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COMPOUND SUMS AND COUNTING PROCESSES

Z. TSIGROSHVILI

Abstract. Compound sums of positive (non-negative)random vari-
ables are considered, i.e., sums of independent identically distributed
random variables, whose number is also a random variable indepen-
dent of summands. The main purpose of the paper is to introduce the
so-called Conditional Binomial (CB) process which will make it possi-
ble to treat the compound sums as linear functionals of such a process.
This counting process is the natural generalization of the well-known
Binomial process for the case where a number of summands (indica-
tors) is a random variable. In the paper the main properties of CB
processes are described.

îâäæñéâ. à�êæýæèâ�� á�áâ�æå (�î�ñ�îõëòæå) öâéåýãâãæå ïæáæ-

áâå� öâáàâêæèæ þ�éâ�æ �êñ á�éëñçæáâ�âè âîåê�æî�á à�ê�ûæèâ-

�ñè öâéåýãâãæå ïæáæáâå� öâéåýãâãæåæ î�ëáâêë�æï þ�éâ�æ; îëù�

öâï�çîâ�â�æ á�éëñçæáâ�ñèæ� öâï�çîâ�å� î�ëáâêë�æï�à�ê. ê�ö-

îëéæï éæä�êæ� â. û. ìæîë�æåæ �æêëéñîæ ìîëùâïæï öâéë�â��, îë-

éâèæù ï�öñ�èâ��ï æúèâã� öâáàâêæè þ�éâ�ï öâãýâáëå, îëàëîù

ûîòæã òñêóùæëê�èâ�ï �é ìîëùâïæá�ê. éåãèâèæ ìîëùâïæ �ñêâ-

�îæã�á à�ê�äëà�áâ�ï �æêëéñî ìîëùâïï, îëù� öâï�çîâ�å� (æêáæ-

ç�ðëîå�) î�ëáâêë��ù öâéåýãâãæåæ ïæáæáâ�. ê�öîëéöæ öâïû�ãèæ-

èæ� �ïâåæ ìîëùâïâ�æï úæîæå�áæ åãæïâ�â�æ.

1. Introduction

There are many objects of various fields of the human activities which
are described in probabilistic and statistical terms as the compound sums
of positive (non-negative) i.i.d. random variables. We mention here some
of them from the insurance practice.

Let N(t) denote the number of claims of insurance company at time t,
and Yi(> 0) denote the i-th claim. We assume that claims are independent
random variables; they are independent of N(t) and have the common abso-
lutely continuous distribution function F with F (0) = 0. Let R > 0 denote

2000 Mathematics Subject Classification. 60G50, 60G55, 91B30.
Key words and phrases. Compound sums, conditional binomial process, Panjer’s

class, martingales, Doob-Meyer’s decomposition.



132 Z. TSIGROSHVILI

some “critical” value (retention level) and for some unction h we consider
the following compound sum:

S(t) =

N(t)
∑

i=1

h(Yi;R). (1)

As it will be seen below, this is a sufficiently general form of the sum with
a random number of random variables, and one can describe many objects
of interest by such sums. Indeed, assuming y ≥ 0,

if h(y;R) = y, then S(t) is a total amount of claims at time t;
for h(y;R) = I{y ≥ R}, S(t) is a number of “excess” claims at time t;
for h(y;R) = y · I{y ≥ R} the process S(t) describes a total amount of

claims exceeding the critical level;
for h(y;R) = (y − R) · I{y ≥ R} the process S(t) denotes total claims

reinsured for a company in an excess of loss reinsurance agreement.
To simplify further description, we fix the time t and omit it in the above

notation. Introduce the process

ZN (x) =

N
∑

i=1

I
{

Yi ≤ x
}

, (2)

where we naturally assume that ZN (x) = 0 for all x if N = 0.
Then we can rewrite the sum in (1) in the form of the following linear

functional:

S =

+∞
∫

0

h(y;R) dZN(y). (3)

This form is very useful for investigation of many classes of statistics
when N , the number of summands in (2), is not random. As is well known,
in the latter case the process (2) has binomial distribution with parameters
(N ;F (x)) and is called the Binomial Process (see, e.g., [1]). Thus in our case
we naturally call the process defined by (2) the Conditional Binomial (CB)
process, because it has the Binomial distribution (for each x) conditionally
on N .

In Section 2 we present the main unconditional properties of the CB
processes, and the martingale properties of these processes are given in
Section 3.

2. Unconditional properties of ZN

Note that for all x, (2) is by itself the simple compound sum: its sum-
mands are the Bernoulli variables I{Yi ≤ x}, i = 1, 2, ..., with parameter
F (x). Denote ξ(x) ≡ I{Y ≤ x}, where a random variable Y has the distri-
bution function F (x). Thus if

pn ≡ P{N = n}, n = 0, 1, 2, . . . , (4)
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is the distribution of N and ϕ(t) denotes its probability generating function
(pgf), then the pgf of ZN(x) is defined as follows:

ϕ
Z
(t, x) = ϕ

(

ϕ
ξ(x)

(t)
)

= ϕ
(

1 − F (x) + t · F (x)
)

and hence the distribution of the random variable ZN (x) is defined by

qk(x) ≡ P
{

ZN (x) = k
}

=
ϕ(k)

Z
(0, x)

k!
= F k(x) ·

ϕ(k)(1 − F (x))

k!
. (5)

Now for the finite-dimensional distributions of the process Z
N

(·), let 0 =
x0 < x1 < · · · < xr denote any partition of the positive half-line, and the
integers k1, k2, . . . , kr satisfy the condition 0 ≤ k1 ≤ k2 ≤ · · · ≤ kr. Then
the following theorem is valid.

Theorem 1. For the CB processes we have

P
{

Z
N

(x1) = k1, Z
N

(x2) = k2, . . . , ZN
(xr) = kr

}

=

= M(kr; g1, g2, . . . , gr) · P
{

Z
N

(xr) = kr

}

, (6)

where M(kr; g1, g2, . . . , gr) denotes the multinomial distribution with param-

eters kr and the vector of probabilities (g1, g2, . . . , gr), where

gi =
(

F (xi) − F (xi−1)
)/

F (xr) = P
{

xi−1 < Y ≤ xi

∣

∣Y ≤ xr

}

. (7)

Proof. It is clear that conditionally on N , the random vector
(

Z
N

(x1), ZN
(x2) − Z

N
(x1), . . . , ZN

(xr) − Z
N

(xr−1), N − Z
N

(xr)
)

has the multinomial distribution with parameters N and the vector of prob-
abilities

(

F (x1), F (x2) − F (x1), . . . , F (xr) − F (xr−1), 1 − F (xr)
)

.

Hence we can write

P
{

ZN (x1) = k1, ZN (x2) = k2, . . . , ZN(xr) = kr

}

=

= P
{

ZN (x1) = k1, ZN (x2) = k2, . . . , ZN(xr) = kr, N ≥ kr

}

=

=
∑

n≥kr

P
{

ZN(x1) = k1, ZN(x2) = k2, . . . , ZN (xr) = kr|N = n
}

· pn =

=
∑

n≥kr

P
{

Zn(x1) = k1, Zn(x2) − Zn(x1) = k2 − k1, . . . , Zn(xr)−

−Zn(xr−1) = kr − kr−1

}

· pn =

=
F k1(x1) · (F (x2) − F (x1))

k2−k1 · · · (F (xr) − F (xr−1))
kr−kr−1

k1! · (k2 − k1)! · · · (kr − kr−1)!
·

·
∑

n≥kr

(1 − F (xr))
n−kr

(n− kr)!
· n! · pn =
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=
F k1(x1) · (F (x2) − F (x1))

k2−k1 · · · (F (xr) − F (xr−1))
kr−kr−1

k1! · (k2 − k1)! · · · (kr − kr−1)!
·

·ϕ(kr)
(

1 − F (xr)
)

.

Together with (5) and (7), the last equality gives us the assertion. �

We can see that the distribution of N participates in the definition of the
distribution of the CB process in the last factor of (6), i.e., in the “point
behavior” of the process ZN (·) which we have already defined in (5).

By means of this theorem we immediately have the following properties:

Corollary 1. For the CB processes we have

P
{

ZN(x1) = k1, ZN(x2) = k2, . . . , ZN (xr−1) = kr−1

∣

∣ZN (xr) = kr

}

=

= M(kr; g1, g2, . . . , gr). (8)

Proof. Simply, (8) is another (conditional) form of (6). This corollary tells
us that conditionally on the last point, the finite dimensional distributions
of the CB process are multinomial regardless of what kind of distribution
has the variableN (and whether N is random or deterministic). To compare
this with the earlier known results, we can say that not only the Poisson
process but all the CB processes have the above-mentioned property. �

Corollary 2. For any distribution of N , the CB process is the Markov

process.

Proof. It suffices to show that

P
{

ZN(xr) = kr

∣

∣ZN(x1) = k1, ZN(x2) = k2, . . . , ZN (xr−1) = kr−1

}

=

= P
{

ZN(xr) = kr

∣

∣ZN (xr−1) = kr−1

}

. (9)

We can easily see that the left-hand side of (9) is the ratio of (6) and of the
same expression for r replaced by r − 1. Thus we have

P
{

ZN (xr) = kr

∣

∣ZN(x1) = k1, ZN(x2) = k2, . . . , ZN (xr−1) = kr−1 =

=
[

P
{

ZN (xr) = kr

}

/P
{

ZN (xr−1) = kr−1

}]

·

·C
kr−1

kr
·
(

F (xr) − F (xr−1)
)kr−kr−1

·
(F (xr−1))

kr−1

(F (xr))kr
.

By means of the same argument for the last two points, for the right-hand
side of (9) we have

P
{

ZN(xr) = kr

∣

∣ZN (xr−1) = kr−1

}

=

=
[

P
{

ZN (xr)=kr

}

/P
{

ZN (xr−1)=kr−1

}]

·

·P
{

ZN (xr−1)=kr−1

∣

∣ZN (xr)=kr

}

=
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=
[

P
{

ZN (xr) = kr

}

/P
{

ZN (xr−1) = kr−1

]

·
kr!

kr−1! · (kr − kr−1)!
·

·
(F (xr−1)

F (xr)

)kr−1

·
(F (xr) − F (xr−1)

F (xr)

)kr−kr−1

,

which with the above expression provides us with the assertion. �

After the unconditional distribution of the CB processes is established
in general, there arises the question of interest: which of the well-known
counting processes have the same structure as the CB processes? In this
direction it is not difficult to verify that the following theorem is valid.

Theorem 2. If the probabilities pn satisfy the recursion relation

p0 > 0, pk = pk−1 ·
(

a+ b/k
)

, k ≥ 1, (10)

with some constants a and b, then for all x the probabilities qk(x) defined

by (5) satisfy the analogous relation

qk(x) = qk−1(x) · (a(x) + b(x)/k) (11)

with

a(x) = a · Ca

(

F (x)
)

, b(x) = b · Ca

(

F (x)
)

,

where the function Ca on [0, 1] is defined by

Ca(t) ≡
1

1 − a · (1 − t)
.

Proof. It is well-known (see, [2], [3]) that the only three non-degenerate
distributions which satisfy (10) are Binomial, Poisson and Negative Bino-
mial (the class of counting distributions satisfying (10) is called the Panjer’s
class), and the corresponding pgf has the form

ϕ(t) =
(1 − at

1 − a

)−
a+b

a

. (12)

Thus for high order derivatives of this function we have

ϕ(k)(t) = k! · pk · (1 − at)−k ·
(

ϕ(t)/ϕ(0)
)

. (13)

Consider now the ratio qk(x)/qk−1(x). By virtue of (5) and (13) we
obtain

qk(x)/qk−1(x) =
F (x)

k
·
ϕ(k)(1 − F (x))

ϕ(k−1)(1 − F (x))
=

=
pk

pk−1
·

F (x)

(1 − a · (1 − F (x))
=

pk

pk−1
· Ca(F (x)).

Now substituting the ratio of probabilities defined by (10), we obtain the
assertion. �
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Thus from our theorem we find that the probabilities qk(x) are the mem-
bers of the same class of distributions as the probabilities pk (the distribu-
tion of N) and we conclude that the following corollary is valid.

Corollary 3. For the CB processes defined by (2) we have:

1) if N is a Binomial with parameters (M, θ), then ZN is the Binomial

Process with parameters (M, θ · F (x));

2) if N is a Poisson with parameter λ, then ZN is the Poisson Process

with parameter λ · F (x);

3) if N is a Negative Binomial with parameters (M, θ), then ZN is the

Polya (Negative Binomial) Process with parameters (M, c/(c+F (x))),
where c = θ/(1 − θ).

Proof. By means of Theorem 2 we have only to establish the parameters of
the processes.

It is easy to verify that for the case 1)

a = −
θ

1 − θ
; b =

(M + 1) · θ

1 − θ
; Ca(t) =

(1 − θ) · t

1 − θ · t

hence

a(x) =
−θ · F (x)

1 − θ · F
; b(x) =

(M + 1) · θ · F (x)

1 − θ · F (x)

which correspond to the parameters in (10) assigned to the binomial distri-
bution with parameters (M, θF (x)).

Analogously, for the case 2) we have

a = 0; b = λ; Ca(t) = t

and hence a(x) = 0 and b(x) = λ ·F (x) which correspond to the parameters
in (10) assigned to the Poisson distribution with parameter λ · F (x).

Finally, for the case 3) we have

a = 1 − θ; b = (M − 1) · (1 − θ); Ca(t) =
t

θ + (1 − θ) · t

and so

a(x) =
(1 − θ) · F (x)

θ + (1 − θ) · F (x)
and b(x) =

(M − 1) · (1 − θ) · F (x)

θ + (1 − θ) · F (x)

which correspond to the parameters in (10) assigned to the negative bino-
mial distribution with parameters (M, c/(c+F (x))) with c = θ/(1− θ). �

At the end of this section it should be noted that the results similar
to the statement of Corollary 3 are valid for other counting distributions,
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too. For example, this is true for the mixed Poisson case which is the most
important for many applications. In this case

pn =

∞
∫

0

λn

n!
· e−λdH(λ)

with some absolutely continuous distribution function H (the structural
distribution function), and by means of (5)

qk(x) =
F k(x)

k!
· ϕ(k)(1 − F (x)) =

∞
∫

0

(λF (x))k

k!
· e−λF (x)dH(λ).

3. Martingale properties of ZN

In this section we present the martingale properties (the Doob-Meyer’s
decomposition) of the CB processes. It is easy to verify that the following
lemma is valid.

Lemma. For the CB processes defined by (2) we have

E
[N − ZN (x)

1 − F (x)

∣

∣ZN (x)
]

= ψZN (x)

(

1 − F (x)
)

, (14)

where

ψk(t) ≡ ϕ(k+1)(t)/ϕ(k)(t). (15)

Proof. It is clear that

P
{

N = n
∣

∣ZN (x) = k
}

=
pn · Ck

n · F k(x) · (1 − F (x))n−k

∞
∑

m=k

pm · Ck
m · F k(x) · (1 − F (x))m−k

and thus

E
[

N
∣

∣ZN(x) = k
]

=

∞
∑

m=k

m · pm · Ck
m
· F k(x) · (1 − F (x))m−k

∞
∑

m=k

pm · Ck
m · F k(x) · (1 − F (x))m−k

.

After some simple calculations from the last equality we finf that

E
[

N
∣

∣ZN (x) = k
]

= k + (k + 1) ·
1 − F (x)

F (x)
·
P{ZN(x) = k + 1}

P{ZN(x) = k}
.

By means of (5) and (15) we have

E
{

N
∣

∣ZN (x) = k
]

= k +
(

1 − F (x)
)

· ψk

(

1 − F (x)
)

,

which can be easily rewritten in the form of (14). �

By the above Lemma we obtain the Doob-Meyer’s decomposition of the
CB processes given by the following theorem.



138 Z. TSIGROSHVILI

Theorem 3. The Doob-Meyer’s decomposition of the submartingale

{ZN(x),FZN
x } has the form

MZ(x) = ZU

N

(

F (x)
)

−

F (x)
∫

0

ψZU
N

(t)(1 − t) dt, (16)

where

ZU

N (t) =

N
∑

i=1

{

F (Yi) ≤ t
}

≡

N
∑

i=1

I
{

Ui ≤ t
}

(17)

is the CB process with “uniform claims” and ψk(·) is defined by (15).

Proof. Taking into account the fact that the CB processes are the Markov
processes (see Corollary 2) and our Lemma, we easily find that

E
[

∆ZN(x)
∣

∣FZN
x

]

=

= E
[

∆ZN (x)
∣

∣ZN (x)
]

= E
[

E
[

∆ZN (x)
∣

∣N,ZN(x)
]∣

∣ZN(x)
]

=

= E
[N − ZN(x)

1 − F (x)
· ∆F (x)

∣

∣ZN (x)
]

= ψZN (x)

(

1 − F (x)
)

· ∆F (x),

which obviously results in (15). �

Now let us consider the question what kind of transformation is (16) as
that of ZN into MZ . We start with the consideration of some examples.

It is easy to see that the corollary below is valid.

Corollary 4. If the distribution of N belongs to the Panjer’s class

of counting distributions, then the Doob-Meyer’s decomposition of the CB

processes has the form

MZ(x) = ZU

N

(

F (x)
)

−

F (x)
∫

0

a · (ZU

N
(t) + 1) + b

1 − a · (1 − t)
dt. (18)

Proof. From (12) and (13) by definition (15) we can easily find that

ψk(t) =
a · (k + 1) + b

1 − a · t
, (19)

and substituting it in (16) we obtain (18). �

Since due to (19) ψk is a linear function of k, we can see that (18) is a
linear transformation of ZN into MZ . But this fact is not valid, in general,
it sufficies to remind of the example of the mixing Poisson case considered
above. Indeed, in this case we have

ψk ≡
ϕ(k+1)(t)

ϕ(k)(t)
=

∫ ∞

0 λk+1 · e−λ(1−t)dH(λ)
∫ ∞

0 λk · e−λ(1−t)dH(λ)
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which is, clearly, not a linear function of k.
Now we get back to another aspect of transformation (18) (in general

(16)), namely, to the degeneration problem of the transformation. As it is
easy to show, for the Panjer’s class of counting distributions we have a < 1,
hence the denominator, being a function of t in the integrand of (18), varies
in the interval [1−a; 1] when t varies in [0;1] (of course, we are interested in
the case where a > 0). Thus the transformation (18) has no singular points.

For the explicit forms of (18) for particular distributions of this class we
have the following three cases:

Binomial case:

MB

Z
(x) = ZU

N

(

F (x)
)

− θ ·

F (x)
∫

0

M − ZU

N
(t)

1 − θ · t
dt. (18.1)

Poisson case:

MP

Z (x) = ZU

N

(

F (x)
)

− λ · F (x). (18.2)

Negative Binomial case:

MNB

Z (x) = ZU

N

(

F (x)
)

−

F (x)
∫

0

M + ZU

N
(t)

c+ t
dt, (18.3)

where as above c = θ/(1 − θ).
As we can see from (18.2) and (18.3), they are non-degenerate transfor-

mations of the CB process.
Now we return to the Binomial case (i.e., to (18.1)). In [1], the Doob-

Meyer’s decomposition of Binomial process was obtained in the form

MB

Z (x) = ZU

N

(

F (x)
)

−

F (x)
∫

0

M − ZU

N
(t)

1 − t
dt. (20)

We see that (20) is the particular case of (18.1) when θ = 1. Indeed,
when P{N = M} = 1 , i.e., when N is deterministic, we really must return
from the CB process to the Binomial one. However, it is remarkable that
in contrast to (18.1), the transformation (20) has a singular point when
F (x) = 1. Now let us investigate the question whether this is a particular
phenomenon or a result of changing deterministic N by a random variable
(with a non-singular distribution).

Consider the deterministic case in general. Suppose P{N = M} = 1
for some M > 0. Then ϕ(t) = tM , and as is easily seen ψk(t) = I{k <
M} · (M − k)/t. Thus for the integrand in (16) we have

ψZU
N

(t)(1 − t) =
M − ZU

N
(t)

1 − t
.
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As a result we conclude that for t = 1 we have a singular point.
The situation diametrically changes when N is supported at the consecu-

tive points 0, 1, 2 . . . ,M (for a finite M ), or at the infinite sequence 0, 1, . . ..
Then we have

ϕ(t) =

M
∑

n=0

pn · t

for finite or infinite M , and

ψZU
N

(t)(1 − t) =

=

M
∑

n=ZU
N

(t)+1

n!
(n−ZU

N
(t)−1)!

· pn · (1 − t)n−Z
U
N (t)−1

pZU
N

(t) +
M
∑

n=ZU
N

(t)+1

n!
(n−ZU

N
(t))!

· pn · (1 − t)n−ZU
N

(t)

· I
{

ZU

N
(t) < M

}

,

denominator of which is non-zero for all t ∈ [0, 1] iff pk > 0 for all k =
0, 1, dots,M <∞ or for all k = 0, 1, . . . if M = ∞.

Finally, we conclude that the following theorem is valid.

Theorem 4. The transformation (16) has no singularity iff the random

variable N takes all consequtive values 0, 1, . . . ,M < ∞ or 0, 1, . . . with

positive probabilities.
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