2
≥ 0.
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Taking into account the above relations, we obtain

B(U, V − U) + j(v)− j(u) ≥ (G, V − U) + 〈ϕ, r
S2
{w − ω}+〉S2

∀V = (v, w)> ∈ K.

The first part of Theorem 3.1 is proved.
Now, let U = (u, ω)> ∈ K be a solution of the variational inequality

(3.9). Substitute U ± Φ for V in (3.9) with an arbitrary Φ ∈ [D(Ω)]6. We
obtain

B(U,Φ) = (G, Φ) ∀Φ ∈ [D(Ω)]6,
which implies that U is a weak solution of equation (3.1). Again, by virtue of
the interior regularity theorems (see [8]), almost everywhere in the domain
Ω the equation (3.1) is satisfied. Thus taking into account the fact that
r

S1
{V − U}+ = 0 for all V = (v, w)> ∈ K, Green’s formula (2.11) yields

〈
r

S2
{T (∂, n)U}+, r

S2
{V − U}+〉

S2
+ j(v)− j(u) ≥ (3.11)

≥ 〈
ϕ, r

S2
{w − ω}+〉

S2
∀V = (v, w)> ∈ K.

Choose V = (v, w)> ∈ K such that r
S2
{v}+ = r

S2
{u}+ and r

S2
{w}+ =

r
S2
{ω}+ ± r

S2
ψ, where ψ ∈ [H̃1/2(S2)]3 is an arbitrary vector function.

Then (3.11) yields
〈
rS2
{MU}+ − ϕ, rS2

ψ
〉

S2
= 0 ∀ψ ∈ [H̃1/2(S2)]3.

Hence on S2

r
S2
{MU}+ = ϕ

and therefore (3.3) holds. Condition (3.2) is satisfied automatically, since
U ∈ K. Further, choose V = (v, w)> ∈ K such that

r
S2
{w}+ =r

S2
{ω}+, r

S2
{vn}+ =r

S2
{un}+, and r

S2
{vs}+ =r

S2
{us}+±ψ,

where ψ ∈ [H̃1/2(S2)]3 is an arbitrary vector function. Then from (3.11) we
obtain 〈

rS2
{(T U)s}+, rS2

ψ
〉

S2
= 0 ∀ψ ∈ [H̃1/2(S2)]3,

which proves (3.4). It remains to prove conditions (3.5), (3.6) and (3.7).
Taking into account the above obtained relations, from (3.11) it follows
that for all V = (v, w)> ∈ K

〈
rS2
{(T U)n}+, rS2

{vn − un}+
〉

S2
+ j(v)− j(u) ≥ 0.

Hence we have
〈
rS2
{(T U)n}+ − g1, rS2

[{vn}+]+
〉

S2
+

+
〈
g2 − rS2

{(T U)n}+, rS2
[{vn}+]−

〉
S2
−

− 〈
r

S2
{(T U)n}+ − g1, rS2

[{un}+]+
〉

S2
−



50 A. GACHECHILADZE AND R. GACHECHILADZE

− 〈
g2 − r

S2
{(T U)n}+, r

S2
[{un}+]−

〉
S2
≥ 0 ∀V = (v, w)> ∈ K. (3.12)

Further, let λ > 0 be an arbitrary number and take ±λψ for {vn}+ in (3.12),
where ψ ∈ H̃1/2(S2) is an arbitrary scalar function and ψ ≥ 0. Then, from
(3.12) we easily derive

g1 ≤ rS2{(T U)n}+ ≤ g2 (3.13)

and 〈
r

S2
{(T U)n}+ − g1, rS2

[{un}+]+
〉

S2
+

+
〈
g2 − r

S2
{(T U)n}+, r

S2
[{un}+]−

〉
S2
≤ 0. (3.14)

Taking into account inequality (3.13), from (3.14) we obtain〈
r

S2
{(T U)n}+ − g1, rS2

[{un}+]+
〉

S2
= 0

and 〈
g2 − r

S2
{(T U)n}+, r

S2
[{un}+]−

〉
S2

= 0.

These equalities show that conditions (3.5), (3.6) and (3.7) are fulfilled,
which completes the proof. ¤
3.3. Existence and uniqueness theorems. Here we investigate the so-
called coercive case where the measure of the Dirichlet part of the boundary
is of positive measure, i, e., meas S1 > 0.

We prove the following uniqueness theorem.

Theorem 3.3. The variational inequality (3.9) has at most one solution.

Proof. Let U = (u, ω)> ∈ K and Ũ = (ũ, ω̃)> ∈ K be two solutions of the
variational inequality (3.9). Then

B(U, Ũ − U) + j(ũ)− j(u) ≥ (G, Ũ − U) +
〈
ϕ, rS2

{ω̃ − ω}〉
S2

and

B(Ũ , U − Ũ)− j(ũ) + j(u) ≥ (G, U − Ũ) +
〈
ϕ, r

S2
{ω − ω̃}〉

S2
.

By summing these inequalities and applying property (2.9) we easily derive

B(U − Ũ , U − Ũ) = 0.

Therefore, U − Ũ = ([a × x] + b, a) in Ω, where a, b ∈ R3 are arbitrary
constant vectors (see Lemma 2.1). Since r

S1
{U − Ũ}+ = 0, we conclude

a = b = 0, i.e., U = Ũ in Ω. ¤
To prove the existence result let us introduce the following functional on

the set K:

J (V ) =
1
2
B(V, V ) + j(v)− (G, V )− 〈

ϕ, r
S2
{w}+〉

S2

∀V = (v, w)> ∈ K.
(3.15)
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Due to the symmetry property of the form B(U, V ) it is easy to show that
the variational inequality (3.9) is equivalent to the minimization problem for
functional (3.15) on the closed convex set K, i.e., the variational inequality
(3.9) is equivalent to the following minimizing problem:

Find V0 ∈ K such that

J (V0) = inf
V ∈K

J (V ).

According to the general theory of variational inequalities (see [5], [8], [16]),
the solvability of the minimization problem immediately follows from the
coercivity of the functional J , i.e., from the property

J (V ) −→∞, when ‖V ‖[H1(Ω)]6 −→∞, V ∈ K.

Since the bilinear form B(U, V ) is coercive on the set K (see Remark 2.2)
and the inequality j(v) ≥ 0 holds, using the trace theorem it is easy to see
that

J (V ) ≥ c1‖V ‖2[H1(Ω)]6 − c2‖V ‖[H1(Ω)]6 ∀V ∈ K,

where c1 and c2 are some positive constants independent of V . This inequal-
ity shows that functional (3.15) is coercive on K in the above mentioned
sense. Therefore, from the equivalence Theorem 3.1 we have the following
existence result for the Problem (A).

Theorem 3.4. Let meas S1 > 0, G ∈ [L2(Ω)]6, ϕ ∈ [H−1/2(S2)]3,
gi ∈ L∞(S2) (i = 1, 2) and g1 ≤ 0 ≤ g2. Then the Problem (A) has a
unique solution in [H1(Ω)]6.

3.4. Lipschitz continuous dependence on the problem data. Let
U = (u, ω)> ∈ [H1(Ω)]6 and Ũ = (ũ, ω̃)> ∈ [H1(Ω)]6 be the two solutions
of Problem (A) corresponding to the data G, ϕ, gi and G̃, ϕ̃, g̃i (i = 1, 2),
respectively. Thus we have two variational inequalities of type (3.9), the
first one for U and the second one for Ũ . Substitute V = Ũ in the first one
and V = U in the second one, and take thier sum to obtain

−B(U − Ũ , U − Ũ) + j(ũ)− j̃(ũ) + j̃(u)− j(u) ≥
≥ −(G − G̃, U − Ũ)− 〈

ϕ− ϕ̃, r
S2
{ω − ω̃}+〉

S2
,

where

j(ũ)− j̃(ũ) + j̃(u)− j(u) =
∫

S2

(
g1 − g̃1

)(
[{un}+]+ − [{ũn}+]+

)
dS +

+
∫

S2

(
g2 − g̃2

)(
[{ũn}+]− − [{un}+]−

)
dS.

Taking into account this inequality, the inclusions U ∈ K, Ũ ∈ K and the
strong Korn’s inequality (see Remark 2.2), from the preceding inequality
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we obtain

‖U − Ũ‖[H1(Ω)]6 ≤ C
(‖G − G̃‖[L2(Ω)]6 + ‖ϕ− ϕ̃‖[H−1/2(S2)]3 +

+‖g1 − g̃1‖L2(S2) + ‖g2 − g̃2‖L2(S2)

)
,

where positive constant C does not depend on U and Ũ , and on the data of
the problems under consideration. This estimate shows the desired Lipschitz
continuous dependence of solutions on the data of the problem.

4. The Semicoercive Case

Let S1 = ∅, S2 = S, G ∈ [L2(Ω)]6, ϕ ∈ [H−1/2(S)]3, gi ∈ L∞(S) (i = 1, 2)
and g1 ≤ 0 ≤ g2. Consider the boundary contact problem.

Problem (B). Find a vector-function U = (u, ω)> ∈ [H1(Ω)]6, which is
a weak solution of equation (3.1) satisfying the following boundary condi-
tions:

{MU}+ = ϕ, on S;
{(T U)s}+ = 0, on S;
if g1 < {(T U)n}+ < g2, then {un}+ = 0, on S;
if g1 = {(T U)n}+, then {un}+ ≥ 0, on S

and
if g2 = {(T U)n}+, then {un}+ ≤ 0, on S.

This problem can be reformulated as a variational inequality.
Find vector-function U = (u, ω)> ∈ [H1(Ω)]6, such that the variational

inequality

B(U, V − U) + j(v)− j(u) ≥ (G, V − U) +
〈
ϕ, {w − ω}+〉

S
(4.1)

holds for all V = (v, w)> ∈ [H1(Ω)]6, where

j(v) =
∫

S

(−g1[{vn}+]+ + g2[{vn}+]−
)
dS.

Let U = (u, ω)> ∈ [H1(Ω)]6 be a solution of the variational inequality (4.1).
Substitute first V = 0 and afterwards V = 2U in inequality (4.1) to obtain

B(U,U) + j(u) = (G, U) +
〈
ϕ, {ω}+〉

S
(4.2)

With the help of (4.2) we derive from (4.1)

B(U, V ) + j(v) ≥ (G, V ) +
〈
ϕ, {w}+〉

S
∀V = (v, w)> ∈ [H1(Ω)]6. (4.3)

Denote by R the set of solutions of the equation B(U,U) = 0 in the space
[H1(Ω)]6 (see Lemma 2.1),

R :=
{
ξ = (%, a)> ∈ [H1(Ω)]6 : % = ([a× x] + b), a, b ∈ R3

}
.
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Substitute ±ξ ∈ R for V in (4.3)

−
∫

S

(−g1[{%n}+]− + g2[{%n}+]+
)
dS ≤ (G, ξ) + 〈ϕ, a〉S ≤

≤
∫

S

(−g1[{%n}+]+ + g2[{%n}+]−
)
dS. (4.4)

This inequality is the necessary condition for the variational inequality
(4.1) to be solvable.

Assume that we have a strict inequality in (4.4). Then by taking into
consideration that the space R has finite dimension, dimR = 6, it is easy
to see that (4.4) is equivalent to the relation
∫

S

(−g1[{%n}+]+ + g2[{%n}+]−
)
dS − (G, ξ)− 〈ϕ, a〉S ≥ C‖ξ‖[L2(Ω)]6 (4.5)

with some positive constant C and ∀ξ ∈ R.
Let PR be an orthogonal projection operator of the space [H1(Ω)]6 on R

in the sense of the space [L2(Ω)]6, i.e., ∀V ∈ [H1(Ω)]6 : V = W + ξ, where
ξ = (%, a)> = PRV ∈ R and

W = (η, ς)> ∈ R⊥ :=
{
U ∈ [H1(Ω)]6 : (U, ξ) = 0 ∀ ξ ∈ R}

.

Due to inequality (2.9) and Lemma 5.1 in [11] the bilinear form B then will
be semicoercive , i.e., there is a positive constant α0 such that

B(V, V ) ≥ α0 ‖V − PRV ‖2[H1(Ω)]6 = ‖W‖2[H1(Ω)]6 ∀V ∈ [H1(Ω)]6. (4.6)

It is easy to see that the norm ‖V ‖[H1(Ω)]6 is equivalent the norm
‖W‖[H1(Ω)]6 + ‖ξ‖[L2(Ω)]6 . Therefore for all V = W + ξ ∈ [H1(Ω)]6 with
W = (η, ς)> and ξ = (%, a)>, due to (4.6) and (4.5) we have

J (V ) = J (W + ξ) =
1
2
B(W,W ) + j(η + %)− j(%)− (G,W )−

− 〈
ϕ, {ς}+〉

S
+ j(%)− (G, ξ)− 〈ϕ, a〉S ≥ C‖W‖2[H1(Ω)]6 +

+C1‖ξ‖[L2(Ω)]6 − C2‖W‖[H1(Ω)]6 + j(η + %)− j(%),

for some positive constants C, C1 and C2.
Let us now estimate j(η + %)− j(%). We have

j(η + %)− j(%) =
∫

S

{
− g1

(
[{ηn + %n}+]+ − [{%n}+]+

)
+

+g2

(
[{ηn+%n}+]−−[{%n}+]−

) }
dS≤

∫

S

(−g1[{ηn}+]++g2[{ηn}+]−
)
dS≤
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≤ C

∫

S

(
[{ηn}+]+ + [{ηn}+]−

)
dS = C

∫

S

∣∣{ηn}+
∣∣ dS ≤ ‖W‖[H1(Ω)]6 . (4.7)

Analogously, we obtain

j(%)−j(η+%)≤
∫

S

(−g1[{ηn}+]−+g2[{ηn}+]+
)
dS ≤ C‖W‖[H1(Ω)]6 . (4.8)

From estimates (4.7) and (4.8) we have

j(η + %)− j(%) ≥ −C‖W‖[H1(Ω)]6 ,

where the positive constant C is independent of η and %.
Taking into account this inequality, we finally obtain

J (V ) ≥ C‖W‖2[H1(Ω)]6 + C1‖ξ‖[L2(Ω)]6 − C2‖W‖[H1(Ω)]6 ,

whence it follows that

J (V ) −→∞, as ‖V ‖[H1(Ω)]6 −→∞, V ∈ [H1(Ω)]6.

Thus the functional J is coercive and the minimization problem for this
functional is solvable. Consequently, the corresponding variational inequal-
ity (4.1) is solvable as well (see [5], [17]). Further, for two possible solutions
U and Ũ of the class [H1(Ω)]6 to the variational inequality (4.1), we easily
derive B(U−Ũ , U−Ũ) = 0, which implies U−Ũ = ([a× x] + b, a) , a, b ∈ R3.
So we have the following existence and uniqueness theorem.

Theorem 4.1. Let S1 = ∅, G ∈ [L2(Ω)]6, ϕ ∈ [H−1/2(S)]3, gi ∈
L∞(S) (i = 1, 2), g1 ≤ 0 ≤ g2 and the condition (4.5) be fulfilled. Then
the variational inequality (4.1) is solvable in the space [H1(Ω)]6. Moreover,
solutions are defined modulo generalized rigid displacement vectors.

Remark 4.2. Let the boundary S := ∂Ω fall into three mutually disjoint
parts S1, ST and S2, such that S1 ∪ST ∪S2 = S, S1 ∩S2 = ∅. Analogously
to the coercive case, we can study the problem, when on the part of the
boundary ST the traction boundary condition

rST
{T (∂, n)U}+ = Q

is given, where Q ∈ [H−1/2(ST )]6. The conditions of the parts S1 and S2 in
this case remain the same as in Problem (A).

In that case, we have the following variational inequality:
Find U = (u, ω)> ∈ K such that ∀V = (v, w)> ∈ K

B(U, V − U) + j(v)− j(u) ≥ (G, V − U) +
+

〈
Q, r

ST
{V − U}+〉

ST
+

〈
ϕ, r

S2
{w − ω}+〉

S2
,

where the functional j is defined by formula (3.8).
The proof of the existence and uniqueness theorem for this case can be

carried out by the word for word arguments.
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Remark 4.3. Analogously to the non-coercive case, we can study the
problem, when on the part of the boundary S1 instead of the Dirichlet
condition (3.3) the traction boundary condition

r
S1
{T (∂, n)U}+ = Q

is given, where Q ∈ [H̃−1/2(S1)]6.
In that case, instead of (4.1) we have the following variational inequality:
Find U = (u, ω)> ∈ [H1(Ω)]6 such that ∀V = (v, w)> ∈ [H1(Ω)]6

B(U, V − U) + j(v)− j(u) ≥ (G, V − U) +
+

〈
r

S1
Q, r

S1
{V − U}+〉

S1
+

〈
r

S2
ϕ, r

S2
{w − ω}+〉

S2
, (4.9)

where ϕ ∈ [H̃−1/2(S2)]3.
The necessary condition for the variational inequality (4.9) to be solvable

now reads as

−
∫

S2

(−g1[{%n}+]− + g2[{%n}+]+
)
dS ≤ (G, ξ) +

〈
r

S2
ϕ, a

〉
S2

+

+
〈
r

S1
Q, r

S1
{ξ}+〉

S1
≤

∫

S2

(−g1[{%n}+]+ + g2[{%n}+]−
)
dS,

where ξ = (%, a)> ∈ R is an arbitrary generalized rigid displacement vector.
Let us assume that we have the strict inequality in this necessary condi-

tion. Since R is finite-dimensional we can show that the strict inequality is
equivalent to the condition: there is a positive constant C such that for all
ξ ∈ R the following inequality holds∫

S2

(−g1[{%n}+]+ + g2[{%n}+]−
)
dS − (G, ξ)−

− 〈
r

S2
ϕ, a

〉
S2
− 〈

r
S1

Q, r
S1
{ξ}+〉

S1
≥ C‖ξ‖[L2(Ω)]6 .

This is a sufficient condition for the solvability of the variational inequality
(4.9).
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