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An interlayer phase coherence develops spontaneously in the bilayer quantum Hall system at the
filling factor ν = 1. On the other hand, the spin and pseudospin degrees of freedom are entangled
coherently in the canted antiferromagnetic phase of the bilayer quantum Hall system at the filling
factor ν = 2. There emerges a complex Nambu–Goldstone mode with a linear dispersion in
the zero tunneling-interaction limit for both cases. Then its phase field provokes a Josephson
supercurrent in each layer, which is dissipationless as in a superconductor. We study what kind
of phase coherence the Nambu–Goldstone mode develops in association with the Josephson
supercurrent and its effect on the Hall resistance in the bilayer quantum Hall system at ν = 1, 2,
by employing the Grassmannian formalism.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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1. Introduction

Quantum Hall (QH) effects are remarkable macroscopic quantum phenomena observed in the
2-dimensional electron system [1,2]. They are so special in condensed matter physics that they are
deeply connected with the fundamental principles of physics. Moreover, the QH system provides us
with an opportunity to enjoy the interplay between condensed matter physics and particle and nuclear
physics [3].

In particular, the physics of the bilayer quantum Hall (QH) system is enormously rich owing to the
intralayer and interlayer phase coherence controlled by the interplay between the spin and the layer
(pseudospin) degrees of freedom [3,4]. The interlayer phase coherence is an especially intriguing phe-
nomenon in the bilayer QH system [3], where it is enhanced in the limit �SAS → 0. For instance, at
the filling factor ν = 1 there arises a unique phase, the spin-ferromagnet and pseudospin-ferromagnet
phase, which has been well studied both theoretically and experimentally. One of the most intriguing
phenomena is the Josephson tunneling between the two layers predicted in Refs. [5–9], whose first
experimental indication was obtained in Ref. [10]. Other examples are the anomalous behavior of
the Hall resistance reported in counterflow experiments [11,12] and in drag experiments [13]. They
are triggered by the Josephson supercurrent within each layer[17]. Quite recently, careful experi-
ments [14–16] were performed to explore the condition for the tunneling current to be dissipationless.
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These phenomena are produced by the pseudospins at ν = 1, where the Nambu–Goldstone (NG)
mode describes a pseudospin wave.

On the other hand, at ν = 2 the bilayer QH system has three phases, the spin-ferromagnet and
pseudospin-singlet phase (abridged as the spin phase), the spin-singlet and pseudospin ferromagnet
phase (abridged as the pseudospin phase), and a canted antiferromagnetic phase [19–25] (abridged
as the CAF phase), depending on the relative strength between the Zeeman energy�Z and the inter-
layer tunneling energy�SAS. The pattern of the symmetry breaking is SU(4)→U(1)⊗SU(2)⊗SU(2),
associated with which there appear four complex NG modes [26]. We have recently analyzed the full
details of these NG modes in each phase [27]. The CAF phase is most interesting, where one of
the NG modes becomes gapless and has a linear dispersion relation [27] as the tunneling interaction
vanishes (�SAS → 0). It is an urgent and intriguing problem what kind of phase coherence this NG
mode develops.

In this paper, we investigate the interlayer phase coherence, the associated NG modes, its effective
Hamiltonian, the Josephson supercurrent provoked by these NG modes and its effect to the Hall
resistance in the bilayer QH system at ν = 1, 2, by employing the Grassmannian formalism [26].

The basic field is the Grassmannian field consisting of complex projective (CP3) fields. We intro-
duce n CP3 fields to analyze the ν = n bilayer QH system. The CP3 field emerges when composite
bosons undergo Bose–Einstein condensation [3]. We first make a perturbative analysis of the NG
modes and reproduce the same results as obtained in [27]. We next analyze the nonperturbative
phase-coherent phenomena developed by the NG mode having linear dispersion, where the phase
field ϑ(x) is essentially classical and may become very large, which is necessary to analyze the
associated Josephson supercurrent. We show that it is the entangled spin-pseudospin phase coher-
ence in the CAF phase. The Grassmannian formalism provides us with a clear physical picture of
the spin-pseudospin phase coherence in the CAF phase and, furthermore, enables us to describe
nonperturbative phase-coherent phenomena uniformly in the bilayer QH system.

We then show that the Josephson supercurrent flows within the layer when there is inhomogeneity
in ϑ(x). A related topic has been investigated in [28]. The supercurrent in the CAF phase leads to the
same formula [17] for the anomalous Hall resistivity for the counterflow and drag geometries as the
one at ν = 1. What is remarkable is that the total current flowing in the CAF phase is a Josephson
supercurrent carrying solely spins in the counterflow geometry. We also remark that the supercurrent
flows both in the balanced and imbalanced systems at ν = 1 but only in imbalanced systems at ν = 2.

2. The SU(4) effective Hamiltonian

Electrons in a plane perform cyclotron motion under perpendicular magnetic field B⊥ and create
Landau levels. The number of flux quanta passing through the system is N� ≡ B⊥S/�D, where S
is the area of the system and �D = 2π�/e is the flux quantum. There are N� Landau sites per one
Landau level, each of which is associated with one flux quantum and occupies an area S/N� = 2π�2

B ,
with the magnetic length �B = √

�/eB⊥.
In the bilayer system an electron has two types of index, the spin index (↑,↓) and the layer index

(f, b). They can be incorporated in four types of isospin index, α = f↑,f↓,b↑,b↓. One Landau site
may contain four electrons. The filling factor is ν = N/N� with N the total number of electrons.

We explore the physics of electrons confined to the lowest Landau level (LLL), where the elec-
tron position is specified solely by the guiding center X = (X, Y ), whose X and Y components are
noncommutative,

[X, Y ] = −i�2
B . (1)
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The equations of motion follow from this noncommutative relation rather than the kinetic term for
electrons confined within the LLL. In order to derive the effective Hamiltonian, it is convenient to
represent the noncommutative relation with the use of the Fock states,

|n〉 = 1√
n!
(b†)n|0〉, n = 0, 1, 2, . . . , b|0〉 = 0, (2)

where b and b† are the ladder operators,

b = 1√
2�B

(X − iY ), b† = 1√
2�B

(X + iY ), (3)

obeying [b, b†] = 1. Although the Fock states correspond to the Landau sites in the symmetric gauge,
the resulting effective Hamiltonian is independent of the representation we have chosen.

We expand the electron field operator by a complete set of one-body wave functions ϕn(x) = 〈x|n〉
in the LLL,

ψα(x) ≡
N�∑

n=1

cα(n)ϕn(x), (4)

where cα(n) is the annihilation operator at the Landau site |n〉 with α = f↑,f↓,b↑,b↓. The operators
cα(m), c†

β(n) satisfy the standard anticommutation relations,

{cα(m), c†
β(n)} = δmnδαβ, {cα(m), cβ(n)} = {c†

α(m), c†
β(n)} = 0. (5)

The electron field ψα(x) has four components, and the bilayer system possesses the underlying alge-
bra SU(4), having the subalgebra SUspin(2)× SUppin(2). We denote the three generators of SUspin(2)

by τ spin
a , and those of SUppin(2) by τ ppin

a . There remain nine generators τ spin
a τ

ppin
b , whose explicit form

is given in Appendix A.
All the physical operators required for the description of the system are constructed as bilinear

combinations of ψ(x) and ψ†(x). They are 16 density operators:

ρ(x) = ψ†(x)ψ(x), Sa(x) = 1

2
ψ†(x)τ spin

a ψ(x),

Pa(x) = 1

2
ψ†(x)τ ppin

a ψ(x), Rab(x) = 1

2
ψ†(x)τ spin

a τ
ppin
b ψ(x),

(6)

where Sa describes the total spin, and 2Pz measures the electron-density difference between the two
layers. The operator Rab transforms as a spin under SUspin(2) and as a pseudospin under SUppin(2).

The kinetic Hamiltonian is quenched, since the kinetic energy is common to all states in the LLL.
The Coulomb interaction is decomposed into the SU(4)-invariant and SU(4)-noninvariant terms

H+
C = 1

2

∫
d2xd2yV +(x − y)ρ(x)ρ(y), (7)

H−
C = 2

∫
d2xd2yV −(x − y)Pz(x)Pz(y), (8)

where

V ±(x) = e2

8πε

(
1

|x| ± 1√
|x|2 + d2

)
, (9)
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with layer separation d. The tunneling and bias terms are summarized into the pseudo-Zeeman term.
Combining the Zeeman and pseudo-Zeeman terms we have

HZpZ = −
∫

d2x(�ZSz +�SAS Px +�bias Pz), (10)

with the Zeeman gap �Z, the tunneling gap �SAS, and the bias voltage �bias = eVbias.
The total Hamiltonian is

H = H+
C + H−

C + HZpZ. (11)

Note that the SU(4)-noninvariant terms vanish in the limit d, �Z, �SAS, �bias → 0.
We project the density operators (6) to the LLL by substituting the field operator (4) into them.

A typical density operator reads

Rab(p) = e−�2
Bp2/4 R̂ab(p) (12)

in momentum space, with

R̂ab(p) = 1

4π

∑
mn

〈n|e−ipX |m〉c†(n)τ spin
a τ

ppin
b c(m), (13)

where c(m) is the 4-component vector made of the operators cα(m).
What are observed experimentally are the classical densities, which are expectation values such as

ρ̂cl(p) = 〈S|ρ̂(p)|S〉, where |S〉 represents a generic state in the LLL. The Coulomb Hamiltonian
governing the classical densities are given by [29]:

H eff = π

∫
d2 pV +

D (p)ρ̂
cl(−p)ρ̂cl(p)+ 4π

∫
d2 pV −

D (p)P̂
cl
z (−p)P̂cl

z (p)

− π

2

∫
d2 pV d

X (p)[Ŝcl
a (−p)Ŝcl

a (p)+ P̂cl
a (−p)P̂cl

a (p)+ R̂cl
ab(−p)R̂cl

ab(p)]

− π

∫
d2 pV −

X (p)[Ŝcl
a (−p)Ŝcl

a (p)+ P̂cl
z (−p)P̂cl

z (p)+ R̂cl
az(−p)R̂cl

az(p)]

− π

8

∫
d2 pVX (p)ρ̂

cl(−p)ρ̂cl(p), (14)

where VD and VX are the direct and exchange Coulomb potentials, respectively,

VD(p) = e2

4πε|p|e
−�2

Bp2/2, VX (p) =
√

2πe2�B

4πε
I0(�

2
Bp2/4)e−�2

Bp2/4, (15)

with VX = V +
X + V −

X , V d
X = V +

X − V −
X , and

V ±
D (p) = e2

8πε|p|
(

1 ± e−|p|d
)

e−�2
Bp2/2,

V ±
X (p) =

√
2πe2�B

8πε
I0(�

2
Bp2/4)e−�2

Bp2/4 ± e2�2
B

4πε

∫ ∞

0
dke− 1

2 �
2
Bk2−kd J0(�

2
B |p|k). (16)

Here, I0(x) is the modified Bessel function, and J0(x) is the Bessel function of the first kind.
Since the exchange interaction V ±(p) is short ranged, it is a good approximation to make

the derivative expansion or, equivalently, the momentum expansion. We may set ρ̂cl(p) = ρ0,
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Ŝcl
a (p) = ρ�Sa(p), P̂cl

a (p) = ρ�Pa(p), and R̂cl
ab(p) = ρ�Rab(p) for the study of NG modes. Tak-

ing the nontrivial lowest-order terms in the derivative expansion, we obtain the SU(4) effective
Hamiltonian density

Heff = J d
s

(∑
(∂kSa)

2 + (∂kPa)
2 + (∂kRab)

2
)

+ 2J−
s

(∑
(∂kSa)

2 + (∂kPz)
2 + (∂kRaz)

2
)

+ ρφ

[
εcap(Pz)

2 − 2ε−X
(∑

(Sa)
2 + (Raz)

2
)

− (�ZSz +�SASPx +�biasPz)
]
, (17)

where ρ� = ρ0/ν is the density of states, and

Js = 1

16
√

2π
E0

C, J d
s = Js

[
−
√

2

π

d

�B
+
(

1 + d2

�2
B

)
ed2/2�2

B erfc
(

d/
√

2�B

)]
,

J±
s = 1

2
(Js ± J d

s ),

εX = 1

2

√
π

2
E0

C, ε±X = 1

2

[
1 ± ed2/2�2

B erfc
(

d/
√

2�B

)]
εX , ε−D = d

4�B
E0

C,

εcap = 4ε−D − 2ε−X , (18)

with

E0
C = e2

4πε�B
. (19)

This Hamiltonian is valid at ν = 1, 2 and 3.
It should be noted that all potential terms vanish in the SU(4)-invariant limit, where pertur-

bative excitations are gapless. They are the NG modes associated with spontaneous breaking of
SU(4) symmetry. They get gapped in the actual system, since SU(4) symmetry is explicitly broken.
Nevertheless, we call them the NG modes.

3. Bilayer quantum Hall system at ν = 1

In this section, we first show the ground state structure and the associated NG modes. We then show
the interlayer phase coherence, the associated Josephson supercurrent, and its effect on the Hall
resistance, in the limit �SAS → 0.

3.1. Ground state structure

We introduce the CP3 field based on the composite boson theory. An electron is converted into a
composite boson by acquiring a flux quantum in the QH state. The CP3 field emerges when com-
posite bosons undergo Bose–Einstein condensation. The dimensionless SU(4) isospin densities are
given by [3]:

Sa(x) = 1

2
n†τ

spin
a n,

Pa(x) = 1

2
n†τ

ppin
a n,

Rab(x) = 1

2
n†τ

spin
a τ

ppin
b n, (20)

where n is the CP3 field of the form n(x) = (nf↑, nf↓, nb↑, nb↓)t .
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The ground state at the imbalanced configuration σ0 is given by

(nB↑
g , nB↓

g , nA↑
g , nA↓

g ) = (1, 0, 0, 0) (21)

in the bonding–antibonding representation, which reads

⎛
⎜⎜⎜⎜⎝

nf↑
g

nf↓
g

nb↑
g

nb↓
g

⎞
⎟⎟⎟⎟⎠ = 1√

2

⎛
⎜⎜⎜⎜⎝

√
1 + σ0 0

√
1 − σ0 0

0
√

1 + σ0 0
√

1 − σ0√
1 − σ0 0 −√

1 + σ0 0

0
√

1 − σ0 0 −√
1 + σ0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

nB↑
g

nB↓
g

nA↑
g

nA↓
g

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

√
1+σ0

2

0√
1−σ0

2

0

⎞
⎟⎟⎟⎟⎟⎠ (22)

in the layer representation. The ground-state values of the isospin fields are

Sg
a = 1

2
δaz, Pg

a = 1

2

(√
1 − σ 2

0 δax + σ0δaz

)
, Rg

ab = 1

2
δaz

(√
1 − σ 2

0 δbx + σ0δbz

)
, (23)

all others being zero, giving a unique phase. The residual symmetry keeping the ground state invariant
is U(3). Thus, the symmetry-breaking pattern is SU(4)→U(3). The target space is the coset space

CP3 = SU(4)/U(3) = U(4)/[U(1)⊗ U(3)], (24)

which is the complex projective (CP) space.

3.2. Effective Hamiltonian for the NG modes at ν = 1

From the previous subsection, we see that the symmetry-breaking pattern is given by (24), and
therefore three complex NG modes emerge, which are described by the CP3 fields.

We analyze the perturbative excitations around the ground state. We parameterize the bonding–
antibonding state as

nB↑ =
√

1 − |ηs|2 − |ηp|2 − |ηr|2, nB↓ = ηs, nA↑ = ηp, nA↓ = ηr, (25)

requiring the commutation relations

[
ηi (x), η

†
j (y)
]

= ρ−1
0 δi jδ(x − y) (26)

in order to satisfy the SU(4) algebraic relation. ηs describes the spin wave, ηp the pseudospin wave,
and ηr the R-spin wave connecting the ground state to the highest level in the lowest level (Fig. 1).
The layer field reads

⎛
⎜⎜⎜⎝

nf↑

nf↓

nb↑

nb↓

⎞
⎟⎟⎟⎠ = 1√

2

⎛
⎜⎜⎜⎝

√
1 + σ0 0

√
1 − σ0 0

0
√

1 + σ0 0
√

1 − σ0√
1 − σ0 0 −√

1 + σ0 0
0

√
1 − σ0 0 −√

1 + σ0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

nB↑

nB↓

nA↑

nA↓

⎞
⎟⎟⎟⎠ . (27)
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ΔZ

Δ SAS

η p

ν=1

ν=2

ν=3

ν=4

η
s

S

S

A

A

ΔSAS > ΔZ

η r

ΔSAS

ΔZ

ηs

ν=1

ν=2

ν=3

ν=4

ηp

S

A

S

A

ΔSAS < ΔZ

ηr

(a) (b)

Fig. 1. The lowest Landau level contains four energy levels corresponding to the two layers and the two spin
states. They are shown in (a) for �SAS > �Z and (b) for �SAS < �Z. The lowest-energy level consists of
up-spin symmetric states in the balanced configurations, and is filled at ν = 1. It is the spin-ferromagnet and
pseudospin-ferromagnet state. Small fluctuations are NG modes ηs, ηp, and ηr.

Expanding

(nB↑, nB↓, nA↑, nA↓) = (1, ηs, ηp, ηr)+ · · · , (28)

for small fluctuations around the ground state, we obtain

nf↑ =
√

1 + σ0

2

(
1 − 1

2
(|ηs|2 + |ηp|2 + |ηr|2)

)
+ ηp

√
1 − σ0

2
,

nf↓ = ηs

√
1 + σ0

2
+ ηr

√
1 − σ0

2
,

nb↑ =
√

1 − σ0

2

(
1 − 1

2
(|ηs|2 + |ηp|2 + |ηr|2)

)
− ηp

√
1 + σ0

2
,

nb↓ = ηs

√
1 − σ0

2
− ηr

√
1 + σ0

2
. (29)

We then set

ηi (x) = σi (x)+ iϑi (x)

2
, (30)

where ρ0σi (x) is the number density excited from the ground state to the i th level designated by (29),
and ϑi (x) is the conjugate phase field, satisfying the commutation relation

ρ0

2

[
σi (x), ϑ j (y)

] = iδi jδ(x − y). (31)

We express the isospin field in terms of the CP3 field (29),

2Sa =
(
σs + 1

2

(
σpσr + ϑpϑr

)
, ϑs + 1

2

(
σpϑr − ϑpσr

)
, 1 − 2|ηs|2 − 2|ηr|2

)
,

2Pa =
(

px (s, p, r),−ϑp − 1

2
(σsϑr − ϑsσr), pz(s, p, r)

)
,

2Rxa =
(

rxx (s, p, r),−ϑr + 1

2
(σpϑs − ϑpσs), rxz(s, p, r)

)
,

2Rya =
(

ryx (s, p, r), σr − 1

2
(σsσp + ϑsϑp), ryz(s, p, r)

)
,

2Rza =
(

rzy(s, p, r),−ϑp + 1

2
(σsϑr − ϑsσr), rzz(s, p, r)

)
, (32)
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with

px (s, p, r) =
√

1 − σ 2
0 − σ0σp − 2

√
1 − σ 2

0

(
|ηp|2 + |ηr|2

)
− σ0

2
(σsσr + ϑsϑr),

pz(s, p, r) = σ0 +
√

1 − σ 2
0 σp − 2σ0

(
|ηp|2 + |ηr|2

)
+
√

1 − σ 2
0

2
(σsσr + ϑsϑr),

rxx(s, p, r) =
√

1 − σ 2
0 σs − σ0σr − σ0

2

(
σsσp + ϑsϑp

)−
√

1 − σ 2
0

2

(
σpσr + ϑpϑr

)
,

ryx(s, p, r) =
√

1 − σ 2
0ϑs − σ0ϑr + σ0

2

(
σsϑp − ϑsσp

)−
√

1 − σ 2
0

2

(
σpϑr − ϑpσr

)
,

rxz(s, p, r) = σ0σs +
√

1 − σ 2
0 σr − σ0

2

(
σpσr + ϑpϑr

)+
√

1 − σ 2
0

2

(
σsσp + ϑsϑp

)
,

ryz(s, p, r) = σ0ϑs +
√

1 − σ 2
0ϑr − σ0

2

(
σpϑr − ϑpσr

)−
√

1 − σ 2
0

2

(
σsϑp − ϑsσp

)
,

rzx (s, p, r) =
√

1 − σ 2
0 − σ0σp − 2

√
1 − σ 2

0

(
|ηp|2 + |ηs|2

)
+ σ0

2
(σsσr + ϑsϑr),

rzz(s, p, r) = σ0 +
√

1 − σ 2
0 σp − 2σ0

(
|ηp|2 + |ηs|2

)
−
√

1 − σ 2
0

2
(σsσr + ϑsϑr). (33)

Substituting these into (17), we obtain the effective Hamiltonian∫
d2kHeff =

∫
d2kHppin +

∫
d2kHmix, (34)

with

Hppin = (1 − σ 2
0 )Js + σ 2

0 J d
s

2
(∂kσp)

2 + ρ0

4

⎡
⎣εν=1

cap (1 − σ 2
0 )+ �SAS√

1 − σ 2
0

⎤
⎦ σ 2

p

+ 1

2
J d

s (∂kϑp)
2 + ρ0

4

�SAS√
1 − σ 2

0

ϑ2
p , (35)

Hmix = J+
s + σ0 J−

s

2

[
(∂kσ1)

2 + (∂kϑ1)
2
]

+ ρ0

4

(
�Z + 1

2
�SAS

√
1 − σ0√
1 + σ0

)[
σ 2

1 + ϑ2
1

]

+ J+
s − σ0 J−

s

2

[
(∂kσ2)

2 + (∂kϑ2)
2
]

+ ρ0

4

(
�Z + 1

2
�SAS

√
1 − σ0√
1 + σ0

)[
σ 2

2 + ϑ2
2

]
− ρ0

4
�SAS(σ1σ2 + ϑ1ϑ2), (36)

where we change the variables in (36) as

ηs =
√

1 + σ0

2
η1 +

√
1 − σ0

2
η2, ηr =

√
1 − σ0

2
η1 −

√
1 + σ0

2
η2, (37)

and �bias and εν=1
cap are given by

�bias = σ0√
1 − σ 2

0

�SAS + σ0ε
ν=1
cap , (38)

εν=1
cap = 4(ε−D − ε−X ), (39)
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respectively. The pseudospin mode is decoupled from other modes, and from (35) we have coherence
lengths of the interlayer phase field ϑp and the imbalanced field σp

ξϑppin = 2lB

√√√√π√1 − σ 2
0 J d

s

�SAS
,

ξσppin = 2lB

√√√√ π
[
(1 − σ 2

0 )Js + σ 2
0 J d

s

]
εν=1

cap (1 − σ 2
0 )+�SAS/

√
1 − σ 2

0

. (40)

The ϑp mode is gapless for�SAS = 0, though the σp mode is gapful due to the capacitance term εν=1
cap .

On the other hand, from (36) for �SAS = 0, the two modes η1 and η2 are decoupled. There exist
no gapless modes in the Hamiltonian (36) provided �Z 
= 0.

3.3. Effective Hamiltonian for the NG modes in the limit �SAS → 0

We concentrate solely on the gapless mode in the limit �SAS → 0, since we are interested in the
interlayer coherence in this system. We now analyze the nonperturbative phase-coherent phenomena,
where the phase field ϑ(x) is essentially classical and may become very large. We parameterize the
CP3 field as ⎛

⎜⎜⎜⎝
nf↑(x)
nf↓(x)
nb↑(x)
nb↓(x)

⎞
⎟⎟⎟⎠ = 1√

2

⎛
⎜⎜⎜⎝

eiϑ(x)/2√1 + σ(x)

0
e−iϑ(x)/2√1 − σ(x)

0

⎞
⎟⎟⎟⎠ . (41)

Then the isospin fields are expressed as

Sz(x) = 1

2
, Pz(x) = Rzz(x) = 1

2
σ(x),

Px (x) = Rzx (x) = 1

2

√
1 − σ 2(x) cosϑ(x), Py(x) = Rzy(x) = −1

2

√
1 − σ 2(x) sinϑ(x), (42)

with all others being zero. From (42) we obtain the effective Hamiltonian

Heff = J d
s

2
(1 − σ 2(x))(∂kϑ(x))

2 + 1

2

(
Js + σ 2(x)

1 − σ 2(x)
J d

s

)
(∂kσ(x))

2

+ ρ0ε
ν=1
cap

4
(σ (x)− σ0)

2 − ρ0�SAS

2

⎛
⎝√1 − σ 2(x) cosϑ(x)+ σ0√

1 − σ 2
0

σ(x)

⎞
⎠ . (43)

The canonical commutation relation is given by
ρ0

2
[σ(x), ϑ(x)] = iδ(x − y). (44)

From (43) and (44), the Heisenberg equations of motion can be calculated as

�∂tϑ = 2

ρ0
∂k(J

σ
s ∂kσ)+ 2J d

s

ρ0
σ

[
(∂kϑ)

2 − 1

1 − σ 2 (∂kσ)
2
]

− εν=1
cap (σ − σ0)− σ cosϑ√

1 − σ 2
�SAS + σ0√

1 − σ 2
0

�SAS, (45)

�∂tσ = − 2

ρ0
∂k(J

ϑ
s ∂kϑ)+�SAS

√
1 − σ 2 sinϑ, (46)
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with

Jϑs = (1 − σ 2)J d
s , Jσs = Js + σ 2

1 − σ 2 J d
s . (47)

3.4. Josephson supercurrents

We now study the electric Josephson supercurrent carried by the gapless mode ϑ(x). In general, the
total current consists of three types of current, the Josephson in-plane current J Jos

i , the Josephson
tunneling current J Jos

z , which is proportional to �SAS, and the Hall current J Hall
i . What has been

argued in [18] is that in the case of ν = 1, there exists an interlayer voltage Vjunc and thus no dis-
sipationless J Jos

z exists when σ0 
= 0. On the other hand, the Josephson in-plane current, which
is dissipationless, does exist, even for σ0 
= 0. Here, we assume the sample parameter σ0 
= 0 and
�SAS = 0 so that there is no dissipationless tunneling current J Jos

z between the two layers.

The electron densities are ρf(b)
e = −eρ0 (1/2 ± Pz) = −eρ0 (1 ± σ(x)) /2 on each layer. Taking

the time derivative and using (46) we find

∂tρ
f
e = −∂tρ

b
e = eJϑs

�
∇2ϑ(x). (48)

The time derivative of the charge is associated with the current via the continuity equation, ∂tρ
f(b)
e =

∂iJ f(b)
i . We thus identify J f(b)

i = ±J Jos
i (x)+constant, where

J Jos
i (x) ≡ eJϑs

�
∂iϑ(x). (49)

Consequently, the current J Jos
i (x) flows when there exists inhomogeneity in the phase ϑ(x). Such

a current is precisely the Josephson supercurrent. Indeed, it is a supercurrent because the coherent
mode exhibits a linear dispersion relation.

3.5. Quantum Hall effects

Let us inject the current Jin into the x direction of the bilayer sample, and assume the system to be
homogeneous in the y direction (Fig. 2). This creates the electric field E f(b)

y so that the Hall current
flows into the x-direction. A bilayer system consists of the two layers and the volume between them.
The Coulomb energy in the volume is minimized [17] by the condition E f

y = Eb
y . We thus impose

E f
y = Eb

y ≡ Ey . The current is the sum of the Hall current and the Josephson current,

J f
x (x) = ν

RK

ρf
0

ρ0
Ey + J Jos

x , J b
x (x) = ν

RK

ρb
0

ρ0
Ey − J Jos

x , (50)

with RK = 2π�/e2 the von Klitzing constant. We obtain the standard Hall resistance when J Jos
x = 0.

That is, the emergence of the Josephson supercurrent is detected if the Hall resistance becomes
anomalous.

We apply these formulas to analyze the counterflow and drag experiments since they occur without
tunneling. In the counterflow experiment, the current Jin is injected to the front layer and extracted
from the back layer at the same edge. Since there is no tunneling we haveJ b

x = −J f
x = −Jin. Hence,

it follows from (50) that Ey = 0, or

Rf
xy ≡ E f

y

J f
x

= 0, Rb
xy ≡ Eb

y

J b
x

= 0. (51)

All the input current is carried by the Josephson supercurrent, J Jos
x = Jin. It generates such an

inhomogeneous phase field that ϑ(x) = (�/eJϑs )Jinx .
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R Rno spin current no spin current

(a) (b)

Fig. 2. Schematic illustration of the spin supercurrent flowing along the x axis in the counterflow geometry
for a ν = 1 bilayer QH system. (a) In the ν = 1 bilayer QH system for σ0 > 0, all spins are polarized into the
positive z axis. The interlayer phase difference ϑ(x) is created by feeding a charge current Jin to the front layer,
which also drives the spin current. Electrons flow in each layer as indicated by the dotted horizontal arrows.
The direction of the spin current flowing in the front layer becomes opposite to the direction of that flowing in
the back layer, and therefore no spin current flows as a whole. (b) In the ν = 1 QH bilayer system for σ0 < 0,
similar phenomena occur and therefore no spin current flows as a whole.

On the other hand, in the drag experiment, since interlayer-coherent tunneling is absent, no current
flows on the back layer, or J b

x = 0. Hence, it follows from (50) that Jin = J f
x = (ν/RK)Ey , or

Rf
xy ≡ E f

y

J f
x

= RK

ν
. (52)

A part of the input current is carried by the Josephson supercurrent, J Jos
x = 1

2(1 − σ0)Jin.

3.6. Spin Josephson supercurrents

The spin density in each layer is defined by ρspin
α (x) ≡ sαψ

†
αψα , where sα = 1

2� for α = f ↑, b ↑ and
sα = −1

2� for α = f ↓, b ↓. By using the formula⎛
⎜⎜⎜⎝
ρf↑(x)
ρf↓(x)
ρb↑(x)
ρb↓(x)

⎞
⎟⎟⎟⎠ = 1

4

⎛
⎜⎜⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

ρ0

2Sz(x)

2Pz(x)

2Rzz(x)

⎞
⎟⎟⎟⎠ (53)

and (42), we have ⎛
⎜⎜⎜⎝
ρf↑(x)
ρf↓(x)
ρb↑(x)
ρb↓(x)

⎞
⎟⎟⎟⎠ = ρ0

2

⎛
⎜⎜⎜⎝

1 + σ(x)

0
1 − σ(x)

0

⎞
⎟⎟⎟⎠ . (54)

Then, taking the time derivative for ρα , we have⎛
⎜⎜⎜⎜⎜⎜⎝

∂tρ
spin
f↑ (x)

∂tρ
spin
f↓ (x)

∂tρ
spin
b↑ (x)

∂tρ
spin
b↓ (x)

⎞
⎟⎟⎟⎟⎟⎟⎠

= �ρ0

4

⎛
⎜⎜⎜⎝
∂tσ(x)

0
−∂tσ(x)

0

⎞
⎟⎟⎟⎠ . (55)

The time derivative of the spin is associated with the spin current via the continuity equation (in this
article we neglect the tunneling current):

∂tρ
Spin
α (x) = ∂xJ Spin

α (x), (56)
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for each α. We thus identify

J Spin
f↑ (x) = −J Spin

b↑ (x) = − Jϑs
2
∂xϑ(x), all others = 0. (57)

Therefore from (57) we see that the total spin current J Spin ≡∑α J Spin
α is zero, and therefore the

spin Josephson supercurrent does not flow at ν = 1 (Fig. 2).

4. Bilayer quantum Hall system at ν = 2

The standard Hall resistance is given by Rf
xy = 2

ν
RK = RK at ν = 2. On the other hand, it has been

found experimentally [11–13] that Rf
xy = RK at ν = 2. It seems that the interlayer phase coherence

together with the supercurrent does not develop at ν = 2. Note that the experiments [11–13] were per-
formed at the balance point σ0 = 0. As we now demonstrate, the interlayer phase coherence develops
only at the imbalance point σ0 
= 0 in the CAF phase.

In this section, we first show the ground state structure and the NG modes for each phase. We then
discuss the entangled spin–pseudospin phase coherence, the associated Josephson supercurrent and
its effect on the Hall resistance in the CAF phase in the limit �SAS → 0.

4.1. Ground state structure

It has been shown [30] at ν = 2 that the order parameters, which are the classical isospin densities
for the ground state, are given in terms of two parameters α and β as

S0
z = �Z

�0
(1 − α2)

√
1 − β2, P0

x = �SAS

�0
α2
√

1 − β2, P0
z = �SAS

�0
α2β,

R0
xx = −�SAS

�0
α
√

1 − α2β, R0
yy = −�Z

�0
α
√

1 − α2
√

1 − β2,

R0
xz = �SAS

�0
α
√

1 − α2
√

1 − β2, (58)

with all others being zero. The parameters α and β, satisfying |α| ≤ 1 and |β| ≤ 1, are determined
by the variational equations as

�2
Z = �2

SAS

1 − β2 − 4ε−X
(
�2

0 − β2�2
SAS

)
�0
√

1 − β2
, (59)

�bias

β�SAS
= 4
(
ε−X + 2α2(ε−D − ε−X )

)
�0

+ 1√
1 − β2

, (60)

where

�0 =
√
�2

SASα
2 +�2

Z(1 − α2)(1 − β2). (61)

As a physical variable it is more convenient to use the imbalance parameter defined by

σ0 ≡ P0
z = �SAS

�0
α2β (62)

instead of the bias voltage �bias. This is possible in the pseudospin and CAF phases. The bilayer
system is balanced at σ0 = 0, while all electrons are in the front layer at σ0 = 1, and in the back layer
at σ0 = −1.

There are three phases in the bilayer QH system at ν = 2. We discuss them in terms of α and β.
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First, when α = 0, it follows that S0
z = 1, P0

a = R0
ab = 0, since �0 = �Z

√
1 − β2. Note that β

disappears from all formulas in (58). This is the spin phase, which is characterized by the fact that
the isospin is fully polarized into the spin direction with

S0
z = 1, (63)

all others being zero. The spins in both layers point to the positive z axis due to the Zeeman effect.
Second, when α = 1, it follows that S0

z = 0 and (P0
x )

2 + (P0
z )

2 = 1. This is the pseudospin phase,
which is characterized by the fact that the isospin is fully polarized into the pseudospin direction
with

P0
x =
√

1 − β2, P0
z = β = σ0, (64)

all the others being zero.
For intermediate values of α (0 < α < 1), not only the spin and pseudospin but also some compo-

nents of the residual spin are nonvanishing, and we may control the density imbalance by applying
a bias voltage as in the pseudospin phase. It follows from (58) that, as the system goes away from
the spin phase (α = 0), the spins begin to cant coherently and make antiferromagnetic correlations
between the two layers. Hence it is called the canted antiferromagnetic phase.

The interlayer phase coherence is an intriguing phenomenon in the bilayer QH system [3]. Since
it is enhanced in the limit �SAS → 0, it is interesting to also investigate the effective Hamiltonian
in this limit at ν = 2. We need to know how the parameters α and β are expressed in terms of the
physical variables. The solutions for (61) are

β = ±
√

1 −
(
�SAS

�Z

)2

+ O(�4
SAS), (65)

with

�0 → �SAS + O(�3
SAS), (66)

as we shall derive in (157). By using (62) we have

P0
z = σ0 = ±α2 + O(�2

SAS). (67)

The parameters α and β are simple functions of the physical variables �SAS/�Z and σ0 in the limit
�SAS → 0.

In particular, one of the layers becomes empty in the pseudospin phase and also near the pseudospin
phase boundary in the CAF phase, since we have σ0 → ±1 as α → 1. On the other hand, the bilayer
system becomes balanced in the spin phase and also near the spin phase boundary in the CAF phase,
since we have σ0 → 0 as α → 0.

4.2. Grassmannian approach

We employ the Grassmannian formalism [26] to make the physical picture of this NG mode clearer
and to construct a theory which is valid nonperturbatively. The Grassmannian field Z(x) consists of
two CP3 fields n1(x) and n2(x) at ν = 2, since there are two electrons per one Landau site. Due to
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the Pauli exclusion principle they should be orthogonal one to another. Hence, we require

n†
i (x) · n j (x) = δi j , (68)

with i = 1, 2. Using a set of two CP3 fields subject to this normalization condition we introduce a
4 × 2 matrix field, the Grassmannian field given by

Z(x) = (n1,n2), (69)

obeying

Z† Z = 1. (70)

Though we have introduced two fields n1(x) and n2(x), we cannot distinguish them quantum mechan-
ically since they describe two electrons in the same Landau site. Namely, two fields Z(x) and Z ′(x)
are indistinguishable physically when they are related by a local U(2) transformation U (x),

Z ′(x) = Z(x)U (x). (71)

By identifying these two fields Z(x) and Z ′(x), the 4 × 2 matrix field Z(x) takes values on the
Grassmann manifold G4,2 defined by

G4,2 = SU(4)

U(1)⊗ SU(2)⊗ SU(2)
. (72)

The field Z(x) is no longer a set of two independent CP3 fields. It is a new object, called the
Grassmannian field, carrying eight real degrees of freedom.

The dimensionless SU(4) isospin densities are given by

Sa(x) = 1

2
Tr
[

Z†τ
spin
a Z

]
= 1

2

2∑
i=1

n†
i τ

spin
a ni ,

Pa(x) = 1

2
Tr
[

Z†τ
ppin
a Z

]
= 1

2

2∑
i=1

n†
i τ

ppin
a ni ,

Rab(x) = 1

2
Tr
[

Z†τ
spin
a τ

ppin
b Z

]
= 1

2

2∑
i=1

n†
i τ

spin
a τ

ppin
b ni , (73)

where ni consists of the basis ni (x) = (nf↑, nf↓, nb↑, nb↓)t . The ground state is given by Eq. (58),
which we express in terms of the two CP3 fields ng

i . It is straightforward to show that it is given by
ng

i = U n̄g
i , with

U = exp

[
− i

2
τ

ppin
y

(
θβ + π

2

)]
exp

[
− i

2
τ

spin
x τ

ppin
y θα

]
exp

[
i

2
τ

spin
y τ

ppin
x θδ

]

=

⎛
⎜⎜⎜⎜⎝

cos
(2θβ + π)

4
cos

θδ − θα

2
− sin

(2θβ + π)

4
sin

θδ + θα

2
− sin

(2θβ + π)

4
cos

θδ + θα

2
cos

(2θβ + π)

4
sin

θδ − θα

2

sin
(2θβ + π)

4
sin

θδ − θα

2
cos

(2θβ + π)

4
cos

θδ + θα

2
− cos

(2θβ + π)

4
sin

θδ + θα

2
− sin

(2θβ + π)

4
cos

θδ − θα

2

sin
(2θβ + π)

4
cos

θδ − θα

2
cos

(2θβ + π)

4
sin

θδ + θα

2
cos

(2θβ + π)

4
cos

θδ + θα

2
sin

(2θβ + π)

4
sin

θδ − θα

2

− cos
(2θβ + π)

4
sin

θδ − θα

2
sin

(2θβ + π)

4
cos

θδ + θα

2
− sin

(2θβ + π)

4
sin

θδ + θα

2
cos

(2θβ + π)

4
cos

θδ − θα

2

⎞
⎟⎟⎟⎟⎠ ,

(74)

where θα , θβ , and θδ are given by

cos θα ≡
√

1 − α2, sin θα ≡ α, cos θβ ≡
√

1 − β2, sin θβ ≡ −β,

cos θδ ≡ �Z

√
1 − β2

�0

√
1 − α2, sin θδ ≡ �SAS

�0
α, (75)
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and

n̄g
1 = (1, 0, 0, 0)t , n̄g

2 = (0, 0, 1, 0)t . (76)

We may introduce perturbative excitation modes ηi by introducing the two CP3 fields ni = U n̄i , with

n̄1 =

⎛
⎜⎜⎜⎜⎜⎝

1 − 1

2
|η1|2 − 1

2
|η3|2

η1

−1

2
η

†
4η1 − 1

2
η

†
2η3

η3

⎞
⎟⎟⎟⎟⎟⎠ , n̄2 =

⎛
⎜⎜⎜⎜⎜⎝

−1

2
η

†
1η4 − 1

2
η

†
3η2

η4

1 − 1

2
|η2|2 − 1

2
|η4|2

η2

⎞
⎟⎟⎟⎟⎟⎠ , (77)

where we parameterize as

ηi (x) = σi (x)+ iϑi (x)√
2

, (78)

with i = 1, 2, 3, 4, obeying the equal-time commutation relations between ηi and η j , or

[
ηi (x, t), η†

j (x, t)
]

= 2

ρ0
δi jδ(x − y), (79)

or [
σi (x, t), ϑ j (x, t)

] = 2i

ρ0
δi jδ(x − y). (80)

They are required so the SU(4) algebraic relation holds for Sa , Pa , and Sab. For a detailed discussion,
see Appendix A.

We calculate the isospin components (73) with the use of ni = U n̄i , and substitute them into the
effective Hamiltonian (17). In this way we obtain the effective Hamiltonian for ηi , which is shown
to be the same as the one for the NG modes derived in Ref. [27].

4.3. NG modes in the spin phase

As an illustration, we study the spin phase at σ0 = 0, where the transformation (74) is given by

U = 1√
2

⎛
⎜⎜⎜⎝

1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

⎞
⎟⎟⎟⎠ , (81)

by setting α, β = 0. We note that

n̄ =

⎛
⎜⎜⎜⎝

nS↑

nS↓

nA↑

nA↓

⎞
⎟⎟⎟⎠ = U †

⎛
⎜⎜⎜⎝

nf↑

nf↓

nb↑

nb↓

⎞
⎟⎟⎟⎠ = U †n, (82)

where

nSα = 1√
2
(nbα + nfα), nAα = 1√

2
(nbα − nfα), (83)

with α =↑,↓. The lowest-energy one-body electron state is the up-spin symmetric state, and the
second lowest energy state is the up-spin antisymmetric state. They are filled up at ν = 2. The
perturbative excitations ηi are as illustrated in Fig. 3(a).
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ΔSAS

ΔZ

η2

ν=1

ν=2

ν=3

ν=4

η1

η3

η4

S

A

S

A

ΔZ

ΔSAS

η2

ν=1

ν=2

ν=3

ν=4

η1

η3

η4

B

B

A

A

(a) (b)

Fig. 3. The lowest two energy levels are occupied in the ground state at ν = 2. Small fluctuations are the NG
modes η1, η2, η3, and η4. (a) For the spin phase, η1 and η2 describe the fluctuation from the up-spin symmetric
state to the down-spin symmetric state and from the up-spin antisymmetric state to the down-spin antisymmetric
state, respectively. Their energy levels are degenerated with the Zeeman gap �Z. On the other hand, η3 and
η4, which are fluctuations from the up-spin symmetric state to the down-spin antisymmetric state and from the
up-spin antisymmetric state to the down-spin symmetric state, have an energy gap of�Z ±�SAS, respectively.
(b) For the pseudospin phase, η1 and η2 describe the fluctuation from the up-spin bonding state to the up-spin
antibonding state and from the down-spin bonding state to the down-spin antibonding state, respectively. Their
energy levels are degenerated with the tunneling gap�SAS. On the other hand, η3 and η4, which are fluctuations
from the up-spin bonding state to the down-spin antibonding state and from the down-spin bonding state to the
up-spin antibonding state, have an energy gap of �SAS ±�Z, respectively.

It follows from (73), (74), and (77) that the isospin densities are explicitly given in terms of σi (x)

and ϑi (x) by

Sx = σ1 + σ2√
2

≡ σ̃1, Sy = ϑ1 + ϑ2√
2

≡ ϑ̃1, Rxx = σ1 − σ2√
2

≡ σ̃2,

Ryx = ϑ1 − ϑ2√
2

≡ ϑ̃2, Ryy = σ4 − σ3√
2

≡ −σ̃3, Rxy = ϑ3 − ϑ4√
2

≡ ϑ̃3,

Rxz = −σ4 + σ3√
2

≡ σ̃4, Ryz = −ϑ4 + ϑ3√
2

≡ ϑ̃4, Sz = 1 −
4∑

i=1

σ 2
i + ϑ2

i

2
= 1 −

4∑
i=1

σ̃ 2
i + ϑ̃2

i

2
,

Px = σ̃3σ̃4 + ϑ̃3ϑ̃4, Py = σ̃4ϑ̃2 − σ̃2ϑ̃4, Pz = −(σ̃2σ̃3 + ϑ̃2ϑ̃3),

Rzx = −(σ̃1σ̃2 + ϑ̃1ϑ̃2), Rzy = σ̃3ϑ̃1 − σ̃1ϑ̃3, Rzz = −(σ̃1σ̃4 + ϑ̃1ϑ̃4). (84)

Substituting them into (17), we obtain the effective Hamiltonian of the NG modes in terms of the
canonical sets of σ̃i and ϑ̃i as

Hspin = Js

∑
a=1,4

[
(∂k σ̃a)

2 + (∂k ϑ̃a)
2
]

+ J d
s

∑
a=2,3

[
(∂k σ̃a)

2 + (∂k ϑ̃a)
2
]

+ ρ0�Z

4

∑
=1,4

[
σ̃ 2

a + ϑ̃2
a

]
+
(
ρ0�Z

4
+ ρ0ε

−
X

) ∑
a=2,3

[
σ̃ 2

a + ϑ̃2
a

]

− ρ0�SAS

2

[
σ̃3σ̃4 + ϑ̃3ϑ̃4

]
+ ρ0�bias

2

[
σ̃2σ̃3 + ϑ̃2ϑ̃3

]
. (85)

The annihilation operators are defined by

ηs
i (x) = σ̌i (x)+ iϑ̌i (x)√

2
, (86)
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with

σ̌i ≡ ρ
1/2
� σ̃i , ϑ̌i ≡ ρ

1/2
� ϑ̃i , (87)

and they satisfy the commutation relations[
σ̌i (x, t), ϑ̌ j (y, t)

]
= iδi jδ(x − y), (88)

or [
ηs

i (x, t), ηs†
j (y, t)

]
= δi jδ(x − y), (89)

with i, j = 1, 2, 3, 4.
The effective Hamiltonian (85) reads in terms of the creation and annihilation variables (86) as

Hspin = 4Js

ρ0

∑
a=1,4

∂kη
s†
a ∂kη

s
a + 4J d

s

ρ0

∑
a=2,3

∂kη
s†
a ∂kη

s
a +�Z

∑
a=1,4

η
s†
a η

s
a + [�Z + 4ε−X ]

∑
a=2,3

η
s†
a η

s
a

+�bias[η
s†
2 η

s
3 + η

s†
3 η

s
2] −�SAS[ηs†

3 η
s
4 + η

s†
4 η

s
3]. (90)

The variables ηs
2, ηs

3, and ηs
4 are mixing by �SAS and �bias.

In the momentum space, the annihilation and creation operators are ηs
i,k and ηs†

i,k together with the
commutation relations [

ηs
i,k, η

s†
j,k′
]

= δi jδ(k − k′). (91)

For the sake of the simplicity we consider the balanced configuration with �bias = 0 in the rest of
this subsection. Then the Hamiltonian density is given by

H spin =
∫

d2k Hspin,

Hspin = Hspin
1 + Hspin

2 + Hspin
3 , (92)

where

Hspin
1 =

[
4Js

ρ0
k2 +�Z

]
η

s†
1,kη

s
1,k, (93)

Hspin
2 =

[
4J d

s

ρ0
k2 +�Z + 4ε−X

]
η

s†
2,kη

s
2,k, (94)

Hspin
3 =

[
4J d

s

ρ0
k2 +�Z + 4ε−X

]
η

s†
3,kη

s
3,k +

[
4Js

ρ0
k2 +�Z

]
η

s†
4,kη

s
4,k −�SAS

[
η

s†
3,kη

s
4,k + η

s†
4,kη

s
3,k

]
.

(95)

We first analyze the dispersion relation and the coherence length of ηs
1,k. From (93), we have

Eηs
1
(k) = 4Js

ρ0
k2 +�Z, (96)

ξηs
1

= 2lB

√
π Js

�Z
. (97)

The coherent length diverges in the limit �Z → 0. This mode is a pure spin wave since it describes
the fluctuation of Sx and Sy as in (84). Indeed, the energy (96), as well as the coherent length (97),
depend only on the Zeeman gap �Z and the intralayer stiffness Js .
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We next analyze those of ηs
2,k:

Eηs
2
(k) = 4J d

s

ρ0
k2 +�Z + 4ε−X , (98)

ξηs
2

= 2lB

√
π J d

s

�Z + 4ε−X
. (99)

They depend not only on�Z but also on the exchange Coulomb energy ε−X and the interlayer stiffness
originating in the interlayer Coulomb interaction. This mode is an R-spin wave since it describes the
fluctuation of Rxx and Ryx . From (96) and (98) we see that, in the one body picture, ηs

1 and ηs
2 have

the same energy gap �Z. Indeed, they are described in terms of η1 and η2, having the same energy
gap �Z (Fig. 3(a)).

We finally analyze those of ηs
3,k and ηs

4,k, which are coupled. Hamiltonian (95) can be written, in
matrix form,

Hspin
3 =

(
ηs

3,k

ηs
4,k

)† (
Ak −�SAS

−�SAS Bk

)(
ηs

3,k

ηs
4,k

)
, (100)

where

Ak = 4J d
s

ρ0
k2 +�Z + 4ε−X , Bk = 4Js

ρ0
k2 +�Z. (101)

Hamiltonian (100) can be diagonalized as

Hspin
3 =

(
η̃s

3,k

η̃s
4,k

)† (
E η̃

s
3 0

0 E η̃
s
4

)(
η̃s

3,k

η̃s
4,k

)
, (102)

where

E η̃
s
3 = 1

2

[
Ak + Bk +

√
(Ak − Bk)2 + 4�2

SAS

]
,

E η̃
s
4 = 1

2

[
Ak + Bk −

√
(Ak − Bk)2 + 4�2

SAS

]
, (103)

and the annihilation operator η̃s
i,k (i = 3, 4) given by the form

η̃s
3,k =

(√
C2

k + 4�2
SAS + Ck

)
η3,k − 2�SASη4,k√

2

(
C2

k + 4�2
SAS + Ck

√
C2

k + 4�2
SAS

) ,

η̃s
4,k =

(√
C2

k + 4�2
SAS − Ck

)
η3,k + 2�SASη4,k√

2

(
C2

k + 4�2
SAS − Ck

√
C2

k + 4�2
SAS

) , (104)

with Ck = Ak − Bk. The annihilation operators (104) satisfy the commutation relations[
η̃s

i,k, η̃
s†
j,k′
]

= δi jδ(k − k′), (105)

with i, j = 3, 4. We obtain the dispersions for the modes η̃s
i,k (i = 3, 4) from (101) and (103).
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By taking the limit k → 0 in (103), we have two gaps:

E
η̃s

3
k=0 = �Z + 2ε−X +

[
4(ε−X )

2 +�2
SAS

] 1
2
, E

η̃s
4

k=0 = �Z + 2ε−X −
[
4(ε−X )

2 +�2
SAS

] 1
2
. (106)

The gapless condition (E
η̃s

4
k=0 = 0) implies

�Z(�Z + 4ε−X )−�2
SAS = 0, (107)

which holds only along the boundary of the spin and CAF phases: see (4.17) in Ref. [30]. In the
interior of the spin phase we have�Z(�Z + 4ε−X )−�2

SAS > 0, which implies that no gapless modes
arise from η̃s

3 and η̃s
4. From (106), in the one body picture, η̃s

3 and η̃s
4 have the energy gap�Z ±�SAS,

respectively. Indeed, they are described in terms of η3 and η4 (Fig. 3(a)). These excitation modes are
R-spin waves coupled with the layer degree of freedom. There emerge four complex NG modes, one
describing the spin wave (ηs

1), and the other three the R-spin waves (ηs
2, η

s
3, η

s
4).

4.4. NG modes in the pseudospin phase

For the pseudospin phase, β is identified with the imbalanced parameter σ0, as we discussed in
Sect. 4.1 with (64). In this subsection, instead of β we express the effective Hamiltonian, the
dispersions, and the coherence length in terms of σ0, since it is a physical variable.

From (74), by setting α = 1, we have

U = 1√
2

⎛
⎜⎜⎜⎝

√
1 + σ0 −√

1 − σ0 0 0
0 0 −√

1 + σ0 −√
1 − σ0√

1 − σ0
√

1 + σ0 0 0
0 0 −√

1 − σ0
√

1 + σ0

⎞
⎟⎟⎟⎠ , (108)

and

n̄ =

⎛
⎜⎜⎜⎝

nB↑

nA↑

−nB↓

nA↓

⎞
⎟⎟⎟⎠ = U †

⎛
⎜⎜⎜⎝

nf↑

nf↓

nb↑

nb↓

⎞
⎟⎟⎟⎠ = U †n, (109)

where

nBα = 1√
2

(√
1 − σ0nbα +

√
1 + σ0nfα

)
, nAα = 1√

2

(√
1 + σ0nbα −

√
1 − σ0nfα

)
, (110)

with α =↑,↓. The lowest-energy one-body electron state is the up-spin bonding state, and the second
lowest energy state is the down-spin bonding state. They are filled up at ν = 2. The perturbative
excitations ηi are as illustrated in Fig. 3(b).

We go on to derive the effective Hamiltonian governing these NG modes. From (73), (74), and
(77), the isospin densities are given in terms of σ̃i (x) and ϑ̃i (x) as:

Px = σ0σ̃2 +
√

1 − σ 2
0

(
1 −

4∑
i=1

σ̃ 2
i + ϑ̃2

i

2

)
, Pz = −

√
1 − σ 2

0 σ̃2 + σ0

(
1 −

4∑
i=1

σ̃ 2
i + ϑ̃2

i

2

)
,

Sx = −
(
σ̃1σ̃4 + ϑ̃1ϑ̃4

)
, Sy = σ̃1ϑ̃3 − σ̃3ϑ̃1, Sz = σ̃3σ̃4 + ϑ̃3ϑ̃4,

Rzy = ϑ̃1, Py = ϑ̃2, Rxy = ϑ̃3, Ryy = σ̃4,
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Rxx = −
√

1 − σ 2
0

(
σ̃2σ̃3 + ϑ̃2ϑ̃3

)
+ σ0σ̃3, Rxz = −σ0

(
σ̃2σ̃3 + ϑ̃2ϑ̃3

)
−
√

1 − σ 2
0 σ̃3,

Ryx =
√

1 − σ 2
0

(
σ̃2ϑ̃4 − σ̃4ϑ̃2

)
− σ0ϑ̃4, Ryz = σ0

(
σ̃2ϑ̃4 − σ̃4ϑ̃2

)
+
√

1 − σ 2
0 ϑ̃4,

Rzx = −
√

1 − σ 2
0

(
σ̃1σ̃2 + ϑ̃1ϑ̃2

)
+ σ0σ̃1, Rzz = −σ0

(
σ̃1σ̃2 + ϑ̃1ϑ̃2

)
−
√

1 − σ 2
0 σ̃1. (111)

Now, we substitute the isospin densities (111) into the effective Hamiltonian (17). In this way we
derive the effective Hamiltonian of the NG modes in terms of the canonical sets of σ̃i and ϑ̃i (or with
σ̌i and ϑ̌i ).

In the momentum space, this reads∫
d2kHp =

∫
d2kHp

1 +
∫

d2kHp
2 +
∫

d2kHp
3, (112)

where

Hp
1 = Ap

kσ̌
†
1,kσ̌1,k + Bp

k ϑ̌
†
1,kϑ̌1,k, (113)

Hp
2 = Cp

k σ̌
†
2,kσ̌2,k + Bp

k ϑ̌
†
2,kϑ̌2,k, (114)

Hp
3 = ( �Pp

k )
†Mp �Pp

k , (115)

with σ̌i,k, and ϑ̌i,k given by (87), and

Ap
k = 2Jσ0

1

ρ0
k2 + �SAS

2
√

1 − σ 2
0

− 2ε−X (1 − σ 2
0 ), Bp

k = 2J d
s

ρ0
k2 + �SAS

2
√

1 − σ 2
0

,

Cp
k = 2Jσ0

1

ρ0
k2 + �SAS

2
√

1 − σ 2
0

+ εcap(1 − σ 2
0 ), Jσ0

1 = (1 − σ 2
0 )Js + σ 2

0 J d
s ,

�Pp
k =

⎛
⎜⎜⎜⎝
ϑ̌4

ϑ̌3

σ̌3

σ̌4

⎞
⎟⎟⎟⎠ , Mp =

⎛
⎜⎜⎜⎜⎝

Ap
k −�Z/2 0 0

−�Z/2 Bp
k 0 0

0 0 Ap
k −�Z/2

0 0 −�Z/2 Bp
k

⎞
⎟⎟⎟⎟⎠ . (116)

We first analyze the dispersions and the coherence lengths from (114), since it describes the
pseudospin wave. It is diagonalized as:

Hp
2 =
∫

d2k Ep
2η

p†
2,kη

p
2,k, (117)

with

Ep
2,k = 2

√
Bp

k Cp
k , (118)

η
p
2,k = 1√

2

⎛
⎝(Cp

k

Bp
k

) 1
4

σ̌2,k + i

(
Bp

k

Cp
k

) 1
4

ϑ̌2,k

⎞
⎠ , (119)

where ηp
2,k satisfy the commutation relation[

η
p
2,k, η

p†
2,k′
]

= δ(k − k′). (120)

Since the ground state is a squeezed coherent state due to the capacitance energy εcap, it is more
convenient [3] to use the dispersion and the coherence lengths of σ̌2 and ϑ̌2 separately. The dispersion
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relations are given by

E σ̌2
k = 2Jσ0

1

ρ0
k2 + �SAS

2
√

1 − σ 2
0

+ εcap(1 − σ 2
0 ), E ϑ̌2

k = 2J d
s

ρ0
k2 + �SAS

2
√

1 − σ 2
0

, (121)

and their coherence lengths are

ξ σ̌2 = 2lB

√√√√√ π Jσ0
1

�SAS√
1−σ 2

0

+ 2εcap(1 − σ 2
0 )
, ξ ϑ̌2 = 2lB

√√√√π J d
s

√
1 − σ 2

0

�SAS
. (122)

A similar analysis can be adopted for (113), which is diagonalized as:

Hp
1 =
∫

d2k Ep
1η

p†
1,kη

p
1,k (123)

with

Ep
1 = 2

√
Bp

k Ap
k, (124)

η
p
1,k = 1√

2

⎛
⎝( Ap

k

Bp
k

) 1
4

σ̌1,k + i

(
Bp

k

Ap
k

) 1
4

ϑ̌1,k

⎞
⎠ , (125)

where ηp
1,k satisfy the commutation relation[

η
p
1,k, η

p†
1,k′
]

= δ(k − k′). (126)

The dispersion relations of the canonical sets of σ̌1 and ϑ̌1 are given by

E σ̌1
k = 2Jσ0

1

ρ0
k2 + �SAS

2
√

1 − σ 2
0

− 2ε−X (1 − σ 2
0 ), E ϑ̌1

k = 2J d
s

ρ0
k2 + �SAS

2
√

1 − σ 2
0

. (127)

Their coherence lengths are

ξ σ̌1 = 2lB

√√√√√ π Jσ0
1

�SAS√
1−σ 2

0

− 4ε−X (1 − σ 2
0 )
, ξ ϑ̌1 = 2lB

√√√√π J d
s

√
1 − σ 2

0

�SAS
. (128)

It appears that ξ σ̌1 is ill-defined for�SAS → 0 in (128). This is not the case due to the relation (130)
in the pseudospin phase, which we mention soon. We see that from (118) and (124), in the one body
picture, ηp

1 and ηp
2 have the same energy gap�SAS. They are described in terms of η1 and η2, having

the same energy gap �SAS (Fig. 3(b)).
Finally, analyzing the Hamiltonian (115) as in the case of the spin phase, we obtain the condition

for the existence of a gapless mode:

�SAS√
1 − σ 2

0

⎡
⎣ �SAS√

1 − σ 2
0

− 4ε−X (1 − σ 2
0 )

⎤
⎦−�2

Z = 0. (129)

This occurs along the pseudospin-canted boundary: see (5.3) and (5.4) in Ref. [30]. Inside the
pseudospin phase, since we have

�SAS√
1 − σ 2

0

⎡
⎣ �SAS√

1 − σ 2
0

− 4ε−X (1 − σ 2
0 )

⎤
⎦−�2

Z > 0, (130)

there are no gapless modes.

21/33

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2013/5/053I01/1510749 by guest on 04 N

ovem
ber 2022



PTEP 2013, 053I01 Y. Hama et al.

4.5. NG modes in the CAF phase

We derive the effective Hamiltonian of the NG modes in terms of the canonical sets of σ̌i and
ϑ̌i . This can be done by substituting (A8) and (A9) into the Hamiltonian (17). We first derive the
Hamiltonian, without taking any limits. Since the expression becomes too extensive, we introduce
the notation

cθα ≡ cos θα, sθα ≡ sin θα, cθβ ≡ cos θβ, sθβ ≡ sin θβ,

cθδ ≡ cos θδ, sθδ ≡ sin θδ. (131)

to make the expression for the effective Hamiltonian more manageable.
Working in the momentum space, the effective Hamiltonian reads

H c =
∫

d2kHc =
∫

d2kHc
1 +
∫

d2kHc
2, (132)

where

Hc
1 =
(

2

ρ0
Jα1 k2 +

�0c−1
θβ

2

)
ϑ̌

†
1,kϑ̌1,k

+
(

2

ρ0
(c2
θδ

Js + s2
θδ

Jβ1 )k
2 +

M − 4(s2
θδ

c2
θβ

+ c2
θδ
)ε−X

2

)
σ̌

†
1,kσ̌1,k, (133)

Hc
2 = �Qc†

k Mc
2

�Qc
k, (134)

with

Jα1 = c2
θα

Js + s2
θα

J d
s , M = 4c2

θα
ε−X +�0c−1

θβ
,

�Qc
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ϑ̌2,k

ϑ̌4,k

ϑ̌3,k

σ̌2,k

σ̌4,k

σ̌3,k

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, Mc

2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ac cc −ec 0 0 0
cc Cc − f c 0 0 0

−ec − f c Fc 0 0 0
0 0 0 Bc ac bc

0 0 0 ac Dc dc

0 0 0 bc dc Ec

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (135)

The Matrix elements in (135) are given by

Ac = 2k2

ρ0

[
c2
θδ

Jβ3 + s2
θδ

J d
s

]
+ M

2
− 2s2

θβ
c2
θδ
ε−X , Bc = 2k2

ρ0

[
c2
θα

Jβ3 + s2
θα

Jβ1

]
+ �0

2cθβ
+

c2
θβ
εα

2
,

Cc = 2k2

ρ0
Jβ1 + M

2
− 2c2

θβ
ε−X , Dc = 2k2

ρ0

[
c2
θδ

(
s2
θα

Jβ3 + c2
θα

Jβ1

)
+ s2

θδ
Jα1

]
+ �0

2cθβ
+

c2
θδ

s2
θβ
εα

2
,

Ec = 2k2

ρ0

[
s2
θδ

(
c2
θα

Jβ3 + s2
θα

Jβ1

)
+ c2

θδ
Jα3

]
+ M

2
+ s2

θβ
s2
θδ

c2
θα
εcap − 2(c2

θβ
s2
θδ

+ c2
θδ
)s2
θα
ε−X ,

Fc = 2k2

ρ0
J d

s + M

2
, (136)
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and

ac = 2k2

ρ0
cθδc2θα Jβ2 + s2θβcθδ

4
εα, bc = −2k2

ρ0
sθδs2θα Jβ2 + L + �SAS

4�0
cθαs2θβ εα,

cc = 2k2

ρ0
cθδ Jβ2 + s2θβcθδ ε

−
X ,

dc = −s2θαs2θδ

4

[
2k2

ρ0

(
Jβ1 + J d

s − Jβ3 − Js

)
+ s2

θβ
(2ε−X − εcap)

]
− N

2
,

ec = − L

2
, f c = N

2
, (137)

with

Jα3 = c2
θα

J d
s + s2

θα
Js, Jβ1 = c2

θβ
Js + s2

θβ
J d

s , Jβ2 = s2θβ

2
(J d

s − Js), Jβ3 = c2
θβ

J d
s + s2

θβ
Js,

L = −s2θβ

2

[
sθδs2θα (2ε

−
X − εcap)+ cθα

�SAS

�0
εα

]
, εα = 4c2

θα
ε−X + 2s2

θα
εcap,

N =
s2θδs2θαs2

θβ

2
(2ε−X − εcap)+ �SAS

�0
(cθδcθαs2

θβ
εα +�Z ), (138)

where we denote s2θα = sin 2θα , s2θβ = sin 2θβ , and s2θδ = sin 2θδ .
It can be verified that the effective Hamiltonian (133) and (134) reproduces the effective Hamil-

tonian in the spin phase (92) by taking the limit α, β → 0. On the other hand, we reproduce the
effective Hamiltonian in the pseudospin phase (112) by taking the limit α → 1 in (133) and (134).

The effective Hamiltonian in the CAF phase is too complicated to make a further analysis. We take
the limit �SAS → 0 to examine if some simplified formulas are obtained. In particular, we would
like to seek gapless modes. Such gapless modes will play an important role in driving the interlayer
coherence in the CAF phase. In this limit, we have:

cos θβ = �SAS

�Z
, sin θβ = ±

√
1 −
(
�SAS

�Z

)2

, cos θδ = cos θα, sin θδ = sin θα,

α2 = |σ0|. (139)

From (58) and (139), the classical ground state reads:

S0
z = 1 − |σ0|, P0

z = σ0, R0
xx = sgn(σ0)R0

yy, R0
yy = −

√
|σ0|(1 − |σ0|), (140)

all others being zero. We assume σ0 > 0 for definiteness. The transformation (74) has a simple
expression:

U † =

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0
√

1 − |σ0|
√|σ0| 0

0 −√|σ0|
√

1 − |σ0| 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ . (141)

We find n̄ = U †n is of the form (nf↑, nS
f↓b↑, nA

f↓b↑, nb↓)t by setting

nS
f↓b↑ = (

√
1 − |σ0|nf↓ +

√
|σ0|nb↑), nA

f↓b↑ = (−
√

|σ0|nf↓ +
√

1 − |σ0|nb↑). (142)

Consequently, the ground state is such that |nf↑〉 and |nA
f↓b↑〉 are filled up: The NG modes η1 and

η3 describe an excitation from the state |nf↑〉 to |nS
f↓b↑〉 and |nb↓〉, respectively, while the NG modes

23/33

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2013/5/053I01/1510749 by guest on 04 N

ovem
ber 2022



PTEP 2013, 053I01 Y. Hama et al.

0.005 0.010 0.015 0.020

50

100

150

200

E
(k

) 
 (K

)

E3

E4

E4

E1=E2E1=E2

k  (1/A)

0.005 0.015

3.0

2.0
1.0

Fig. 4. Dispersion relations (145) for the four NG modes Ei . The sample parameters are d = 231 Å, B ≈ 5.6 T,
ρ0 = 2.7 × 1015 m−2, and α = 0.1. Inset: Dispersion relations near k = 0. It is clear that E4(k) is linear.

η2 and η4 describe an excitation from the state |nA
f↓b↑〉 to |nb↓〉 and |nS

f↓b↑〉, respectively. A similar

analysis can be done for σ0 < 0: |nb↑〉 and |nS
f↑b↓〉 are filled up, where

nS
f↑b↓ =

(√
1 − |σ0|nf↑ +

√
|σ0|nb↓

)
, nA

f↓b↑ =
(
−
√

|σ0|nf↑ +
√

1 − |σ0|nb↓
)
, (143)

and the gapless mode η4 describes an excitation from the state |nS
f↑b↓〉 to |nA

f↑b↓〉.
By using (139) with (133), and (134) with (135), (136), (137), and (138), we have the Hamiltonian

H =
4∑

i=1

∫
d2k Eiη

c†
i,kη

c
i,k, (144)

together with the dispersion relations (Fig. 4):

E1 = E2 = 4k2

ρ0
Jα1 +�Z, E3 = 4k2

ρ0
J d

s + 2�Z + 8 cos2 θαε
−
X ,

E4 = |k|
√√√√8J d

s

ρ0

(
2k2

ρ0
(cos2 2θα J d

s + sin2 2θα Js)+ 2 sin2 2θα(ε
−
D − ε−X )

)
, (145)

where ηc
i,k (i = 1, 2, 3, 4) are the annihilation operators

ηc
1,k = ϑ̌1,k − iσ̌1,k√

2
, ηc

2,k = ϑ̌2,k − iσ̌2,k√
2

, ηc
3,k =

(ρ0

4

) 1
2 (
σ3,k + iϑ3,k

)
,

ηc
4,k =

(ρ0

4

) 1
2

⎛
⎝(λσ4

λϑ4

) 1
4

σ4,k + i

(
λϑ4

λσ4

) 1
4

ϑ4,k

⎞
⎠ , (146)

with

λϑ4 = 2k2

ρ0
J d

s , λσ4 = 2k2

ρ0
(cos2 2θα J d

s + sin2 2θα Js)+ 2 sin2 2θα(ε
−
D − ε−X ). (147)

The annihilation operators ηi,k satisfy the commutation relation[
ηc

i,k, η
c†
j,k′
]

= δi jδ(k − k′), (148)

with i, j = 1, 2, 3, 4.
We summarize the NG modes in the CAF phase in the limit �SAS → 0. It is to be emphasized

that there emerges one gapless mode, ηc
4,k, reflecting the realization of the exact and its spontaneous

24/33

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2013/5/053I01/1510749 by guest on 04 N

ovem
ber 2022



PTEP 2013, 053I01 Y. Hama et al.

breaking of the U(1) symmetry generated by
Tyx−Txy√

2
. Furthermore, it has the linear dispersion rela-

tion as in (145), which leads to a superfluidity associated with this gapless mode. All other modes
have gaps.

4.6. CAF phase in �SAS → 0 up to O(�3
SAS)

We focus solely on the gapless mode ηc
4 (or η4) by neglecting all other gapped modes, and derive the

effective Hamiltonian for η4 up to O(�3
SAS). We assume σ0 > 0 for simplicity.

The two CP3 fields to be used in the perturbation theory are given by n̄ = U †n with (74) and (77), or

n̄1 =

⎛
⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎠ , n̄2 =

⎛
⎜⎜⎜⎜⎝

0
η4

1 − 1

2
|η4|2

0

⎞
⎟⎟⎟⎟⎠ . (149)

Using (62), we can exactly determine β as

β2 = �2
SASα

2 +�2
Z(1 − α2)

�2
SASα

4 + σ 2
0�

2
Z(1 − α2)

σ 2
0 . (150)

Note that in the limit�SAS → 0 we obtain β → 1, which is in accord with our previous calculations.
Substituting (150) into (59), we find

�2
Z = �2

SASα
4 + σ 2

0�
2
Z(1 − α2)

α2(α2 − σ 2
0 )

+ 4ε−X
σ 2

0 − α4

α3

√
�2

SASα
2 +�2

Z(1 − α2)√
α2 − σ 2

0

. (151)

The relation (151) determines the value of α2 as a function of �Z, �SAS, and σ0. Substituting this
value into (150) we obtain β2 as a function of �Z, �SAS, σ0. We have thus summarized our prob-
lem into a single equation (151). When �SAS is exactly zero, (151) yields the relation α2 = |σ0|.
Therefore, for weak tunnelings, we search for a solution in the form

α2 = |σ0| + λ�2
SAS + O(�4

SAS), (152)

where we expect λ to be a constant. In order to find the value of λ we use (152) and expand the
relevant combinations in powers of �2

SAS. In particular, for the first and second terms of (151) we
find:

�2
SASα

4 + σ 2
0�

2
Z(1 − α2)

α2(α2 − σ 2
0 )

= �2
Z

[
1 + (1 − λ�2

Z)�
2
SAS

(1 − |σ0|)�2
Z

− λ(2 − |σ0|)
|σ0|(1 − |σ0|)�

2
SAS

]
+ O(�4

SAS),

4ε−X
σ 2

0 − α4

α3

√
�2

SASα
2 +�2

Z(1 − α2)√
α2 − σ 2

0

= −λ8ε−X�Z

|σ0| �2
SAS + O(�4

SAS). (153)

Substituting these into (151) we obtain

�2
Z = �2

Z

[
1 + (1 − λ�2

Z)�
2
SAS

(1 − |σ0|)�2
Z

− λ(2 − |σ0|)
|σ0|(1 − |σ0|)�

2
SAS

]
− λ

8ε−X�Z

|σ0| �2
SAS + O(�4

SAS). (154)

The lowest terms �0
SAS disappear automatically. Requiring the �2

SAS terms to vanish, we obtain

λ = 1

�Z

|σ0|
2(�Z + 4ε−X (1 − |σ0|))

, (155)
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and for α2 we summarize as

α2 = |σ0|
(

1 + �Z

2(�Z + 4ε−X (1 − |σ0|))
�2

SAS

�2
Z

)
+ O(�4

SAS). (156)

Using this in (150) we come to

β2 = 1 − �2
SAS

�2
Z

+ O(�4
SAS). (157)

Finally, using (156) and (157) in (75) and (60), we find:

sin2 θδ = |σ0|
(

1 + �Z + 8ε−X (1 − |σ0|))
2(�Z + 4ε−X (1 − |σ0|))

�2
SAS

�2
Z

)
+ O(�4

SAS), (158)

�bias = sgn(σ0)�Z

[
1 + 4ε−X + 8(ε−D − ε−X )|σ0|

�Z
− 1

2

�2
SAS

�2
Z

]
+ O(�4

SAS), (159)

respectively. Then by using (156), (157), (158), and (159) with (17), we obtain the effective
Hamiltonian for the gapless mode η4 (σ4 and ϑ4):

H = Jϑ4

2
(∇ϑ4)

2 + Jσ4

2
(∇σ4)

2 + 4ρ0(ε
−
D − ε−X )|σ0|

(
1 − |σ0| − 1

2

�2
SAS

�2
Z

)
, (160)

with

Jϑ4 = 2

(
J d

s + J−
s
�2

SAS

�2
Z

)
, Jσ4 = 2

(
J d

s + 8J−
s |σ0|(1 − |σ0|)+ J−

s (1 − 4|σ0|)
�2

SAS

�2
Z

)
.

(161)

Taking �2
SAS = 0, we reproduce the previously calculated expressions (144) and (145).

We wish to derive the effective Hamiltonian for the nonperturbative analysis of the phase field
ϑ(x). For this purpose, it is necessary to start with the parameterization of the Grassmannian field
valid for arbitrary values of ϑ(x). We make an ansatz:

n2 =

⎛
⎜⎜⎜⎝

0
−e+iϑ(x)√σ(x)√

1 − σ(x)

0

⎞
⎟⎟⎟⎠ = eiσ0ϑ(x)

⎛
⎜⎜⎜⎝

0
−e+i(1−σ0)ϑ(x)

√
σ(x)

e−iσ0ϑ(x)
√

1 − σ(x)

0

⎞
⎟⎟⎟⎠ . (162)

We expand it around ϑ(x) = 0 and σ(x) = σ0 by setting δσ (x) ≡ σ(x)− σ0. Up to the linear orders
in ϑ(x) and δσ (x), it is straightforward to show that

e+i(1−σ0)ϑ(x)
√
σ(x) = √

σ0 −
√

1 − σ0η4(x),

e−iσ0ϑ(x)
√

1 − σ(x) =
√

1 − σ0 + √
σ0η4(x), (163)

where we have set

η4(x) = − σ(x)− σ0

2
√
σ0(1 − σ0)

− iϑ(x)
√
σ0(1 − σ0). (164)

By requiring the commutation relation (79), we find
ρ0

2
[σ(x), ϑ(y)] = iδ(x − y). (165)

We have shown that the CP3 field (162) is reduced to n2 in (149) in the linear order of the perturbation
fields, apart from the U(1) factor e−iσ0ϑ(x). We may drop it off the parameterization since the CP3

field is defined up to such a U(1) factor. Indeed, such a factor does not contribute to the isospin fields.
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Here we parameterize the CP3 fields as

n1 =

⎛
⎜⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎟⎠ , n2 =

⎛
⎜⎜⎜⎝

0
−e+iϑ(x)/2√σ(x)

e−iϑ(x)/2√1 − σ(x)

0

⎞
⎟⎟⎟⎠ (166)

for σ(x) > 0, and

n1 =

⎛
⎜⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎟⎠ , n2 =

⎛
⎜⎜⎜⎝

e+iϑ(x)/2√1 + σ(x)

0
0

e−iϑ(x)/2√−σ(x)

⎞
⎟⎟⎟⎠ (167)

for σ(x) < 0. The isospin density fields are expressed in terms of σ(x) and ϑ(x):

Sz(x) = 1 − |σ(x)|, Pz(x) = σ(x),

Ryy(x) = sgn(σ0)Rxx (x) = −
√

|σ(x)|(1 − |σ(x)|) cosϑ(x),

Ryx (x) = −sgn(σ0)Rxy(x) = −
√

|σ(x)|(1 − |σ(x)|) sinϑ(x), (168)

with all others being zero. The ground-state expectation values are 〈σ(x)〉 = σ0, 〈ϑ(x)〉 = 0, with
which the order parameters (140) are reproduced from (168). It is notable that the fluctuations of the
phase field ϑ(x) affect both the spin and pseudospin components of the R-spin. This is very different
from the spin wave in the monolayer QH system or the pseudospin wave in the bilayer QH system at
ν = 1. Hence we call it the entangled spin–pseudospin phase field ϑ(x).

By substituting (168) into (17), apart from irrelevant constant terms, the resulting effective
Hamiltonian is:

Heff = Jϑ
2
(∇ϑ)2 + Jσ

2
(∇σ)2 + ρ�ε

ν=1
cap (σ − σ0)

2, (169)

where we have used

�bias = sgn(σ0)
[
�Z + 4ε−X + 2εν=1

cap |σ0|
]
, (170)

Jσ = 4Js + (2|σ0| − 1)2

|σ0|(1 − |σ0|) J d
s , Jϑ = 4J d

s |σ0|(1 − |σ0|). (171)

When we require the equal-time commutation relation,

ρ0

2
[σ(x), ϑ(y)] = iδ(x − y), (172)

the Hamiltonian (169) is second quantized, and it has the linear dispersion relation

Ek = |k|
√

2Jϑ
ρ0

(
2Jσ
ρ0

k2 + 2εν=1
cap

)
. (173)

This agrees with E4 in Eq. (145). It should be emphasized that the effective Hamiltonian (169) is
valid in all orders of the phase field ϑ(x). It may be regarded as a classical Hamiltonian as well,
where (172) should be replaced with the corresponding Poisson bracket.

The effective Hamiltonian (169) forϑ(x) and σ(x) reminds us of the one that governs the Josephson
effect at ν = 1. The main difference is the absence of the tunneling term, which implies that there
exists no Josephson tunneling. We have shown that the effective Hamiltonian is correct up to
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O(�3
SAS) as�SAS → 0. Nevertheless, the Josephson supercurrent is present within the layer, which

is our main issue.
By using the Hamiltonian (169) and the commutation relation (172), we obtain the equations of

motion:

�∂tϑ(x) = 2Jσ
ρ0

∇2σ(x)− 2εν=1
cap (σ (x)− σ0), (174)

�∂tσ(x) = −2Jϑ
ρ0

∇2ϑ(x). (175)

4.7. Josephson supercurrents in the CAF phase

We now study the electric Josephson supercurrent carried by the gapless mode ϑ(x) in the CAF
phase, where the further analysis goes in parallel with that given for ν = 1.

The electron densities are ρf(b)
e = −eρ0 (1 ± Pz) /2 = −eρ0 (1 ± σ(x)) /2 on each layer. Taking

the time derivative and using (175), we find

∂tρ
f
e = −∂tρ

b
e = eJϑ

�
∇2ϑ(x). (176)

The time derivative of the charge is associated with the current via the continuity equation, ∂tρ
f(b)
e =

∂iJ f(b)
i . We thus identify J f(b)

i = ±J Jos
i (x)+ constant, where

J Jos
i (x) ≡ eJϑ

�
∂iϑ(x). (177)

Consequently, the current J Jos
x (x) flows when there exists inhomogeneity in the phase ϑ(x). Such a

current is precisely the Josephson supercurrent. It is intriguing that the current does not flow in the
balanced system since Jϑ = 0 at σ0 = 0.

4.8. Quantum Hall effects in the CAF phase

Let us inject the current Jin into the x direction of the bilayer sample, and assume the system to be
homogeneous in the y direction (Fig. 5). By applying the same argument as given in Sect. 3.5, we
show the anomalous Hall resistance behaviours affected by the phase coherence in the CAF phase.

The current for each layer is the sum of the Hall current and the Josephson current:

J f
x (x) = ν

RK

ρf
0

ρ0
Ey + J Jos

x , J b
x (x) = ν

RK

ρb
0

ρ0
Ey − J Jos

x . (178)

We apply these formulas to analyze the counterflow and drag experiments without tunneling. With
the same argument as given in Sect. 3.5, we have

Rf
xy ≡ E f

y

J f
x

= 0, Rb
xy ≡ Eb

y

J b
x

= 0 (179)

in the counterflow experiment. All the input current is carried by the Josephson supercurrent, J Jos
x =

Jin. It generates such an inhomogeneous phase field that ϑ(x) = (�/eJϑ)Jinx .
On the other hand, in the drag experiment, we have Jin = J f

x = (ν/RK)Ey , or

Rf
xy ≡ E f

y

J f
x

= RK

ν
=1

2
RK at ν = 2. (180)

A part of the input current is carried by the Josephson supercurrent, J Jos
x = 1

2(1 − σ0)Jin.
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R R

R Rspin current spin current

(a) (b)

(c) (d)

Fig. 5. Schematic illustration of the spin supercurrent flowing along the x axis in the counterflow geometry.
(a) All spins are polarized into the positive z axis due to the Zeeman effect at σ0 = 0. No spin current flows.
(b) All electrons belong to the front layer at σ0 = 1. No spin current flows. (c) In the CAF phase for σ0 > 0,
some up-spin electrons are moved from the back layer to the front layer by flipping spins. An NG mode appears
associated with this charge–spin transfer. The interlayer phase difference ϑ(x) is created by feeding a charge
current Jin to the front layer, which also drives the spin current. Electrons flow in each layer as indicated by
the dotted horizontal arrows, and the spin current flows as indicated by the solid horizontal arrow. (d) In the
CAF phase for σ0 < 0, similar phenomena occur but the direction of the spin current becomes opposite.

In conclusion, we predict the anomalous Hall resistance (179) and (180) in the CAF phase at ν = 2
by carrying out similar experiments [11–13] due to Kellogg et al. and Tutuc et al. in the imbalanced
configuration (σ0 
= 0).

4.9. Spin Josephson supercurrent in the CAF phase

An intriguing feature of the CAF phase is that the phase field ϑ(x) describes the entangled spin–
pseudospin coherence according to the basic formula (168).

Up to O((σ − σ0)
2), we have Sz = 1 − |σ(x)|, and we obtain

∂tρ
spin
b↑ = ∂tρ

spin
f↓ = Jϑ

4
[1 + sgn(σ0)]∂

2
xϑ(x), (181)

∂tρ
spin
f↑ = ∂tρ

spin
b↓ = − Jϑ

4
[1 − sgn(σ0)]∂

2
xϑ(x). (182)

The time derivative of the spin is associated with the spin current via the continuity equation,
∂tρ

spin
α (x) = ∂xJ spin

α (x), for each α. We thus identify

J spin
b↑ (x) = J spin

f↓ (x) = Jϑ
2
∂xϑ(x), for σ0 > 0, (183)

J spin
f↑ (x) = J spin

b↓ (x) = − Jϑ
2
∂xϑ(x), for σ0 < 0. (184)

The spin current J spin
α (x) flows along the x axis when there exists an inhomogeneous phase

difference ϑ(x).
In the counterflow experiment, the total charge current along the x axis is zero: J f

x (x)+
J b

x (x) = 0. Consequently, the input current generates a pure spin current along the x axis:

J spin
x = J spin

f↑ + J spin
f↓ + J spin

b↑ + J spin
b↓ = sgn(σ0)

�

e
Jin. (185)
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This current is dissipationless since the dispersion relation is linear. It is appropriate to call it a
spin Josephson supercurrent. It is intriguing that the spin current flows in the opposite directions
for σ0 > 0 and σ0 < 0, as illustrated in Fig. 5. A comment is in order: The spin current only flows
within the sample, since spins are scattered in the resistor R and spin directions become random
outside the sample.

5. Conclusion

In this paper, we have derived the effective Hamiltonian for the NG modes based on the Grassmannian
formalism. We have first reproduced the perturbative results on the dispersions and coherence lengths
obtained in Ref. [27]. We have then presented the effective theory describing the interlayer coherence
in the bilayer QH system at ν = 1, 2. The Grassmannian formalism shows a clear physical picture
of the spontaneous development of an interlayer phase coherence. It is to be emphasized that the
Grassmannian formalism enables us to analyze nonperturbative phase-coherent phenomena such
as the Josephson supercurrent. The nonperturbative analysis was beyond the scope of Ref. [27].
It has been argued [3] that the interlayer coherence is due to the Bose–Einstein condensation of
composite bosons, which are single electrons bound to magnetic flux quanta. The composite bosons
are described by the CP fields, from which the Grassmannian field is composed.

We have explored phase-coherent phenomena in the bilayer system. At ν = 1, the interlayer phase
coherence due to the pseudospin, governed by the NG mode describing a pseudospin wave, is devel-
oped spontaneously. On the other hand, the phase coherence in the CAF phase is the entangled
spin–pseudospin phase coherence governed by the NG mode ϑ(x) describing the R-spin accord-
ing to the formula (168). We have predicted the anomalous Hall resistivity in the counterflow and
drag experiments. It has been shown to exhibit precisely the same behaviour for ν = 1 and ν = 2.
The difference between them is that the supercurrent flows both in balanced and imbalanced systems
at ν = 1 but only in imbalanced systems at ν = 2. Furthermore, a spin Josephson supercurrent flows
in the CAF phase in the counterflow geometry, but not for ν = 1. In other words, the net spin current
is nonzero for the CAF phase, while it is zero for ν = 1. This is due to the spin structure such that
the spins are canted coherently and making antiferromagnetic correlations between the two layers at
ν = 2, while the spin is actually frozen and therefore all of the spins are pointing to the positive z
axis in both layers at ν = 1 in the limit �SAS → 0.
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Appendix. SU(4) algebra

The special unitary group SU(N) has (N 2 − 1) generators. According to the standard notation
from elementary particle physics [31], we denote them as λA, A = 1, 2, . . . , N 2 − 1, which are
represented by Hermitian, traceless, N × N matrices, and normalize them as

Tr(λAλB) = 2δAB . (A1)

They are characterized by

[λA, λB] = 2i f ABCλC , {λA, λB} = 4

N
2dABCλC , (A2)

30/33

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2013/5/053I01/1510749 by guest on 04 N

ovem
ber 2022



PTEP 2013, 053I01 Y. Hama et al.

where f ABC and dABC are the structure constants of SU(N). We have λA = τA (the Pauli matrix)
with f ABC = εABC and dABC = 0 in the case of SU(2).

This standard representation is not convenient for our purpose because the spin group is
SU(2)× SU(2) in the bilayer electron system with the four-component electron field as � =
(ψ f↑, ψ f↓, ψb↑, ψb↓). Embedding SU(2)× SU(2) into SU(4), we define the spin matrix by

τ
spin
a =

(
τa 0
0 τa

)
, (A3)

where a = x, y, z, and the pseudospin matrices by,

τ
ppin
x =

(
0 12

12 0

)
, τ

ppin
y =

(
0 −i12

i12 0

)
, τ

ppin
z =

(
12 0
0 −12

)
, (A4)

where 12 is the unit matrix in two dimensions. Nine remaining matrices are simple products of the
spin and pseudospin matrices:

τ
spin
a τ

ppin
x =

(
0 τa

τa 0

)
, τ

spin
a τ

ppin
y =

(
0 −iτa

iτa 0

)
, τ

spin
a τ

ppin
z =

(
τa 0
0 −τa

)
. (A5)

We denote them Ta0 ≡ 1
2τ

spin
a , T0a ≡ 1

2τ
ppin
a , Tab ≡ 1

2τ
spin
a τ

ppin
b . They satisfy the normalization

condition

Tr(TμνTγ δ) = δμγ δνδ, (A6)

and the commutation relations

[Tμν, Tγ δ] = i fμν,γ δ,μ′ν′ Tμ′ν′, (A7)

where fμν,γ δ,μ′ν′ is the SU(4) structure constant in the basis (A3)–(A5). Greek indices run over
0, x, y, z.

From (74), (75), and (77), the explicit form of the isospin densities in terms of ηi is given by:

I0x = − cos θα sin θβIc
0x + cos θα cos θβ cos θδIc

0z − sin θα cos θβ cos θδIc
xx − sin θα sin θβIc

xz

− cos θα cos θβ sin θδIc
yy + sin θα cos θβ sin θδIc

z0,

I0y = cos θδIc
0y + sin θδIc

yz,

I0z = − cos θα cos θβIc
0x − cos θα sin θβ cos θδIc

0z + sin θα sin θβ cos θδIc
xx − sin θα cos θβIc

xz

+ cos θα sin θβ sin θδIc
yy − sin θα sin θβ sin θδIc

z0,

Ix0 = cos θδIc
x0 − sin θδIc

zx ,

Ixx = − sin θα cos θβIc
0x − sin θα sin θβ cos θδIc

0z − cos θα sin θβ cos θδIc
xx + cos θα cos θβIc

xz

+ sin θα sin θβ sin θδIc
yy + cos θα sin θβ sin θδIc

z0,
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Ixy = Ic
xy,

Ixz = sin θα sin θβIc
0x − sin θα cos θβ cos θδIc

0z − cos θα cos θβ cos θδIc
xx − cos θα sin θβIc

xz

+ sin θα cos θβ sin θδIc
yy + cos θα cos θβ sin θδIc

z0,

Iy0 = cos θαIc
y0 − sin θαIc

zy,

Iyx = − cos θβ sin θδIc
0y − sin θβIc

yx + cos θβ cos θδIc
yz,

Iyy = cos θα sin θδIc
0z − sin θα sin θδIc

xx + cos θα cos θδIc
yy − sin θα cos θδIc

z0,

Iyz = sin θβ sin θδIc
0y − cos θβIc

yx − sin θβ cos θδIc
yz,

Iz0 = sin θα sin θδIc
0z + cos θα sin θδIc

xx + sin θα cos θδIc
yy + cos θα cos θδIc

z0,

Izx = − sin θβ sin θδIc
x0 − sin θβ cos θδIc

zx + cos θβIc
zz,

Izy = sin θαIc
y0 + cos θαIc

zy,

Izz = − cos θβ sin θδIc
x0 − cos θβ cos θδIc

zx − sin θβIc
zz, (A8)

where we defined Ia0 ≡ Sa, I0a ≡ Pa, Iab ≡ Rab, and

Ic
0x = Re

[
η

†
1η3 + η

†
4η2 − η

†
4η1 − η

†
2η3

]
, Ic

0y = Im
[
η

†
1η3 + η

†
4η2 − η

†
4η1 − η

†
2η3

]
,

Ic
0z = |η4|2 − |η3|2,

Ic
x0 = Re[η1 + η2], Ic

xx = Re[η3 + η4], Ic
xy = Im[η3 − η4], Ic

xz = Re[η1 − η2],

Ic
y0 = Im[η1 + η2], Ic

yx = Im[η3 + η4], Ic
yy = −Re[η3 − η4], Ic

yz = Im[η1 − η2],

Ic
z0 = 1 −

4∑
i=1

|ηi |2, Ic
zx = −Re

[
η

†
1η3 + η

†
4η2 + η

†
4η1 + η

†
2η3

]
,

Ic
zy = −Im

[
η

†
1η3 + η

†
4η2 + η

†
4η1 + η

†
2η3

]
, Ic

zz = |η2|2 − |η1|2. (A9)

From (A8), (A9), and the equal-time commutation relations (79), it can be verified that the SU(4)
algebraic relation

[Iμν(x, t), Iγ δ(x, t)] = iδ(x − y) fμν,γ δ,μ′ν′Iμ′ν′(y, t) (A10)

is held.
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