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Abstract

It is shown that the elements of amalgamated free products in a variety of universal algebras
have unique normal forms if the variety is represented by a confluent term rewriting system
satisfying some additional requirements for its signature and rules. Applying this fact it is
proved that any codescent morphism is effective in such varieties. In particular, this is the case
for the variety of Mal’tsev algebras, the varieties of magmas with unit and two-sided inverses,
idempotent quasigroups, unipotent quasigroups, left Steiner loops, and right Steiner loops.
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1 Introduction

This paper continues the study of the problem of describing effective codescent morphisms in
varieties of universal algebras which was posed by G. Janelidze. The study is carried out employing
the term rewriting systems techniques.

In a number of works it was proved that every codescent morphism is effective in some con-
crete varieties. Namely, besides the trivial cases, this fact was established for commutative rings
with unit (Joyal-Tierney (unpublished), Mesablishvili [16], Janelidze-Tholen [12]), Boolean algebras
(Makkai (unpublished)), groups (Zangurashvili [20], [21]). The recent paper [21] gives the sufficient
condition formulated in the syntactical form, for all codescent morphisms of a variety satisfying
the amalgamation property to be effective. Applying this result it is proved there that codescent
morphisms are effective in varieties of (left/right) quasigroups, loops and magmas. Moreover, it is
shown that the problem is closely related to the question whether the elements of amalgamated
free products have unique normal forms (for the precise definition of the notion ”normal form” we
refer the reader to Section 3).

In this paper we relate this question to the notion of confluency, which is one of the central
notions of the term rewriting systems theory. Namely, we show that the elements of amalgamated
free products have unique normal forms in any variety represented by a confluent term rewriting
system which satisfies some additional conditions of syntactical nature. Namely, it is assumed that,
for any rule l → r from Σ, no variable occurs in r more often than in l; the size of the term l is
greater than the size of the term r; for any subterm l′ of l which is neither a variable nor a constant,
any variable occuring in l occurs in l′ too; and, finally, the signature contains no more than one
constant ∗. In passing, the proven result implies that varieties of the mentioned kind satisfy the

∗In fact, a weaker condition is required.
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strong amalgamation property in the sense of [13], and that the word problem for the elements of
amalgamated free products of a finite number of finite algebras is decidable.

Applying the obtained result on the unique normal forms for the elements of amalgamated
free products, we prove that all codescent morphisms are effective in the variety represented by
a confluent term rewriting system satisfying the above syntactical conditions. This implies that
codescent morphisms are effective in the variety of Mal’tsev algebras, the varieties of magmas with
unit and two-sided inverses, idempotent quasigroups, unipotent quasigroups, left Steiner loops, and
right Steiner loops.

It is not required of the reader to be familiar with the term rewriting systems theory – a small
introduction to the main concepts of this theory is given in the next section.

2 Preliminaries

All the definitions and facts given in this section can be found in [1], unless specified otherwise.

2.1 Confluent binary relations

Let A be a set, and let → be a binary relation on A. Let
∗−→ be the reflexive transitive closure of

→, and ↔ be the symmetric closure of →. In particular,
∗↔ is the smallest equivalence relation

containing →.
An element a of A is called reducible if there is b ∈ A such that a→ b. In that case we say that

b is obtained by reducing a. a is said to be in normal form (or irreducible) if it is not reducible. b

is called a normal form of a if a
∗−→ b and b is in normal form. Elements a and b are called joinable

if there is an element c such that a
∗−→ c

∗←− b, in which case we write a ↓ b.
A relation→ is called terminating if there is no infinite sequence a0 → a1 → .... The equivalent

condition is that the relation→ is well-founded. Recall that this means that every nonempty subset
B of A has a →-minimal element, i.e. an element a ∈ B such that there is no b ∈ B with b→ a.

A relation → is called confluent (resp. semi-confluent; locally confluent) if any elements a

and b with a
∗←− c ∗−→ b (resp. a← c

∗−→ b; a← c→ b) for some c, are joinable.
A relation → is said to satisfy the Church-Rosser property if any elements a and b with

a
∗ // boo are joinable.

A relation → is called convergent if it is both terminating and confluent.
A relation → is called normalizing if every element has a normal form.

The following lemma is obvious.

Lemma 2.1. A terminating relation is normalizing.

We have

Theorem 2.2. The following conditions are equivalent:
(i) a relation → satisfies the Church-Rosser property;
(ii) a relation → is confluent;
(iii) a relation → is semi-confluent.
If a relation → is terminating, then these conditions are equivalent also to each of the following

ones:
(iv) a relation → is locally confluent;
(v) every element of A has a unique normal form.
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For the proof of the equivalence of the conditions (i)-(iii) we refer the reader to [1]. The
equivalence of (ii) and (iv) is exactly the essence of Newman’s lemma [17], [1], while the equivalence
of (ii) and (v) is obvious.

2.2 Terms and Substitutions

Let F be a signature, i.e., a set of operation symbols equipped with arities, and let X be a denu-
merable set such that F

⋂
X = ∅. Unless specified otherwise, we will use ”term” to mean a F-term

over X.
The structure of a term can be illustrated by representing it as a tree, where the operation

symbols and the variables are nodes and the arrows connect the operation symbols with their
arguments. Using the standard numbering of the nodes of a tree by strings of positive integers, to
each occurrence of an operation symbol and a variable in a term one can relate such a string, called
a position of the term. For instance, the term t = f(f(x, f(x, x)), f(c, x)), where c is a constant
and f is a binary operation symbol can be presented as the following tree; the strings of positive
integers are the positions assigned to the tree nodes (e is the empty string).

f e

ww &&
1 f

ww ��

f 2

�� ''
11 x 12 f

�� ''

21 c 22 x

121 x x 122

(2.1)

For the set Pos(t) of positions of t we have

– if t = x ∈ X, then Pos(t) = {e};
– if t = f(t1, t2, ..., tn), then Pos(t) = {e}

⋃⋃n
i=1{ip|p ∈ Pos(ti)}.

The position e is called the root position of the term t.
The cardinality of Pos(t) is called the size of t.
A term is called ground if it does not contain any variable.
Let t be a term. For p ∈ Pos(t), the subterm of t at the position p, denoted by t|p, is defined

by the induction with respect to the length of p:

t|e = t;

f(t1, t2, ..., tn)|iq = ti|q.

The tree of a subterm of t is obviously a subtree of the tree of t.
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Let t′ be also a term. For p ∈ Pos(t), we denote by t[t′]p, the term which is obtained from t by
replacing the subterm at the position p by t′, i.e.,

t[t′]e = t′;

f(t1, t2, ..., tn)[t]iq = f(t1, t2, ..., ti[t
′]q, ..., tn).

For instance, for the term in the figure (2.1), we have Pos(t) = {e, 1, 2, 11, 12, 21, 22, 121, 122}.
The subterm at the position p = 12 is t|p = f(x, x). If t′ = f(c, f(x, c)), then t[t′]p
= f(f(x, f(c, f(x, c))), f(c, x)).

For a finite set of terms t1, t2, ..., tn, we denote by V ar(t1, t2, ..., tn) the set of variables occurring
in at least one of them.

Let T (F, X) be the set of all terms. A substitution is defined as a mapping σ : X → T (F, X)
such that the set {x|σ(x) 6= x} is finite. This set is called the domain of σ and denoted by Dom(σ).
The range of σ is defined as the set Ran(σ) = {σ(x)|x ∈ Dom(σ)}.

A renaming is defined as an injective substitution % such that
Ran(%) ⊂ X.

Recall that T (F, X) has the structure of an F-algebra, and moreover, is free over the set X.
Hence the mapping σ can be extended to the unique F-homomorphism σ̂ : T (F, X) → T (F, X).
Namely, σ̂ simultaneously replaces all occurrences of variables in a term by their images under the
mapping σ.

The composition στ of two substitutions σ and τ is defined as the mapping σ̂τ (which obviously
is a substitution).

A substitution σ is called more general than a substitution τ if there exists a substitution δ
such that τ = δσ.

Let t and t′ be terms. A substitution σ is called a unifier of these terms if ˆσ(t) = σ̂(t′). We
say that the terms t and t′ unify if there exists such a substitution.

A unifier σ of terms t and t′ is called the most general unifier if it is more general than any
unifier of these terms.

Theorem 2.3. If terms t and t′ unify, then there exists the most general unifier. Moreover, it is
unique up to a renaming (i. e., if σ and σ′ are most general unifiers of these terms, then there exists
a renaming % such that σ = ρσ′).

In fact, there exists an algorithm for finding the most general unifier. Moreover, there are several
such algorithms differing from one another in their efficiency (see, for instance, [3],[9], [15],[18]).

2.3 Term Rewriting Systems

The term rewriting systems theory deals with transformations of terms using a set of identities, for
various goals. However, as different from universal algebra, the identities here can be used only in
one direction (say, from left to right).

Let X be a denumarable set of variables, and Σ be a set of F-identities. Throughout the
paper all identities from Σ are assumed to be oriented.

The pair (F,Σ) is called a term rewriting system if, for any identity l = r from Σ, l is not a
variable and V ar(l) ⊃ V ar(r).
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Consider the following binary relation →(F,Σ) on the set T (F, X) of terms over the set X:

t→(F,Σ) t
′

if the following condition is satisfied:

(C) there exist an identity (l, r) from Σ, a substitution σ and a position p of t such that t|p = σ̂(l)
and t′ = t[σ̂(r)]p.

This relation is called the reduction relation defined by (F,Σ). We say that terms have unique
normal forms if they have unique normal forms with respect to the reduction relation.

The well-known Birkhoff’s Theorem asserts that the equality t = t′ holds in any algebra from
the variety of universal algebras determined by (F,Σ) if and only if t

∗↔(F,X) t
′. There is also

another characterization of
∗↔(F,X), by which

∗↔(F,X) is the smallest congruence on T (F, X) which
contains Σ and is closed under substitutions.

A term rewriting system (F,Σ) is called terminating (resp. confluent; locally confluent;
convergent) if the reduction relation →(F,Σ) is of the same kind.

The problems, when a term rewriting system is terminating and when it is confluent are the
central ones in the term rewriting systems theory. Below we give some well-known relevant results.

It is obvious that if no variable occurs in the right-hand side more often than in the left-hand side
(such identities are called duplicating) and, moreover, the size of the left-hand side of any identity
is greater than the size of its right-hand side, then the term rewriting system is terminating. Much
stronger result is known. To formulate it, we first give the following definition.

A binary relation > on the set of terms T (F, X) is called a reduction order if it is transitive,
irreflexive, well-founded, closed under substitutions, and compatible with F-operations (i.e., for
any s1, s2 ∈ T (F, X), for any n ≥ 1, and any n-ary operation symbol f ∈ F, if s1 > s2, then
f(t1, t2, ..., ti−1, s1, ti+1, ..., tn) > f(t1, t2, ..., ti−1, s2, ti+1, ..., tn), for any i (1 ≤ i ≤ n) and any
t1, t2, ..., ti−1, ti+1, ..., tn ∈ T (F, X)).

For instance, the relation >, where t1 > t2 if the size of t1 is greater than the size of t2, is not
closed under substitutions, in general. However, if none of the identities from Σ is duplicating, then
it is closed, and moreover, > is a reduction order.

Theorem 2.4. A term rewriting system (F,Σ) is terminating if and only if there exists a reduction
order > that satisfies l > r for all identities l = r from Σ.

Let
l1 = r1, l2 = r2 (2.2)

be identities from Σ. Let us rename their variables so that

V ar(l1, r1)
⋂
V ar(l2, r2) = ∅. (2.3)

Let p be a position of l1 such that l1|p is not a variable and the terms l1|p and l2 unify (in that
case one says that the term l1 overlaps the term l2 at the position p). Let σ be the most general
unifier of l1|p and l2. The pair of terms (σ̂(r1), σ̂(l1)[σ̂(r2)]p) is called a critical pair determined by
the identities (2.2). Note that the term σ̂(l1) is in the relation→(F,Σ) with both terms participating
in the critical pair:
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σ̂(l1)

{{ &&
σ̂(r1) σ̂(l1)[σ̂(r2)]p

(2.4)

Let us assume that (2.3) is satisfied for any distinct identities (2.2) from Σ (after renaming the
variables, if necessary).

Theorem 2.5. The following conditions are equivalent:
(i) the relation →(F,Σ) is locally confluent;
(ii) all critical pairs determined by all pairs of identities (2.2) from Σ (including the pair of any

identity and its renamed copy) are joinable.
If the relation →(F,Σ) is terminating, then these conditions are equivalent also to the condition:
(iii) the relation →(F,Σ) is confluent;
(iv) every term from T (F, X) has a unique normal form;
(v) for any critical pair (u1, u2), and any normal forms u1 and u2 of resp. u1 and u2, one has

u1 = u2.

Remark 2.6. If Σ is finite and the term rewriting system is normalizing, then obviously the
condition (v) can be verified in a finite number of steps.

Recall that one says that the word problem is decidable for (F,Σ) if there is an algorithm which
gives, in a finite number of steps, the answer to the question whether the equality t = t′ holds in
any algebra of the variety represented by (F,Σ), for any terms t and t′.

Corollary 2.7. If Σ is finite and (F,Σ) is convergent, then the word problem is decidable.

Remark 2.8. It is obvious that for any critical pair (u1, u2) the identity u1 = u2 holds in any
algebra from the variety determined by a term rewriting system (F,Σ). Therefore if the terms u1 and
u2 in the critical pair are not joinable, one can make them joinable by adding the identity u1 = u2

or u2 = u1 to the set of identities. However, the new critical pairs might then arise. Repeating
this process sufficiently many times one might (or might not) obtain a locally confluent system
which represents the same variety. This approach is used in the so-called completion procedures
introduced by Knuth-Bendix in [14] for constructing convergent representations of varieties, and
further developed in [2],[4], [7], [10] and a lot of other papers.

Example 2.9. Consider the variety of magmas with unit and two-sided inverses. Let us denote
the binary operation by f , the inverse’s operation by u and the unit by 1. Then the identities take
the form

f(x, 1) = x, (2.5)

f(1, x) = x, (2.6)
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f(u(x), x) = 1, (2.7)

f(x, u(x)) = 1. (2.8)

This system is not confluent since the critical pair obtained by overlapping the left-hand sides of
the identity (2.5) with the renamed copy f(u(y), y) = 1 of the identity (2.7) is not joinable. Indeed,
the most general unifier σ of f(x, 1) and f(u(y), y) is the substitution x 7→ u(1), y 7→ 1 (and being
identical at all other variables), so that the corresponding critical pair is (u(1), 1).

f(u(1), 1)

zz ##
u(1) 1

It is obvious that this critical pair is not joinable. However, if we add the identity

u(1) = 1 (2.9)

to the above list of identities, this critical pair will obviously become joinable. One easily can verify
that all other (previous and new) critical pairs are joinable with respect to the extended system
(2.5)-(2.9), and, since the system is terminating, it is confluent by Theorem 2.5.

3 Amalgamated free products

From now on, we will assume that C is the variety of universal algebras of type F defined by a set
Σ of identities, and the following condition is satisfied:

(*) none of the identities from Σ is duplicating, and, moreover, for each identity l = r from Σ
the size of the term l is greater than the size of the term r.

The condition (*) in particular implies that (F,Σ) is a term rewriting system.

Let I be a set, B and Ai (i ∈ I) be algebras from C such that, for any i, B is a subalgebra of
Ai, and

Ai ∩X = Ai ∩ F0 = Ø, (3.1)

where F0 is the set of constants of F. For simplicity, it is assumed that

Ai ∩Aj = B, (3.2)

for any distinct i, j.
In the set of terms over the set ∪

i∈I
Ai we introduce the binary relation → as follows:

t→ t′

if either the condition (C) or the condition (C1) below is satisfied:
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(C1) the term t contains a subterm

f(a1, a2, ..., an) (3.3)

at some position p ∈ Pos(t), with f being an n-ary operation and a1, a2, ..., an being variables from
one and the same Ai, and, moreover, t[a]p = t′, where a is the value of f(a1, a2, ..., an) in Ai.

It is well known that the free product A of (Ai)i∈I with the amalgamated subalgebra B is
isomorphic to the quotient of the (not necessarily C-)algebra of terms over the set ∪

i∈I
Ai of variables

with respect to the congruence R, where a term t is R-equivalent to a term t′ if and only if either
t = t′ or there exists a sequence of terms t1, t2, ..., tn such that t1 = t, tn = t′, and, for any i
(1 ≤ i ≤ n− 1), either ti → t(i+1) or t(i+1) → ti. In other words, R coincides with the equivalence

relation
∗↔.

The condition (*) implies that the relation → is terminating. Therefore any element of the
amalgamated free product has a representative (called the normal form of this element) which is
irreducible with respect to →. A question that arises now is when normal forms are unique.† It
was shown in [6] that this is the case for varieties of (left/right)quasi-groups, loops, and magmas.

From Theorem 2.2 follows

Proposition 3.1. The following conditions are equivalent:
(i) the elements of amalgamated free products have unique normal forms;
(ii) terms over the set ∪

i∈I
Ai have unique normal forms with respect to the relation →;

(iii) the relation → is confluent.

We are now going to construct a term rewriting system induced by (B, (Ai)i∈I). But first we
impose the following condition on (F,Σ):

(**) If the set F0 of constants is not empty, then, for any non-trivial algebra C from the variety
C, the mapping F0 → C sending a constant to its value in C is injective.

Let us extend the set of constants F0 to the set ∪i∈IAi (identifying constants from F0 with
the corresponding elements of B). We denote the set of operations obtained in this way by F′.
Moreover, for any natural n, any a1, a2, ..., an ∈ Ai, and any n-ary operation symbol f , we add the
identity

f(a1, a2, . . . , an) = a (3.4)

to the set Σ, where a is the value of f(a1, a2, ..., an) in Ai. We denote the extended set of identities
by Σ′.

It is obvious that the set of terms over ∪
i∈I
Ai is equal to the subset T (F′,∅) of ground terms of

T (F′, X). The following lemma is obvious.

†Note that the meaning of ”a normal form” as given here is different from that used in [21]. An irreducible
representative is called the normal form in [21] if it is unique. Accordingly, ”a variety with normal forms for the
elements of amalgamated free products” in the sense of [21] and ”a variety with unique normal forms for the elements
of amalgamated free products” is the sense of the present paper are equivalent notions.
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Lemma 3.2. If all constants contained in a ground term t ∈ T (F′,∅) belong to one and the same
Ai, and if the value of that term is a in Ai, then the terms a and t are joinable with respect to
→(F′,Σ′).

The condition (*) implies

Lemma 3.3. If t
∗→ (F′,Σ′)t

′ and t is ground, then so is t′.

Lemma 3.4. →(F′,Σ′)

⋂
(T (F′,∅)× T (F′,∅)) =→.

Lemma 3.3 and Lemma 3.4 imply

Proposition 3.5. If the term rewriting system (F′,Σ′) is confluent, then the relation → is also
confluent.

Propositions 3.1 and 3.5 give rise to the idea of applying Theorem 2.5 to the term rewriting
system (F′,Σ′), when studying the question whether the elements of amalgamated free products
have unique normal forms. However, this idea is not fruitful, since Σ′ is infinite, in general, even if
F and Σ are finite. To be able to apply the algorithmic approach suggested by Theorem 2.5 to the
question, we reduce the problem to the corresponding one for (F,Σ). To this end, let us assume
that one more condition is satisfied:

(***) for any identity l = r from Σ, any subterm l′ of l which is neither a variable nor a
constant, we have V ar(l′) = V ar(l).

In particular, this condition implies that if l contains a binary operation symbol, then l contains
no more than two different variables.

Lemma 3.6. Terms t and t′ from T (F, X) unify with respect to F if and only if they unify with
respect to F′. In that case, their most general unifiers with respect to these two signatures coincide
up to a renaming.

Proof. The ”only if” part is obvious. For the ”if” part, assume that σ(t) = σ(t′) for some sub-
stitution σ with respect to F′. Choose a subset X ′ of X bijective to (F′0 \ F0)

⋂
σ(V ar(t, t′)) and

disjoint with V ar(t, t′). Consider the substitution θ, which maps a variable x ∈ V ar(t, t′) to the
term obtained from σ(x) by replacing constants from (F′0 \ F0) in it by the corresponding elements
of X ′. Obviously, θ is a substitution with respect to F, and, since neither t nor t′ contains constants
from (F′0 \ F0), we have θ(t) = θ(t′).

Assume that σ is the most general unifier of t and t′ with respect to F, and σ′ is the most general
unifier of these terms with respect to F′. Then σ = δσ′ for some substitution δ with respect to F′.
Therefore if σ′(x) contains an element c from (F′0 \ F0), for some x ∈ V ar(t, t′), then, obviously,
σ(x) also contains c, which is impossible. This implies that σ′ is a substitution with respect to
F too, and hence is the most general unifier with respect to F. Now it suffices to apply Theorem
2.3. q.e.d.

Proposition 3.7. If the term rewriting system (F,Σ) is confluent, then so is (F′,Σ′).
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Proof. The term rewriting system (F′,Σ′) is obviously terminating. According to Theorem 2.5,
it suffices to show that any critical pair is joinable. This fact follows from Lemma 3.6 for the
case where a critical pair is determined by arbitrary two identities from Σ. Besides, there are no
nontrivial critical pairs in the case where both identities of Σ′ are of the form (3.4).

Consider a critical pair determined by an identity of the form (3.4) and an identity l = r from
Σ. Since the size of l can not be 1, the overlap can occur only in the root position. Hence l has
the form f(x1, x2, ...xn). Then the critical pair has the form (a, σ̂(r)), for the substitution σ with
x1 7→ a1, x2 7→ a2,..., xn 7→ an. The condition (*) implies that σ̂(r) is a ground term and does not
contain constants other than a1, a2, ..., an. Since Ai is an algebra from C, the identity l = r holds in
Ai, and hence we have the equalities a = f(a1, a2, ..., an) = σ̂(l) = σ̂(r) in Ai. Lemma 3.2 implies
that a and σ̂(r) are joinable with respect to →(F′,Σ′).

Finally, let us consider the case where a critical pair is determined by an identity l = r from Σ
and the identity (3.4). If the overlap occurs at the position p, then l|p has the form f(x1, x2, ..., xn).
The condition (***) implies that V ar(l) = {x1, x2, ..., xn}, and hence σ̂(l) is a ground term which
contains only the constants a1, a2, ..., an, where σ is the most general unifier of l|p and (3.4). Then
σ̂(l) is a term over Ai, and its value is equal to both the value of σ̂(r) and the value of σ̂(l)[a]p, for
an element a in (3.4). Now it suffices to apply Lemma 3.2. q.e.d.

We obtain

Theorem 3.8. If a variety is represented by a confluent term rewriting system (F,Σ) satisfying the
conditions (*)-(***), then the elements of amalgamated free products have unique normal forms.

Corollary 3.9. Let a variety satisfy the conditions of Theorem 3.8. Let B be an algebra, (Ai)i∈I
be a family of algebras such that there are embeddings αi : B � Ai. Let A be the free product of
(Ai)i∈I with the amalgamated subalgebra B and let βi : Ai → A be the canonical homomorphisms.
Then all βi are monomorphic and, moreover, for any different i, j ∈ I, we have

βi(Ai)
⋂
βj(Aj) = βiαi(B).

In particular, any variety of such kind satisfies the strong amalgamation property in the sense of
[13].

Proof. It suffices to observe that the term a is in normal form, for any element a from
⋃

i∈I Ai.
q.e.d.

One says that the word problem for the free products of algebras (Ai)i∈I with an amalgamated
subalgebra B is decidable if there is an algorithm which gives, in a finite number of steps, the
answer to the question whether the elements of the amalgamated free product presented by any
two terms over the set

⋃
i∈I Ai are equal. From Proposition 3.7 and Corollary 2.7 we obtain

Corollary 3.10. If I is finite and all algebras Ai are finite, then the word problem for the free
product of these algebras with an amalgamated subalgebra B is decidable.
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4 Some Examples

In this section we give examples of varieties satisfying the conditions of Theorem 3.8. Since some
identities participating in their representations are the weak versions of the associativity/distributivity
axioms, we write them, as well as some other ones in the traditional, and not in the term form as
we have done so far.

Example 4.1. The confluency of the following systems is mentioned in [1] and can be easily
verified.

(i) Let F consist of one ternary operation symbol p and Σ consist of two Mal’tsev identities

p(x, x, y) = y,

p(x, y, y) = x.

For the convenience of referring, in this paper we call algebras from this variety Mal’tsev algebras.

(ii) Let k and n be natural numbers, and let n > k. Let F consist of one unary operation symbol
f and Σ consist of one identity

f(f(f(...f(︸ ︷︷ ︸
n times

x))) = f(f(f(...f(︸ ︷︷ ︸
k times

x)))

.

(iii) Let F consist of two unary operation symbols f and g and Σ consist of the following
identities:

f(f(x)) = f(x),

f(g(x)) = g(x),

g(g(x)) = f(x),

g(f(x)) = g(x).

(iv) Let F consist of three unary operation symbols f , g and h, and Σ consist of two identities:

f(g(x)) = f(x),

g(h(x)) = h(x).

Example 4.2. Assume that the set of operations F can be partitioned into two sets Fc and Fd

such that the left-hand side of any identity from Σ has the form f(t1, t2, ..., tn) with f ∈ Fd and
ti ∈ T (Fc, X) (such a term rewriting system is called a constructor in the theory of such systems).
If all f ’s are different, then such a system is locally confluent by Theorem 2.5. A simple example
of a constructor is the system with two binary operation symbols + and ·, one constant 0 and one
identity

x · y + y · x = 0.
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Example 4.3. Convergent representations for many well-known varieties, including the varieties
of groups, abelian groups, commutative rings with units, etc. are given in [8]. However, most of
them do not satisfy the conditions (*)–(***). Nevertheless, these conditions are satisfied by the
representations found in [8] for the varieties of quasigroups, loops, idempotent quasigroups, and
unipotent quasigroups. The signature F of the representation of the variety of quasigroups, given in
[8], consists of three binary operation symbols ·, \ and /, and the set of identities is the following:

x · (x\y) = y, (4.1)

(x/y) · y = x, (4.2)

x\(x · y) = y, (4.3)

(x · y)/y = x, (4.4)

(x/y)\x = y, (4.5)

y/(x\y) = y, (4.6)

Adding the identities

x · x = x,

x/x = x,

x\x = x,

we obtain the convergent representation for the variety of idempotent quasigroups.
Similarly, adding one constant 1 to the signature and the identities

1 · x = x

x · 1 = x,

x/1 = x,

x\x = 1,

x/x = 1,

1\x = x,

to the system (4.1)-(4.6), one obtains the convergent representation for the variety of loops.
Recall that a quasigroup is called unipotent if x2 = y2 for all elements x, y of the quasigroup.

Adding one constant 1 to the signature F = {·, \, /} and the identities

x · x = 1,

1/x = x,

x\1 = x,
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to the system (4.1)-(4.6), one obtains the convergent representation of the variety of unipotent
quasigroups.

Example 4.4. One can easily verify that the following systems are confluent.
(i) Let F consist of one binary operation symbol · and Σ consist of the identities

x · x = x,

x · (x · y) = x · y,

(x · y) · y = x · y.

(ii) Let F consist of two binary operation symbols + and ·, one constant, and Σ consist of the
identities:

x · x = 0,

x · (x+ y) = x · y,

x+ 0 = x,

0 + x = x,

x · 0 = 0,

0 · x = 0.

(iii) Let F consist of one binary operation symbol ·, one constant 1, and Σ consist of the identities

x · x = 1; (4.7)

1 · x = 1 (4.8)

x · 1 = x; (4.9)

x · (x · y) = y. (4.10)

These identities determine the variety of left Steiner loops. Similarly, the system of identities
(4.7)-(4.9) together with

(x · y) · y = x (4.11)

determines the variety of right Steiner loops. Both systems are confluent.
Observe that the system of all identities (4.7)-(4.11) defining the variety of Steiner loops is not

confluent. Indeed, overlapping the identity (4.10) with the renamed copy of (4.11) at the position
(22), we obtain the non-joinable critical pair (f(f(s, z), s), s) (the symbol f is used here for the
binary operation). In order to make it joinable, we need to add the identity f(f(s, z), s) = s to the
list of axioms. But then, overlaping the identity (4.11) with the latter one at the position (21), we
obtain the non-joinable critical pair (f(z, s), f(s, z)). The corresponding identity can not be added
to the list of axioms since otherwise the condition (*) would fail.
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5 Effective codescent morphisms

Recall the following definition. Let p : B → E be a morphism in a category C with pushouts. It is
well known that the change-of-cobase functor

p∗ : B/C −→ E/C

(pushing out along p) has a right adjoint p! composing with p from the right. p is called a codescent
(resp. effective codescent) morphism if p∗ is precomonadic (resp. comonadic), i.e., the comparison
functor

Φp : B/C −→ Codes(p),

where Codes(p) is the Eilenberg-Moore category of the comonad induced by the adjunction

p∗ a p!,

is full and faithful (resp. an equivalence of categories) [11].
One can easily verify that Theorem 4.3 of [21] remains valid in the context of the present paper.

Namely we have

Theorem 5.1. Let C be the variety of universal algebras given with a representation (F,Σ) which
satisfies the condition (*) and which has unique normal forms for the elements of amalgamated free
products. Then all codescent morphisms of C are effective.

From Theorems 3.8 and 5.1 we obtain

Theorem 5.2. Let a variety C be represented with a confluent term rewriting system (F,Σ) sat-
isfying the conditions (*)-(***). Then every codescent morphism of C is effective.

Corollary 5.3. Every codescent morphism is effective in all varieties given in Example 2.9 and
Examples 4.1 -4.4. In particular, this is the case for the variety of Mal’tsev algebras, and the varieties
of magmas with unit and two-sided inverses, left Steiner loops, right Steiner loops, quasigroups,
loops, idempotent quasigroups, unipotent quasigroups.

As mentioned in the Introduction, this result for quasigroups and loops has already been ob-
tained in [21].

Corollary 3.9 and Theorem 5.2 naturally give rise to the question whether any variety of universal
algebras satisfying the strong amalgamation property has a convergent representation. The answer
is negative, the variety of Boolean algebras does not have such a representation [19] in spite the
fact that it satisfies the strong amalgamation property [5].
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