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Abstract The paper studies the robust maximization of utility from terminal wealth
in a diffusion financial market model. The underlying model consists of a tradable
risky asset whose price is described by a diffusion process with misspecified trend and
volatility coefficients, and a non-tradable asset with a known parameter. The robust
functional is defined in terms of a utility function. An explicit characterization of
the solution is given via the solution of the Hamilton–Jacobi–Bellman–Isaacs (HJBI)
equation.
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1 Introduction

The purpose of the present paper is to study the robust maximization of utility from
terminal wealth in a diffusion financial market model where the trend and volatility
of the asset price are uncertain.

The concept of robustness was introduced by P. Huber (see [19]) in the context
of statistical estimation of an unknown distribution parameter. The essence of our
approach is as follows. Suppose we need to estimate the mean of some symmetric
distribution. If the estimation is based on “pure” observations, then the effective es-
timate is the sample mean. But if observations are contaminated by outliers, then the
situation changes completely. Huber introduced the so-called gross error model (the
contaminated neighborhood of a true distribution) and showed that an optimal esti-
mate is a maximum likelihood estimate constructed for the so-called least favorable
distribution. Analytically, this means that we need to solve a minimax problem analo-
gous to the problem given by (2.1) below with the asymptotic mean square error as a
risk function. In some limiting cases, an optimal estimate is a median, but not a sam-
ple mean. In mathematical finance, most approaches and settings implicitly suppose
that the underlying asset model is fully specified: the parameters (trend and volatility)
of the model are known. Actually, we have all the same to estimate these parameters
and construct, say, confidence intervals for them. Hence we only know that a pair
(μ,σ ) belongs with high probability to a rectangle [μ−,μ+]× [σ−, σ+]. In that case
there arises a problem of construction of robust trading strategies, where an optimal
strategy is the best strategy against the worst state of nature. If the risk function of
the problem is the expected utility from terminal wealth, then our definition of the
optimization problem (2.1) is an exact one.

In 2002, Chen and Epstein [7] introduced a continuous-time intertemporal version
of a multiple-priors utility function for a Brownian filtration. In that case, beliefs are
represented by a set P of probability measures and the utility is defined as the mini-
mum, over the set P , of the expected utilities. Independently, Cvitanić and Karatzas
[9] studied, for a given option, the hedging strategies which minimize the expected
“shortfall”, i.e., the difference between the payoff and the terminal wealth. They con-
sidered the problem of determining the “worst-case” model Q̃, i.e., the model which
maximizes a minimal shortfall risk over all possible priors Q ∈ P . It was shown
that under certain assumptions their maximin problem could be written as a mini-
max problem. In 2004, Quenez [29] studied the problem of utility maximization in
an incomplete multiple-priors model where asset prices are semimartingales. This
problem corresponds to a maximin problem where the maximum is taken over the
set of feasible wealths X (or portfolios) and the minimum over the set of priors P .
The author showed that under suitable conditions, there exists a saddle point for this
problem. Moreover, Quenez developed a dual approach which consists of solving
a dual minimization problem over the set of priors and supermartingale measures,
and showed how the solution of the dual problem leads to a solution of the primal
problem.

The above maximin problems can also be called robust optimization problems
since the optimization involves an entire class P of possible probabilistic models and
thus takes into account the model risk. Optimal investment problems for such robust
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utility functionals were considered in particular by Talay and Zheng [32], Quenez
[29], Schied [30], Korn and Menkens [22], Gundel [15], Bordigoni et al. [5], Föllmer
and Gundel [13], Dokuchaev [12], Hernández-Hernández and Schied [16, 17].

The majority of the relevant published work is concerned with the case where one
of the parameters is known exactly. For the case of an unknown drift coefficient, the
existence of a saddle point of the corresponding minimax problem was established
and the characterization of an optimal strategy obtained in [9, 15, 16]. For unknown
volatility coefficients, the hedging strategy was constructed in [2–4, 6, 11, 24, 34].

The most difficult case is to characterize the optimal strategy of the maximin prob-
lem under uncertainty about both drift and volatility terms.

Talay and Zheng [32] applied a PDE-based approach to the minimax problem
and characterized the value as a viscosity solution of the corresponding Hamilton–
Jacobi–Bellman–Isaacs (HJBI) equation. In general, such a problem does not contain
a saddle point. Moreover, in robust maximization problems, the maximin should be
taken instead of the minimax used by Talay and Zheng. Recently in the work of
Denis and Kervarec [10], a general problem of utility maximization encompassing
the case of uncertain volatility was studied, and a duality theory for robust utility
maximization in this framework was established.

During the refereeing process, we have found the preprint of Matoussi et al. [27]
which is also devoted to a robust utility maximization problem. To study the exponen-
tial, power and logarithmic utility maximization, the authors use 2BSDE theory (this
theory was thoroughly developed by Cheridito, Soner, Touzi, Victoir and Zhang in
[8, 31]). They obtained explicit solutions in some particular cases, which is one of the
tasks of our paper, too. Despite some advantages of their approach (non-Markovian
models, the existence of a saddle point, a general contingent claim), we should say
that that approach is not sufficiently general for our model. Namely,

(a) only the volatility matrix is misspecified in their model. In our case both coeffi-
cients (drift and volatility) are misspecified,

(b) the volatility matrix
√

at satisfies the condition a ≤ at ≤ a, where a and a are
given matrices, which does not cover our “partially misspecified volatility” case

since in our paper the matrices at = (
σ 2

t ρσt

ρσt 1

)
, a = ( σ 2− ρσ−

ρσ− 1

)
and a = ( σ 2+ ρσ+

ρσ+ 1

)

are non-comparable to each other.

Moreover, in the non-Markovian case the BSDE corresponding to our problem will
not be a 2BSDE (see Remark 3.5). And, besides, we cannot even get our BSDE as a
particular case of the 2BSDE given in [27]. So we can conclude that [27] has little in
common with our paper.

In this paper, we consider an incomplete diffusion financial market model which
resembles the model considered by Schied [30], Hernández-Hernández and Schied
[16, 17]. We suppose that the market consists of a risk-free asset, a tradable risky
asset with misspecified trend and volatility, and a non-tradable asset with known pa-
rameters. Differently from the approach of Quenez [29] and Schied [30], we solve the
maximin problem using the HJBI equation which corresponds to the primal problem.
When the trend and volatility coefficients are uncertain, such a maximin problem
has no saddle point in general. We extend the set of model coefficients, i.e., carry
out some “randomization”, and obtain as a result a minimax problem with a saddle
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point. This makes it possible to replace the maximin problem by a minimax problem,
which is easier to study using the HJBI equation properties. In particular, we have
found a form of this equation that coincides with the equation derived by Hernández-
Hernández and Schied [16] when the volatility is assumed to be known. We establish
the solvability of the obtained equation in the classical sense and solve the HJBI equa-
tion explicitly for a specific drift coefficient. The saddle point (an optimal portfolio
and optimal coefficients) of the considered maximin problem has been found as well.
An explicit characterization of the optimal strategies of the maximin problem for the
case of power and exponential utilities in terms of the solution of the HJBI equation
is the main result of the paper.

To illustrate our approach, we present a simple quadratic hedging problem. Let
(B,B⊥) be a 2-dimensional Brownian motion and denote by FB = (F B

t )t∈[0,T ],
FB,B⊥ = (F B,B⊥

t )t∈[0,T ] the augmented filtrations generated by B and (B,B⊥),
respectively. We consider a filtration F = (Ft )t∈[0,T ] satisfying the usual condi-

tions and FB ⊆ F ⊆ FB,B⊥
. Let H be a square-integrable F B

T -measurable random
variable. Denote by Π2 the set of square-integrable predictable processes with re-
spect to the filtration F . Let P ([σ−, σ+]) be the set of probability measures on
[σ−, σ+] and U , Ũ denote the set of predictable processes with respect to the fil-
tration F with values in [σ−, σ+] and P , respectively. We use the notation f · ν for∫ σ+
σ− f (σ )dν(σ ), f ∈ C[σ−, σ+], ν ∈ P ([σ−, σ+]). The wealth process correspond-

ing to a portfolio process π ∈ Π2 and volatility σ ∈ U is defined as

Xt(π,σ ) = c +
∫ t

0
πsσs dBs. (1.1)

The problem is to find π∗ ∈ Π2 minimizing the worst case mean-variance hedging
error

max
σ∈U

E
∣∣H − XT

(
π∗, σ

)∣∣2 = min
π∈Π2

max
σ∈U

E
∣∣H − XT (π,σ )

∣∣2
. (1.2)

Such a π∗ is called a robust hedging strategy.
Let us extend problem (1.2) as follows. For each ν ∈ Ũ we define the processes

Wν
t =

∫ t

0

p · νs√
p2 · νs

dBs +
∫ t

0

√

1 − (p · νs)2

p2 · νs

dB⊥
s ,

W
ν,⊥
t =

∫ t

0

√

1 − (p · νs)2

p2 · νs

dBs −
∫ t

0

p · νs√
p2 · νs

dB⊥
s ,

where p,p2 are the functions p(σ) = σ , p2(σ ) = σ 2, respectively. One can easily
check that (Wν,Wν,⊥) is also a 2-dimensional Brownian motion and the equation

Bt =
∫ t

0

p · νs√
p2 · νs

dWν
s +

∫ t

0

√

1 − (p · νs)2

p2 · νs

dWν,⊥
s (1.3)
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is satisfied.
For each π ∈ Π2, ν ∈ Ũ we define

Xt(π, ν) = c +
∫ t

0
πs

√
p2 · νs dWν

s . (1.4)

It is clear that U ⊂ Ũ and for ν ∈ U , Wν = B and (1.1) coincides with (1.4). Hence
we can consider the minimax problem

min
π∈Π2

max
ν∈Ũ

E
∣∣H − XT (π, ν)

∣∣2
, (1.5)

which is the extension of problem (1.2).
For the sake of simplicity, it is assumed that c = EH and, using the stochastic

integral representation

H = EH +
∫ T

0
ht dBt

= EH +
∫ T

0
ht

p · νt√
p2 · νt

dWν
t +

∫ T

0
ht

√

1 − (p · νt )2

p2 · νt

dW
ν,⊥
t .

Equation (1.5) is rewritten as

min
π∈Π2

max
ν∈Ũ

[
E

∫ T

0

∣∣∣∣ht

p · νt√
p2 · νt

− πt

√
p2 · νt

∣∣∣∣

2

dt + E

∫ T

0
h2

t

(
1 − (p · νt )

2

p2 · νt

)
dt

]

= min
π∈Π2

max
ν∈Ũ

E

∫ T

0

[
π2

t

(
p2 · νt

) − 2htπt (p · νt ) + h2
t

]
dt.

Since for each π ∈ Π2

max
ν∈Ũ

E

∫ T

0

[
π2

t

(
p2 · νt

) − 2htπt (p · νt ) + h2
t

]
dt

= max
σ∈U

E

∫ T

0

[
π2

t σ 2
t − 2htπtσt + h2

t

]
dt,

we have

min
π∈Π2

max
σ∈U

E
∣∣H − XT (π,σ )

∣∣2 = min
π∈Π2

max
ν∈Ũ

E
∣∣H − XT (π, ν)

∣∣2
.

We shall see below that this expression is strictly positive. Moreover,

max
σ∈U

min
π∈Π2

E
∣∣H − XT (π,σ )

∣∣2 = max
σ∈U

min
π∈Π2

E

∫ T

0
|ht − πtσt |2 dt = 0.

This means that a saddle point does not exist for the problem (1.2).
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On the other hand, the function G defined on Π2 × Ũ by

G(π,ν) = E

∫ T

0

[
π2

t

(
p2 · νt

) − 2htπt (p · νt ) + h2
t

]
dt

is convex in π and linear in ν. Then by the Neumann theorem (see Theorem 8 of [1],
Chap. 6), there exists a saddle point (π∗, σ ∗) ∈ Π2 × Ũ . Therefore we have

0 = max
σ∈U

min
π∈Π2

E
∣∣H − XT (π,σ )

∣∣2

< min
π∈Π2

max
σ∈U

E
∣∣H − XT (π,σ )

∣∣2 = min
π∈Π2

max
ν∈Ũ

E
∣∣H − XT (π, ν)

∣∣2

= G
(
π∗, ν∗) = max

ν∈Ũ
min
π∈Π2

E
∣∣H − XT (π, ν)

∣∣2

= max
ν∈Ũ

min
π∈Π2

[
E

∫ T

0

∣∣∣∣ht

p · νt√
p2 · νt

− πt

√
p2 · νt

∣∣∣∣

2

dt

+ E

∫ T

0
h2

t

(
1 − (p · νt )

2

p2 · νt

)
dt

]

= max
ν∈Ũ

E

∫ T

0
h2

t

(
1 − (p · νt )

2

p2 · νt

)
dt.

It is easy to see that the saddle point is1

ν∗
t = σ−

σ+ + σ−
δσ+ + σ+

σ+ + σ−
δσ− , π∗

t = ht

p · ν∗
t

p2 · ν∗
t

= 2ht

σ− + σ+
.

Thus

min
π∈Π2

max
σ∈U

E
∣∣H − XT (π,σ )

∣∣2 = F
(
π∗, ν∗) =

(
σ− − σ+
σ− + σ+

)2

E

∫ T

0
h2

t dt.

As we see, the extension of the problem allows us to find a robust strategy and the
worst case mean-variance hedging error for the original problem (1.2). In Sect. 2,
we shall obtain this result by means of the HJBI equation in the case of a terminal
contingent claim H(BT ).

Notice that the problem (1.2) can also be solved directly, but in more general cases
(e.g. for models with nonzero drift), such “explicit computations” are complicated
and to our knowledge do not exist in the literature. The aim of this work is to show
that the existence of a saddle point in the extended problem simplifies solving the
original problem and enables us to find “explicit solutions”.

The paper is organized as follows. In Sect. 2, we describe the model and consider
the misspecified coefficients as generalized controls. Furthermore, we show the ex-
istence of a saddle point of the generalized maximin problem and derive the HJBI

1δa denotes the Dirac measure with support at a point a.
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equation for the value function. Some examples are also discussed. In Sect. 3, we
prove the solvability in the classical sense of the obtained PDE in the case of power
and exponential utility and give an explicit PDE characterization of the robust maxi-
mization problem.

2 Generalized coefficients and the existence of a saddle point

Suppose that the financial market consists of a risk-free asset

dS0
t = r(Yt )S

0
t dt

with r(y) ≥ 0 and a risky financial asset whose price is defined through the stochastic
differential equation (SDE)

dSt

St

= (
b̃(Yt ) + μt

)
dt + σt dWt .

Here W is a standard Brownian motion and Y denotes an economic factor process
modeled by the SDE

dYt = β(Yt ) dt +
(
ρdWt +

√
1 − ρ2 dW⊥

t

)
,

for some correlation factor ρ ∈ [0,1] and a standard Brownian motion W⊥ which
is independent of W . Let (Ft )t∈[0,T ] denote the augmented filtration generated by
W,W⊥. Denote b = b̃ − r and assume that

(A1) b(y),β(y), r(y) belong to C1
b(R),

(A2) b′(y), r ′(y) belong to C0(R),

where C1
b(R) is the class of bounded continuous functions with bounded derivatives

and C0(R) the class of continuous functions with compact support.
Introduce the set P (K) of probability distributions with support on the com-

pact set K = [μ−,μ+] × [σ−, σ+] (P (K) is a compact metric space in the weak
topology), where 0 ≤ μ− ≤ μ+, 0 < σ− ≤ σ+. Let ŨK be the set of predictable

P (K)-valued processes with respect to the filtration (Ft )t∈[0,T ]. Such a process is
usually called a generalized control in control theory [35]. We identify the set of pre-
dictable K-valued processes UK with the subset of ŨK assigning to each (μt , σt )

from UK the P (K)-valued process δ(μt ,σt ).
By Π2 we denote the set of predictable processes with finite L2([0, T ] × Ω)-

norm. The objective of our economic agent is to find an optimal robust strategy for
the problem

max
π∈Π2

min
(μ,σ )∈UK

EU
(
X

μ,σ
T (π),YT

)
, (2.1)

with

dXt = r(Yt )Xt dt + πt

(
b(Yt ) + μt

)
dt + πtσt dWt , Xν

0 = x,

dYt = β(Yt ) dt + ρ dWt +
√

1 − ρ2 dW⊥
t , Y0 = y,

(2.2)
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where U(x,y) is a continuous function defined on R
2 and satisfying a quadratic

growth condition.
If we denote by f ·νt the integral

∫
K

f (μ,σ )νt (dμdσ), where f (μ,σ ) is an arbi-
trary continuous function, and by pμ, pσ the functions pμ(μ,σ ) = μ,pσ (μ,σ ) = σ ,
respectively, we can consider the extended maximin problem

max
π∈Π2

min
ν∈ŨK

EU
(
Xν

T (π),Y ν
T

)
, (2.3)

dXν
t = r(Y ν

t )Xν
t dt + πt

(
b(Y ν

t ) + pμ · νt

)
dt + πt

√
p2

σ · νt dWt , Xν
0 = x,

dY ν
t = β(Y ν

t ) dt + ρ
pσ · νt√
p2

σ · νt

dWt +
√

1 − ρ2 (pσ · νt )2

p2
σ · νt

dW⊥
t , Y ν

0 = y.

(2.4)

As follows from results of [14], there exists a strong solution of (2.4) satisfying
E(supt≤T |Xν

t |2 + supt≤T |Y ν
t |2) < ∞ for each (π, ν) ∈ Π2 × ŨK . Notice that for

(μ,σ ) ∈ UK , equation (2.4) coincides with (2.2). Our aim is to show that

max
π∈Π2

min
(μ,σ )∈UK

EU
(
X

μ,σ
T (π),YT

) = max
π∈Π2

min
ν∈ŨK

EU
(
Xν

T (π),Y ν
T

)

and that the latter problem admits a saddle point (π∗, ν∗). It is clear that π∗ will then
be an optimal robust strategy of the initial problem (2.1), (2.2).

The link between problems (2.1), (2.2) and (2.3), (2.4) will be discussed in Theo-
rem 2.6 below.

Remark 2.1 Let B[0, T ] be the Borel σ -algebra on [0, T ] and F̃ some σ -algebra
with FT ⊂ F̃ . Then a B[0, T ] ⊗ F̃ -measurable process (μt , σt ) (not necessarily
adapted to (Ft )t∈[0,T ]) with values in the set K defines an element ν ∈ ŨK by the for-
mula P((μt , σt ) ∈ B | Ft ) = νt (B). More precisely, denoting by pY the predictable
projection of a process Y (see [25]), we have the equalities pμt = ∫

K
μνt (dμdσ),

pσt = ∫
K

σνt (dμdσ). Hence instead of (2.4) we can write

dXt = r(Yt )Xt dt + πt

(
b(Yt ) + pμt

)
dt + πt

√
pσ 2

t dWt , X0 = x,

dYt = β(Yt ) dt + ρ
pσt√
pσ 2

t

dWt +
√

1 − ρ2 (pσt )
2

pσ 2
t

dW⊥
t , Y0 = y,

(2.5)

where we write pσ 2
t for p(σ 2

t ).

Remark 2.2 The main theorems of the paper are valid if instead of Π2 × ŨK we con-
sider the set of Markovian strategies and coefficients, i.e., the set of Borel-measurable
R × P (K)-valued functions (π(t, x, y), ν(t, x, y)) such that there exists a weak so-
lution (X,Y ) of (2.5) satisfying the condition E

∫ T

0 π2
t (Xt , Yt ) dt < ∞.
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Since
⎛

⎝
πt

√
p2

σ · νt 0

ρ
pσ ·νt√
p2

σ ·νt

√
1 − ρ2 (pσ ·νt )2

p2
σ ·νt

⎞

⎠

⎛

⎜
⎝

πt

√
p2

σ · νt ρ
pσ ·νt√
p2

σ ·νt

0

√
1 − ρ2 (pσ ·νt )2

p2
σ ·νt

⎞

⎟
⎠

=
(

(p2
σ · νt )π

2
t ρ(pσ · νt )πt

ρ(pσ · νt )πt 1

)
,

the generator of the process (Xν,Y ν) can be given by

Lπ,νϕ(x, y) = 1

2
π2

t

(
p2

σ · νt

)
ϕxx(x, y) + ρπt (pσ · νt )ϕxy(x, y) + 1

2
ϕyy(x, y)

+ xr(y)ϕx(x, y) + πtb(y)ϕx(x, y) + πt (pμ · νt )ϕx(x, y)

+ β(y)ϕy(x, y)

for twice differentiable functions ϕ(x, y) on R
2. For all ν ∈ P (K),π ∈ R, (μ,σ ) ∈ K

and (x, y,p, q) ∈ R × R × R
2 × R

3, we set

Hπ,μ,σ (x, y,p, q) = 1

2
π2σ 2q11 + ρπσq12 + 1

2
q22

+ xr(y)p1 + πb(y)p1 + πμp1 + β(y)p2,

Hπ,ν(x, y,p, q) = Hπ,·,·(x, y,p, q) · ν
and

H(x, y,p, q) = max
π∈R

min
ν∈P (K)

Hπ,ν(x, y,p, q).

Proposition 2.3 For each fixed (x, y,p, q) ∈ R × R × R
2 × R

3 with q11 < 0, the
function (π, ν) 
→ Hπ,ν(x, y,p, q) admits a saddle point (π∗, ν∗), i.e.,

Hπ∗,ν∗
(x, y,p, q) = max

π∈R

min
ν∈P (K)

Hπ,ν(x, y,p, q)

= min
ν∈P (K)

max
π∈R

Hπ,ν(x, y,p, q).

Moreover,

max
π∈R

min
ν∈P (K)

Hπ,ν(x, y,p, q) = max
π∈R

min
(μ,σ )∈K

Hπ,μ,σ (x, y,p, q). (2.6)

Proof By the Neumann theorem (see Theorem 8 of [1], Chap. 6) for each fixed tuple
(x, y,p, q), the function of π ∈ R and ν ∈ P (K) given by

(π, ν) 
→ Hπ,ν(x, y,p, q)

admits a saddle point (π∗, ν∗), i.e.,

max
π∈R

min
ν∈P (K)

Hπ,ν(x, y,p, q) = min
ν∈P (K)

max
π∈R

Hπ,ν(x, y,p, q) = Hπ∗,ν∗
(x, y,p, q).
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It is obvious that

π∗ = −b(y)p1 + (pμ · ν∗)p1 + (pσ · ν∗)ρq12

(p2
σ · ν)q11

.

Moreover, for each continuous function f on K ,

min
ν∈P (K)

f · ν = min
(μ,σ )∈K

f (μ,σ )

since for ν∗ = arg minνf ·ν, we have suppν∗ ⊆{(μ∗, σ ∗)|f (μ∗, σ ∗)= minf (μ,σ )}.
Hence

min
ν∈P (K)

Hπ,ν(x, y,p, q) = min
(μ,σ )∈K

Hπ,μ,σ (x, y,p, q)

and (2.6) is satisfied. �

Now we define the value functions

v−(t, x, y) = max
π∈Π2

min
(μ,σ )∈UK

EU
(
X

t,x,y
T (π, ν),Y

t,x,y
T (π, ν)

)
,

v+(t, x, y) = min
(μ,σ )∈ŨK

max
π∈Π2

EU
(
X

t,x,y
T (π, ν),Y

t,x,y
T (π, ν)

)
,

where (X
t,x,y
s (π, ν), Y

t,x,y
s (π, ν)), s ≥ t , denote the solution of (2.2) with initial con-

dition (X
t,x,y
t , Y

t,x,y
t ) = (x, y). Notice that if νt = δ(μt ,σt ), then Y

t,x,y
s (π, ν) does not

depend on x,π, ν and we can also use the notation Y
t,y
s .

Since the Isaacs condition is satisfied (by virtue of Proposition 2.3), there exists,
as we shall see below, a value of the differential game v ≡ v+ = v−, which will be a
solution of the HJBI equation

∂

∂t
v(t, x, y)

+ H
(
x, y, vx(t, x, y), vy(t, x, y), vxx(t, x, y), vxy(t, x, y), vyy(t, x, y)

) = 0,

v(T , x, y) = U(x,y).

The latter equation can be rewritten as

∂

∂t
v(t, x, y) + 1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)

+ min
ν∈P (K)

max
π∈R

[
1

2

(
p2

σ · ν)
vxx(t, x, y)π2 + (pσ · ν)ρvxy(t, x, y)π

+ (
b(y) + pμ · ν)

vx(t, x, y)π

]
= 0, (2.7)

v(T , x, y) = U(x,y). (2.8)
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Simplifying (2.6), we get

min
ν∈P (K)

max
π∈R

[
1

2

(
p2

σ · ν)
q11π

2 + (pσ · ν)ρq12π + b(y)p1π + (pμ · ν)p1π

]

= min
ν∈P (K)

((pσ · ν)ρq12 + (b(y) + pμ · ν)p1)
2

−2(p2
σ · ν)q11

=
⎧
⎨

⎩
− p2

1
2q11

minν∈P (K)
((pσ ·ν)κ+b(y)+pμ·ν)2

p2
σ ·ν if p1 �= 0,

− ρ2q2
12

2σMq11
if p1 = 0,

where we suppose that q11 < 0 and use the notation κ = ρq12
p1

, σM = σ−+σ+
2 .

For the sake of simplicity, we assume in addition that

(A3) b(y) + μ− ≥ 0 for all y ∈ R.

By ϕ(z) we denote the linear function of z ∈ [−μ+
σ− ,−μ−

σ+ ] with ϕ(−μ+
σ− ) = σ−,

ϕ(−μ−
σ+ ) = σ+. Then the pair

(

(z),m(z)

) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(μ+,
μ+
z

+ σ−σ+
σM

) if z ∈ (−∞,
μ+σM

σMσ−−σ+σ− ],
(μ+, σ−) if z ∈ (

μ+σM

σMσ−−σ+σ− ,−μ+
σ− ],

(−zϕ(z),ϕ(z)) if z ∈ (−μ+
σ− ,−μ−

σ+ ],
(μ−, σ+) if z ∈ (−μ−

σ+ ,
μ−σM

σMσ+−σ+σ− ],
(μ−,

μ−
z

+ σ−σ+
σM

) if z ∈ (
μ−σM

σMσ+−σ+σ− ,∞)

(2.9)

is a continuous, piecewise smooth function of z ∈ (−∞,∞).

Proposition 2.4 There exists ν∗ ∈ P (K) of the form ν∗ = αδμa,σ− + (1 − α)δμa,σ+ ,
with some (α, a) ∈ [0,1] × {−,+}, such that

min
ν∈P (K)

(b(y) + pμ · ν + κpσ · ν)2

p2
σ · ν

= (b(y) + pμ · ν∗ + κpσ · ν∗)2

p2
σ · ν∗

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ(2(b(y)+μ+)σM+κσ−σ+)

σ 2
M

if κ ∈ (−∞,
μ+σM

σMσ−−σ+σ− ],
(b(y)+μ++κσ−)2

σ 2−
if κ ∈ (

μ+σM

σMσ−−σ+σ− ,−μ+
σ− ],

0 if κ ∈ (−μ+
σ− ,−μ−

σ+ ],
(b(y)+μ−+κσ+)2

σ 2+
if κ ∈ (−μ−

σ+ ,
μ−σM

σMσ+−σ+σ− ],
κ(2(b(y)+μ−)σM+κσ−σ+)

σ 2
M

if κ ∈ (
μ−σM

σMσ+−σ+σ− ,∞)

and (pμ · ν∗,pσ · ν∗) = (
(κ),m(κ)), where (
,m) is defined by (2.9).

The proof is given in the Appendix.
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Corollary 2.5

min
ν∈P (K)

(b(y) + pμ · ν)p1 + (pσ · ν)ρq12)
2

−2p2
σ · νq11

= min
(μ,σ )∈K

(b(y)p1 + μp1 + σρq12)
2

−2(2σMσ − σ−σ+)q11

= −ρq12(2p1(b(y) + μ+)σM + ρq12σ−σ+)

2q11σ
2
M

× χ

(
ρq12

p1
∈

(
−∞,

μ+σM

σMσ− − σ+σ−

])

− (p1(b(y) + μ+) + ρq12σ−)2

2q11σ
2−

χ

(
ρq12

p1
∈

(
μ+σM

σMσ− − σ+σ−
,−μ+

σ−

])

− (p1(b(y) + μ−) + ρq12σ+)2

2q11σ
2+

χ

(
ρq12

p1
∈

(
−μ−

σ+
,

μ−σM

σMσ+ − σ+σ−

])

− ρq12(2p1(b(y) + μ−)σM + ρq12σ−σ+)

2q11σ
2
M

× χ

(
ρq12

p1
∈

(
μ−σM

σMσ+ − σ+σ−
,∞

))
− ρ2q2

12

2σM

χ(p1 = 0),

where χ(A) denotes the indicator of a set A.

Proof It is sufficient to verify that for ν∗± = αδμ±,σ− + (1 − α)δμ±,σ+ , 0 ≤ α ≤ 1, we
get p2

σ · ν∗± = 2σM(pσ · ν∗±) − σ−σ+. �

From Corollary 2.5, we obtain the result that the HJBI equation has the form

∂

∂t
v(t, x, y) + 1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)

+ min
(μ,σ )∈K

(b(y)vx(t, x, y) + μvx(t, x, y) + ρσvxy(t, x, y))2

−2(2σMσ − σ−σ+)vxx(t, x, y)
= 0, (2.10)

v(T , x, y) = U(x,y). (2.11)

A classical solution v(t, x, y) of this equation defines a pair of continuous, piecewise
smooth functions of (t, x, y),

(

̄(t, x, y), m̄(t, x, y)

) =
(




(
ρvxy(t, x, y)

vx(t, x, y)

)
,m

(
ρvxy(t, x, y)

vx(t, x, y)

))
, (2.12)

by the formula (2.9).
The following theorem is the verification theorem of [28] adapted to our setting.
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Theorem 2.6 (Verification theorem) Let v(t, x, y) be a classical solution of (2.7),
(2.8) such that vxx(t, x, y) < 0 and for some constants L > 0, p ≥ 1,

∣∣v(t, x, y)
∣∣ ≤ L

(
1 + |x| + |y|)p

,
∣∣∣
∣
vx(t, x, y)

vxx(t, x, y)

∣∣∣
∣ ≤ L

(
1 + |x| + |y|),

∣∣∣∣
vxy(t, x, y)

vxx(t, x, y)

∣∣∣∣ ≤ L
(
1 + |x| + |y|).

(2.13)

Suppose also that the triplet (π∗(t, x, y),pμ · ν∗(t, x, y),pσ · ν∗(t, x, y)) satisfies a
Lipschitz condition on each compact subset of [0, T ] × R × R, where

π∗(t, x, y)

= − (b(y) + pμ · ν∗(t, x, y))vx(t, x, y) + pσ · ν∗(t, x, y)ρvxy(t, x, y)

(2σMpσ · ν∗(t, x, y) − σ−σ+)vxx(t, x, y)
, (2.14)

and where (pμ ·ν∗(t, x, y),pσ ·ν∗(t, x, y)) coincides with (
̄(t, x, y), m̄(t, x, y)) de-
fined by (2.12). Then (π∗, ν∗) is a saddle point of the problem (2.3), (2.4) and

max
π∈Π2

min
(μ,σ )∈UK

EU
(
X

μ,σ
T (π),YT

) = max
π∈Π2

min
ν∈ŨK

EU
(
Xν

T (π),Y ν
T

)

= min
ν∈ŨK

max
π∈Π2

EU
(
Xν

T (π),Y ν
T

)
.

Proof By the definition of (2.14), (2.12), the pair (π∗(t, x, y), ν∗(t, x, y)) is a saddle
point of the function

f (t, x, y,π, ν) = 1

2

(
p2

σ · ν)
vxx(t, x, y)π2 + (pσ · ν)ρvxy(t, x, y)π

+ (
b(y) + pμ · ν)

vx(t, x, y)π

for each (t, x, y). It is easy to see that this pair is a continuous, piecewise smooth
function of variables (t, x, y) ∈ [0, T ] × R × R. By definition, the triplet of func-
tions (π∗(t, x, y),pμ · ν∗(t, x, y),pσ · ν∗(t, x, y)) consists of Lipschitz functions on
each compact subset. Since p2

σ · ν∗(t, x, y) = 2σM(pσ · ν∗(t, x, y)) − σ−σ+ ≥ σ 2− is
satisfied, 1

p2
σ ·ν∗(t,x,y)

is also a Lipschitz function on each compact subset. The lin-

ear growth condition for the triplet is also satisfied since |pμ · ν∗(t, x, y)| ≤ μ+,
σ− ≤ |pσ · ν∗(t, x, y)| ≤ σ+ and the inequalities

∣∣π∗(t, x, y)
∣∣ =

∣
∣∣∣
(b(y) + pμ · ν∗(t, x, y))vx(t, x, y) + pσ · ν∗(t, x, y)ρvxy(t, x, y)

(2σMpσ · ν∗(t, x, y) − σ−σ+)vxx(t, x, y)

∣
∣∣∣

≤ maxy(b(y) + μ+)

σ 2−

∣∣∣
∣
vx(t, x, y)

vxx(t, x, y)

∣∣∣
∣ + ρσ+

σ 2−

∣∣∣
∣
vxy(t, x, y)

vxx(t, x, y)

∣∣∣
∣

≤ L̄
(
1 + |x| + |y|)
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hold for some constant L̄ thanks to condition (2.13). Thus the SDE

dX∗
t = r(Y ∗

t )X∗
t dt + π∗(t,X∗

t , Y
∗
t )

(
b(Y ∗

t ) + pμ · ν∗(t,X∗, Y ∗)
)
dt

+ π∗(t,X∗
t , Y

∗
t )

√
p2

σ · ν∗(t,X∗
t , Y

∗
t ) dWt ,

X∗
0 = x,

dY ∗
t = β

(
Y ∗

t

)
dt + ρ

pσ · ν∗(t,X∗
t , Y

∗
t )

√
p2

σ · ν∗(t,X∗
t , Y

∗
t )

dWt

+
√

1 − ρ2 pσ · ν∗(t,X∗
t , Y

∗
t )2

p2
σ · ν∗(t,X∗

t , Y
∗
t )

dW⊥
t ,

Y ∗
0 = y,

defining an optimal wealth process has coefficients which are Lipschitz func-
tions on each set {(t, x, y) : |x| ≤ R, |y| ≤ R} and satisfy a linear growth con-
dition. Hence there exists a unique strong solution of that SDE with the prop-
erties E supt≤T |X∗

t |k < ∞, E supt≤T |Y ∗
t |k < ∞, for each k ≥ 1 (see Theorem

V.2.3 of [14]), and also satisfying E
∫ T

0 π∗2(t,X∗, Y ∗) dt < ∞. We denote by

(X
∗t,x,y
s , Y

∗t,x,y
s ), s ≥ t , the solution of the system (2.4) corresponding to π∗, ν∗

with initial condition (X
∗t,x,y
t , Y

∗t,x,y
t ) = (x, y).

Let τ
t,x,y
R = T ∧ inf{s ≥ t : |X∗t,x,y

s | ≥ R, |Y ∗t,x,y
s | ≥ R}. Since

∂

∂t
v + Hπ∗,ν∗

(x, y, vx, vy, vxx, vxy, vyy)

= ∂

∂t
v + 1

2
vyy + β(y)vy + xr(y)vx + f (t, x, y,π∗, ·) · ν∗ = 0

and vxπ
∗, vy are continuous bounded functions on each ball, we can apply Itô’s for-

mula to v(s,X∗
s , Y

∗
s ) and get v(t, x, y) = Ev(X

∗t,x,y

τ
t,x,y
R

, Y
∗t,x,y

τ
t,x,y
R

). Passing to the limit as

R → ∞, we obtain

v(t, x, y) = EU
(
X

∗t,x,y
T , Y

∗t,x,y
T

)
,

since by the integrability of supt≤T |X∗
t |p + supt≤T |Y ∗

t |p , we have

P
(
τ

t,x,y
R < T

) ≤ P

(
sup
t≤T

∣∣X∗
t

∣∣ ≥ R, sup
t≤T

∣∣Y ∗
t

∣∣ ≥ R

)
−→ 0 as R → ∞

and
∣
∣Ev

(
X

∗t,x,y
T , Y

∗t,x,y
T

) − Ev
(
τ

t,x,y
R ,X

∗t,x,y

τ
t,x,y
R

, Y
∗t,x,y

τ
t,x,y
R

)∣∣

≤ ∣∣Ev
(
X

∗t,x,y
T , Y

∗t,x,y
T

)
χ

(
τ

t,x,y
R < T

)∣∣ + ∣∣Ev
(
X

∗t,x,y

τ
t,x,y
R

, Y
∗t,x,y

τ
t,x,y
R

)
χ

(
τ

t,x,y
R < T

)∣∣

≤ 2LE

(
1 + sup

t≤T

|X∗
t |p + sup

t≤T

|Y ∗
t |p

)
χ

(
τ

t,x,y
R < T

) −→ 0 as R → ∞.
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Similarly, using Itô’s formula for the processes v(s,X
∗t,x,y
s (π∗, ν), Y

∗t,x,y
s (π∗, ν))

and v(s,X
∗t,x,y
s (π, ν∗), Y ∗t,x,y

s (π, ν∗)) and taking into account the inequalities

f (t, x, y,π, ·) · ν∗(t, x, y) ≤ f
(
t, x, y,π∗(t, x, y), ·) · ν∗(t, x, y)

≤ f
(
t, x, y,π∗(t, x, y), ·) · ν,

we get

EU
(
X

t,x,y
T (π, ν∗), Y t,x,y

T (π, ν∗)
) ≤ v(t, x, y) ≤ EU

(
X

t,x,y
T (π∗, ν), Y

t,x,y
T (π∗, ν)

)
.

Finally, we obtain

EU
(
X

t,x,y
T (π, ν∗), Y t,x,y

T (π, ν∗)
) ≤ EU

(
X

∗t,x,y
T , Y

∗t,x,y
T

)

≤ EU
(
X

t,x,y
T (π∗, ν), Y

t,x,y
T (π∗, ν)

)
.

This means that the pair (π∗, ν∗) is a saddle point of problem (2.3).
Since v(t, x, y) = inf

ν∈ŨK
EU(X

t,x,y
T (π∗, ν), Y

t,x,y
T (π∗, ν)) satisfies the HJB

equation of the stochastic control problem min
ν∈ŨK

EU(Xν
T (π∗), Y ν

T ) for

dXν
t = r(Y ν

t )Xν
t dt + π∗

t (Xν
t , Y ν

t )
(
b(Y ν

t ) + pμ · νt

)
dt

+ π∗
t (Xν

t , Y ν
t )

√
p2

σ · νt dWt , Xν
0 = x,

dY ν
t = β(Y ν

t ) dt + ρ
pσ · νt√
p2

σ · νt

dWt +
√

1 − ρ2 (pσ · νt )2

p2
σ · νt

dW⊥
t , Y ν

0 = y

and

min
ν∈P (K)

f
(
t, x, y,π∗(t, x, y), ·) · ν = min

(μ,σ )∈K
f

(
t, x, y,π∗(t, x, y),μ,σ

)
,

we conclude that

v(t, x, y) = min
ν∈ŨK

EU
(
X

t,x,y
T (π∗, ν), Y

t,x,y
T (π∗, ν)

)

= min
(μ,σ )∈UK

EU
(
X

t,x,y
T (π∗,μ,σ ),Y

t,x,y
T (π,μ,σ )

)
.

Thus

min
ν∈ŨK

max
π∈Π2

EU
(
X

t,x,y
T (π, ν),Y

t,x,y
T (π, ν)

)

≤ max
π∈Π2

EU
(
X

t,x,y
T (π, ν∗), Y t,x,y

T (π, ν∗)
)

≤ v(t, x, y)

= min
(μ,σ )∈UK

EU
(
X

t,x,y
T (π∗,μ,σ ),Y

t,x,y
T (π,μ,σ )

)

≤ max
π∈Π2

min
(μ,σ )∈UK

EU
(
X

t,x,y
T (π,μ,σ ),Y

t,x,y
T (π,μ,σ )

)
.
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On the other hand,

max
π∈Π2

min
(μ,σ )∈UK

EU
(
X

t,x,y
T (π,μ,σ ),Y

t,x,y
T (π,μ,σ )

)

≤ min
ν∈ŨK

max
π∈Π2

EU
(
X

t,x,y
T (π, ν),Y

t,x,y
T (π,μ,σ )

)
.

Therefore we find that the values of problems (2.1), (2.2) and (2.3), (2.4) are equal to

min
ν∈ŨK

max
π∈Π2

EU
(
X

t,x,y
T (π, ν),Y

t,x,y
T (π, ν)

)

= max
π∈Π2

min
(μ,σ )∈UK

EU
(
X

t,x,y
T (π,μ,σ ),Y

t,x,y
T (π,μ,σ )

)
. �

Corollary 2.7 The optimal strategy of the robust utility maximization problem (2.1),
(2.2) is given by

π∗(t, x, y) = − (b(y) + 
̄(t, x, y))vx(t, x, y) + m̄(t, x, y)ρvxy(t, x, y)

(2σM
̄(t, x, y) − σ−σ+)vxx(t, x, y)
,

where the pair (
̄(t, x, y), m̄(t, x, y)) is defined by (2.12) and v(t, x, y) is a solution
of (2.10), (2.11).

Example 2.8 Let us consider the robust mean-variance hedging problem with zero
drift and unknown volatility

min
π∈Π2

max
σt∈[σ−,σ+]E

(
H(YT ) − XT (π,σ )

)2
,

dXt = rXt dt + πtσt dWt , X0 = x,

dYt = β(Yt ) dt + ρ dWt +
√

1 − ρ2 dW⊥
t , Y0 = y.

Therefore we have U(x,y) = −(x − H(y))2, (x, y) ∈ R
2, μ− = μ+ = 0, r ′(y) = 0.

We assume that H is a continuous bounded function. By (2.12), we get

(
pμ · ν∗(t, x, y),pσ · ν∗(t, x, y)

) =
(

0,
σ−σ+
σM

)

because we have pσ · ν∗(t, x, y) = 2σ−σ+
σ++σ− = σ−σ+

σM
. Note that this implies that

ν∗(t, x, y) = σ−
σ++σ− δ(0,σ+) + σ+

σ++σ− δ(0,σ−). Thus

argmin
σ∈[σ−,σ+]

ρ2σ 2

−2(2σMσ − σ−σ+)
= σ−σ+

σM

and it follows from (2.10) that
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∂

∂t
v(t, x, y) + 1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)

+ min
σ∈[σ−,σ+]

ρ2σ 2v2
xy(t, x, y)

−2(2σMσ − σ−σ+)vxx(t, x, y)

= ∂

∂t
v(t, x, y) + 1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)

−ρ2 σ−σ+
2σ 2

M

v2
xy(t, x, y)

vxx(t, x, y)
= 0, (2.15)

v(T , x, y) = −(
x − H(y)

)2
. (2.16)

The solution of (2.15), (2.16) can be given as a quadratic polynomial in x,

v(t, x, y) = −A(t, y)x2 + 2B(t, y)x − C(t, y),

where the triplet (A,B,C) satisfies the system of PDEs

∂

∂t
A(t, y) + 1

2
Ayy(t, y) + β(y)Ay(t, y) + 2rA(t, y) + ρ2 σ−σ+

2σ 2
M

A2
y(t, y)

A(t, y)
= 0,

A(T , y) = 1,

∂

∂t
B(t, y) + 1

2
Byy(t, y) + β(y)By(t, y) + 2rB(t, y)

+ ρ2 σ−σ+
2σ 2

M

Ay(t, y)By(t, y)

A(t, y)
= 0,

B(T , y) = H(y),

∂

∂t
C(t, y) + 1

2
Cyy(t, y) + β(y)Cy(t, y) + ρ2 σ−σ+

2σ 2
M

B2
y (t, y)

A(t, y)
= 0,

C(T , y) = H 2(y).

This system admits the explicit solution

A(t, y) = e2r(T −t),

B(t, y) = e2r(T −t)EH
(
Y

t,y
T

)
,

C(t, y) = ρ2 σ−σ+
2σ 2

M

e2r(T −t)

∫ T

t

EB2
y

(
s, Y

t,x,y
s

)
ds + EH 2(Y t,x,y

T

)
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(notice that By(t, y)= e2r(T −t)EHy(Y
t,y
T )e

∫ T
t βy(Y

t,y
s ) ds , when H is differentiable).

The optimal strategy then takes the form

π∗(t, x, y) = − ρ
σ−σ+
σM

vxy(t, x, y)

(2σM
σ−σ+
σM

− σ−σ+)vxx(t, x, y)

= − ρ

σM

vxy(t, x, y)

vxx(t, x, y)
= − ρ

σM

By(t, y) − xAy(t, y)

−A(t, y)

= ρ

σM

By(t, y)

A(t, y)
= ρ

σM

e−2r(T −t)By(t, y).

The function B(t, y) = e2r(T −t)EH(Y
t,y
T ) is a classical bounded solution of the cor-

responding linear parabolic equation with bounded continuous By(t, y) and continu-
ous Byy(t, y) (see [14], formulas (5.20)–(5.22) of Chap. VI). It is clear that

∣∣v(t, x, y)
∣∣ ≤ L

(
1 + |x|2),

∣∣∣∣
vx(t, x, y)

vxx(t, x, y)

∣∣∣∣ ≤ L
(
1 + |x|),

∣∣∣∣
vxy(t, x, y)

vxx(t, x, y)

∣∣∣∣ ≤ L

for some L > 0 and By(t, y) is a locally Lipschitz function. Hence the pair
(π∗(t, x, y), ν∗(t, y)) satisfies all conditions of Theorem 2.6.

The case ρ = 1, r = 0, β ≡ 0 is discussed in the introduction. In this case the
second equation in (2.4) defines a Brownian motion Y = B for all non-anticipating
strategies ν(Y ) = ν(B) and (2.4) coincides with (1.3).

In the case of an objective function U(x,y) defined on R+ × R, it is convenient
to determine the wealth process as a solution of the SDE

dXt = r(Yt )Xt dt + πtXt

(
b(Yt ) + μt

)
dt + πtXtσt dWt , X0 = x,

dYt = β(Yt ) dt + ρ dWt +
√

1 − ρ2 dW⊥
t , Y0 = y.

(2.17)

The set of admissible strategies Π is now defined as the set of all predictable pro-
cesses π such that

∫
πs dWs is a BMO-martingale (as regards BMO-martingales,

see [20]). It is clear that for each (π,μ,σ ) ∈ Π × UK ,
∫

πsσs dWs is also a BMO-
martingale, a solution of (2.17) is positive, and the maximin problem

max
π∈Π

min
(μ,σ )∈UK

EU
(
X

μ,σ
T (π),YT

)
,

makes sense.
As in the previous case of the problem (2.1), (2.2), we consider the extended max-

imin problem

max
π∈Π

min
ν∈ŨK

EU
(
Xν

T (π),Y ν
T

)
, (2.18)

dXν
t = r(Y ν

t )Xν
t dt + πtX

ν
t

(
b(Y ν

t ) + pμ · νt

)
dt + πtX

ν
t

√
p2

σ · νt dWt , Xν
0 = x,
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dY ν
t = β(Y ν

t ) dt + ρ
pσ · νt√
p2

σ · νt

dWt +
√

1 − ρ2 (pσ · νt )2

p2
σ · νt

dW⊥
t , Y ν

0 = y. (2.19)

It is easy to see that the HJBI equation for the value v(t, x, y) of this problem is same
as (2.10), but π∗ is now defined by

π∗(t, x, y) = − (b(y) + 
̄(t, x, y))vx(t, x, y) + m̄(t, x, y)ρvxy(t, x, y)

x(2σM
̄(t, x, y) − σ−σ+)vxx(t, x, y)
,

where the pair (
̄(t, x, y), m̄(t, x, y)) is defined by (2.12).

Theorem 2.6′ 1 Suppose that v(t, x, y) is a classical solution of (2.7), (2.8) such
that vxx(t, x, y) < 0 and such that for some constants L > 0,p ≥ 1 and for all
(t, x, y) ∈ [0, T ] × R+ × R,

∣
∣v(t, x, y)

∣
∣ ≤ L

(
1 + |x| + |y|)p

,
∣∣∣∣
vx(t, x, y)

vxx(t, x, y)

∣∣∣∣ ≤ Lx,

∣∣∣∣
vxy(t, x, y)

vxx(t, x, y)

∣∣∣∣ ≤ Lx.

Suppose also that the triplet (π∗(t, x, y),pμ · ν∗(t, x, y),pσ · ν∗(t, x, y)) satisfies a
Lipschitz condition on each compact subset of [0, T ] × R+ × R, where

π∗(t, x, y)

= − (b(y) + pμ · ν∗(t, x, y))vx(t, x, y) + pσ · ν∗(t, x, y)ρvxy(t, x, y)

x(2σMpσ · ν∗(t, x, y) − σ−σ+)vxx(t, x, y)
, (2.20)

and where (pμ ·ν∗(t, x, y),pσ ·ν∗(t, x, y)) coincides with (
̄(t, x, y), m̄(t, x, y)) de-
fined by (2.12). Then (π∗, ν∗) is a saddle point of the problem (2.18), (2) and

max
π∈Π

min
(μ,σ )∈UK

EU
(
X

μ,σ
T (π),YT

) = max
π∈Π

min
ν∈ŨK

EU
(
Xν

T (π),Y ν
T

)

= min
ν∈ŨK

max
π∈Π

EU
(
Xν

T (π),Y ν
T

)
.

Proof The strategy given by (2.20) is bounded as for (t, x, y) ∈ [0, T ] × R+ × R,

∣∣π∗(t, x, y)
∣∣ ≤ maxy(b(y) + μ+)

σ 2−

∣∣∣∣
vx(t, x, y)

xvxx(t, x, y)

∣∣∣∣ + ρσ+
σ 2−

∣∣∣∣
vxy(t, x, y)

xvxx(t, x, y)

∣∣∣∣ ≤ L̄



554 R. Tevzadze et al.

for some constant L̄. Hence (π∗(t,X∗
t , Y

∗
t ))t∈[0,T ] ∈ Π , where (X∗, Y ∗) is the

corresponding solution of (2). The rest of the proof follows the proof of Theo-
rem 2.6. �

3 Power and exponential utility cases

Now let us consider the robust utility maximization problem with the power utility
U(x) = 1

q
xq, x > 0, with 0 < q < 1,

max
π∈Π

min
(μ,σ )∈UK

1

q
E

(
X

μ,σ
T (π)

)q
, (3.1)

subject to

dXt = r(Yt )Xt dt + πtXt

(
b(Yt ) + μt

)
dt + πtXtσt dWt , X0 = x,

dYt = β(Yt ) dt + ρ dWt +
√

1 − ρ2 dW⊥
t , Y0 = y.

(3.2)

In this case, the HJBI equation (2.10), (2.11) becomes

∂

∂t
v(t, x, y) + 1

2
vyy(t, x, y) + β(y)vy(t, x, y) + xr(y)vx(t, x, y)

+ min
(μ,σ )∈K

((b(y) + μ)vx(t, x, y) + ρσvxy(t, x, y))2

−2(2σMσ − σ−σ+)vxx(t, x, y)
= 0,

v(T , x, y) = 1

q
xq.

A solution of this equation is of the form v(t, x, y) = 1
q
xqeu(t,y), where u satisfies

the equation

∂

∂t
u(t, y) + 1

2
uyy(t, y) + β(y)uy(t, y) + 1

2
u2

y(t, y) + qr(y)

− q

2(q − 1)
min

(μ,σ )∈K

(b(y) + μ + ρσuy(t, y))2

2σMσ − σ−σ+
= 0, (3.3)

u(T , y) = 0. (3.4)

The pair (pμ · ν∗(t, x, y),pσ · ν∗(t, x, y)) from Theorem 2.6′ takes the form

(
pμ · ν∗(t, y),pσ · ν∗(t, y)

) =
(


(
ρuy(t, y)

)
,m

(
ρuy(t, y)

))
, (3.5)

where (
,m) is defined by (2.9).



Robust utility maximization 555

Remark 3.1 By Corollary 2.5 and (2.12), equation (3.3) can be written as

∂

∂t
u(t, y) + 1

2
uyy(t, y) + β(y)uy(t, y) + 1

2
u2

y(t, y) + qr(y)

− qρuy(t, y)

2(q − 1)σ 2
M

(
2
(
(y) + μ+

)
σM + σ−σ+ρuy(t, y)

)

× χ

(
ρuy(t, y) ≤ μ+σM

σMσ− − σ+σ−

)

− q

2(q − 1)σ 2−

(
b(y) + μ+ + ρσ−uy(t, y)

)2

× χ

(
μ+σM

σMσ− − σ+σ−
< ρuy(t, y) ≤ −μ+

σ−

)

− q

2(q − 1)σ 2+

(
b(y) + μ− + ρσ+uy(t, y)

)2

× χ

(
−μ−

σ+
< ρuy(t, y) ≤ μ−σM

σMσ+ − σ+σ−

)

− qρuy(t, y)

2(q − 1)σ 2
M

(
2
(
b(y) + μ−

)
σM + σ−σ+ρuy(t, y)

)

× χ

(
ρuy(t, y) >

μ−σM

σMσ+ − σ+σ−

)
= 0,

u(T , y) = 0.

Theorem 3.2 Under conditions (A1)–(A3), the Cauchy problem (3.3), (3.4) admits
a classical solution with bounded uy(t, y), and a saddle point (ν∗(t, y),π∗(t, y)) of
the problem (2.18), (2) is defined by equation (3.5) and by the formula

π∗(t, y) = 1

1 − q

(
b(y) + pμ · ν∗(t, y)

p2
σ · ν∗(t, y)

+ ρ
pσ · ν∗(t, y)

p2
σ · ν∗(t, y)

uy(t, y)

)
. (3.6)

Moreover, π∗(t, y) is the optimal strategy of the robust utility maximization problem
(3.1), (3.2).

Proof By Proposition B.1 in Appendix B, there exists a classical solution of
(3.3), (3.4) with bounded uy(t, y). From the continuity of uyy(t, y), it follows
that uy(t, y) is a locally Lipschitz function. By Lemma A.2 below, the pair
(pμ · ν∗(t, y),pσ · ν∗(t, y)), where ν∗(t, y) is defined by (3.5), is a locally Lip-
schitz function. Because we have p2

σ · ν∗(t, y) = 2σM(pσ · ν∗(t, y)) − σ−σ+ ≥ σ 2−,
also 1

p2
σ ·ν∗(t,y)

is a locally Lipschitz function. Hence
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π∗(t, y) = − 1

q − 1

b(y) + 
(ρuy(t, y)) + m(ρuy(t, y))ρuy(t, y)

2m(ρuy(t, y))σM − σ−σ+

= 1

1 − q

b(y) + pμ · ν∗(t, y) + pσ · ν∗(t, y)ρuy(t, y)

2pσ · ν∗(t, y)σM − σ−σ+

= 1

1 − q

(
b(y) + pμ · ν∗(t, y)

p2
σ · ν∗(t, y)

+ ρ
pσ · ν∗(t, y)

p2
σ · ν∗(t, y)

uy(t, y)

)

from (2.14) is also a Lipschitz function. It is obvious that we have π∗ ∈ Π for
each ν ∈ UK (since X(π∗, ν) is a solution of a linear SDE); moreover, we have
vxx(t, x, y) = (q − 1)xq−2eu(t,y) < 0 and all the conditions of Theorem 2.6′ are sat-
isfied. Therefore we can conclude that (π∗(t, y), ν∗(t, y)) is a saddle point of the
problem (3.1), (2.5). �

Corollary 3.3 If b = 0, r = 0, then

u(t, y) = − q

2(q − 1)
(T − t) min

(μ,σ )∈K

μ2

2σMσ − σ−σ+
= − q

2(q − 1)
(T − t)

μ2−
σ 2+

is a solution of (3.3), and a saddle point of the maximin problem can be given explic-
itly as

(μ∗
t , σ

∗
t ) = (μ−, σ+), π∗(t, x, y) = − μ−

2(q − 1)σ 2+
x.

Example 3.4 When σ− = σ+ = σM , we obtain

∂

∂t
u(t, y) + 1

2
uyy(t, y) + β(y)uy(t, y) + 1

2
u2

y(t, y)

− q

2(q − 1)σ 2
M

min
μ−≤μ≤μ+

(
b(y) + μ + ρσMuy(t, y)

)2

= ∂

∂t
u(t, y) + 1

2
uyy(t, y) + (

2ρσMb(y) + β(y)
)
uy(t, y)

+ 1

2

(
1 − qρ2σM

q − 1

)
u2

y(t, y)

− q

2(q − 1)σ 2
M

min
μ−≤μ≤μ+

(
(b(y) + μ)2 + 2μρσMuy(t, y)

) = 0,

u(T , y) = 0.

Applications of such equations in finance and the existence of a classical solution are
discussed in [16].
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Remark 3.5 Instead of the PDE (3.3), we can use the BSDE with quadratic growth

dVt = −
(

1

2
Z2

t + qr(Yt ) − q

2(q − 1)
min

(μ,σ )∈K

(b(Yt ) + μ + ρσZt)
2

2σMσ − σ−σ+

)
dt

+ Zt dWt + Z⊥
t dW⊥

t ,

VT = 0,

whose solvability follows from the results of [21, 33]. The solution of the BSDE can
be constructed, using the solution of the PDE (3.3), by the formulas

Vt = u(t, Yt ), Zt = ρuy(t, Yt ), Z⊥
t =

√
1 − ρ2uy(t, Yt ).

The optimal strategy π∗
t = π∗(t, Yt ) is defined by the linear equation

π∗
t = 1

1 − q

(
b(Yt ) + pμ · ν̂∗

t (Zt )

p2
σ · ν̂∗

t (Zt )
+ pσ · ν̂∗

t (Zt )

p2
σ · ν̂∗

t (Zt )
Zt

)
,

following from (3.6). As follows from (3.5), the pair (pμ · ν̂∗
t (z),pσ · ν̂∗

t (z)) coincides
with (
(z),m(z)) defined by (2.9).

Suppose now U(x,y) = −e−γ (x−H(y)), (x, y) ∈ R
2, γ > 0 and r = 0. This case

corresponds to the exponential hedging problem of the contingent claim H(y), de-
pending only on the non-tradable asset. We assume that H ∈ Cb(R). Now follow-
ing [26], we consider the restricted class of strategies Π = {π ∈ Π2 : ∫ t

0 πs dWs

is a BMO-martingale} and the minimax problem

min
π∈Π

max
(μ,σ )∈UK

Eeγ (H(YT )−X
μ,σ
T (π)) (3.7)

subject to (2.2). It is easy to verify that a solution of (2.10), (2.11) is of the form
v(t, x, y) = −eγu(t,y)−γ x , where u(t, y) is a bounded solution of

∂

∂t
u(t, y) + 1

2
uyy(t, y) + β(y)uy(t, y) + 1

2
γ u2

y(t, y)

+ 1

2γ
min

(μ,σ )∈K

(b(y) + μ + ργ σuy(t, y))2

2σMσ − σ−σ+
= 0, (3.8)

u(T , y) = H(y). (3.9)

The existence of a classical bounded solution of (3.8), (3.9) with bounded uy for the
case

H ′ ∈ C0(R) (3.10)

follows from Proposition B.1. Thus vx(t,x,y)
vxx(t,x,y)

= − 1
γ

, vxy(t,x,y)

vxx(t,x,y)
= −uy(t, y) are

bounded. One can check that all conditions of Theorem 2.6 except for the polyno-
mial growth condition of v(t, x, y) are satisfied. The robust optimal portfolio is
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π∗(t, y) = − 1

γ

b(y) + pμ · ν∗(t, y) − γρpσ · ν∗(t, y)uy(t, y)

2σMpσ · ν∗(t, y) − σ−σ+
,

with (pμ ·ν∗(t, y),pσ ·ν∗(t, y)) from (2.12). So (π∗(t, y),pμ · ν∗(t, y),pσ · ν∗(t, y))

is a bounded, locally Lipschitz function of (t, y) and X
t,x,y
s (π∗, ν∗), s ≥ t , is a BMO-

martingale. Hence {eγ (X
t,x,y
τ (π∗,ν∗)−u(τ,Y

t,x,y
τ )) : τ stopping time, t ≤ τ ≤ T } is a uni-

formly integrable family of random variables. This enables us to pass to the limit in
Theorem 2.6 and obtain

Ev
(
X

∗t,x,y
T , Y

∗t,x,y
T

) = Eeγ (X
∗t,x,y
τR

−u(τR,Y
∗t,x,y
τR

))

−→ Eeγ (X
∗t,x,y
T −u(T ,Y

∗t,x,y
T )) = Ev

(
T ,X

∗t,x,y
T , Y

∗t,x,y
T

)
as R → ∞

without the polynomial growth condition of v(t, x, y). Hence we have proved

Theorem 3.6 Under conditions (A1)–(A3) and (3.10), the Cauchy problem (3.8),
(3.9) admits a classical solution with bounded uy(t, y), and a saddle point (π∗(t, y),

ν∗(t, y)) of the problem (3.7) is defined by the equation

(
pμ · ν∗(t, y),pσ · ν∗(t, y)

) =
(


(
ργuy(t, y)),m(ργ uy(t, y)

))

and by the formula

π∗(t, y) = − 1

γ

b(y) + pμ · ν∗(t, y) − γρ(pσ · ν∗(t, y))uy(t, y)

2σMpσ · ν∗(t, y) − σ−σ+
.

Moreover, π∗(t, y) is an optimal strategy for the robust exponential hedging problem
(3.7), (2.2).
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Appendix A

Each measure ν may be realized as the distribution of a pair of random variables
(ξ, η) with values in K . Simplifying the notation, we denote b(y) + μ by μ again.
Our aim is to characterize the dependence of the minimizer for the problem

min
ν∈P (K)

(pμ · ν + κpσ · ν)2

p2
σ · ν = min

(ξ,η)∈K

(Eξ + κEη)2

Eη2

on a parameter κ ∈ R.
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Proposition A.1 Let

(
ξ∗, η∗) = argmin

(ξ,η)∈K

(Eξ + κEη)2

Eη2
.

Then ξ∗ is a number, η∗ is a Bernoulli random variable with values in the set
{σ−, σ+}, and the expectation of the pair (ξ∗, η∗) is given by the formula

(
ξ∗,Eη∗) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(μ+,
μ+
κ

+ σ−σ+
σM

) if κ ∈ (−∞,
μ+σM

σMσ−−σ+σ− ],
(μ+, σ−) if κ ∈ (

μ+σM

σMσ−−σ+σ− ,−μ+
σ− ],

(κ,−1)constant if κ ∈ (−μ+
σ− ,−μ−

σ+ ],
(μ−, σ+) if κ ∈ (−μ−

σ+ ,
μ−σM

σMσ+−σ+σ− ],
(μ−,

μ−
κ

+ σ−σ+
σM

) if κ ∈ (
μ−σM

σMσ+−σ+σ− ,∞).

Moreover,

(ξ∗ + κEη∗)2

Eη∗2
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ(2μ+σM+κσ−σ+)

σ 2
M

if κ ∈ (−∞,
μ+σM

σMσ−−σ+σ− ],
(μ++κσ−)2

σ 2−
if κ ∈ (

μ+σM

σMσ−−σ+σ− ,−μ+
σ− ],

0 if κ ∈ (−μ+
σ− ,−μ−

σ+ ],
(μ−+κσ+)2

σ 2+
if κ ∈ (−μ−

σ+ ,
μ−σM

σMσ+−σ+σ− ],
κ(2μ−σM+κσ−σ+)

σ 2
M

if κ ∈ (
μ−σM

σMσ+−σ+σ− ,∞).

Proof Let (μ+ + κσ−)(μ− + κσ+) ≤ 0. Then by the continuity of the function
μ + κσ, (μ,σ ) ∈ K , there exists (μ̂, σ̂ ) such that μ̂+κσ̂ = 0. Thus (μ̂, σ̂ ) is propor-

tional to (κ,−1) and (Eξ∗+κEη∗)2

Eη∗2 = 0. If (μ+ + κσ−)(μ− + κσ+) > 0, then either

κ >
μ−
σ+ and ξ∗ = μ− or κ < −μ+

σ− and ξ∗ = μ+. Thus it is sufficient to study the
minimization problem

min
η∈[σ−,σ+]

(μa + κEη)2

Eη2
for a = +,−.

Now we show that η∗ is of the form η∗ = σ−χB + σ+χBc for some event B .
Indeed, if Eη∗ = y, then Eη∗2 = 2σMy − σ−σ+ and η∗ is the maximizer of the
problem

max
η,Eη=y

Eη2,

since for any η with Eη = y, we have

Eη2 = E(η − σM)2 + 2σMy − σ 2
M

≤
(

σ+ − σ−
2

)2

+ 2σMy − σ 2
M = 2σMy − σ−σ+ = Eη∗2.
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Hence

min
η∈[σ−,σ+]

(μa + κEη)2

Eη2
= min

σ−≤y≤σ+
ψa(y),

where ψa(y) = (μa+κy)2

2σMy−σ−σ+ . Since

ψ ′
a(y) = κ2

2σM

− κ2

2σM

(2σM
μa

κ
+ σ−σ+)2

(2σMy − σ−σ+)2
,

the equation ψ ′
a(y) = 0 has the two roots

ya
1 = −μa

κ
, ya

2 = μa

κ
+ σ−σ+

σM

.

If ya
1 = −μa

κ
∈ [σ−, σ+], then ya

2 = μa

κ
+ σ−σ+

σM
∈ [−σ+ + σ−σ+

σM
,−σ− + σ−σ+

σM
]

and vice versa. Moreover, [σ−, σ+] ∩ [−σ+ + σ−σ+
σM

,−σ− + σ−σ+
σM

] = ∅. Since
limy→±∞ ψa(y) = ±∞, the smaller root is the maximizer and the bigger one the
minimizer. The case of ya

1 ∈ [σ−, σ+] is equivalent to the case

κ ∈
[

− σ+
μa

,−σ−
μa

]
,

which yields minψa(y) = ψa(y
a
1 ) = 0. From the relation ya

2 ∈ [σ−, σ+], it follows
that −σ+ + σ−σ+

σM
≤ −μa

κ
≤ −σ+ − σ−σ+

σM
, which is equivalent to the relation

κ ∈
(

− ∞,
μa

σ− − σ−σ+
σM

]
∪

[
μa

σ+ − σ−σ+
σM

,∞
)

.

In that case, minσ−≤y≤σ+ ψa(y) = ψa(y
a
2 ) = κ

2μa+κσ−σ+
σ 2

M

.

Now we consider step by step all the possibilities of displacement of κ in the
intervals formulated in the proposition.

(1) κ ∈ (−∞,
μa

σ−− σ−σ+
σM

]: Since μa

σ−− σ−σ+
σM

≤ −μ+
σ− , we have κ ∈ (−∞,−μ+

σ− ] and

ξ∗ = μ+. Moreover, minψ+(y) = ψ+(y+
2 ) = κ

2μ++κσ−σ+
σ 2

M

.

(2) κ ∈ (
μ+

σ−− σ−σ+
σM

,−μ+
σ− ]: From κ ≤ −μ+

σ− , it follows that y+
1 = −μ+

κ
< σ−, and from

κ >
μ+

σ−− σ−σ+
σM

, it follows that y+
2 = μ+

κ
+ σ−σ+

σM
< σ−. Hence ψ+(y) is increasing

on [σ−, σ+] and arg minσ−≤y≤σ+ ψ+(y) = σ−.
(3) κ ∈ (−μ+

σ− ,−μ−
σ+ ]: Then y+

1 = −μ+
κ

∈ [σ−, σ+] and minψ+(y) = 0.

(4) κ ∈ (−μ−
σ+ ,

μ−
σ+− σ−σ+

σM

]: In this case, we obtain μ−
κ

> σ+ − σ−σ+
σM

and

y−
1 = −μ−

κ
< −σ+ + σ−σ+

σM
< σ−, y−

2 = μ−
κ

+ σ−σ+
σM

> σ+. Therefore ψ−(y) is
decreasing on [σ−, σ+] and arg minψ+(y) = σ+.

(5) κ ∈ (
μ−

σ+− σ−σ+
σM

,∞]: Then κ >
μ−
σ+ and ξ∗ = μ−. On the other hand, from

μ−
κ

< σ+ − σ−σ+
σM

, it follows that y−
2 ∈ [σ−, σ+]. So we obtain

minσ−≤y≤σ+ ψ−(y) = ψ−(y−
2 ). �
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Lemma A.2 Suppose that u(y), f1(z), f2(z), . . . , fN(z) are Lipschitz functions, and
let −∞ = a0 < a1 < · · · < aN = ∞ be points satisfying that fk(ak) = fk+1(ak),
k = 1, . . . ,N − 1. Then the function

ν(y) = fk

(
u(y)

)
if ak−1 < u(y) ≤ ak, k = 2, . . . ,N,

is also a Lipschitz function.

Proof For the sake of simplicity we consider the case N = 2. It is clear that
fk(u(y)), k = 1,2,3, are Lipschitz functions, i.e., there exists a constant C > 0
such that |fk(u(y1) − fk(u(y2))| ≤ C|y1 − y2|. Suppose that A1 = {y : u(y) ≤ a1},
A2 = {y : u(y) > a1} and take y1 ∈ A1, y2 ∈ A2. Since u(y1) ≤ a1 ≤ u(y2), by the
continuity of u there exists ȳ such that u(ȳ) = a1, y1 ≤ ȳ ≤ y2. Hence we have

∣∣ν(y1) − ν(y2)
∣∣ = ∣∣f1

(
u(y1)

) − f2
(
u(y2)

)∣∣

= ∣∣f1
(
u(y1)

) − f1(a1) + f2(a2) − f2
(
u(y2)

)∣∣

≤ ∣∣f1
(
u(y1)

) − f1
(
u(ȳ)

)∣∣ + ∣∣f2
(
u(ȳ)

) − f2
(
u(y2)

)∣∣

≤ C|y1 − ȳ| + C|y2 − ȳ| = C(y2 − y1). �

Appendix B

Let β,a, b,H ∈ Cb(R) and γ, c, g be some constants. We consider the Cauchy prob-
lem

∂

∂t
u(t, y) + 1

2
uyy(t, y) + β(y)uy(t, y) + γ u2

y(t, y) + a(y)

+ c min
(μ,σ )∈K

(b(y) + μ + gσuy(t, y))2

2σMσ − σ−σ+
= 0, (B.1)

u(T , y) = H(y). (B.2)

Proposition B.1 Let β,a, b,H be such that a′, b′,H ′ ∈ C0(R). Then the Cauchy
problem (B.1), (B.2) admits a classical solution with bounded u(t, y), uy(t, y).

Proof By assumption, there exists N ≥ 0 with a′(y), b′(y) = 0 and H ′(y) = 0
if |y| > N . Thus a(y) = a+, b(y) = b+,H(y) = H+ if y ≥ N and a(y) = a−,
b(y) = b−, H(y) = H− if y ≤ −N , for some constants a+, a−, b+, b−,H+,H−.
The solutions of (3.3) on the intervals (−∞,−N ] and [N,∞) are
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u−(t) = a−(T − t) + c
(b− + μ−)2

σ 2+
(T − t) + H−,

u+(t) = a+(T − t) + c
(b+ + μ−)2

σ 2+
(T − t) + H+,

respectively. Now let us consider on the bounded domain (0, T ) × (−N,N) the
Cauchy–Dirichlet problem

∂

∂t
u(t, y) + 1

2
uyy(t, y) + β(y)uy(t, y) + γ u2

y(t, y) + d(y)

+ c min
(μ,σ )∈K

(b(y) + μ + gσuy(t, y))2

2σMσ − σ−σ+
= 0,

u(T , y) = H(y), u(t,±N) = u±(t). (B.3)

Suppose

a1(t, y,u,p) = 1

2
p,

a(t, y,u,p) = −β(y)p − γp2 − d(y) − c min
(μ,σ )∈K

(b(y) + μ + gσp)2

2σMσ − σ−σ+
.

Hence we get the Cauchy–Dirichlet problem for ũ(t, y) = u(T − t, y) in the form
of [23] as

∂

∂t
ũ(t, y) − ∂

∂y
a1

(
t, y, ũ(t, y), ũy(t, y)

) + a
(
t, y, ũ(t, y), ũy(t, y)

) = 0,

ũ(0, y) = H(y), ũ(t,±N) = u±(T − t).

It is easy to see that a(t, y,u,p) is a Lipschitz function on each ball of its do-
main, a(t, y,u,0)u is lower-bounded by a quadratic function of the type −b1u

2 −b2,
b1, b2 > 0, and all the other conditions of Theorem V.6.2 of [23] are satisfied. There-
fore there exists a classical solution of (3.3), (3.4) with bounded uy(t, y). �

Remark B.2 The existence of a classical solution to (B.3) with boundary conditions
u(T , y) = 0, uy(t,±N) + u(t,±N) = u±(t) follows also from Example 3.6 of [18].
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