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ON THE METHOD OF MONOTONICITY IN PROBLEMS

WITH AN IMPLICIT OBSTACLE

A. GACHECHILADZE

Abstract. In the present work we consider the variational and quasi-
variational inequalities for the second order elliptic, coercive par-
tial differential operator. These problems are, in fact, the quasi-
variational inequalities with a unilateral implicit obstacle considered
for the Dirichlet and Neumann boundary conditions. Such kind of
problems are encountered in the control theory. In investigating these
problems we have used the method of monotonicity when the obstacle
operator is not monotone in an ordinary sense. The existence of mini-
mal and maximal solutions is proved. It is stated that these solutions
minimize and maximize the “control energy”.

îâäæñéâ. ê�öîëéöæ à�êýæèñèæ� ã�îæ�ùæñèæ á� çã�äæã�îæ�ùæ-

ñèæ ñðëèë�â�æ éâëîâ îæàæï âèæòïñîæ çëâîùæðñèæ ç�îúë û�î-

éëâ�ñèæ�êæ ëìâî�ðëîæï�åãæï. âï �éëù�êâ�æ û�îéë�áàâêâê ã�îæ-

�ùæñè ñðëèë�â�ï ù�èéýîæãæ �î�ùý�áæ ûæê��ë�æå, îëéèâ�æù

à�êýæèñèæ �îæ�ê áæîæýèâï� á� êâæé�êæï ï�ï�ä�ãîë ìæîë�â�æï

éæé�îå. �ïâåæ �éëù�êâ�æï à�éëçãèâã�öæ à�éëõâêâ�ñèæ� éëêëðë-

êñîë�æï éâåëáæ æé öâéåýãâã�öæ, îëù� ûæê��ë�æï ëìâî�ðëîæ �î

�îæï éëêëðëêñîæ øãâñèâ�îæãæ �äîæå. á�éðçæùâ�ñèæ� éæêæé�èñ-

îæ á� é�óïæé�èñîæ �éëê�ýïêâ�æï �îïâ�ë��. âï �éëê�ýïêâ�æ éæêæ-

é�èñîï á� é�óïæé�èñîï ýáæï �àîâåãâ é�îåãæï âêâîàæ�ï�ù .

1. Introduction

The problems we consider here trace back to the control theory. They
are formulated in the form of the elliptic variational and quasi-variational
inequalities. We are concerned only with the question of the existence of
solutions and present a somewhat different version of the method of mono-
tonicity in the problems of an implicit obstacle. Let us make some defini-
tions.
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Let Ω be a bounded domain in R
n, Γ be the boundary of Ω : Γ = ∂Ω,

Γ ∈ C1, ν be the outward unit normal vector to Ω; moreover, let Hs(Ω) and

Hs(Γ) be the real Sobolev spaces. Define H̃1(Ω) := {v ∈ H1(Ω) : v|
Γ

= 0}.

Further, suppose V = H̃1(Ω), or V = H1(Ω), and V ′ denotes the dual space
of the space V . The norm in these spaces will be denoted by ‖ · ‖V and
‖ · ‖V ′ , respectively:

‖ϕ‖V ′ = sup
ψ∈V

〈ϕ , ψ〉

‖ψ‖V
, ∀ϕ ∈ V ′,

where 〈· , ·〉 is the duality brackets between V and V ′.
Define the bilinear form on the space H1(Ω) ×H1(Ω) as follows:

a(u, v) =

n∑

i,j=1

∫

Ω

aij
∂u

∂xi

∂v

∂xj
dx+

n∑

i=1

∫

Ω

ai
∂u

∂xi
vdx+

∫

Ω

a0uvdx,

aij , ai, a0 ∈ L∞(Rn),

n∑

i,j=1

aijξiξj ≥ α0|ξ|
2,

a0(x) ≥ a0, a0 = const > 0.

(1.1)

Suppose that the form a(u, v) is coercive:

a(u, u) ≥ α||u||21,Ω, ∀u ∈ H1(Ω), (1.2)

where ‖ · ‖1,Ω is the norm in H1(Ω).
Define the following operators:

A(x, ∂) = −
n∑

i,j=1

∂

∂xj

(
aij

∂

∂xi

)
+

n∑

i=1

ai
∂

∂xi
+ a0,

∂

∂νA
=

n∑

i,j=1

aijνj
∂

∂xi
.

(1.3)

As is known, if u ∈ H1(Ω) and Au ∈ L2(Ω), then
∂u

∂νA
∈ H

−
1

2 (Γ), and the

following Green’s formula

a(u, v) =
〈 ∂u

∂νA
, v

〉

Γ
+

∫

Ω

Auvdx, ∀v ∈ H1(Ω) (1.4)

is valid. Here 〈· , ·〉
Γ

is the relation of duality between H
1

2 (Γ) and H− 1

2 (Γ).
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Introduce the order in the spaces V and V ′.

If u, v ∈ V, then

u ≥ v ⇔ u ≥ v a. e. in Ω;

If u, v ∈ V ′, then

u ≥ v ⇔ 〈u , ϕ〉 ≥ 〈v , ϕ〉, ∀ϕ ∈ V, ϕ ≥ 0.

(1.5)

Here we set the variational inequality with the unilateral restrictions:
Find u ∈ K, such that

a(u, v − u) ≥ 〈f , v − u〉, ∀v ∈ K,

K = {v ∈ V : v ≥ h, in Ω},
(1.6)

where f ∈ V ′ and h ∈ V .
Problem (1.6) is called the variational inequality with Dirichlet or Neu-

mann boundary conditions correspondingly to V = H̃1(Ω) or V = H1(Ω).
Due to the classical theory of the variational inequalities (see [1], [2], [3], [6]),
the coercivity property of the form (1.1), the closure and convexity of the set
K imply a unique solvability of problem (1.6) when f ∈ V ′ and h ∈ V . In
this problem, h denotes an obstacle. When the set K depends on the solu-
tion u, i.e., when K = K(u), then problem (1.6) is called a quasi-variational
inequality. A significant role in this kind of problems play variational in-
equalities with an implicit obstacle such as, for example, the case h = M(u)
in problem (1.6). Quasi-variational inequalities were introduced by Alain
Bensoussan and Jacus Luis Lions in 1973. The main tool in the investigation
of problems with an implicit obstacle is the monotonicity method which is
applied when the obstacle operator M is monotone. In $3 we will consider
the quasi-variational inequality and apply the monotonicity method in the
case when the operator M is not monotone with respect to the order in V .

Define the linear operator

A : V −→ V ′;

〈Au , v〉 = a(u, v), ∀v ∈ V.
(1.7)

From formulas (1.4) and (1.3) it is clear that if V = H̃1(Ω), then A = A.
To demonstrate that the functional Au defined by means of (1.7) belongs
to the space V ′, we have to need to notice that the form (1.1) is bounded:

a(u, v) ≤ c‖u‖V ‖v‖V , ∀u, v ∈ V. (1.8)

In this inequality we can take c = max
1≤i,j≤n

(‖aij‖L∞ , ‖ai‖L∞ , ‖a0‖L∞ ). Thus

Au ∈ V ′ and by the definition of the norm in V ′ we have

‖Au‖V ′ ≤ c‖u‖V , ∀u ∈ V. (1.9)

By definition (1.7), inequality (1.6) can be rewritten as follows:
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u ∈ K, 〈Au , v − u〉 ≥ 〈f , v − u〉, ∀v ∈ K. (1.10)

Here 〈· , ·〉 is the duality brackets between V and V ′.
The operator A is a bijective mapping from V to V ′. To prove this, it is

equivalent to prove that the equation

〈Au , v〉 = 〈f , v〉, ∀v ∈ V (1.11)

has a unique solution u ∈ V for every f ∈ V ′. Problem (1.11) is the Dirich-
let, or the Newmann problem with the homogeneous boundary conditions

according to whether V = H̃1(Ω) or V = H1(Ω). The unique solvability of
problem (1.11) follows from the fact that it can be considered in the capacity
of the variational inequaity (1.11) for K = V . In this case problem (1.11)
has a unique solution, since V is a closed, convex set. Therefore problem
(1.11) is uniquely solvable, and u = A−1f . Thus A possesses the inverse
operator A−1 : V ′ −→ V .

Let us get back to problem (1.6). This problem can be interpreted in
various ways. The probabilistic interpretations of variational and quasi-
variational inequalities as optimal stopping-time problems can be found in
[1] and [2]. For different physical interpretations see [3]. Following [3],
we present here only thermostatic interpretation of problem (1.6). Under
the solution u(x) we mean the temperature of the body Ω at the point
x. Further, f denotes an external thermal energy received from the body
Ω. Our goal is to keep the temperature of the body not lower than the
preassigned one h(x). This can be achieved by the so-called regulators
which are distributed at the points of the body Ω. The regulators start
their work, that is energy emission, only in the case when the temperature
u(x) will equate to h(x). The whole energy received by the body we denote
by Au. Thus as it follows from the above-said, Au−f is the energy emitted
by the regulators, i.e., the control energy. It can be shown that if Ah − f

remains invariable, then Au− f is likewise invariable. Indeed, let

h = h−A−1f, K = {v ∈ V : v ≥ h, in Ω}.

Consider the variational inequality

u ∈ K, 〈Au , v − u〉 ≥ 0, ∀v ∈ K (1.12)

and check that u = u − A−1f , where u is the solution of problem (1.10)
with the given f and h. Towards this end, we have only to notice that
(v −A−1f) ∈ K for every v ∈ K, where K is defined in (1.6).

Thus if Ah−f is invariable, then h = A−1(Ah−f) is likewise invariable,
which defines u = A−1(Au− f) uniquely by formula (1.12). Hence Au− f

remains invariable too.
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Relying on this fact, we can consider the mapping

T : V ′ −→ V ′.

T : Ah− f −→ Au− f.
(1.13)

It is clear that this mapping is equivalent to the dependence

Ah −→ Au

which is realized by means of inequality (1.12).
In Section 2 we will study the properties of the operator defined in (1.13)

and use them in quasi-variational inequalities.

2. The properties of the operator T

To study the properties of the operator T , we will first present the lemma
proven in [4] and then use the lemma from [5] (Lemma1.2). The similar
result can be found in [6].

Lemma 2.1. Let u be a solution of problem (1.6), then

A−1f ≤ u ≤ A−1v,

∀v ∈ V ′, v ≥ f, A−1v ≥ h,
(2.1)

where f and h are from problem (1.6).

Now let us prove the lemma, which is of importance in this section.

Lemma 2.2. Let ui be solutions of the variational inequality (1.6) with

hi ∈ V and fi ∈ V ′, i = 1, 2, and

A(h1 − h2) ≥ f1 − f2, (2.2)

in the sense of (1.5). Then

A(u1 − u2) ≥ f1 − f2 and u1 − u2 ≤ h1 − h2 (2.3)

likewise in the sense of (1.5).

Proof. Consider the problem: Find w ∈ V , such that

a(w, v − w) ≥ 〈f1 − f2 , v − w〉, ∀v ∈ V, v ≥ h1 − u2,

w ≥ h1 − u2.
(2.4)

Since (2.2) holds, and h1−h2 ≥ h1−u2, then on the basis of the right-hand
side estimate (2.1) of Lemma2.1, for problem (2.4) we can write

w ≤ h1 − h2.

Denote z := w + u2 and prove that z is a solution of problem (1.6)
considered for h1 and f1. Indeed, first we observe that z ≥ h1. Further, for
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every v ∈ V , v ≥ h1 we have

a(z, v − z) = a(w + u2, v − w − u2) ≥ 〈f1 − f2 , v − w − u2〉+

a(u2, v − w − u2) ≥ 〈f1 − f2 , v − w − u2〉 + 〈f2 , v − w − u2〉 =

〈f1 , v − z〉.

We have respectively used v − u2 ≥ h1 − u2 and v −w ≥ v − h1 + h2 ≥ h2.
Thus z solves problem (1.6) formulated for h1 and f1, and due to the unique
solvability of this problem, z = u1.

Consequently, w = u1 − u2, and since Au ≥ f in problem (1.6), for
problem (2.4) we obtain

Aw = A(u1 − u2) ≥ f1 − f2. �

Thus, the “control energy” Au − f depends monotonicaly on Ah− f .
To present a general theorem on the properties of the operator T , it is

necessary to prove one more lemma.

Lemma 2.3. The operator A−1 : V ′ −→ V is monotone increasing with

respect the order (1.5) in V ′, i.e.,

A−1v −A−1f ≥ 0, ∀v, f ∈ V ′, v ≥ f.

Proof. The assertion of this lemma is the easy consequence of Lemma2.1
with h = A−1v. �

Now we can prove the above-mentioned theorem.

Theorem 2.4. The operator T defined from (1.13), is monotone increas-

ing with respect to the order (1.5) which possesses the following properties:

(i) 0 ≤ T v ≤ g, ∀g, v ∈ V ′, g ≥ 0, g ≥ v. (2.5)

(ii) sup
g∈V ′,g≤z

‖T g‖V ′ = d(z) < +∞, ∀z ∈ V ′. (2.6)

Proof. The monotonicity of T follows from definition (1.13) and Lemma 2.2.
The left-hand side of the estimate of claim (i) is clear since Au ≥ f

in problem (1.6). The right-hand side of the estimate is the well-known
Lewy-Stampacchia inequality. In the particular case inequality (2.5) can be
rewritten as

0 ≤ T v ≤ v+, ∀v ∈ L2(Ω),

where v+ = max(v, 0) a. e. in Ω. This inequality has been proved in [1] and
[2] for variational inequalities with the Dirichlet and Neumann boundary
conditions, respectively. These proofs differ from each other. We derive
(2.5) from Lemma 2.2. Indeed, let g and v satisfy the conditions of claim
(i) of Theorem2.4. Take

f1 = f2 = 0, and h1 = A−1g, h2 = A−1v
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in Lemma 2.2. Then it is easy to see that u1 = h1 in the above-mentioned
lemma. Hence by Lemma2.2, since Ah1 ≥ Ah2, we have g = Au1 ≥ Au2 =
T v.

Let us prove the second claim. Without loss of generality, we can take
f = 0 in (1.13). Further, for g and z from (2.6) consider the problem

a(u, v − u) ≥ 0, ∀v ∈ V, v ≥ A−1g,

u ∈ V, u ≥ A−1g.
(2.7)

Observe that T g = Au. By Lemma 2.3, A−1z ≥ A−1g, and we can take
v = A−1z in (2.7) to obtain

a(u, u) ≤ a(u,A−1z).

Since the form (1.1) is coercive and bounded,

α‖u‖2
V ≤ c ‖u‖V ‖A−1z‖V ,

‖u‖V ≤
c

α
‖A−1z‖V ,

where α and c are from (1.2) and (1.8), respectively. Then according to
(1.10), we have

‖T g‖V ′ = ‖Au‖V ′ ≤ c ‖u‖V ≤
c2

α
‖A−1z‖V . (2.8)

Now we can assume that d(z) =
c2

α
‖A−1z‖V .

Thus the proof is complete. �

3. The Problem with an Implicit Obstacle

In this section we consider the variational inequalities with implicit ob-
stacles which are stated as follows:

Find u ∈ K(u) such that

a(u, v − u) ≥ 〈f , v − u〉, ∀v ∈ K(u),

K(u) = { v ∈ V : v ≥M(u), },
(3.1)

for f ∈ V ′ and M : V → V .
Consider the mapping

P := T
f
M : V −→ V, (3.2)

where f ∈ V ′, and T
f

: V → V realizes the dependence of the solution
u = u(h, f) on the data h with fixed f in problem (1.6), i. e.,

Tf : h −→ u = u(h, f), ∀h ∈ V. (3.3)

It is easy to see that every fixed point of the mapping (3.2) is a solution
of problem (3.1), and vice versa. Hence a number of solutions of problem
(3.1) coincides with that of fixed points of the mapping P .
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As is known, the operator T
f

is monotone increasing with respect to the
order (1.5) in V . The results of this type can be found in [1], [2] and [5].
Therefore if M is monotone increasing in V , then P is likewise monotone
increasing, and due to the theorems about fixed points of monotone increas-
ing mappings in Banach spaces, the operator (3.2) under certain conditions
has a minimal and a maximal fixed point which is a minimal and a maximal
solution of problem (3.1) (see [7] and [8]).

Define

P := APA−1 : V ′ −→ V ′. (3.4)

It is easy to see that

P = T
f
M, (3.5)

where
M : V ′ −→ V ′, T

f
: V ′ −→ V ′,

M = AMA−1 and T
f

= AT
f
A−1.

(3.6)

Hence the fixed points of the mapping (3.2) correspond uniquely to these of
the mapping (3.4). Thus the question on the solvability and on a number
of solutions of problem (3.1) can be reduced to finding of a number of fixed
points of the operator P .

By definitions (1.13) and (3.3),

T
f
g = T (g + f) + f, ∀g ∈ V ′. (3.7)

holds. To describe the properties of the operator T
f
, we present the theorem

which is similar to Theorem2.4.

Theorem 3.1. The operator Tf : V ′ → V ′ defined from (3.5) is mono-

tone increasing with respect to the order (1.5) and possesses the following

properties:

(i) f ≤ Tfv ≤ g, ∀g, v ∈ V ′, g ≥ f, g ≥ v. (3.8)

(ii) For each z ∈ V ′ there exists such constant df (z), that

‖Tfv‖V ′ ≤ df (z), ∀v ∈ V ′, v ≤ z and (3.9)

df (z1) ≥ df (z2), ∀z1, z2 ∈ V ′, z1 ≥ z2. (3.10)

Due to Theorem2.4, the assertions of this theorem become clear if we
take into account (3.7). In item (ii) of Theorem3.1 we can take df (z) =
d(z + f) + ‖f‖V ′ .

Now we are able to prove the main theorem of this paper. Towards this
end, we will use the technique of proving the theorems on finding fixed points
of monotone increasing mappings which are introduced, for example, in [7]
and [8]. But in these works the spaces, in which the monotone operators
act, differ from the space V ′ to which we apply our proof.
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Theorem 3.2. Let in problem (3.1) the operator M defined from (3.6)
be a monotone increasing mapping from Sf to V ′; i.e.,

u, v ∈ Sf , u ≥ v ⇒ Mu ≥ Mv,

Sf = {v ∈ V ′ : v ≥ f}.
(3.11)

Then if there exists z ∈ Sf such that z ≥ Mz, then the quasi-variational

inequality (3.1) has minimal and maximal solutions u and u which satisfy

the following properties:

Au ≤ Au ≤ Au ≤ z. (3.12)

Here u is an arbitrary solution of problem (3.1) with Au ≤ z.

Proof. From (3.12) it is clear that

u ≤ u ≤ u inV ′,

were u is an arbitrary solution of problem (3.1) with Au ≤ z. This justifies
the notation u and u.

From the above reasoning it follows that the existence of a minimal and a
maximal solution of the implicit obstacle problem (3.1) (without additional
properties (3.12) ) is equivalent to the proof that the set of fixed points of the
operator P defined by means of (3.2) is not empty and possesses a minimal
and a maximal element. These elements will be a minimal and a maximal
solution of problem (3.1). Further, the fixed points of the operators P and
P are linked by the law:

If

Pψ = ψ, then Pϕ = ϕ if and only if ψ = A−1ϕ.

If the operator P possesses minimal and maximal fixed points, then by the
monotonicity of the operator A−1 they must be Au and Au, where u and
u are the minimal and maximal fixed points of P .

Thus the equivalent for the assertion of Theorem3.2 is the proof that
the operator P , defined by (3.4) under the requirements of our theorem,
possesses a minimal and a maximal element on a set of fixed points which
are less than, or equal to z.

Let us prove this assertion.
First we observe that due to (3.5), (3.11) and Theorem3.1, the operator

P : Sf → Sf is monotone increasing.
Define

S+ = {v ∈ V ′ : f ≤ v ≤ z, ‖v‖V ′ ≤ d
f
(z), v ≤ Pv},

S− = {v ∈ V ′ : f ≤ v ≤ z, ‖v‖V ′ ≤ max(df (z), ‖z‖V ′), Pv ≤ v}.
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We notice that S+ ⊂ Sf and S− ⊂ Sf . These sets are not empty because
f ∈ S+ and z ∈ S−. Indeed, from Theorem3.1 it follows that since

Pf = TfMf ≥ f,

Pz = TfMz ≤ z, because of z ≥ f and z ≥ Mz.

Let us prove the existence of a maximal fixed point of P .
First we prove that P : S+ → S+. Indeed, let v ∈ S+. Then by the

monotonicity of P , M and d
f
, with regard for (3.8) we obtain

f ≤ Pf ≤ Pv ≤ Pz ≤ z,

Pv ≤ P(Pv), since v ≤ Pv,

‖Pv‖V ′ ≤ ‖TfMv‖V ′ ≤ df (Mv) ≤ df (Mz) ≤ df (z).

Thus Pv ∈ S+.
Now we notice that if S+ possesses a maximal element v∗, then v∗ will

be a maximal element among fixed points of P , which are ≤ z. Indeed, if
v∗ ∈ S+, then Pv∗ ∈ S+ and Pv∗ ≤ v∗ which implies Pv∗ = v∗. It is clear
that each ϕ = Pϕ with ϕ ≤ z belongs to S+ and ϕ ≤ v∗. Therefore we
have only to prove that S+ has a maximal element. To this end, we need
to prove that every ascending from S+ chain

w1 ≤ w2 ≤ · · · ≤ wn ≤ wn+1 ≤ · · · wn ∈ S+, (3.13)

has the upper bound w∗ in S+. Then the existence of a maximal element
in S+ will be the consequence of Zorn’s Lemma.

First we prove that for every chain from (3.13) the sequence of real num-
bers converges for each ψ ∈ V :

〈w1, ψ〉, 〈w2, ψ〉, · · · 〈wn, ψ〉 · · ·

Indeed, if ψ ≥ 0, then

〈f, ψ〉 ≤ 〈w1, ψ〉 ≤ 〈w2, ψ〉 ≤ · · · ≤ 〈wn, ψ〉 ≤ · · · ≤ 〈z, ψ〉.

Hence

〈f, ψ〉 ≤ lim
n→∞

〈wn, ψ〉 ≤ 〈z, ψ〉, ∀ψ ≥ 0. (3.14)

In the case in which ψ is an arbitrary element of V , we can represent it
as a difference of two nonnegative elements from V as follws:

ψ = ψ+ − ψ−,

where ψ+ = max(ψ, 0) and ψ− = max(−ψ, 0). The results proving that
ψ+ ∈ V can be found in [6]. Thus

lim
n→∞

〈wn, ψ〉 = lim
n→∞

〈wn, ψ
+〉 − lim

n→∞
〈wn, ψ

−〉.



ON THE METHOD OF MONOTONICITY 71

Therefore we can consider on V the functional w∗:

〈w∗, ψ〉 = lim
n→∞

〈wn, ψ〉, ∀ψ ∈ V.

Prove that w∗ ∈ S+. Since |〈wn, ψ〉| ≤ df (z)‖ψ‖V for every wn from S+,
we have |〈w∗, ψ〉| ≤ d

f
(z)‖ψ‖V , which means that

w∗ ∈ V ′ and ‖w∗‖V ′ ≤ d
f
(z).

Further, (3.14) implies that f ≤ w∗ ≤ z. Let us show that w∗ ≤ Pw∗.
It is easy to see that w∗ is the least upper bound in V ′ of the chain {wn}
from (3.13). Hence by the monotonicity of P we can write

Pw∗ ≥ Pwn ≥ wn and Pw∗ ≥ w∗.

Thus w∗ ∈ S+, and w∗ is the upper bound of the chain (3.13) in S+.
Now Zorn’s Lemma allows us to conclude that S+ possesses a maximal

element v∗ which is a maximal fixed point of the mapping P : S+ → S+.
Analogously we can prove the existence of a minimal fixed point v∗ of the

mapping P by using the set S−. Now a minimal and a maximal solution of
problem (3.1) can be given by the following formulas

u = A−1v∗, u = A−1v∗.

They satisfy conditions (3.12) as well. �

As it is obvious from (3.5), a minimum and a maximum solution of prob-
lem (3.1) minimizes and maximizes the “control energy”.

Finally, as an example we present here the obstacle operator M : V → V

for which the operator M possesses the property (3.11).
Let

Mu = a(u, ϕ)ψ, for ϕ, ψ ∈ V, ϕ ≥ 0, Aψ ≥ 0.

Since Mu = 〈Au, ϕ〉ψ, from (3.6) it follows that Mv = 〈v, ϕ〉Aψ for
every v ∈ V ′, and in view of ϕ ≥ 0 and Aψ ≥ 0, we conclude that M :
V ′ → V ′ is a monotone increasing operator.

Consider the obstacle operator

Mu = a(u, u)ψ, for ψ ∈ V, Aψ ≥ 0.

Then

Mv = 〈v,A−1v〉Aψ, ∀v ∈ V ′.

If f ≥ 0, then M : Sf → Sf is a monotone increasing operator, where Sf is
from (3.11). Indeed, if v1, v2 ∈ Sf , v1 ≥ v2 ≥ f ≥ 0,then A−1v1 ≥ A−1v2 ≥
A−1f ≥ 0 and

Mv1 −Mv2 = (〈v1,A
−1v1〉 − 〈v2,A

−1v2〉)Aψ =

=
(
〈v1 − v2,A

−1v1〉 + 〈v2,A
−1(v1 − v2)〉

)
Aψ ≥ 0.
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Méthodes Mathématiques de l’Informatique [Mathematical Methods of Information

Science], 11. Gauthier-Villars, Paris, 1982.
3. G. Duvaut and J. L. Lions, Les inéquations en méchanique et en physique. Travaux

et Recherches Mathématiques, No. 21. Dunod, Paris, 1972.
4. A. Gachechiladze, A maximum principle and the implicit Signorini problem. Mem.

Differential Equations Math. Phys. 23(2001), 21–54.
5. A. Gachechiladze, On the uniqueness of some quasi-variational inequalities in control

theory. Georgian Math. J. 11(2004), No. 2, 229–242.
6. D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and

their applications. Pure and Applied Mathematics, 88. Academic Press, Inc. [Har-

court Brace Jovanovich, Publishers], New York-London, 1980; Russian transl.: Mir,

Moscow, 1983.
7. U. Mosco, Implicit variational problems and quasi variational inequalities. Nonlin-

ear operators and the calculus of variations (Summer School, Univ. Libre Bruxelles,

Brussels, 1975), 83–156. Lecture Notes in Math., 543, Springer, Berlin, 1976.
8. L. Tartar, Inéquations quasi variationnelles abstraites. C. R. Acad. Sci. Paris Sér. A

bf 278(1974), 1193–1196.

(Received 25.12.2003)

Author’s addresses:
A. Razmadze Mathematical Institute
Georgian Academy of Sciences
1, Aleksidze St., Tbilisi 0193
Georgia


