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Introduction

Stochastic equations, both differential and nondifferential, play an important role in many problems
of statistics of random processes, in particular, in problems of estimating the unknown parameters of
semimartingales. Many problems of the estimation theory are reduced to the investigation of questions
connected with the solvability (both strong and weak) of stochastic differential equations (SDEs) and
with the asymptotic behavior of solutions of stochastic estimational equations.

The formalization of a statistical problem and the desire to study it from the standpoint of generality
which is implied by the very essence of a statistical problem make it necessary to consider new specific
problems of stochastic analysis and use new methods of investigating previously known problems. Such
problems include the investigation of special types of stochastic differential equations and properties of
their solutions, and also the asymptotic behavior of the roots of estimational equations in the case of
a model disturbance in various formulations. Using the methods of martingale theory, one can make
a general statistical model with filtration and an important particular case of it, in which models are
associated with semimartingales, the objects of the research.

This monograph is concerned with studies of this kind.

Chapter 1 deals with the structure of all solutions of the Carathéodory-type stochastic differen-
tial equation whose drift coefficient satisfies the well-known Carathéodory condition from the theory of
ordinary differential equations.

The statistical problem that leads to such SDEs is the innovation problem for the nonlinear filtering
(estimation). Our assumption is that the investigated processes are It6 processes. Our aim is to present
such a process without losing information as a simpler and more convenient process for studying a dif-
fusion-type process. In doing so, it should only be assumed that the drift coefficient of the desired It6
process is square integrable (with respect to the Lebesgue measure) with probability 1. It is desirable
not to strengthen the principal assumption which is natural in many senses (in investigating the absolute
continuity of measures of the corresponding processes, the structure of It6 functionals and diffusion-type
processes and so on).

However, the problem in such a general formulation has turned out to be rather difficult and still
remains unsolved.

Under various additional restrictions both on the structure of the processes considered and on the
kind of dependence of the processes participating in the scheme, this problem has been solved by many
authors. We will speak on this in more detail below when discussing the results of Chapter 2. Here,
in Chapter 1, the drift process is assumed to be a random variable independent of a Wiener process
participating in the scheme. Then the principal assumption holds trivially. Our aim is to confirm the
validity of the hypothesis about the existence of innovations (under the above-mentioned assumption only)
in this particular case.

However, it has turned out that the corresponding SDE (this problem is reduced to the proof of its
strong solvability) has a singularity at the point ¢ = 0 and, therefore, the well-known results from the
SDE theory are not applicable in this case. Therefore, we have developed a theory of such SDEs and
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studied the global and local properties of solutions, as well as the structure of the integral funnel of all
solutions and so on. As a result, we have obtained a solution of the considered statistical problem.

Chapter 2 deals with the construction of an innovation process for the observed component of a
partially observable diffusion-type process in the one- and multidimensional cases. Such problems arise
in the estimation theory of partial likelihood schemes, the nonlinear filtering theory, and the theory of
stochastic control by incomplete data.

As mentioned above, the considered problem belongs to the range of previously existing problems
which demand new methods for their investigation. In particular, such methods include the generalized
Bayes formula, linear integral inequalities derived for the functional of “filter,” the stochastic version of
the Gronwall-Bellman lemma and so on. It is interesting to note that to solve even a one-dimensional
problem, one should use the multidimensional version of the lemma mentioned above. The use of these
methods made it possible to get rid of many assumptions like the assumption of smoothness on the
coefficients of the scheme.

In Chapter 3 the robust estimators for statistical models associated with semimartingales are con-
structed. We consider models with shrinking contamination neighborhoods, where a sequence of alterna-
tive measures is contiguous to a sequence of basic measures. As the basic class of estimators, we consider
the class of generalized CLAN (consistent, linear, asymptotically normal) estimators. Note that here sto-
chastic equations also play an important role, in particular, in the construction of these estimators. One
of the construction methods consists in studying the solvability of stochastic estimational equations and
the asymptotic behavior of their solutions for the model disturbance. Thus, we studied the problem of the
local limiting behavior of the roots of such equations by the appropriately generalized Dugue—Kramer—Le
Breton method. We also studied the global limiting behavior of the roots of these equations and obtained
the desired CLAN estimators. Using the results obtained, we construct B-robust estimators with respect
to the risk functional determined by the asymptotic mean-square error.

In considering the general model of statistical experiments we give the definition of the notion of
“shrinking contamination neighborhoods” and formulate the minimax optimization problem. We also
develop methods for finding optimal score functions, which, as it turns out, are the Huber functions.

We investigate the problem of robustness in two stages. In stage 1 we study separately and in great
detail an important particular case of the discrete time. The well-known special models of time series are
discussed. In stage 2 we consider the general case associated with semimartingales.

Finally, in Chapter 4 we introduce and investigate the Robbins—Monro-type stochastic differential
equation and, in particular, study the question whether the solution of this equation is convergent with
probability 1. Many generalized schemes of stochastic approximation and recursive estimation can be
reduced to equations of the considered type. In this context, we have obtained a theorem which includes
as particular cases many familiar results. The question how the results obtained here are related to the
previously known results is studied when treating the special cases.

Theorems and facts from the general theory of random processes used in the present work can be
found in [8,21,39,48,52,59,63,82,88,99, 130].

Chapter 1 deals with the following one-dimensional SDE:

d§e = A(t,&)dt +dWy, 0<t<T, &, (0.1)

where the function A(¢,x): [0,7] x Ry — R; is a Borel-measurable function with respect to a pair (t,z),
W = (W) is a standard Wiener process, and &, is a random variable, independent of W. We study the
structure of all solutions of this SDE.

In Sec. 1.1 we prove (Theorem 1.1) that Eq. (0.1) has a pathwise unique strong solution if and only
if it has a weak solution unique in law.

This result and a method of proof based on the Tanaka—Meyer formula and the Yamada—Watanabe
theorem [37,126] were at first published in 1981 [101]. An analogous approach was developed in [62,80]
in 1983 (see also [51,84]).
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The consideration of the example given at the end of Sec. 1.1 naturally leads to the question: what
is a sufficiently wide class of conditions for the existence and uniqueness of a weak or strong solution of
Eq. (0.1), without requiring, in general, that the measure corresponding to the constructed solution be
necessarily absolutely continuous with respect to a Wiener measure? Moreover, it will be interesting to
find conditions which would, perhaps, guarantee only the existence of weak and strong solutions of Eq.
(0.1) and, in this connection, to consider the relation between the sets of these solutions, in other words,
to study the structure of the class of all solutions of Eq. (0.1).

Note that Eq. (0.1) is equivalent to the ordinary differential equation (with a coefficient containing
“stochastics”)

d ~
= A, =, (0:2)

where Z(t,w) =A(t,x+W,),0<t<T, x €Ry.

As in the theory of ordinary (deterministic) differential equations, it is natural to study Eq. (0.2)
by the following scheme: first to study the local structure of the solutions of (0.2) and then to find the
conditions under which the solutions can be continued on the whole “time” interval.

The technique used for obtaining such theorems is the “truncation” of the coefficient of the equation
and finding sufficiently simple conditions which guarantee the existence of global solutions for the equation
with a “truncated” coefficient, which, obviously, leads to the existence theorems for local solutions of the
initial equation (see, e.g., [9,15]).

The Carathéodory conditions are the well-known conditions of this type.

C'-conditions:

(1) the function A(t,z) is measurable in ¢ for any fixed x € R; and continuous in z for any fixed ¢,
0<t<LT,

(2) there exists a Borel-measurable function m(t), m(t) >0, 0 <t < T, such that for any ¢ € [0, T
and x € Ry,

T
|A(t, z)| < m(t), /0 m(t) dt < oco. (0.3)

Now we consider Eq. (0.2). Note that under the Carathéodory conditions in the theory of ordinary
differential equations the following statements are basic:

(a) there exists a solution of (0.2), i.e., for every fixed w € Q there exists a continuous function
(ne(w)), 0 < t < T, satisfying Eq. (0.2) with A(t,z) = A(t,z + Wy (w));

(b) there exist the so-called mazimal and minimal solutions of (0.2) with a fixed initial condition;

(c) the cross section of the integral funnel of the solutions (i.e., the set of all solutions of Eq. (0.2)
“starting” from one point) for every t represents a closed interval.

However, these statements do not provide the existence of a solution (7:(w)), 0 <t < T, w € Q, of
Eq. (0.2) at least measurable with respect to w and, in particular, possessing the desirable property of
Fmo v FV -measurability for every t, where F}V = o(Ws,s < t), or the existence of a strong solution of
Eq. (0.2).

The natural analogue of statement (c), saying that for any ¢ € [0,7], at least one strong solution
passes through a point { (random variable) of a random interval Iy, := {£: & by SES &, (P-a.s.)}, where

£ o and Eto are the lower and upper bounds of the integral funnel section at the point ¢ = g, is not true,
or, roughly speaking, strong solutions do not fill up the interval I;,. Moreover, if we consider the class
of all anticipating solutions (this notion is defined below) instead of the class of strong solutions of Eq.
(0.2), then the above-given statements (a), (b), and (c) hold.

It is well known ([3,51,84]) that the continuous process £ = (&), 0 < ¢ < T, is a strong solution of SDE
(0.1) on the given probability space (2, F, P) and with respect to the fixed Wiener process W = (W,),
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0 <t < T, and initial condition &g, if the process £ is adapted to the P-augmented filtration (.7-'50 \Y .7-'tW ),
0 <t < T, and satisfies SDE (0.1) with the initial condition &p.

If the solution process ¢ is such that the random variable & is (F& v f:‘ﬁv )-measurable for each ¢,
0 <t < T, then we call the process £ an anticipating solution of SDE (0.1).

Note that we introduce the notion of the anticipating solution only for equations of the type (0.1),
i.e., for equations with unit diffusion coefficient.

The anticipating solution can be constructed, for example, simply as follows.

Let (£&}) and (£2), 0 <t < T, be two “distinct” strong solutions of Eq. (0.1) and let A be an event
from FWW = (W, 0 <t < T). Then it is obvious that the process

& =&y + & aey, 0<t<T, (0.4)
where Iry is an indicator of the event {-}, is the anticipating solution of Eq. (0.1) and each of its
trajectories represents a trajectory of a strong solution (either (£}) or (¢2)). This construction suggests
only that every anticipating solution can be represented as a combination of strong solutions.

In Theorem 1.5, the above-mentioned hypothesis concerning the representation of anticipating so-
lutions in the form of a combination of strong solutions acquires a strong sense. Namely, Theorem 1.5
proves that for every anticipating solution £ = (&), 0 < ¢t < T, of Eq. (0.1), a measurable functional
O(t,w,w1), 0<t<T, wuw € Clo,1) can be found, such that for any w; € Cjo 1) the stochastic process
®(-,-,w;) is a strong solution of (0.1) and

&(w) =P(t,w,w), 0<t<T (P-as.),

where P is a standard Wiener measure defined on the measure space (Cio 7y, Bjo,7)) of continuous functions.

This theorem, together with Theorems 1.6, 1.2, 1.3, and 1.4, gives a complete description of the
integral funnel of all solutions of (0.1) in terms of strong solutions.

The structure of the solutions of the stochastic equations of general type has been studied in [128,129].
The application of the methods developed in these papers to SDE (0.1) leads to the fact that under
conditions on A(t,z) (e.g., |A(t,z)| < m(t), fOT mlTE(t)dt < oo, € > 0) it becomes possible to present
every weak solution (in a certain sense) in the form of a combination of anticipating solutions of Eq. (0.1).
To be more precise, if

(Qv}-vF = (Ft)ap’W = (Wt)aé = (gt)ao <t< T)

is a weak solution of Eq. (0.1), then one can find a combination of the objects
(ﬁaj}uﬁ - (ft)af)aw - (Wt)ag: (gt)uo S t S Tua)
(o is a random variable) and a measurable functional ®(¢,z,w), 0 <t < T, z € Ry, w € Cg 7y, continuous

in ¢, such that the random variable « is independent of the Wiener process W and uniformly distributed
on [0,1], £ = (&), 0 <t < T, and & = (&), 0 < t < T, have the same probability law, and for any
x € [0,1], the process ®(t,z, W) represents an anticipating solution of Eq. (0.1) (with W instead of W),
and B .

&=t a, W), 0<t<T (P-as.).

Obviously, the result obtained in Theorem 1.5 (the representation of an anticipating solution of Eq.
(0.1) in the form of a combination of strong solutions) together with that just described (the represen-
tation of a weak solution in the form of a combination of anticipating solutions) provides us with the
representation of a weak solution in the form of a combination of strong solutions.

In Theorem 1.7, a sufficient condition for the uniqueness of the solution of (0.1) is given, such that it
does not suggest an absolute continuity of the measure corresponding to the solution of (0.1) with respect
to a Wiener measure.

In Sec. 1.3, applying the “truncation technique” to Eq. (0.1), we deduce existence and extension
theorems for the local solutions of Eq. (0.1). Here (Proposition 1.2, Theorem 1.8 and its Corollary 1.1,
and Theorems 1.9, 1.10, and 1.11) conditions which guarantee the possibility of the extension of the
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solutions to the whole “time” interval [0, c0) under consideration, as well as conditions of the uniqueness
are given.

Note that in choosing the “truncation” function the local (i.e., with small t) properties of a Wiener
process are substantially used, in particular, the Lévy law of the iterated logarithm [38].

A survey of the results as well as many aspects of the theory of SDEs close to those considered by
us, can be found in [3,47,56,121,131,132].

Section 1.4 deals with special cases and examples illustrating different aspects of the suggested
approach.

The last section, Sec. 1.5, is devoted to the innovation problem for the process

d&; = 0dt + dWy, &,

where 6 is a random variable independent of the process W.

The investigation of this statistical problem leads to the Carathéodory-type SDE, since the function
A(t,x) from (1.46) is an unbounded function near the point ¢ = 0.

In Sec. 1.5 we give a positive solution of this problem.

A number of papers were devoted to the problem of innovations in different schemes. We briefly
describe here some of the main aspects and results.

Introduce a stochastic basis (Q, F, F = (F;), 0 <t < T, P) with a Wiener process W = (W, F'), and
let a process 8 = (0, F') be defined on it.

Let

T
/ |G| dt < o0 (P-a.s.)
0
and consider the It6 process £ = (£, F') with the differential
dé = Bidt + dW, & = 0. (0.5)

In the general case, the existence of an innovation process for £ means that the following assertions
hold.

L. (Representation). There exists a nonanticipating functional m:(X), 0 <t < T, z € Cjy ) such
that the process

W = (W, F®),
where
t
Wt = ét - / ms(f) dS, (06)
0
is a Wiener process.
Here
Fé=(Ff), 0<t<T, (0.7)

where .7-'5 = 0(&s,s < t) is an augmented [51] o-algebra generated by the process £ up to the moment ¢.
Analogously, denote

FV = (F"), 0<t<T, (0.8)

where ﬂW = 0(Ws,s < t) is an augmented o-algebra generated by the process W up to the moment t.
II. (Coincidence of augmented filtrations).

FV = F¢  (mod P),

i.e., the process W contains the same information as the process &.
Statement I was proved for the first time by Shiryaev [87] and Kailath [22,49] under the assumption

T
/O Bl ()] dt < oo,
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and later the condition was considerably weakened in the papers of Yershov [127], Toronjadze [96] (for
the case where §;(w) = f(w) is a random variable), and Meyer [77], where under the assumption that

my = E(B; | )

exists (for almost all ¢ w.r.t. the Lebesgue measure), it was shown that

T
/ meldt < 00 (P-as.)
0

and statement I holds.
It is also known that if 3 and W are independent, then it is sufficient for statement I that

T
/ B2dt < oo (P-as.) (0.9)
0

(see Lipster and Shiryaev [66]).

Cirelson [13] has constructed an example of bounded 3 = (3, F¢) for which statement I holds auto-
matically but statement II cannot take place.

Thus, for statement II to hold, additional assumptions on the type of the dependence of § on W
should be introduced.

For example, it is shown in [66] that if (5,V) is a Gaussian system and condition (0.9) is satisfied,
then statements I and II hold.

If, on the other hand, # is assumed to be independent of W, then the sufficient conditions (of
boundedness) on (3 in statement II were successively weakened by different authors:

(a) Clark [14]: |Bi(w)| < ¢ < o0 (P-a.s.), where c¢ is a nonrandom constant;

(b) Allinger and Mitter [2]:

T
E /0 B2 dt < oo;
(c) Chitashvili [11]:
T
/ BB | Ff)dt < o (P-as.).
0

There exists a conjecture that condition (0.9) is also sufficient for statement II to hold, but this
conjecture has not yet been proved.
In the special case, where

B =10
is a random variable, and, therefore, condition (0.9) holds automatically, statement II is proved in Chapter
1, Sec. 1.5.
The problem of filtration and control of a partially observable random process naturally leads to the
case of a special dependence of 8 on W arising under the assumption that the process £ is the so-called

observable component of a diffusion-type process (1, §).
Consider the process (n,&) which is the solution of the following SDE:

d’l]t = at(ﬁ, ’I’])dt + bt(éa n)th’ o= 0’

de, = Ay(&m)dt + i (E)dW,, =0, (0.10)

where W is a multidimensional Wiener process, the coefficients a and A and b and ¢ are vector- and
matrix-valued, respectively, nonanticipating functionals.
In such a scheme, the problem of innovations is solved for the following cases:
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(d) the so-called conditionally Gaussian scheme (see [66]): there exist coefficients a, A, b, and ¢ such
that

at(may) = Clt(»’U)yt,
At(»’U,y) = At(«’U)yt,
be(z,y) = b(x),

which satisfy the Lipschitz and boundedness conditions with respect to the variable x;
(e) Krylov (][54, 55]) has considered the case of a multidimensional diffusion-type process in the
Markov case (i.e., for example,

Az, y) = Ae(we, yt)),

where the coefficients a, A4,b, and ¢ are sufficiently smooth and bounded.

Note that the existence of a “noise” correlation is not excluded here;

(f) Chitashvili [12] has studied the special case of scheme (0.10), the so-called triangular system
(one-dimensional), where the coefficients a, A, b, and c satisfy the Lipschitz condition with respect to the
two variables x and y and the condition of a linear growth.

The “noise” correlation is not excluded; however, specific additional conditions are imposed on it.

In Sec. 2.1, we prove the multidimensional stochastic version of the Gronwall-Bellman lemma (see,
e.g., [66]).

In the next two sections we consider a one-dimensional (Sec. 2.2) and multidimensional (Sec. 2.3)
partially observable diffusion type process of the form (0.10).

In Sec. 2.2 we consider the scheme given by SDE (2.1), and under the linear growth (in both space
variables « and y) and Lipschitz conditions (with respect to the variable x) on the coefficients of the
scheme we prove the existence of the innovation process W for the observable component £. In contrast
to case (f), the Lipschitz condition on a;(x,y) and A;(z,y) with respect to the variable y is not required
here.

In Sec. 2.3, we consider a multidimensional case and under the boundedness and the Lipschitz
conditions on the coefficients a, A, b, and ¢, we construct an innovation process.

This result generalizes case (e) in two directions: first we consider a non-Markov case, and second,
reject the smoothness conditions on the coefficients.

The results of Chapters 1 and 2 have been published in [95-103,107,108,111].

The problems considered in Chapter 3 belong to the asymptotic theory of robust estimation for
dependent observations.

The theory of robust estimation for the case of independent, identically distributed (i.i.d.) obser-
vations was investigated for the first time by Huber [34,35] and developed by Hampel et al. [32]. The
key role in this theory is played by the M-estimators introduced by Huber as generalizations of the max-
imal likelihood estimates (MLE). The M-estimators can be constructed as solutions of the stochastic
estimational equation

znzw(Xi,o) =0, (0.11)

where X;, i > 1, are the i.i.d. observations with common density f(x,0), # € © is an unknown parameter
to be estimated, the so-called score function v (z, 6) is such that Fgi(X1,0) = 0 and, hence, the left-hand
side of Eq. (0.11) is a martingale with respect to the measure generated by the density f(z,6).

Proceeding from Eq. (0.11), one can construct the CLAN estimators [6,112,113], which are asymp-
totically equivalent to the M-estimators. This class of estimators is one of the basic classes in the theory
of robust estimation.

2715



The necessity of extension of the class MLE to the class of M- or CLAN-estimators arises because of
the main assumption of the theory: the parametric family of distributions of observations is not exactly
specified, and observations are assumed to be distributed with density from some neighborhood of the
basic (core) density f(x,@).

More frequently the so-called Huber’s gross error (contamination) model is considered. In this case
the “neighborhood” is given by the formula

oM = {f(2,0): f(z,0) = (1—e)f(x,0) +ch(z,0)}, &>0, (0.12)

where h(x, 0) is a density from some class H. The class H is specified depending on the statistical problem

under consideration. Measures generated by densities f(x,0) are called alternative measures or, simply,
alternatives, and H is called a class determining alternatives.

This model has a clear statistical meaning. Let X;, ¢ > 1, be i.i.d. observations with density f(z,#),
and W;, i > 1, be i.i.d. observations with density h(z,6). Consider the i.i.d. sequence of 0-1 random
variables Z;, ¢ > 1, with

P(Zi=1)=¢, i>1.
If the sequences (X;), (W;), and (Z;) are mutually independent, then the random variables

form i.i.d. observations with density f(x,6). Thus the observations (X;) are “contaminated” by the
observations ().

Introduce a criterion of comparison of estimates based on a risk functional. Frequently, as this
functional there occurs an asymptotic mean-square error and the estimator is called optimal if it is a
minimax estimator with respect to the risk functional, where the maximum is taken over the class H,
whereas the minimum is taken over the class ¥ = {¢)(z,0)} of functions, which determine the estimators
(in particular, over the class that determines the CLAN estimators).

In such a statement, MLEs are now not optimal. Optimal estimators are prescribed by the Huber
functions, included in the class of functions v (z, ) determining M-estimators.

The optimal score functions have the form

e L [ (0.14)

i.e., are centered, truncated, maximum likelihood scores, where §* is the centering parameter and m* is
the truncation parameter.

In the case where the “radius” € of the neighborhood @f depends on the time variable, i.e., e = ¢,

and ¢, — 0 as n — oo, we have the set of shrinking contamination neighborhoods {@g }. If now the

sequence of alternative measures {}36?} is contiguous to that of basic measures {F'}, then we obtain the
shrinking contamination neighborhoods with contiguous alternatives. The above-described scheme can
be generalized at least in two principal directions: (1) passage to an infinite-dimensional parameter set,
i.e., to semiparametric models and (2) passage to dependent observations ([33,57,70,92]) (composition of
these two directions is also possible).

Many aspects of the estimation theory dealing with semiparametric models for i.i.d. observations are
presented in [7,81,124]. A number of papers [26-30] are devoted to questions of the asymptotic theory of
estimation for semimartingale models.

In our work, the set of parameters © is one-dimensional and the observations are dependent.

As it turned out, when passing from the i.i.d. observations to the dependent observations, the
contamination model given by formula (0.12) (call it contamination of measures) and the model described
by formula (0.13) (call it contamination of trajectories or replacement model) do not coincide but, on the
contrary, radically differ.

Contamination of measures for dependent discrete time observations, more precisely, for a stationary
ergodic AR(p) model, was first investigated by Kiinsch [57]. Under certain assumptions on the model,
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he constructed a so-called optimal B-robust (“B” is the abbreviation of “bias”) estimate [32] and showed
that this estimate is given by the Huber function. Contamination of trajectories was first considered by
Martin and Yohai [70] for stationary ergodic time series. They have shown that in considering the process
of moving average, the Huber function provides no robust estimates.

Our approach generalizes contamination of measures (0.12) and, therefore, continues the investiga-
tions started by Kiinsch. Moreover, we consider shrinking contamination neighborhoods with contiguous
alternatives for statistical models with filtration associated with semimartingales.

Let us describe briefly the points concerning this model. First of all, we must clarify the notion
of M-estimators, investigate their asymptotic properties, and then consider the problem of constructing
these estimators (in particular, the CLAN estimators). To this end, in Sec. 3.1 we consider the general
stochastic estimational equations. Investigating the limiting behavior of roots of these equations, we
obtain the CLAN estimators. In Subsection 3.1.1 (Theorem 3.1) we investigate the question of asymptotic
solvability and asymptotic behavior of roots of these equations in the neighborhood of a fixed point 8 of
the set of parameters ©. All these classical questions for i.i.d. observations have been investigated by
Dugue and Cramer [19]. Le Breton has considered the case of the diffusion processes.

Subsection 3.1.2 (Theorem 3.2) concerns the investigation of global asymptotic properties of the
solutions. This scheme is less popular. We refer to the paper of Perlman [79]. Note only that the “local
theorem” provides us with the solution of the identification problem of unknown parameter, whereas the
“global theorem” allows us to construct consistent estimators.

Section 3.2 deals with the robust estimation problems in discrete time models and Sec. 3.3 with the
general case.

The basic results obtained in these sections can be summarized as follows.

(a) The main notions of robust estimation theory are generalized and the main objects of this theory
are introduced. On this basis, an optimization minimax problem is stated (with asymptotic mean-square
error as a risk functional) for shrinking contamination neighborhoods with contiguous alternatives for sta-
tistical models associated with semimartingales under the integral representation property for martingales
[67].

(b) Conditions are given under which optimal-in-the-minimax-sense score martingales (which deter-
mine optimal B-robust estimates) are defined by the Huber functions (Theorems 3.4 and 3.6).

Let us give a more detailed account of our approach. We consider an array scheme which is formalized
by the consideration of a sequence of statistical models € = {&,}n>1 (see Subsection 3.3.1). See also,
e.g., [36]. Note that for every n > 1 the model &, is assumed to be regular (see Subsection 3.3.2),
while the very sequence £ is ergodic (see Subsection 3.3.1). We have introduced the concept of CLAN
estimators (see Subsection 3.3.2) and then, on the basis of the notion of an exponential martingale, we
have introduced the set of shrinking contamination neighborhoods of a core sequence of measures (see
Subsection 3.3.3) generalizing (0.12). We have also investigated the asymptotic properties of CLAN
estimators under the sequence of alternative measures belonging to this set and obtained the “biased”
estimates (Proposition 3.1).

Further, we investigate the question under what kind of conditions the sequence of alternative mea-
sures {Fj'} is contiguous to the basic sequence of measures {F;'} (see Subsection 3.3.3), establish an
exact form for asymptotic distributions of CLAN estimators under such a sequence of measures (Propo-
sition 3.2), and obtain an analogue of influence functionals (see Subsection 3.3.3 and (3.37)), which play
an important role in all these problems.

We need this preparatory work in order to introduce and calculate the risk functional (see Subsec-
tion 3.3.4) and also to formulate our optimization problem (see Subsection 3.3.4). However, the risk
functional D(L, N, ), being the functional of a sequence of martingales determining the CLAN estima-
tors and of martingales determining alternatives, is, in the general case, an implicit function of these
sequences. Therefore, in the general case, it is impossible to obtain any constructive solution of the
optimization problem and to construct an optimal sequence of score martingales.
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Furthermore, we assumed that the martingales under consideration possess the integral representation
property (see Subsection 3.3.3) and on the basis of this property we worked out the so-called approximation
technique as follows: starting from relation (3.104), we first fix index n > 1 and then consider the
optimization problem associated with the risk functional D,, (L™, N™,0) (see (3.103)). Stochastic analysis
(in the presence of the integral representation property of martingales) allows us to deduce an explicit
formula for calculating D, (L™, N™,6) (see (3.125)) and for describing explicitly the classes ¥9 and HE
of functions for which the optimization minimax problem is stated and solved (see Subsection 3.3.8, 1, 2,
(i), (ii)). As a result, we obtain a score martingale whose integrands in the integral representation are
Huber functions (see Theorem 3.5).

Then we construct classes ¥ and Hy of sequences of functions, which determine the score martingales,
and the martingales determine the alternatives, respectively (see Subsection 3.3.8), in such a way that
the score martingale, which is optimal for each fixed step n with respect to D, (L™, N", ), would form a
sequence of optimal martingales with respect to the risk functional D(L, N,#) (see Theorem 3.6).

We end with the survey of Sec. 3.2.

This section deals with the discrete-time statistical models. We have singled this case out of the
general ones, considered in Sec. 3.3, for the following reasons:

1. This case is one of the most important particular cases involving many known time-series models.
A large number of papers are devoted to the investigation of various aspects of robust estimation for the
i.i.d. observations and for various classes of time series. This allows us to compare earlier known results
with those obtained by us (see Subsection 3.2.4). In the general case we lose this possibility.

2. The objects introduced in this section are simple and give way to the statistical interpretation.

3. Making use of the compact and simple objects under consideration, we present all proofs in detail.

4. The methods of proof of the basic theorems (see Theorems 3.3 and 3.4) are rather common and
after slight changes and remarks can be applied to the general case. All these arguments used in Sec. 3.3,
help us to avoid not substantial but cumbersome calculations.

In Subsection 3.2.2, we state and solve the optimization problem for the fixed nth step. The solution
is the Huber function ¢ = [I" — g"|"" ~ (see Theorem 3.3). The equation for the optimal truncation
level m is derived, studied, and used for the approximation. Moreover, this equation can be applied
to the investigation of the differentiability of the optimal score function ¥*™ with respect to 6 (see
Subsection 3.2.5). Such equations have never been studied, even for i.i.d. case. This is a point of this
subsection.

In Subsection 3.2.3, we introduce classes of sequences of score functions ¥ and alternatives Hy.
The ergodicity conditions formulated in the definitions of these classes ensure optimality of the sequence
* = {¢*"},>1, where ™ is the optimal score function constructed at the fixed nth step (see The-
orem 3.4). The ergodicity conditions in the definition of the class ¥ are rather involved because the
centering parameter 3" is a nonlinear functional of the conditional distribution of maximum likelihood
scores, Q™!. If this distribution is symmetric with respect to zero and hence " = 3(Q™!) = 0, then the
ergodicity conditions are simplified, i.e., the usual condition of weak convergence for averaged distributions
is sufficient.

Subsection 3.2.4 is devoted to examples of various special models illustrating various aspects of the
problem. Below we briefly discuss this point and indicate the relations to the known results of different
authors.

The i.i.d. case in a more strict (uniform) setting was considered for the first time by Bickel [5, 6].

Note that in Model 1.2 we consider independent, nonidentically distributed observations, i.e., the
simplest but nonstationary process. None of the earlier known approaches can be applied in this case.
The stationary ergodic AR(k) model for the contamination neighborhoods of a fixed “radius” € > 0
was studied by Kiinsch [57]. He considered a multidimensional parameter, formulated the optimization
problem in the Hampel setting and solved it, and, as a result, obtained the Huber function. Our approach
to this case is described in Model II. Staab [92] considered the stationary ergodic ARM A(p,q) models.
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In Model IIT we show that Staab’s approach is covered by ours. Case (b) of Model 1.2, Model II, and
Model III in Staab’s setting, and cases 1(b) and 1(c) of Model IV illustrate the situation where the risk
functional D(, H,0) can be expressed explicitly, and contamination is full. Case (a) of Model 1.2 and
case 1(a) of Model IV correspond to the situation where the minimax problem is reduced to the form
(3.23), but contamination is not full. Model III in the general setting and case 1(d) of Model IV illustrate
the situation where the above theory can be applied in its full capacity.

In the last subsection, Subsection 3.2.5, a method of constructing optimal CLAN estimators is given.

The results of this chapter have been published in [104,109,112-117,119, 120].

In Chapter 4, the SDE of the form

dZ; = H(Z_)dK, + M(dt, Z,_), Z (0.15)

is considered. Here Hy(u) and M (t,u), t € [0,00), u € Ry, are random fields with the following properties:
for each u € Ry, the process (H¢(u))i>0 is predictable, the process M(u) = (M(t,u))t>0 is a locally
square-integrable martingale, and k = (K})¢>¢ is an increasing predictable process. The family M (u),
u € Ry, is assumed to possess the integral representation properties of various types.

If w = (u)i>0 is a predictable process, we use the symbol fo M (ds,us) for the notation of the
correspondlng stochastic integral and M (dt,u;) is its “differential.” For 1nstance, if M(u) = f(u)-m, then
ft (ds,us) : fo (us) dms and M (dt,us) = f(uz)dmy. For details, see Sec. 4.1.

We call SDE (0.15) the Robbins—Monro-type (RM-type) SDE if the drift coefficient H;(u) satisfies
the following conditions: for all ¢ € [0,00) P-a.s.

Ht(O) = 0,
Hi(u)u < 0 for all u # 0.

SDE (0.15) naturally includes the RM stochastic approximation algorithms with martingale noises
(see, e.g., [68,72-76]). For example, if Hy(u) = v R(u) and M(t,u) = fg vs dms, where v = ()0 is
a nonnegative predictable process, R(u) is a deterministic function (regression function) with R(0) = 0,
R(u)u < 0, and m = (my)>0 is some locally square-integrable martingale, SDE (0.15) gives the generalized
RM procedure introduced in [72].

In the paper of Lazrieva and Toronjadze [110], the algorithm of constructing the recursive maximum
likelihood estimation procedures for general statistical models with filtration was proposed. In the case
of discrete time, this procedure is given in Example 1(a) below and is embedded in (0.15), while it is not
covered by the generalized RM algorithm, although it should be mentioned that in the i.i.d. case the
classical RM algorithm contains recursive estimation procedures ([1,64,78,85,86]).

Thus, the consideration of the RM-type SDE (0.15) allows us to study both stochastic approximation
and recursive estimation procedures by a common approach.

The question of strong solvability of SDE (0.15) is well investigated (see, e.g., [23—25,44,71,83,84]).
Assume that there exists a unique strong solution Z = (Z;);>¢ of (0.15) on the whole interval [0, o).

In Chapter 4 we study only the problem of P-a.s. convergence Z; — 0 as t — co.

Our approach to this problem is based on two representations, standard and nonstandard, of the
predictable bounded variation process a = (A;);>o in the decomposition of the semimartingale (Z?);>0
in the form of the difference of two predictable increasing processes A' = (A});>¢ and A% = (A?);>¢ and
uses Theorem 4.1 on convergence sets of nonnegative semimartingales [65,67].

Two groups of conditions, (I) and (II), connected with the standard and nonstandard representations
are introduced in Sec. 4.2. On this basis, the main result, concerning the convergence Z; — 0 P-a.s. as
t — oo is formulated (see Theorem 4.2).

In the same section, the relationship between groups of conditions (I) and (II) are also investigated.

In the next section, Sec. 4.3, some simple sufficient conditions for (I) and (II) are given.

In the last section, Sec. 4.4, the series of examples illustrating the efficiency of all aspects of our
approach is given.

2719



The results of Chapter 4 have been published in [105,106,110,118].

In conclusion, we note that in [4,10,16-18,20,41-43,46, 53,61, 68,69,89,90,94,122,123,125] one can
find many questions concerned with the statistics of random processes which are close in spirit to the
problems presented in Chapters 3 and 4.

CHAPTER 1

STRUCTURE OF SOLUTIONS OF A ONE-DIMENSIONAL SDE WITH UNIT
DIFFUSION COEFFICIENT

1.1. Regular Equations
Consider the following one-dimensional stochastic differential equation (SDE)
dft = A(t’gt)dt + tha 0<t< T) §0a (11)

where W = (W), 0 < t < T, is a standard Wiener process, a function A(t,z): [0,7] x Ry — Ry is
Borel-measurable with respect to a pair of variables (¢,z), and &y is an arbitrary real random variable
(r.v.) independent of W.

An SDE is said to be regular in law (weakly regular) ([126]) if there exists at least one weak solution
and if all solutions (which can be defined in different probability spaces) with the same initial distributions
have the same probability law.

An SDE is said to be strongly regular ([126]) if there exists a strong solution which is pathwise unique.

The strong regularity implies the regularity in law.

Now we show that for SDE (1.1) the two notions are equivalent.

Recall the following facts.

Proposition 1.1. Let & = (&), 0<t < T, i = 1,2, be two It6 processes with differentials
déi = ai(t,w)dt + bi(t,w)dWs, 0<t<T, &, i=1.2,
and let
n(t) = max(§;, &), 0<t<T.

Then
t

00 =00+ [ Loy + [ Tgagyae + 35 C0)
where Af(a) is a semimartingale (the Ito process) local time at the point a € Ry ([51,84]).
Proof. It immediately follows from the simple relation
n(t) = (& — &))" + &,

where 27 = max(0,z), and the Tanaka-Meyer formula that if X = (X;), 0 < ¢ < T, is a continuous
semimartingale, then

t
1
X=X+ /O I(0,00) (Xs)dXs + §A§< (0).

Remark 1.1. It is well known [84] that
1 t
AF(0) = lim = | J(g.e)(Xs)d(X)s. (1.2)
0

e—0 €

The following simple lemma is given for the completeness.
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Lemma 1.1. Let & and & be two r.v. such that
& >& (P-as.),
and the distribution functions of r.v. & and & coincide:
Fe (x) = Fe,(x) Vo e Ry,
Then & = & (P-a.s.).

Proof. Denote n; = f(&), i = 1,2, where f(z), z € Ry, is a strongly increasing bounded function, e.g.,
f(xz) = arctanx. Let ¢ = n; — n2. Then, from the conditions of the lemma, we obtain

(>0, EC=0.
Hence ( = 0 (P-a.s.). The assertion follows. O
Theorem 1.1 (of equivalence). Equation (1.1) is strongly regular if and only if it is reqular in law.

Proof. The necessity is obvious. Now we prove the sufficiency.

Let SDE (1.1) be regular in law and let ¢ and £€2 be two weak solutions of (1.1) defined on the same
probability space, and £ = £ (P-a.s.).

According to Proposition 1.1, it is easy to see that the continuous stochastic processes 7(t) =
max (&}, €7) and n(t) = min(&},€2), 0 < t < T, are solutions of (1.1) since A§1_£2 (0) = 0 (see (1.2)).
Due to the conditions of the theorem, these processes have the same probability law. But for each t,
0<t<T,

n(t) <&l,e2 <T(t) (P-as.)
and, therefore, according to Lemma 1.1,

n(t) =€ = & =7(t) (P-as.).

The desirable statement follows immediately if we use the Yamada—Watanabe theorem [126] claiming
that the existence of a pathwise unique weak solution implies the existence of a unique strong solution. [J

The approach used in Proposition 1.1 for the equation
d§e = A(t,&)dt + B(t,§)dWe, 0<t<T, & (1.3)

results, for the maximum 7(¢) of two solutions (£}) and (¢2), 0 <t < T, in the following formula:
t
) =00 + [ (Als.n(s)ds + Bls,n(s)aws)

1 1 2112
+lim o [ (B(s.6) = B, )T -ercads

from which it becomes obvious that the statement of Theorem 1.1 is valid for (1.3) if we assume that the
function B(t,x) satisfies the Holder condition

1
|B(t,x) = B(t,y)l < bt)lz —yl*, az=3,
and
T
/b%W<m.
0

Note, however, that it is impossible to get rid of the assumptions on the function B(t,z) in (1.3).
To see this, we refer to the well-known example due to Tanaka [37]

dée = B(&)dWy, 0<t<T, & =0,
where B(z) =1 and B(z) = —1 if z > 0 and = < 0, respectively.
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To illustrate Theorem 1.1, we consider a simple sufficient condition for the existence and uniqueness
of the weak solution (and, hence, by Theorem 1.1 for the strong solution) of (1.1), having a measure
absolutely continuous with respect to the measure of the process & = Wy + &y, 0 <t < T.

Example. Let for any ¢, 0 <t <7, and ¢ € Ry
|A(t, )| < K(1+|z]), K = const < oo.

More general conditions of this type are given in [66].

1.2. The Carathéodory-Type SDE. Existence Theorem. Description of the Integral Funnel

Assume for simplicity that £, = 0.

As the stochastic basis (Q,F,F = (%),0 < t < T,P), we consider (Cjo 11, Bjo1: B = (Bjoy)
0<t<T, PT), with the measure space (Cio,11> Byo,)) of continuous functions w = w;, 0 <t < T, wo = 0,
a standard Wiener measure PT and PT-augmented filtration B = (Bjoy), 0<t<T.

Denote by W = (W;), 0 < t < T, the coordinate process Wi(w) = wy, 0 < ¢t < T. Then, with the
measure PT the process W is a standard Wiener process. Further, let FV = (F/V), 0 <t < T, be the
PT-augmented filtration generated by the process W, F}V = a(W,,s < t).

Let = denote the class of all anticipating solutions of Eq. (1.1) and Z; be the class of all strong
solutions of this equation.

Assume that A(t,x) satisfies the Carathéodory conditions (C-conditions above, see Introduction).

Theorem 1.2. If C-conditions hold, then there exists an anticipating solution of Eq. (1.1).

Proof. Denote n(t) =& — W;, 0 <t <T. We write Eq. (1.1) as
dn(t) = A(t,n(t) + Wydt, 0<t<T, =(0)=0, (1.4)

and consider the sequence {n;(t)}, j > 1,0 <t < T, given by the following relation: for any j > 1,

T
0 if0<t<Z,
nit) =9 4z T / (1.5)
Jo 7 A(s,mi(s) + Wy)ds if — <t <T.
J

We will need for our discussion the following two lemmas. Lemma 1.2 is of interest in itself.
Lemma 1.2. Sequence (1.5) is (relatively) compact in Cio 1.

Proof. Indeed, n1(t) = 0 for any ¢, 0 <t < T. If j > 2, then for any ¢, by (0.3) we have

7\t

t—T +
!nj(t)!§/0< ) \A(s,nj(S)JrWs)\dSSM<(t—§) >SM<T><oo,

where z7 = max(0,x), M(t) = ft

om(s)ds, 0 <t <T.
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Further, for any ¢;,ty € [0,7] and any j > 1,

t2—§ -
nj(t2) — n;(t1)]| < /(( |A(s,m;(s) + Ws)|ds

+
_T
t ]')

INA
/—\\
SRS
s
<N
\‘/ k!
+\_/
2
VA
SN—
QL
VA

_ /0(t2—§)+m(s) ds — /O(tl_?ym(s) ds

(-5 ()

Hence, sequence (1.5) is uniformly bounded and uniformly continuous; therefore, it is relatively compact
in C[O,T]' O

Let {z,(w),w € Q}, n > 1, be a sequence of random elements defined on some complete probability
space (€2, F, P) with values in some complete separable metric space (X, 0,(X), p), where p is a metric in
X and o,(X) is a Borel o-algebra generated by the metric p.

Lemma 1.3. If the sequence {x,(w),w € Q}p>1 is a (relatively) compact (P-a.s.) in X, then there exists
a sequence of random variables {nj(w)};j>1, nj: Q@ = N=(1,2,3,...) such that

(1)

ni(w) < 00, na(w) < 00, ..., (P-a.s.),
nj(w) < njpa(w) Vi >1 (P-a.s.);

(2) for any j > 1, the random element (,,,(,)(w), w € Q) is F/op(X)-measurable;
(3) the subsequence {z,,;(.)(w), w € Q}j>1 of the sequence {zn(w), w € Q}p>1 converges with proba-
bility 1.

Proof. By virtue of the (P-a.s.) compactness of the sequence {x,(w), w € Q},>1, there exists a P-null
set B, P(B) = 0, such that for any w € Q\ B the sequence {z,(w)}n>1 is a (relatively) compact set.
Further, let {y;m}m>1 be a countable dense set of elements of the space X.

Denote

Ome={r € X : p(x,ym) <€}, €>0.

By virtue of the compactness of the sequence {x,(w)},>1, one can choose a finite subcovering from the
covering {O,, 1 }m>1 of the sequence {x,(w)}n>1. Therefore, there exists at least one ball, which contains
b 2 - -

an infinite number of elements of the sequence {z, (w)},>1 (this fact can be analytically written as follows:

there exists a number m = m(w) < oo such that lim p(x,,ym) < 1/2).
n—o0

Now we define the number m;(w) by the relation

mi(w) = min{m : lim p(z,(w),ym) < 1/2}

n—0o0
and set

nl(w) = min{n : p(xn(w)ayml(w)) < 1/2}'
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It is obvious that m;(w) < oo and nj(w) < co. Similarly, for any j > 2, we set

. . 1 1
my() = min {m s 0 (), 3m) < 352 Pt 1) < 5757 |

n—0o0
. 1
nj(uJ) = min {n > nj—l(w) : P(mn(w)’ymj(w) < 2_3} )

Note that for each j > 1, m;(w) < oo (each subsequence of a compact sequence is compact itself),
nj(w) < oo. Obviously, the sequence {n;(w)};>1 satisfies requirement (1) and random element {z,, .,y (w),
w € Q} satisfies requirement (2) for each j > 1.

It remains to show that the sequence {z,;(.)(w), w € };>1 converges with probability 1. To this
end it is sufficient to verify its (P-a.s.) fundamentality.

For each m > 1 we have

— 1
(T () (@) Ty () (@) <D 57 0 as j—oo (Pas.).
i=j—1
U

Before proving the theorem, we note that by virtue of Lemmas 1.2 and 1.3 just proved, there exists
a subsequence {7, (,,)(w)}x>1 of sequence (1.5) such that

nlLHgO Nje(w)(tw) =n(t,w), 0<t<T,

uniformly with respect to ¢. Thus, n(t,w) is a continuous process.

Now we recall that A(t,z) is a function continuous in the variable z, satisfying (0.3). Hence we
have obtained the required statement by letting k& — oo (and using the Lebesgue-dominated convergence
theorem) in the relation

t
)= [ A )+ W [

t
A(s,mj,(s) + W) ds.

O

Remark 1.2. The solution § = (§), 0 < t < T, just constructed is, generally speaking, an anticipating
solution of Eq. (1.1), since the sequence {ji(w)}r>1 may depend on the whole trajectory of the Wiener
process W = (Wy), 0 <t <T.

Let =1 and Z3 be subsets of the set = of anticipating solutions of Eq. (1.1).
Denote

=1 (1.6)
§, =essinf(§), 0<t<T.
S 2

§ =esssup(gy), 0<t<T,

Theorem 1.3. Stochastic processes £ = (&), 0 < t < T, and § = (§,), 0 <t < T, are anticipating
solutions of Eq. (1.1).

Proof. We consider again Eq. (1.4) and give the proof in terms of the process n(t) =& — W, 0 <t <T.
We show, for example, that the process 7(t) = &, — Wy, 0 < ¢t < T, is an anticipating solution of
Eq. (1.4).
In order to do this, we denote
N = max{ni(t), ....mm(t)}, 0<t<T,

for any natural number m, where n;(t) for any ¢ = 1,...,m is an anticipating solution of Eq. (1.4). Just
similarly to what has been done in Proposition 1.1, we can show that the following lemma holds.
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Lemma 1.4. The stochastic process nn*(t), 0 <t < T, is an anticipating solution of Eq. (1.4).

m

Before proving the theorem, we note that for any t1,ts € [0,7],

[77(t2) — 7| (t1) < esssup

E1

/ CA(s,n(s) + W) ds| < |M(ts) — M(t)],

t1

where M (t) = fot m(s)ds, 0 <t <T,ie.,7(t),0<t<T,is uniformly continuous with probability 1.
It is now obvious that for any ¢ > 0 there exist a finite partition {¢;}, j = 1,2,...,m, of the interval
[0, 7] and the anticipating solutions n;(t), 0 <t < T, j =1,2,...,m, of Eq. (1.4) such that

0 <7(t;) —m;(t;) <e,
and for any t1,t2 € (tj,tj+1), j=1..,m-—1,

7(t2) — ()| <e,
7 (t2) = 1 (1) ] < &

Thus, for any ¢ > 0 and any ¢, 0 <t < T,
7(t) — mp™(0)] < 3e.

To complete the proof it is sufficient to pass to the limit in the relation

t
i (t) = / A(s,nm®*(s) + Ws) ds.
0
O

Assume that =; = E, i = 1,2, i.e., esssup and essinf in (1.6) are taken on the whole set = of
anticipating solutions of Eq. (1.1). In these cases, stochastic processes { = () and { = (§,), 0 <t < T,
are called, respectively, the maximal and minimal solutions of Eq. (1.1).

Theorem 1.4. The mazimal solution & = (§;), 0 <t < T, and minimal solution { = (€,), 0<t<T, are
strong solutions of Eq. (1.1).

Proof. Show, for example, that £ = (€,), 0 <t < T, is a strong solution of Eq. (1.1).

For any fixed s, 0 < s < T, denote by Z|g 4 a class of all anticipating solutions (£f), 0 <t <'s, of
Eq. (1.1) defined on the interval [0, s] (by Theorem 1.2, the class Z 4 is not empty), i.e., it is a set of
the FV-measurable for every ¢, 0 < ¢ < s, stochastic processes (£;), 0 < ¢ < s, such that

t
Ps(ff:/ A(u, &) du + Wy, Ogtgs) =1,
0

where P* = PT/ Bjo,q) is a restriction of the Wiener measure PT to the o-algebra Bio,q-

Put

g =esssup(), 0<t<s, 0<s<T.
=[0,s]
In such notation, the statement of the theorem takes the following form: for any I, 0 < [ < T, the
. _T . W

random variable §; is ;" -measurable.

It is obvious that if we solve problem (1.1) consecutively in the interval [0, ], with the initial condition
& = 0 (i.e., if we construct an anticipating solution (£!), 0 < ¢ < 1), then in the interval [I, 7] with the
initial condition fll, “sticking together” the constructed solutions, we obtain an anticipating solution on
the whole interval [0, T], coinciding with (£}), 0 < ¢ <, on the interval [0, ].

In other words, any anticipating solution (£7), 0 <t <s,0<s<T, of Eq. (1.1) can be extended to
the whole interval [0, 7.
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Hence, considering an anticipating solution (Zi), 0 <t <, on the interval [0,!] and extending it
to the whole interval [0, 7], we obtain an anticipating solution (¢/), 0 < ¢ < T, which by virtue of the

definition of (E?), 0 <t <T,is such that
PTEr <&, 0<t<T)=1. (1.7)
Now, since
=l
PT(§2T = gl) =1,
we obtain from (1.7)
=l =T
Pl <g)=1
We now have to prove that
T _ -
PrE <&) =1
To this end, we define on the space {2 = C|g 7] the operator

2@ = ()@= (1), (18)

where w € Cjo 17, u € Cloy v € Cpp 1), A1(w) = u, Ag(w) = v,
uw=w, 0<t<],

and

Note that
U, 0<t<l;
Wt =
vt [<t<T.

Denote by By 7] = o(wr — w1 <t < T) the augmented o-algebra generated by increments. Then,
obviously, Bjg7 = B,y V By1)s Bjoy) and By ) being independent under a probability measure PT.
Denote, further, by P! a Wiener measure defined on the o-algebra Bjo,; and by PYT a Wiener measure

defined on Bj; 7. Obviously, the operator A provides a one-to-one measure-preserving transformation of
the space Cjo ] onto Clg g X Cpy 7y, 1€,

A+ (Clo,ry Bpory, PT) 2 (Clogg B, ) < (Cpuyrys By, P,
and for any B € B 1y,
PT(B) = (P' x P"")(AB),

where AB = {A(w) : w € B}.
Introduce the functional

d)(t,u,v) = EtT (Al (z>) , 0<t<T, ue C[O,l]’ v € C[l,T}a (1.9)

where the operator A~! is inverse to A. Obviously,

t
Pl x Pl’T((u,v) st u,v) = /0 A(s, ¢(s,u,v))ds

i io(2). zrsi) -

From the definition of the operator A and the coordinate Wiener process W it follows that (P“T-a.s.) for
every v

P! (u st u,v) = /0 A(s, d(s,u,v)) ds + Wi (AT H(u)), 0 <t < l) =1.
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Thus, (P"T-a.s.) for every v, the process ¢(t,u,v), 0 <t < I, belongs to the class of anticipating solutions
Eo,y (obviously, if ¢ € [0, 1],

we (A1) ) = Wl ) = Wi

Hence (P“T-a.s.) for every v

p! (u Lol u,v) < E (A—l (Z))) —1,

which implies that (PT-a.s.) for every w
T _ -l
PT(E <& A)w) =1

(recall that the o-algebras By and By 7] are independent under the probability measure PT). Finally,
by averaging, we obtain

PTE <8)=1.
]

Theorem 1.5. For every anticipating solution & = (&), 0 <t < T, of Eq. (1.1), there exists a measurable
functional ®(t,w,w1) defined on the measure space

([0, 7] x Cjo.17 % Cpo,my, ([0, T1) X Byo, 17 X Byo,17)
such that for any w1 € Clo1), ®(,-,w1) € Es, d.e., ®(+,-,w1) is a strong solution of Eq. (1.1) and
&(w) =2(tw,w), 0<t<T (P-as.).
Proof. Given an anticipating solution ¢ = (&), 0 < t < T, we denote by (&% (s,z)), s <t < T,

0 <s<T,z € Ry, a strong solution of Eq. (1.1), considered in the interval [s,T], with the initial
condition &%(s,z) = x. By Theorem 1.4, such a solution exists. We fix ¢, 0 < t; < T. Using the

S
notation introduced in the proof of the previous theorem, we note that there exists an event B € By, 1,

P%T(B) = 1, such that for any v € B,
t

ph (u st u,v) = / A(s, d(s,u,v))ds + Wt(Al_l(u)), 0<t< tl) =1,
0

where the functional ¢(¢,u,v) is defined as in (1.9), i.e., ¢(¢t,u,v) = & (Al (u)) l:=1.
v
Now we consider the functional

~ | o(t,u,v) if ve B,
(b(t,u,v) _{ tstr(o) 0) if v ¢ B, (110)

where u € Cjgy,), v € C}y, 7 are given by (1.8) with [ :=t;.
Define the following functional:

B(t,w,wy) = B(t, A (w), Ag(wr)), (1.11)
where (w,w;) € Cio,r) X Clor), 0 <t < T, the operators A; and Ag are defined by relation (1.8), 1 :=ty.
Further, we define the functional ®!(#,w,w;) by the relations
@O(t)w7w1) = §t(w)7
<I>1(t,w,w1) = U(@O,tl,t,w,wl)
D(t,w,wy) if 0<t<tg
=1 &(w) if ¢t>t; and ®(t1,w,wr) = P(t1,w,w); (1.12)

S (), Bt w,wy)) if £ >t and B(t,w,wy) # Dt w,w).

It can be easily seen that:
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(1) for any wy € Q, the process ®!(-,-,w;) is an anticipating solution of Eq. (1.1);
(2) for any fixed w; € Q and any ¢,0 <t < T,

d(t, -, wy) is ]:;I)O—measurable

and
d(t, -, wy) is ]:XV—measurable
for t < tq;
(3) ®(t,w,w) = &(w), 0 <t < T (P-as.).

For any ty # t1, 0 < ta < T, on the basis of the functional ®!(¢,w,w;), by the same technique
as above, we can construct a functional ®2(¢,w,w;) such that properties (1) and (3) hold without any
changes and property (2) is transformed into the following property:

(2') for any fixed wy € 2 and any ¢, 0 <t < T, a functional ®2(¢,-,w;) is ff’l—measurable and ®2(t, -, w1)
is .ﬂ‘;v—measurable fort <tg, k=1,2.

Namely,

P2 (t,w,wy) = U(®, 1, t,w,w1),
i.e., one is to proceed from the anticipating solution (®'(¢,:,w1)), 0 <t < T, of Eq. (1.1) instead of the
given anticipating solution (&), 0 <t < T (see (1.10), (1.11), and (1.12)).

Consider a dense sequence of points {t, },,>1 of the interval [0, 7] and define a sequence of functionals
{®"(t,w,w1) }n>1 recursively by the relation

D" (t,w,wy) = U(@"fl,tn,t,w,wl), n>1,
@O(t,w,wl) = & (w).

We show that
®(t,w,w1) = inf sup " (¢, w,w1)
n m>n
possesses the property required in the theorem.
The fact that ®(¢,-,w;) is measurable with respect to .7-}W follows from the following statement:
for any n > 1, ®"(t,-,w;) is F¥"-measurable and ®"(t,-,w;) is ngf—measurable for every tp > t,
k=1,2,...,n.
This implies that
sup @ (¢, -, w1)
m>n
possesses a similar property, and hence ®(t,-,w;) is E‘gf—measurable for every tp, > t, k = 1,2,..., ie.,
®(t,-,wr) is F}¥ -measurable. But F}Y = F}V. Hence, ®(t,-,w;) is F}/V-measurable for every ¢, 0 <t < T.
Further, we note that for any m = 1,2,... and for fixed w;, the process ®™(¢,-,w1), 0 < t < T,
satisfies Eq. (1.1). Thus, by Theorem 1.3, the process ®,,(t,-,w1) = sup ®™(¢,-,w1), 0 < ¢ < T, and the

m>n

process ®(t, -, wi) = inf &, (¢, ,w1), 0 <t < T, are solutions of Eq. (1.1) for any fixed w;.
n

Finally, by our construction,

O(t,w,w) =&w), 0<t<T (P-as.).

Remark 1.3. If, in representation (0.4), the event A € By 1), then §(w) = ®(¢,w,w) (P-a.s.) with

D(-,w,wi) = Ipay(w1)€ (W) + Ipae (w1)€ (w).
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Now we pass to the description of the integral funnel of the solutions of Eq. (1.1).
Denote
Vi={&: (&), 0<t<T)eE}
Ve ={&:((&), 0=t <T)eE}
for any t, 0 <t < T, i.e., V; (respectively, V;®) is a set of random variables & which represents a section of
the integral funnel of the anticipating (respectively, strong) solution set of Eq. (1.1) at the point ¢. Note
that in all cases, Eq. (1.1) is “solved” under the same initial conditions.
Let, further,
Vilw) = {6(w) : (&), 0 <t <T) € =},
Vi(w) ={&(w) : (&), 0 <t <T)e€E},
i.e., let Vi(w) (respectively, V*(w)) be a set of points from R; such that through each of these points there
passes a trajectory (with fixed w) of at least one anticipating (respectively, strong) solution of (1.1).

In other words, Vi(w) (respectively, V;*(w)) represents a section of V; (respectively, of V) at the

point w.
It is obvious that V# C V; and V?(w) C Vi (w) (P-a.s.).

Theorem 1.6. For anyt, 0 <t <T:
(1) a section Vi of the integral funnel of all anticipating solutions of Eq. (1.1) coincides with the
subset H of all f:‘ﬁv—measumble random variables such that with probability 1,

ét <n< Eta
where &, and &, are defined by (1.6), i.e.,

Vi={nneH:¢{ <n<& (P-as)}
(2) Vi(w) = V() (P-a.s.).

Proof. We fix tg, 0 < tyg < T. Let a random variable n € H, where H is a set of all .7-":,W -measurable
random variables with

§,<n< &, (Pas.).

We show that: (1) there exists an anticipating solution £ = (&), 0 <t < T, of Eq.

(
(2) for any fixed wy € 2 = CJy 1) there exists a strong solution &;(w,wp) of Eq. (1.1

1.1) such that &, = n;
) such that

&ty (wo, wo) = n(wo)-
Indeed, it can be easily seen that if we consider the Carathéodory scheme with the “initial” condition
Cto =, i.e.,

to

gt = - A(S’ CS) ds + Wy — Wto +n, Cto = (113)
t

and take the sequence

t
n i tg— = <t < to,
J

nJ (t) = to tO
—/t A(s,mi(s) +Ws = Wy)ds+n if 0<t<ty——, j>1,
40 J
J
as an approximated solution (i.e., denote n(t) = ¢; — (Wy — Wy,) and rewrite Eq. (1.13) as

dn(t) = A(t,n(t) + We — Wyy) dt, n(te) =mn, 0<t<tp,
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see (1.4) and (1.5)), we can, similarly to Theorem 1.2, construct a solution ({;), 0 <t < ¢, of Eq. (1.13)
such that (;, = n. By the extension (see the proof of Theorem 1.4), we obtain a solution (¢;) of Eq. (1.13)
defined on the whole interval [0, T7].

Further, we denote

sup {t: ¢ =¢& or =&}

0<t<to
0 if G#&G#E, 0<t<to,

LUEO0<t<7,¢(G=¢,7>0,
gt: ZtifoStSTaC’r:ET?T>0a
Ct if 7 S t.
It is obvious that the process £ = (&), 0 <t < T, &, = n, constructed above is the solution of Eq.
(1.1) desired in (1).
Further, it follows from Theorem 1.5 that the desired in (2) strong solution is
§t(w7 WO) - (I)(t7 w, wO)u

where @ is a functional from Theorem 1.5 constructed from the solution £ of Eq. (1.1) which was obtained

and set

in (1).
Indeed,
n(wo) = &ty (wo) = P(to, wo,wo) = &ty (wo,wo)-
U
Finally, we give a sufficient condition for the uniqueness of the solution of Eq. (1.1).
Theorem 1.7. Let the function A(t,x) together with the C-conditions (see (0.3)) satisfy the relation
T
/ inf sup |A(t, ) — A(t, y)2dt < oc. (1.14)
0 YER1 zeRry

Then there exists a pathwise unique strong solution of SDE (1.1).

Proof. It is well known that for any € > 0 there exists a measurable (with respect to ¢) function y,
0 <t <T, such that

T T
/ sup |A(t,z) — A(t,y)2dt < / inf sup |A(t,z) — A(t,y)|?dt + T < . (1.15)
0 z€Ry 0 Y<R1zeRr,

t
Ft:/ 75d3a
0

where v, = A(t,y;), and define the stochastic process ¢ = ((;) to be the equality
G=T¢+W;, 0<t<T.

Denote

Lemma 1.5. If P, P, and P; are measures on (Cio,), Bo,)) corresponding to the processes &= (&),

§= (ét), and ¢ = (&), 0 < t < T, respectively, where & and £ are strong solutions of Eq. (1.1) defined in
Theorem 1.4, then
PE < P, P§ < P

Proof. Let us show, for example, that Pg < P¢. By (1.15),

P(/OT(A(t,Zt) —)2dt < oo) _1

Hence (see [66]), P p < Py. But I'y is a deterministic function and, therefore, Pr < Pwyr = F. [
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Lemma 1.6. For any A € Bjg 1y,
Fe
Proof. By the above lemma and the form of densities [66], we obtain

dPs dP,
F) = [ T dre) = [ T dR () = )

(4) = Pe(A).

O

Getting back to the proof of the theorem, we note that if ¢! = (£}) and €2 = (£2) are two arbitrary
solutions of Eq. (1.1), then

P, <&, <& 0<t<T)=1,
which, together with Lemmas 1.6 and 1.1, leads to the relation

P, =6 =6=6,0<t<T)=1

Remark 1.4. A simpler than (1.14) condition

T
/ m?(t) dt < oo
0

will, certainly, ensure the uniqueness of the strong solution of Eq. (1.1), but already in the simple case

Alt,z) = fo A%(t)dt = +oo, where Eq. (1.1) has a unique strong solution, this condition is not
satisfied.

Remark 1.5. If we replace the symbol fOT in condition (1.14) by f Te> 0, then there exists a unique
strong solution &% (e, x) of Eq. (1.1) in the interval [, T] with the initial condition &% (e,z) = z, z € R;.
In this case, the functional ®(¢,w,w;) from Theorem 1.5 can be constructed rather simply.
Namely,
O(t,w,w1) = lim " (t,w,w1),
n—oo

where for any n > 1

1 1
U (@"1, —,t,w,wl) if t<—
n n’

1 1 1
St (—,‘b” (—,w,w1)> if t>—,
n n n

1.3. The Carathéodory-Type SDE. Local Solutions: Existence and Extension Theorems

" (t,w,wy) = B(t,w,w) = &(w).

In this section, we consider Eq. (1.1) on the whole time interval [0, 00). For convenience we assume
that f() =0.
Fix T'> 0 and let g(¢t), 0 <t < T, g(0) = 0 be a continuous decreasing function. Let, further,

79 =inf{t >0: |u| > g(t)} AT (1.16)
(with the usual convention inf & = 00), where a A b = min(a,b), u € Cjo 7).

Let Z°%9 and 2 denote the classes of anticipating and strong local solutions of Eq. (1.1), i.e., we
say, e.g., that the contlnuous stochastic process ¢ = (&), defined, perhaps, only on a stochastic 1nterval

[0, 7¢ 9], belongs to the class 2% if P( > 0) = 1 and the process (§t/\T ) is adapted to the filtration
(Fx. W ) and is such that for every t,

t/\ﬂ'g
gt/\Tg = /0 A(s, &) ds + Wt/\rg (P-a.s.),
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or, equivalently,

t
&z/o A(s,&)ds + W, (t<7f, P-as.).

The coefficient A(t,z) of Eq. (1.1) is assumed to satisfy the following two conditions:

(1) the function A(t,x) is measurable in ¢ for any fixed € R; and continuous in x for any fixed ¢ > 0;
(2) there exists a continuous function M(t), M(t) > 0, 0 < t < T, M(0) = 0, such that for any ¢,

0<t<T,
t
/ A(s, a5 + M(s)) ds < M(2), (1.17)
0
where
1\ /2
ar=(1+¢) (2tlnln ;) , €>0, (1.18)
is the Kolmogorov—Khinchin-Lévy upper function [38], and
A(t,z) = sup |A(t,y)], = €R;. (1.19)
ly|<z

Remark 1.6. Condition (0.3) implies (1.17). It is sufficient to set
/ m(s)ds, 0<t<T.

Remark 1.7. The function M (t) from (1.17) can be constructed as follows. For each n > 1, ¢t € [0,T],
we set

t
M"(t) = / A(s, M"(s) + as)ds, M(0) =0. (1.20)
0
It is easy to see that V¢ € [0,7] and n > 1,
Mn+1(t) > Mn(t)
(since A(t,z) > 0 and A(t,x) 1 x). Hence, there exists
lim M™(t) = M(t), 0<t<T (1.21)

(finite or infinite). The function A(t,z) is left-continuous. Therefore, if we pass to the limit as n — oo in
(1.20), we obtain

t
le M™(t) :/ A(s, lim M"(s) + ;) ds,
n—oo 0

n—oo

i.e.,

M(t) = /Ot A(s, M(s) + ) ds,

where M (t) is defined by (1.21).
If we now assume that the sequence {M"™},>1 is bounded, M™(t) < h(t) Vn > 1, t € [0,T], and h(t)
is a finite function, then the function M (¢) from (1.21) satisfies all the desirable conditions.

Obviously, the function M = M (t), 0 <t < T, just constructed, is the minimal solution of inequality
(1.17), and M (t) 1 t.

We set

. At ) it J2] < B
Alt,2) = { At By signz) it |a| > 5, (1.22)

where 5y =y + M(t), 0 <t <T.
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Along with Eq. (1.1), we consider an auxiliary equation
dé = At &)dt +dW,, 0<t<T, &=0 (1.23)

(with “truncated” coefficient). Denote by E and Z, the classes of anticipating and strong solutions of Eq.
(1.23). The following proposition will help to establish a relation between global and local solutions of
Eq. (1.1).

Proposition 1.2. If the process £ = (&), 0 < t < T, belongs to the class = (E,, respectively), then
£ =(&),0<t<T, belongs to the class Z1°9 (Egoc’ﬁ, respectively).

Proof. Indeed,
t t
b= [ Ascds+ W= [ A&)ds W,
0 0
(t < Tg, P-a.s.). It is enough to show that
P(rf >0)=1.
Denoting 1, = & — Wi, we obtain

Tg =inf{t >0:|&| > B AT
2inf{t>0: ‘Wt’ zat}/\T:T‘%/\T,
since by (1.17), |n(t)| < M(t) ¥t € [0,T] (recall that the process ¢ satisfies Eq. (1.23)). But by the law of

the iterated logarithm,
P(ry >0)=1.

Now we note that for any ¢, 0 < ¢ < T, and = € Ry,
A(t,z)| <A(t, Br) = m(t),

i.e., A(t,z) satisfies the Carathéodory condition (0.3).

Thus, by virtue of Proposition 1.2, it suffices to substitute in the statements of Theorems 1.2-1.6 the
phrase “local solution” instead of the word “solution” and the stochastic interval [O,Tg | instead of the
interval [0, 7], in order for these statements to be also valid for the case under consideration (i.e., under
condition (1.17)).

The following theorem allows us to extend the solutions of Eq. (1.1) to the whole interval [0, c0).

Theorem 1.8. Let the following two conditions be satisfied:

(a) for any s, s > 0, and x, x € Ry, there exist a point T>*, T** > Ty > 0 (where Ty is a fized
point) and a continuous function M>*(T) > 0, M**(0) = 0, defined on [0,T%%] such that for any t,
0<t<T®,

¢
/ sup |A(s + u, z + y)| du < M5*(t); (1.24)
0 |y|<Ms=(u)+om

(b) for s = 0, there exist a point T*?, T%% > 0, and a continuous function M%°(t) > 0, M%°(0) = 0,
defined on [0,T%°), such that for any t, 0 <t < T%0, inequality (1.24) holds only at the point x = 0.
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Proof. Denote 3;"" = oy + M**(t), 0 < ¢t < T* and define the sequence of hitting times (7,,),>1 by the
following recursive equalities:
m1(w) = inf{t > 0 |w;| > B0} AT,

.............................. (1.25)

Tn—1,wW

(W) = nf{t > Tt ¢ wr — wr | > Brn YA g 4+ T

For any (s,z) € [0,00) x Ry, consider Eq. (1.1) on the interval [s,oc0) with the initial condition
§s = .

Then it follows from the above-stated results and from the assumptions of the theorem that there
exists an anticipating solution (&(s,z)) of the equation such that &s(s,x) = = and

t
P{é}(s,m) =x+ / A(u, &u(s,x))du+ W, — W, s <t <15, + s} =0,

where
Tsx = [Inf{t > s: |&(s,2) — x| > B35} — s] A TP, (1.26)
Let the stochastic process (&), t > 0, be given by the relation
{gt(o, 0) if 0<t<m,

P ét(TnaéTn) lf Tn S t S Tn+1, n 2 17

where in definition (1.25) of hitting times one has to substitute the values of the process ¢, i.e., 7, = 7,,(£).

Now we note that

&e(s,x) —x — (We = W) S M*F(t—s) (s<t<Tsp+s, P-as.).
Hence
Tow > TSO (P-a.s.),
where
70 = [inf{t > s: |[Wp — Wy| > g5} — 8] AT,
By the definition, for all n > 1,
Tn =Tpn-1+Tp-1¢, > 7T0=0.
Let the sequence 7;; be given recursively by the following formula: for any n > 1,
T =Th_1+ T%il, 75 = 0.
Now we recall that by the law of the iterated logarithm
P(r?>0)=1

and from the strong Markov property of a Wiener process W = (W,), the sequence {T%:_l}nzl is an i.i.d.

sequence. Hence
n

T = Tg* 00 as n—oo (P-as.).
i=1
But
P(r, > 1) =1.
Thus,
T, — 00 as n— oo (P-as.).
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Remark 1.8. If we take a strong solution of Eq. (1.1) as the initial solution & (s, z) which is involved in
the proof of the theorem, then, obviously, the extension will also be strong.

Corollary 1.1. Change condition (a) in the formulation of Theorem 1.8 as follows:

(&) for some real number H > 0 and for any s, 0 < s < T, and z, |z| < H, there exist a real number
5%, T%* > TH > 0, and a continuous function M*%(t) > 0, M**(0) = 0, defined on [0, T*%], such that
forany t, 0 <t < TS5 inequality (1.24) holds.

Then the (anticipating or strong) solution § = (&) of Eq. (1.1) can be extended up to the moment
TgH, where TgH is defined by (1.16).

The proof is obvious.

Theorem 1.9. Under the condition of Theorem 1.8, the equality
&(w) =0(t,w,w), t>0 (P-a.s.)
holds, where the functional ®(t,w,w;) has the properties described in Theorem 1.5.

Proof. We will use the notation introduced in the proof of the previous theorem and Theorem 1.5.

Let & = (&), t > 0, be some anticipating solution of Eq. (1.1). For any (s,z) € [0,00) x Ry, we will
consider Eq. (1.1) in the interval [s,00) with the initial condition {s = z. Then from the conditions of
the theorem and due to the above-stated results it follows that there exist:

(1) an anticipating solution of Eq. (1.1), &(s,z), s <t < Ts 5 + s, {s(s,x) = x5

(2) a strong solution of Eq. (1.1), & (s,z), s <t < 75, + s, &% (s, ) = w;

(3) the functional @E,x(t, w,w1) with the properties stated in Theorem 1.5. The Markov moment 75 ;
is defined by (1.26).

Let ®;(¢,w,w;) denote a functional corresponding to the process & = (&), t > 0, and coinciding with
@g7o(t,w,w1) in the interval 0 <t < 7 ¢,.

For any n > 1, we construct the functional ®,,(¢,w,w;) in the following way. In the interval 0 <t <
Tn—1(Pn—1), we set

D, (t,w,w1) = Pp_1(t,w,w1).
If, otherwise, t > 7,,—1(®p,_1), then:
(1) for the w; for which

§Tn_1('1>n_1)(w) = anl(Tnfl(q)nfl)a W, wl)u
we set

D, (t,w,w1) = 3°

T"71(¢"71)7§7-n71(q>n71) (t, Ws w:l)’

(2) for the w; for which
frn_1(<1>n_1)(w) 7é anl(Tnfl(@nfl)u W, wl)u
we set

P (t,w,w1) = & (Tr—1(Pn-1), Pr1(Tn—1(Pn—1), w,w1)).
Similarly to the proof of the previous theorem, we can prove that

P(rp(®p) >10) =1
and P(7} — ocoasn — o0) = 1. O
Theorem 1.10. Let the conditions of Theorem 1.8 hold and let for any s > 0,
s
/ inf  sup |A(s+u,z+y)— A(s+u,x + 2)[*du < oo, (1.27)
0 ledsBa y <

where 8" = oy + M>*(t).
If s = 0, then inequality (1.27) can take place only at the point x = 0.

2735



Then there exists a pathwise unique strong solution of Eq. (1.1) on the whole interval [0, c0).
Proof. It is similar to the proof of Theorem 1.8 and is omitted here. U

Corollary 1.2. Change condition (a) in the formulation of Theorem 1.10 as follows:

(@") for any real number H > 0 and for any z, |z| < H, and s, s > 0, there exist a real number
T5% > TH >0, and a continuous function M**(t) > 0, M*%(0) = 0, defined on [0, T*%], such that for
any t, 0 <t < T inequality (1.27) holds.

Then there exists a local strong pathwise unique solution of Eq. (1.1) satisfying the equality

tnTH

¢

5t/\7'§H = / A(S, 53) ds + Wt/\TEH (P-(L.S.),
0

for each H > 0 (TgH is defined in (1.16)), and if

7= lim 7,
H—o0

then
lim|&| =400 (7 <00, P-a.s.),
trT
i.e., there exists a pathwise unique strong solution of Eq. (1.1) defined up to the explosion time T.

Proof. It is obvious and is omitted here. O

Remark 1.9. Let the function A(t,z) : [0,7] x Ry — Ry be
(1') Borel-measurable in the pair (¢, z);
(2)

lim sup |A(t,z)| < oo, (1.28)

t—0 2| <o
where o is defined by (1.18).
For each t € [0,T], € > 0, denote

e 1\ /2 e 1\ /2
azt:<1+§> <2tlnln¥> : M(t):§<2tlnlnz> .

Obviously, ay = o + M(t), and by (1.28),
lim A(t, o) < oo, (1.29)
t—0
where A(t,z) is given by (1.19).
Since the function A(t, ;) is bounded (see (1.29)) in the neighborhood of the point ¢ = 0, we obtain
t
/ A(s,as)ds=0(t) as t—0.
0

Hence, there exists a point ¢y > 0 such that V¢ € [0, ¢o],

/tZ(s,&s + M(s))ds tZ(s,as)ds < M(¢). (1.30)
0

0

Obviously,
inf sup |A(t,z) — A(t,y)? < 4( sup |A(t,x)])? = 4A7(t, ).

[yl <o |z| <oy || <o

Thus, we obtain

to
/ inf sup |A(t,z) — A(t,y)2dt < cc. (1.31)
0

lyl<eaw |z|<ay
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For each t € [0,%y] and = € Ry, we denote

~ A(t, x) if |z| < ay,
Alt,z) = . .
A(t, g signx) if |z] > ay,
and consider Eq. (1.23).
Since for any = € Ry, |A(t, z)| < |A(t, )| and

Tim |A(t, z)| < Tm [A(t, a)| < o0,
t—0 t—0

we obtain B
|A(t,z)| < c< oo
for any ¢ € [0,to], x € Ry.

Therefore, by [131], Eq. (1.23) (with the truncated coefficient) is strongly regular. On the other
hand, condition (1.17) and condition (b) of Theorem 1.8 are satisfied in the interval [0,%o] (see (1.30)
and (1.31)). Now, similarly to the proofs of Proposition 1.2 and Theorem 1.8 (where we do not use the
continuity of the function A(¢,z) in the variable x), we can easily verify that the following theorem is
valid.

Theorem 1.11. Under conditions (1') and (2'), Eq. (1.1) is locally strongly regular.

1.4. Special Cases and Examples

Let A(t,x) be a Borel-measurable function continuous with respect to z.

1. (a) There exists a constant ¢ < oo such that |A(t,z)| < ¢ for any x € Ry and ¢ € [0,T].

Then there exists a pathwise unique strong solution of Eq. (1.1) (see [75]).

(b) There exist constants H and Cy < oo such that |A(¢,z)] < Cpg for any ¢, 0 < ¢t < T, and z,
|z| < H.

Then there exists a pathwise unique local strong solution of Eq. (1.1) defined up to the moment Téﬂ
(see (1.16)).

(c) If condition (b) is satisfied for all H, H > 0, then there exists a pathwise unique strong solution of

(1.1) defined up to the explosion time 7 = I}im 7H . which is a generalization of the analogous statement
—00

for the case where A(t,x) satisfies a local Lipschitz condition.
2. Let there exist a constant 9 > 0 and a function b(¢,r) with b(¢,r) > 0,

T
/ b(t,r)dt < oo Vr,
0

and for |z| < o,
|A(t,z)| < b(t,r), 0<t<T.
Then the conditions of Theorems 1.8 and 1.10 are satisfied if for any (s,z) € [0,00) x Ry, we take
T5% =Ty > 0 so small that M(t) + oy < ro, where

t
M(t) = / b(s, o) ds.
0
If, in addition,
T
/ b2 (s,7)ds < oo Vr,
0

then Eq. (1.1) is strongly regular on the whole interval [0, co).
3. (a) Let there exist a constant ¢ > 0 such that for each t € [0, c0)
|A(t, )| < c(1+|z|]) VYoeR;.
We now find the function M**(¢) and the point Ty such that conditions (1.24) and (1.27) be satisfied.
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Indeed, it is sufficient to show that for each (s,z) there exists a function M**(¢) such that
¢
/cu+upum+ﬂﬁﬂmymgﬂﬁﬂo (1.32)
0
for each t € [0, Tp], To > 0, and

To
/ A2(s +u,z + oy + M*5%(u)) du < oo.
0
We set
M?>*(t) :== At + Blx|t,
where A > 0 and B > 0 are some constants. From inequality (1.32) we obtain

2 t?
ct + clz|t + cK(t) +CA§ +cB|x|§ < At + Blzlt, (1.33)

where K (t) = fg’ asds.
Since inequality (1.33) is true at the point ¢t = 0, it is sufficient to require that the inequality
¢+ clx| + coy + cAt + c¢Blz|t < A+ Bz

for the derivatives (in the variable ¢) of the left- and right-hand sides of inequality (1.33) be satisfied.
For this, it is sufficient to require that

(14 oy + At) < A,
¢(1+ Bt) < B.

But the left-hand sides of the previous inequalities are increasing functions of ¢. Therefore, if we find the
constants A and B from the equalities

C(l + a, + AT()) = A,
C(l + BTO) = B,

1
where Ty > 0 is a constant, and take Ty < —, then the function
c

MS® (t) —

c(1+ ag) c
t, 0<t<T
= (1o elt 0st=Th

and the point T} satisfies all the requirements.
(b) More generally, let

[A(t, z)| < ar + belz], (1.34)
where (a;) and (b;) are deterministic functions,
a; >0, b>0, 0<t<T,

T T
/ apdt < 00, / bidt < 00, x € R;.
0 0

It is easy to see that if we consider the equation

t t
M**(t) = / asudu + (|| + ¢+ V>7) / bsudu, (1.35)
0 0

for a function M*%%*, where

T() TO
/ asydu + (x| + ¢) / bstudu
0 0

To
1-— / bs+udu
0

c=ar, V&%=
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(note that V% = M*%(Tp)) and take T > 0 so small that for any s, 0 < s < T,

To
/ bs+udu <1,
0

then the function M*?(¢) and the point Ty > 0 constructed in (1.35) satisfy all the requirements of
inequality (1.24).
If, in addition, we require that

T T
/ aZdt < co and / bZdt < oo, (1.36)
0 0

then condition (1.27) is also satisfied.
4. Now we show that conditions (1.24) and (1.27) are essential.
(a) This example is very simple. Let A(t,z) = ¢(t), i.e., it does not depend on the variable x.
Then inequality (1.24) is satisfied if and only if

To
/O 6(t)dt < oc.

Indeed, if the last inequality is satisfied and we denote M (¢ fo |¢(s)ds, then inequality (1.24) is
satisfied. The inverse is also trivial. Hence, if inequality (1. 24) is not satisfied, then Eq. (1.1) has no
sense.

(b) Let

A(t,z) = 2a(t)|z|?signz, 0<t<T, zeR,

where a(t) = o /2 oy, where oy is defined in (1.18) and «] is its derivative.

It is easy to see that A(t,z) = 2a(t)|z|"/? (see (1.19)).

Rewrite inequality (1.24) in the following equivalent form:

t
/Z(S,/@S)ds+at§,@t, OStSTu
0

where 3; = ay + M (t) and show that B; = (3 + 2v/2)ay, 0 < t < T, satisfies the last inequality.
Indeed,

t t
/ A(s, B) ds + ap = 2(3 + 2v/2)1/? / a(t)atl/th + oy
0 0

t
= 2(3 4 2v/2)1/? / o2l 0l Pds + oy
0

- (2(3 +2V2)Y2 4 1) a = (3+ 2V = B
On the other hand,

T
4a®(t) inf sup
/0 |21<Bt |y|<Be

1/2

signy — |z|1/2 sign z

|yl

it — 4(3 +2V2) /T(a;)st = co. (1.37)
0

Hence, (1.27) is false.
Now we construct two different local strong solutions of Eq. (1.1).
Note that for each ¢ € [0, 7],

/ A(s, ) ds — o = oy, (1.38)

/ A(s, —a) ds + ap = ay. (1.39)
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Construct a sequence of processes (£1™),50 = {(}"™), 0 < t < T}n>0, putting

1,0
§t = Oy,

) ¢ (1.40)
" = / A(s, €8 Nds + Wy, n=1,2,...,
0

for each t.

By the law of the iterated logarithm (¢ < 7}, P-a.s.),

t
ftl’l = / A(s,as)ds+Ws=ap +ap + Wy > oy = §t1’0.
0
Hence,
t t
§t1’n = / A(s, ;’"71) ds +W; > / A(s,fi’"ﬁ) ds + Wy = 6,51’”_1 (t < 7y, P-as.)
0 0

for each n > 2. Thus, sequence (1.40) is (¢t < 7{},, P-a.s.) nondecreasing.

By induction it is easy to verify that

& < By, 0<t<T (t<rfy, P-as)

for each n > 0.

Indeed,

. t t
1€, < / A(s,as)ds + oy < / A(s, Bs)ds + ay = B¢
0 0
(t < iy, P-as.), and if |71 < By (¢ < 7ify, P-a.s.), then
t t
" < / A(s, & Nds + oy < / A(s, Bs) ds + ou = By,
0 0

as was required.

Hence, there exists a finite limit

¢ = lim & (t <71, P-as.) (1.41)

n—oo
which satisfies Eq. (1.1) with £} = 0, and by the construction, the process (§t1AT5‘V) is ﬂVXT‘%—adapted.
Therefore, we construct a 7,-local strong solution £ of Eq. (1.1) such that
o <& <P (t <1, P-as.).
Starting from Eq. (1.39), one can construct a 74--local strong solution ¢2 of Eq. (1.1) with
—ay > 2> —F (t<7%, P-as.).

Finally, note that there is no function §* = (5;) such that g} < ; and conditions (1.24) and (1.27) are
satisfied. Indeed, if §* satisfies condition (1.24), then 5* > «. Thus, by (1.37), condition (1.27) does not
hold.

5. (a) The example below shows that condition (1.34) is not necessary for the existence of a strong
solution of Eq. (1.1).

Consider the linear equation

dft == atftdt + th, 0 S t S T, f() == 0, (14.2)

where the function a = (a;) is such that

T
/ la;| dt < oo for any e > 0.
g
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Along with Eq. (1.42) we consider the equation
dé = ai&edt +dWy, e <t<T, ¢ =CeRy (143)

with the same coefficient a;, ¢ <t < T, as in Eq. (1.42).
Obviously, (1.43) has a unique strong solution given by the formula

t t t
tC = exp (/ audu) (C—-W,) —|—/ exp (/ audu) asWsds + W,

&E=C, e<t<T.

T0
/ las| dt < oo
0

for some small number 7% > 0, then taking ¢ = 0, we obtain that Eq. (1.42) has a unique strong solution,
(€9), 0 <t < T. Condition (1.24) here takes the form

70 T°
/ exp (/ |ay| du) las|asds < oo,
0 s
where o is defined by (1.18).

Under such a condition, the general solution of Eq. (1.42) has, obviously, the form

t t t
§C = Cexp (/ audu) + / exp (/ audu) asWsds + Wy,
' to to s ! (1.44)

Ogt’tOSTa

If, in addition,

where C' is a function of w, w € Q.
If

TO
/ atdt = +00,
0

then £° is a solution of Eq. (1.42) for any C.
In this case, the functional ®(t,w,w;) from Theorem 1.5 takes the form

O(t,w,w1) = tc(wl)(w), w,wy € Q.

Thus it is seen that the inclusion of the solution of Eq. (1.42) in different classes of solutions (strong,
anticipating) depends on the choice of C'(w).

If
TO
/ ardt = —o0,
0
then we must take C'= 0 in (1.44).

(b) It is well known ([126]) that if the stochastic process £ = (&), 0 < ¢t < T, is adapted to a family
of o-algebras (F;), 0 <t < T, to which, in turn, a Wiener process W = (W), 0 <t < T, is adapted, then
the pathwise uniqueness of the weak solution of the general equation (1.3) implies that the solution ¢ is,
actually, a strong one.

Now, with the example of Eq. (1.42) we show that with a specific choice of the function a; one can
construct a (pathwise) unique anticipating (but not a strong) solution of Eq. (1.42) on the whole interval
[0,T]. Thus, the condition that the solution is adapted to (F;), 0 < ¢ < T, in [126] cannot be omitted.
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Indeed, set, e.g.,

0 if t=0,

c1 1 T

—, 0 — i 0<t< —
a; = P <01<2 1 Sts o,

C9 . T

@, CQ<0 1f§<t§T

It can be easily seen that there is no solution of Eq. (1.43) with the initial condition &7/ # 0 in the
interval [%, T} , but there exists a unique solution with the initial condition {7/, = 0. The last condition,
in turn, defines C' = C(w) uniquely in formula (1.44) of the general solution of Eq. (1.42) on the interval
[O, g] Namely,

T/2 T/2 T/2
C(w) = —exp(—/ audu) [/ exp (/ audu) asWsds + WT/2:| € .7-"7‘5;2.
to to s

Thus, the solution just constructed is a pathwise unique anticipating solution of Eq. (1.42) on the
whole interval [0, 7] but, obviously, it is not strong.

1.5. Innovation Problem for Nonlinear Filtering

Consider a stochastic basis (2, F, F = (F),t > 0, P) with a Wiener process W = (W;), t > 0, defined
on it, and let § be a random variable independent of W with a distribution function F(a) = P(6 < a),
a € Ry.

Further, we consider the It6 process £ = (&), t > 0, with the differential

dé, = 0dt +dW,, t>0, & =0. (1.45)

We want to construct an innovation process W, i.e., represent the process ¢ in the form of the
diffusion-type process:
dé = Agdt +dWy, t>0, & =0,
where the process Ay is ]:f—measurable for every t and W = (W), t > 0, is a Wiener process with
FV =75 t>0 (modP).

Note that both o-algebras are augmented with respect to the measure P for each ¢ > 0.
In order to do this, we introduce the function A(¢,x): [0,00) x Ry — Ry by the formula

400 2t
/ a exp (aw - %) dF(a)
= if t>0,

A(t,z) = /+oo o (aw B %275> ) (1.46)

—00

0 it t=0.
From the Bayes formula we have
A(t, &) =E(0 | FF) (dt x P-as.).
Thus, by virtue of [77], W = (W}), t > 0, where

t
Wt = §t — / A(S,fs) ds (147)
0
is a Wiener process adapted to (]:f ), t>0.
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Under rather strong restrictions on the distribution F' of the random variable 6 it has been shown
that the Wiener process constructed in (1.47) is an innovation process. In [14], § was assumed to be
bounded, in [66] the pair (6, W) was assumed to be Gaussian, and in [96], E|f| < co.

If we write Eq. (1.47) in the form

déy = A(t, &) dt +dWy, t>0, & =0 (1.48)

and consider Eq. (1.48) as a stochastic differential equation, then we note that the problem of the
construction of an innovation process can be solved by proving the existence of the unique strong solution
of Eq. (1.48).

a. Direct Probabilistic Proof

Application of Theorem 1.1 makes it possible to reduce the problem of construction of the unique
solution of Eq. (1.48) to a simpler problem: that is, to the proof of the weak uniqueness of the solution
of Eq. (1.48).

Note that the existence of a weak solution of Eq. (1.48) follows directly from (1.47).

We show first that for any s > 0 and z € Ry, Eq. (1.48), considered in the interval ¢ > s > 0 with
the initial condition &; = z, is strongly regular.

With this aim in view, we fix s > 0 and z € R; and consider the following It6 process:

&(s,2) =2+0s,-(t—s)+ W, =W, t>s, (1.49)

where 0, . is a random variable independent of the future increments W; — W, t > s > 0, of a Wiener
process W, and P(0; ., < a) = Fs .(a), a € Ry, with

/ ’ ebz*%dF(b)
F,.(a) = +=2 . (1.50)

oo b25
/ e~ 2 dF(b)

—00

[ v (an ),

We introduce the function

for t>s;

A = +oo 2(t — 1.51
s2(t:2) / exp (aw _alt=s) 5 S)> dF; .(a) (1.51)
0 for t=s.
Note that for any s > 0 and z € Ry,
Ag(t,60(5,2)) = BBy, | FF?)  (dt x P-as.).
Thus, by virtue of [77], in this case we have again that
t

Wils2) =€(s,2) — = [ Avwtuls.)du (1.52)

is a Wiener process with respect to the filtration (ff(s’z)), t>s5>0.
Substituting Eq. (1.50) into (1.51), we obtain

A (tx) = Atz + 2).
Hence, by virtue of Eq. (1.52), we obtain
d&i(s,z) = A(t, &(s, 2)) dt + dWi(s, 2), &s(s,2) =z, t>s>0. (1.53)

Consequently, the process &(s,z), t > s, z € Ry, is a weak solution of Eq. (1.53) and hence, of
Eq. (1.48), on the whole interval [0, 00) with the initial condition &s(s, z) = z.
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It can be easily seen now that the function A(t,z) is bounded in the domain

{t,):0<s<t<T, |z|<H 0<T <00, 0<H<o0}.

/_:O la] exp (!a\H - i) dF(a)
|A(t, )| < /_:o ox (—WH _ g) dF (a)

Hence, by virtue of Corollary 1.2, Eq. (1.48), considered on the interval [s,00), {s = z, z € Ry, for
any s > 0 is strongly regular until the explosion time (see the definition in the statement of Corollary 1.2).

As we can see, the weak solution which was constructed earlier (see Eq. (1.47)) is finite on the whole
interval [s,00), and we obtain that Eq. (1.48) is strongly regular on the whole interval [s,00), s > 0, for
any initial condition &5 = z € R;.

Thus, there exists a non-anticipating functional ®4(s, z, (u; — us, 7 > s)), s > 0, t > s, z € Ry,
u € Cl, o), such that for any weak solution (&, W:), t > s > 0, of Eq. (1.48), with the initial condition
& =n, where 7 is a random variable independent of the o-algebra ]—'[‘;[,/ 50)? the following relation holds:

Indeed,

< Q.

& = @u(s,n, Wr =W, 7>5s)) (P-as.).
Now we introduce a measure Qs .(-) on the space (Cls o0); Bls,c))- For any s > 0, 2 € Ry, we set
Qs,:(B) = P(®.(s,2,(W, = W,, T > s5)) € B),

where B € B, -
Obviously, Qs .(B) = P({(s, z) € B).
One can easily Verify the following properties of the measure Q) .: for all s > 0 and z € Ry we have

1) Qs z(9 = hm — ex1sts) =1;
Qs,z((
)/’\

Y (0
(4) Qs-(0
(5) if (&) i

=u— 2z — (Lt — s)é\, t > s) € B) = P%(B), where P* is a Wiener measure on
(Cls,
<a)=Fs.(a), a €Ry;

< a, Wt s,z),t>s) € B) = F, - P5(B);

is a weak solution of Eq. (1.48) on the whole interval [0, c0), then

P((ita t> S) €B ‘ 58 = Z) = QS,Z(B)

Now let ft, t > 0, be a weak solution of Eq. (1.48) considered on the interval ¢ > 0 with the initial
condition §0 = 0. Let P~( ) be a distribution corresponding to the process § , P(-) be a Wiener measure

on the space (Clg ), Bjo,o0)), and P () be a distribution of the random variable &;, where s > 0 is a fixed
point. It is obvious that the following equalities are true:

(1)

P (Jim % exists) /R 1 Py ( Jim % exists | u, = z) P, (dz)

t—o00 t—o00

Ut . _
/ Qs,2 (hm - ex1sts) P£5 (dz) =

Let lim é =40.
t—o0

For any s > 0, z € Ry, we have
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P;g:((ut —uy—0O(t—s),t>s) € B)

_ /}R Pe((us —us — 0(t — 5), t > 5) € B | uy = 2) Px.(d2)

= . Qs,:(B) - PES (dz) = /]Rl PS(B)PES (dz) = P*(B),

where B € B, ).
(3)
P;g:((ut—us—g(t—s), t>s)eB,f< a)
:/ P;g:((ut—us—g(t—s),tZs)eB,gga\uszz)Pg(dz)
Ry °

— [ Qui(B.E<a)P: (d2) = / P*(B)F, .(a)P; (dz) = P*(B)F(a),
Ry Ry

where F(a) is the distribution of the random variable 0.

(4) PA<ald =2) = F,.(a).

Thus, if Wy = & — 0t, t > 0, then by virtue of properties (2') and (3'), we easily obtain that the
o-algebra 0(5) is independent of the o-algebra fg+m) = U(US>OU(WT—WS, T> s)) But me:oo) = U(Wt),

t>0= .7-}?F Y Fmﬁim) = fK’w), since FOWF = FOW = (2,9) (mod P). Hence Wi, t > 0, is a Wiener

process independent of the random variable 0. In order to show that the distribution of §~ coincides
with that of £ and, therefore, that Eq. (1.48) has a unique weak solution, it is sufficient to show that
F(a) = F(a), a € Ry.

It can be easily seen that

PO <a|F)=PO<al|&)=Fz(a), a€Ri, s>0 (Pras.). (1.54)

But

. 7< €Y _ p(g < £
Sl_l)r(r)1+P(0_a].7-"s) PO <a|Fs)

by virtue of the properties of the reverse martingale.
Further, we note that P;g: < Py and .7-"8’1 = f(g/v . Thus, by the zero—one law,

P@<al|F5,) =Pl <a)=F(a) (Pras).
Finally, by virtue of (1.54),

F(a) = Sl_i>r(r)1+ Foe (a) = F(a).

b. Proof Based on the Extension of Theorem 1.1

Let (Cio,7y, Bjo,r}) be a measure space of continuous functions. Let, further, Y € Bjg 7.
We call the continuous process £ = (&), 0 <t < T, a Y-solution (see [126]) (weak or strong) of Eq.
(1.1) if the process ¢ satisfies Eq. (1.1) and is such that

P{((&),0<t<T)eY}=1

Similarly the notions of Y-weakly and Y-strongly regular equations can be introduced.
Consider the class
K={Y:uveY = uVv,uhveY},

where u V v = max(ug,vy), 0 <t < T, and u A v =min(u,v), 0 <t <T.
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It can be easily seen that an analogue of Theorem 1.1 holds also for Y-solutions.
Namely, the following theorem takes place.

Theorem 1.1'. For anyY € K, Eq. (1.1) is Y -strongly regular iff Eq. (1.1) is Y -weakly regular.

The proof coincides with that of Theorem 1.1. The only difference is that here we can apply the
Yamada—Watanabe theorem formulated for Y -solutions.

Namely, if Eq. (1.1) has a Y-weak solution and if any two Y-weak solutions given on the same
(arbitrary) probability space with the same initial distributions coincide pathwise, then Eq. (1.1) has a
pathwise unique Y-strong solution.

Consider the class

T
Y, = {u € Coy: / A2(t,uy) dt < oo}
0

It is obvious that Yy € K.

The solution (weak or strong) of Eq. (1.1) is called an AC-solution (absolutely continuous solution)
if the measure corresponding to this solution is absolutely continuous with respect to the measure of the
process &g+ W.

It follows from the criterion of absolute continuity of the measure of the diffusion process with respect
to the Wiener measure (see [66]) that any Yjp-solution is an AC-solution and vice versa.

On the other hand (as follows from the form of the Radon-Nikodym derivative), the AC-solutions
are equivalent in distributions, which implies the following corollary.

Corollary 1.3. If there exists a weak AC-solution of Eq. (1.1), then it is a pathwise unique strong
AC-solution.

Returning to the innovation problem, note that Eq. (1.48) has a weak solution, namely, the initial
process & (see (1.47)). But the measure of the Itd process £ is absolutely continuous with respect to the
Wiener measure (see (1.45)). The problem is solved.

CHAPTER 2

PARTIALLY OBSERVABLE DIFFUSION-TYPE PROCESSES. CONSTRUCTION OF
AN INNOVATION PROCESS

2.1. A Stochastic Version of the Gronwall-Bellman Lemma

The following lemma is a stochastic version (multidimensional) of the well-known Gronwall-Bellman
lemma.

Lemma 2.1. Let, on a stochastic basis (Q,F,F = (F;), 0 <t <T, P), the following objects be given:
(1) a multidimensional continuous process Xy = (X}, ..., XP*) with X; > 0 (P-a.s.), 0 <t < T;
(2) a matriz process

K= (K", i,j=1,.,n, 0<t<T, K(0)=0,

which is increasing and continuous;
(3) a multidimensional continuous local martingale

M; = (M}, .., M), M.=0, i=1,..n.
Let .
0< X, < / X dK,+ M;, 0<t<T (P-a.s.).
0

Then
P( sup || X¢|| = O) =1,
0<t<T
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n .
where || X¢|| = > | X7
j=1

Proof. Note that if B is an increasing process, M € M and 0 < M; + By, then if EB,; < 0o, where 7
is a stopping time, M;s, is a supermartingale.

Indeed,

c
locy

Mt/\T Z _Bt/\T Z _BT'

Hence, M;s; is bounded by an integrable random variable and, therefore, is a supermartingale.
It is obvious that

t o~
n&m/W&wm+m,
0

where

n
~ ij A7 3
Ky :=t+ Oiligt | X s + 127?§nKt , M;= z; M.

— = Z:

Consider the stopping time 7, defined by the equality

K, =c

c

‘We show that for
t ~
B, = / | X, | dEs,
0

EB; < oo is true.
Indeed,

B, < sup || X,||K; < (Kp)2.
0<s<t

Hence,

BTC S (‘[?Tc)2 = 62'

Thus, ]\ZMG is a supermartingale and EJ\ZATC <0.
Changing the time X, = Y(c), we obtain

V@I < [ 1%l 4R, + V..
Since 7. = K 1(c), we have
uwwsfme+m,
Hence,
BVl < [ BV @)

The latter, by the Gronwall-Bellman lemma, leads to the equality E||Y (c)|| = 0, which implies
Y (¢) = 0 (P-a.s.). But this means that sup || X, || = 0 and since 7. — oo as ¢ — 0o, we have sup || X;|| =0
c 0<t<T

(P-a.s.). o O
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2.2. Innovation Problem for a Component of the Diffusion-Type Process

Consider a diffusion-type process (1, £) which is a solution of the following SDE:
dT/t = at(ia n)dt + bt(n)dvt’ T = 0’
dé.t = At(fan)dt + dWs, 50 =0, 0<t<T,

where v and W are independent Wiener processes and a, b, and A are nonanticipating functionals.

Let gi(w,y), 0 <t <T, z,y € Cjo ) denote any of the functionals a;(z,y), A(r,y) and assume that
the following conditions are satisfied for any z,7,y € Cjo 1 and t € [0, T}:

(1) the Lipschitz condition with respect to the variable z,

t
lgt(z,y) — gt(E,y)]2 < const ((wt — ft)Q —i—/o (xs — Es)2sz);

(2) the linear growth condition

(2.1)

t
|g¢(z,y) < const (1 +a} i+ / (22 +y2) sz) :
0

where K = (K;), Ky = 0, is an increasing continuous function;
(3) the coefficient b;(y) is such that the equation
dGe = be(C)dve,  Go =0

has a unique strong solution.

Theorem 2.1. Let (n,€) = (n,&:), 0 <t < T, be a strong solution of SDE (2.1). If conditions (1), (2),
and (3) are satisfied, then there exists an innovation Wiener process W = (W, F*) for the process &, and

FV = F¢  (mod P).

Remark 2.1. The process W = (W, F¢) and the filtrations FV and F¢ are defined in the Introduction,
(0.6), (0.7), and (0.8).

Proof. For simplicity we consider the case where b;(y) = 1 (in the general case it is sufficient to consider
a distribution of the solution of the equation
d¢ =bdv

instead of the Wiener distribution). We suppose also that dK; = dt.
Both assertions of the theorem will be proved if we show that the process £ is represented in the form
of a diffusion-type process

dé& = my(&)dt +dWy, & =0, 0<t<T, (2.2)

where the process m = (my(€)) is Fé-adapted, W = (W, F¢) is a Wiener process, and Eq. (2.2) has a
unique strong solution.

As m; we take

mi(€) = B(Ar | F),

where A; = Ai(&,n(&,v)), n(&,v) = (ne(§,v)), 0 <t < T, is a strong solution of the first equation of
system (2.1) with given &.

The condition of linear growth, as is well known [66], leads to the existence of moments of all orders
for ¢ and 7 and, surely, to the existence of m; and to its square integrability, i.e.,

T
/Om?(g)dt<oo (P-as.)
T

(moreover, this condition implies E [ m?(£) dt < 00).
0
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Thus, the process W = (W, F€) with

t
Wtzft—/o mg(€) ds

is a Wiener process and, hence, we have to prove the strong solvability of Eq. (2.2).
Since the weak solution of (2.1) has just been constructed, we prove the strong uniqueness of Eq. (2.2).
We use the generalized Bayes formula (see, e.g., [66]) to obtain an explicit expression for mq(¢).
Introduce the following distributions on the measure space (Cio 1}, Bjo,r7) of continuous functions:

VB € B[()’T] let QV(B) = P(U S B) and QW(B) = f I{y:n(ﬁ,y)éB}QU(‘h/)'

[0,7]
Note that the process v is independent of the Wiener process W and, again, by the condition of
linear growth, the following Bayes’ formula is true (P-a.s.):

my(€) = E(Au(€,n(€,v)) | Ff)
t
_ /C ey e [ /0 A6 n(Ew)

().~ 5 [ (A€, nE,) — ma(©)Pds| Qu(dy).
0

Change the integration variable and pass to the distribution of the process n with a given &, @, (-).
We obtain

me(€) = /C At@,y)exp[ /0 (Au(€. ) — ma(£)) dTF
[0,7]

t
-1 e - moras] ey

- e i (Au(E,) — ma(©) T,

—5 [aden - (€)% x| [ e~ [ ae a3

The theorem will be proved if we establish the following: if the processes &' and &2 defined on the
same probability space are the solutions of the equation

dé = midt + dW, (2.4)
such that

P(/OT(m;')?dt < oo) =1, i=12, (2.5)

where mi = m;(¢%), then
P(sup |& —¢&f|=0)=1.
0<t<T

Let ¢! and €2 satisfy Eq. (2.4) and condition (2.5) with the initial notation for both the probability
space and Wiener process (for convenience).

Condition (2.5) implies that the distributions of ¢! and &2 are absolutely continuous w.r.t. a Wiener
measure and, moreover, the distributions Q¢ ,Q¢,, and Q¢ of €162, and &, respectively, coincide, i.e.,
Qe, (1) = Qg, () = Q¢(+), - € Bjo1y-

Note that -

P( sup |¢ —&|=0) > P(/ (mg —my)*dt = 0).
0

0<t<T
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We prove that the last probability is equal to 1.
Introduce the following notation and simplification: for i = 1,2, ¢ € [0,T],

Ai(y) = A€ y), mi=mu(€), aily) = a(&y),
ai) = exp| [ (4s) ~ mpaW. — 1 [ (aito) —mias] oo [ abtpten — 5 [ aioas)

Guly) = ;<gt<y>+g§<y>, Quldy) = Qdy),

oy 70200 = | 500

where f is an integrable function.
Note that

/ Gi(y)Q(dy) =1,

(Qﬁl = Q§2 = Qﬁ)

Further, we denote
t
zt:/(mi—mgfds, 0<t<T.
0

The square for any expression f will be written by using the brackets (f)? (instead of f2 = (f(£2)).
The exact values of the constants appearing during the estimation does not matter and it is not necessary
to observe their change.

Fix t and consider the difference m} — m?. It can be easily seen that

mi —mj = / (A; (W)g: (v) — A7 ()97 () Q(dy)
- 5| [ - Bw)GmQ
+ /(A%(y) + A7 (W)) (9t () — g7 (1) Q(dy) |-

Using the Schwartz inequality and the simple inequality

e~ < Sy,
we obtain the estimate
(mk — d? < conse{ [ (4kw) - 42 *Gu) QL)
+ [t + atwrewae]| [ ([ A ))dWs)QGt(y)Q(dy)

w [([on—m >dW) Gt + [ ( / (ai(y)—aﬁ(y))dvs)QGt(y)Q(dy)
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b = mas ) ([ b+ mas ) () @ta)
[l m2yas e

0

(Al - A§<y>>2d8) (

/Ot(mi —m3)*ds (/0 (Al(y )+A§(y))2ds) Go(9)0(dy)

+ ‘i) — a2w)ds ) ( [ () — a2())%ds ) Gul)Q(dy)
/() 0

+ ([ i - a207as) ([ i)+ 2wras)coe)| |

Each integral should be estimated separately. We have:

1. By condition (1) of the theorem, from Eq. (2.2) and definition of m¢, i = 1,2, we have

t
(AL(y) — A2(y)) < const [(sﬁ —e+ @ - 5§>2ds]

t
< const/ (m! —m?2)%ds = const -z.
0
Hence

/ (A}(y) — 42(1))2C(y)Q(dy) < const -z

2. It can be easily seen that

/ (Al (y) + A (1)) Ge(y)Q(dy) <constz / (Af(y dy)—constZut,
=1

where

= [ (4w a0ty

T
P(/ ugdt<oo) =1, i=1,2.
0
Indeed, denote i = n(£%,v) and recall that Q¢, = Q¢, = Q¢. We obtain
[@iwrdwetd = B3E 1) | 7).
But it is well known (see [66]) that 3C > 0,

BI(E)? + (rf)?) < & — 1.
Thus, by virtue of condition (2) of the theorem,

Now we note that

T
/ EA?(¢ n")dt < .
0

The following three terms are denoted by I', I?, and I® and studied later on:
3.

- ( / (Al ) A§<y>>dWs)2Gt<y>Q<dy>.

7= [( [ @) -a >>dys)2at<y>cz<dy>.
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2= [( [ oni-mitsaw. ) Gt = ([ (o}~ myaw, )

Applying inequality (2.6) and similar estimates with the functions ai(y), i = 1,2, instead of the
functions Ai(y), i = 1,2, and denoting y; = Z f $)2ds, we obtain

/ (/ot(m - )( Ot (mg +m ds)Gt< )Q(dy) < const 2.
/(/0 (4:(v) - )( (my + m dS>Gt( )Q(dy) < const -y z.

8. / (/0 mh = m2yas ) [ (430) + 420 ) Gulo)@ta)
<consa (3 f (0t ds) (0@ = comt -1,
h i = Z (] s s aan
[ ([ =22 ([ @k« 2)as) Gt < come
- 7= Z ([ s s e
1.

J([ i - a2yas) [ a0 + 20005 ) cut@ian) < cons .

Combining the estimates obtained in 1-10, denoting

2
o = maX(’Yt, Z M%)a
i=1

and taking, for simplicity, const = 1, we obtain
(my —m?)2 < z(1+ 6+ I} + D)+ 6(I} + IZ + I).

Our next aim is to estimate the integrals I', ..., I°. By application of the Ité formula to the integrands
of I',...,I°, we obtain linear stochastic inequalities whose solution gives the desired estimates.

We perform this procedure taking as an example the integral I'. Introduce the product stochastic
basis

(O, F,F=(F),0<t<T,DP)
=(Q,F, F = (F),0<t<T,P) x(Cor}; B, B= (Bjpoy), 0 <t <T,Q),
where @) is a Wiener measure, and let
Wi=Wi(w,y) =Wiw), §&=Ewy) =E&Ww), i=12
v = ve(w,y) = ve(y) = -
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Then a Wiener process v is independent of processes W, &1, and £2. Moreover,
I = 11", €) = BGi}(€".€,0) | 7 )
with
in(€,€%,0) = i1 (y),
where the process i} (y) = i} (w,y) defined on the stochastic basis (Q, F, F, P) is given by the formula

t 2
i(y) = ( [ @i - a2) dWs) Giy),
or, in more detail,

t 2
it () = ( [ o - A§<w,y>>dWs) Cilw,y),

where

Gi(w,y) = %(gtl(w,y) + g7 (w,9)),

gi(w,y) = €t</ (A5 (w,y) —mi)dWs>€t(/ ag(w,y) dvs>,
0 0
where i = 1,2, and & (M) is the Dolean exponential of the martingale M (see [67]).
1
Applying the Ité formula to each summand (recall that G = §(g1 + ¢?)), after addition and some

simple calculations we obtain
; RS ° =\’ i iy i T
do) =5 [ S|( [ @) - 2w @i - i) v,
i=1

2 ( [ i - a2 qu) (AL(y) — A2(4))gi (y) TV .
0
2

+ ( /0 t(Ai(y)—Ai(y))qu> a(y)gi(y) dvs] + /0 t(Ag(y) — A2(y))2Gy(y) ds

- /Ot ( /OS(Ai(y) — AL(v) qu) (A3(y) — A3(v)) (i(Ai,(y) ~mi)gi (y)) ds. (2.8

i=1

1
Estimate the integrand of the last summand (using the simple inequality ab < 5((12 +b%)), we easily

obtain that this summand is less than or equal to

[ ([ - 22007, s +eomst [[(420) - 207Gt ds
< /0 iL(y) ds + const /Ot ( /Os(mi 2y du) Li(s,y) ds, (2.9)

2 . .
where I1(s,y) = 3 ((A5(1))* + (m)?).
i=1
Hence, from (2.8) we obtain a linear stochastic inequality for i} of the form

o)< [ i1 (y) ds + const / t ([t = m2 ) Gt ds

t ¢
+/ Ki(s,y)dW, —|—/ pi(s,y)dvs, 0<t<T. (2.10)
0 0
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Solving the last inequality, we obtain the estimate

i< [T dWs [ B [ [l -mipauens e

where K1, Py, and [1 (I3 > 0) are random processes with

r(f (R (5,)) s < ) =r([ By (s,))ds < %) =1(Qus),

P(/OT</71(s,y)Q(dy))ds < oo) 1

Quite similarly we estimate 47 in the expression

12 = / 2(y) Q(dy).

A direct application of the It6 formula to I® yields

(2.12)

t t
= / (m! — m2)2ds + / Ks(s) diVs
0 0

P(/OT(Kg(s))st < oo) ~1

By a simple application of the It6 formula, we obtain for the integrands i} and i) of integrals I} and
ID, respectively:

with

t t t
ii(y)Z/ Fi(s,y)dWer/ ﬁi(s,y)dver/ li(s,y)ds, i=4,5,
0 0 0
where

P(f | (Ri(s,0)ds < w)=r( [ ' (5i(s.0)ds < x)=1 (@us)

and [; >0, i = 4,5, with
T
P(/O (/Zi(s,y) Q(dy)) ds < oo) =1

For the further consideration we need the following lemma.

Lemma 2.2. Let X(t,y) = X(t,w,y) be an Ité process (defined on the above-mentioned product space)
with

t t t
0< X(ty) = / n(s,y) divs + / m(s,y) dvs + / u(s,y) ds,
0 0 0

where Wi = Wy(w) and vy = vy(y) are Wiener processes and u(t,y) > 0 (recall that n(s,y) = n(s,w,y),
m(s,y) = m(s,w,y), and u(s,y) = u(s,w,y)).

Assume that
P(/OT(/u(s,y)Q(dy))ds < oo) _1

P(/OT(n(s,y))2ds < oo) _ P(/OT(m(s,y))2ds < oo) —1 (Q-as).

and
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Denote

Q(t,y):/o n(s,y)dWs—i-/o m(s,y) dvs,
n(t,y)Z/O u(s,y) ds.

Then if T = T(w,y) = 7(w) is an (F;)-stopping time (and, therefore, (F;)-stopping time) such that T < T
and

E [ n(r.9) Q(dy) < o0
then the process

CtnT) = / C(t A7) Qdy)

is an (F)-supermartingale with

sup E|((tAT)| < oo,
0<t<T

and, in particular,

p< sup /X(t,y)Q(dy) < oo) 1

0<t<T

Proof. Consider the (ft)—stopping time
Te="Te(y) =inf{t >0:((t,y) >c} AT, ¢>0.
Note that for each y, 7. is an (F;)-stopping time.
It is obvious that for each y (Q-a.s.), ((t AT A 7.,y) is a uniformly integrable F;-martingale with
C(tAT,y),0<t<T, where (T = max(0,—().
The conditions of the lemma result in

sup EC(tAT) < /E sup (" (tAT,y)Q(dy) < 0o
0<t<T 0<t<T

By the Fatou lemma, for each y (Q-a.s.),
E((tAT,y) < lm EC(tATAT,y)=0.

Cc— 00

This leads to the relation

/E( EAT, ) Qdy) + BC(EAT) < sup BC(EAT).
0<t<T

Hence,

sup E|((tAT)| < o0. (2.13)
0<t<T

Further, let s <t¢. Then, again, by the Fatou lemma, we obtain
EQtATy) | Fs) < lim E(CEATATe,y) | Fs) = lm ((sATAT,y) =C(sAT,y)

Cc— 00 Cc— 00

for each y (Q-a.s.) and by an average with respect to the measure Q(dy) we obtain

(/ctmy <dy|f) [c6rmmaa. s<t.

Hence, ((t A7) is an (F;)-supermartingale.
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Now we consider the (F;)-stopping time

Uc:inf{t>0:/n(t,y)Q(dy)20}/\T, c>0.

Obviously,
lim P(o, =T) =1 (2.14)
and from the martingale inequalities (see [66]) it follows that
P( sup ((t) < oo) =0. (2.15)
0<t<o.

To prove the last assertion of the lemma, it is enough to show that

P(OiltlgTQ(t) < oo) = 1.

For all a > 0 we have

P( sup ((t)>a) SP( sup ((t)>a,ac:T)

0<t<T 0<t<o.
—i—P( sup ((t) > a,0. < T) < P( sup ((t) > a) + P(o. < T).
0<t<T 0<t<oc

Passing to the limit first as a — oo and then as ¢ — oo, we obtain from inequalities (2.14) and (2.13) the
desirable result. O

Applying this lemma to I* and I°, we obtain
P( sup Iti < oo) =1, +=4,5.
0<t<T

Put
T, = max(l + 0+ I+ IE;/L-(t,y)Q(dw, i=1,2; (KE’)Q)-

T
P(/ Ftdt<00>:1.
0

Finally, combining the obtained inequalities, we obtain

‘We have

t t
2 g/ I‘stds—i—/ D (I} + 12+ 13) ds,
0 0
t t
Il < / Dozeds + (i (t), I < / [yzeds + Ca(t),
0 0

t t
I <z +G1) < / Tyzds + / Ty(I + I + I3) ds + (3(t),
0 0

where (;, i = 1,2, 3, are local martingales.
To complete the proof, it is sufficient to refer to Lemma 2.1. Indeed, if for each t we set
X = (a0, 11, I, 1), My = (0,G1(8), C2(1), G3(1)),  dEy = aludt,

where « is the matrix

—o=
_= o O
o o
_ o o

then we obtain the desirable result. O
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2.3. Coincidence of o-Algebras in a Filtering Problem of a Multidimensional Partially
Observable Diffusion-Type Process

Let R;, [ = m,n,k, be Euclidean spaces with a fixed orthonormal basis and the usual Euclidean
norm | - |.

Fix T > 0.

Let (C[IO,T]’Bfo,T])’ [ = m,n, k, be measure spaces of continuous [-dimensional functions with the
uniform metric, and let a(t,z,y) and A(t,z,y) be, respectively, m- and n-dimensional vectors, o1(t, z,y)
and oo(t, z,y) be, respectively, (m x k)- and (n x k)-matrices defined for t € [0,T], = € Clorp ¥ € Clom
(nonrandom).

Let a k-dimensional Wiener process W = (W, F) be given on a stochastic basis (2, F, F = (F),0 <
t<T, P).

Consider the following system of SDEs:

dn(t) = a(t,n, §)dt + o1(t,n,€)dWe, n(0) =0,
di(t) = A(tv m, é)dt + 02(t’ §)th7 5(0) 0

Denote by g(t,z,y) each of the coefficients a, 4,01, and o9 of (2.16). Assume that g(¢,z,y) is a

non-anticipating functional and

(1) |g(t,z,y)| < const for all ¢, x,y; const > 0;
(2) the functional g(¢, z,y) satisfies the Lipschitz condition with respect to the pair (z,y):

(2.16)

|9(ta501,yl) - g(t7m27y2)|2 S COHSt(|CC1(t) - C(32(7(:)|

+y1(8) — ya(t)] +/0 (l21(s) = 22(s)* + [y1(s) — w2(s)*) sz),

where K (t) > 0, K(0) = 0 is an increasing right-continuous nonrandom function, and | - | is a norm on a
suitable Euclidean space.
We set
o(t,y) = oa(t,y)o3(t,y),
where % denotes transposition;
(3) assume that there exists a constant A > 0 such that for all ¢ € [0,T], y € Clop and u =

(U1, ...y lp) € Ry,

n
Z oij (b, y)usu; > Aul®.
ij=1

If conditions (1) and (2) hold, then as is well known, there exists a pathwise unique strong solution
of Eq. (2.16).

Further, if 6/2 is a positive symmetric square root of the matrix o, then, thanks to condition (3),
there exists the matrix o—1/2, which is a bounded function of (¢,y) € [0,T] x Co.m-
Denote by 7

FE=(F), 0<t<T,

the P-augmented filtration generated by the process £ and consider the process

W(t) = / o V2(s,€) dé(s) — / o Y2(s, ) B(A(s,1,€) | FE) ds, (2.17)

0 0

where E(- | FE )= E(- | F$)(w, s) is a (w, s)-measurable modification of a conditional expectation.
Further, we denote the P-augmented filtration generated by the process W by

FVW =), 0<t<T
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Theorem 2.2. In scheme (2.16), under conditions (1), (2), and (3), the process W = (W, F¢), defined
by Eq. (2.17), is an innovation process, i.e., a Wiener process with

FV = F¢  (mod P).
Proof. Let us show that system (2.16) can be reduced to the following triangular system:

dn(t) = alt,n, €)dt + c(t,n, €)dW (t) + b(t, 1, €)dv(t), 1(0) =0, (2.18)
de(t) = A(t,n, €)dt +5(t,€)dW (t), €(0) =0,

where & = 0'/2, b and ¢ are some matrices satisfying conditions (1) and (2), and v and W are independent

Wiener processes (the dimensions of the just-described objects are given in the proof below).
Indeed, let
AW =5 opdW
(for simplicity, here and below, the arguments of the functions and processes will be omitted). Obviously,

—~

W is an n-dimensional Wiener process with
GAW = godW.
Denote
L=1I-05(cYoy, c¢=o1050 2
where I is the identity matrix, and consider the process = with
dx = LdW.

It is easy to see that the processes x and W are independent and
a1dW = cdW + o1 LdW.
It is well known that the matrix L can be represented in the form
L= MBD,

where the matrix B is nondegenerate and matrices M, B, and D have dimensions m X p, p X p, and p X k,
respectively, where p < k — n (obviously, it is always possible to take kK —n > 0).

Further, the matrix

E =BDD*B*
is nondegenerate. Hence
LdW = ME?(E~Y2BDdW).
Now, if we take
dv = E~Y2BDaw,

then v is a Wiener process independent of W, and we obtain the desirable system (2.18).

In scheme (2.18), without loss of generality (due to condition (3)), we can set

ot,y) =1,
where I is the identity matrix.

Below we omit the sign
The process W with

“w_on
~

over the process W and simply write W.

dW (t) = d&(t) — m(t, &) dt,
where
m(t,€) = B(A(t,n,€) | F),
is, as is well known, a Wiener process.
Thus, from the second equation of system (2.18) we derive

dW (t) = dé(t) — A(t,n, &)dt = dW (t) + [m(t, &) — A(t,n, €)]dt.
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Hence,

dn(t) = a(t,n,€)dt + b(t,n, §)dv(t) + c(t,n, )dW (t) + c(t, 0, §)[m(t, €) — A(t,n, E)]dt.

It follows from conditions (1) and (2) that the last equation has a strong solution, i.e.,

n(t) = F(t7 /U’ f)?

where F'(t,z,y) is a nonanticipating functional.

Therefore, we obtain

d§(t) = ¢(t, v, &)dt +dW; (= m(t,€)dt + dW (1)), (2.19)
where
¢(t,z,y) = A(t, F(t,z,y),y)

is a superposition of nonanticipating functionals and hence itself is nonanticipating.

Obviously, ¥ C F¢ (mod P), by the construction of the process W. Thus, it remains to prove that

FEcFW (mod P). To this end, it suffices to show the pathwise uniqueness of the solution of Eq. (2.19).
The proof then follows from the Yamada—Watanabe theorem.

Denote by p(dz) a distribution of the Wiener process v on a measure space (C’[ AL Bf% 7). Recall
that the processes v and W are independent. Hence, from the Bayes formula we have
m(t,§) = B@(t.0.€) | F) = [ olt.2.€)plt,2,) uldo), (220)
(0,T]

where

p(t,.’L‘,f) = exp(f(t,.”ﬂ,f)),

'—n t s,x,&) —my(s _s—1 t s,x, &) —m(s, &)|’ds (2.21)
7(t,2,) .—;/Owsp(, €)= myls, ) AWy (5) = 5 [ 1905.2,6) = m(s.©) s

Introduce the probability space
(ﬁ’f,ﬁ) = (2 x C[%T}afx BfBT]’P X ),

& = (w, ), and let £(&) = £(w), ¥(@) = x. Then ¥ is a Wiener process independent of the process .

Denoting expectations with respect to measures P and u by E and E* | respectively, we obtain from
(2.20)

m(t,€) = /C o(t, z, O)p(t, z,€) p(da)

k
[0,7]

= B (¢(t,9,)p(t,,€)) = B(6(t,5,0)p(t,5,€) | Ff)  (P-as), (2.22)

where v and §~ are independent.
For simplicity, introduce the notation:
(a) in Eq. (2.22) we omit the sign “~”;
(b) each constant is denoted by const;
(c) in condition (2) we set dK (t) = dt;
(d)

Gt) = 50" (0) + 220, (1) = plt,0,€1),

mz(g) = m(t’ 52)’ ¢Z(t) = ¢(t’ v, éz), fz(t) = f(t’ v, éz),

where ¢ (i = 1,2) are two solutions of Eq. (2.19) defined on the space introduced above.
It obviously follows from condition (1) of the theorem that the distributions of &' and &2 coincide.
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In particular,
EFG(t) =1, 0<t<T.
According to (2.22), for each i = 1,...,n we have

my (t) — mi (t) = E*(6; (t) — ¢7 (1) G(¢) + E*(p' (t) — '02(13))%(@52l (t) + 93 () (2.23)

for each t. )
Hence, if we use the inequality |e* — e¥| < 5(6‘” + e¥)|z — y|, then we obtain

o' () = PP (D) < GO (1) = F2(B)l.
Note that, according to condition (1),
|¢'(t)| < const, i=1,2, for allt.
Thus, from Eq. (2.23) we obtain
i (£) —m <>| <const[E“(|¢ OIVEHVED)
+E(|fH(¢ \\/—\/—)] i=1,2,..,n

Squaring each part of the last inequalities, applying the elementary relation (a + b)? < 2a? 4 2b? and the
Schwartz inequality, and then averaging and summing up, we obtain

Blm'(t) = m*(t)]” < const[E|¢" (t) — ¢*(H)PG(t) + E(f1(t) — f2(1)*G(1)]. (2.24)

Denote

/ m' (s ?(s)[*ds (2.25)

and show that each summand in inequality (2.24) is less than or equal to const -z(t).
Then we obtain from (2.24)

t
z(t) < const/ z(s)ds, 0<t<T,
0

whence, according to the Gronwall-Bellman lemma, we have
P(z(T)=0) =
Now the assertion of the theorem follows from the inequality

P( sup |€1(t) — €(1)] = 0) > P(x(T) = 0).
0<t<T

Thus, we have to prove that for each ¢,
B¢ (t) — (1) PG(t) < const -2(1),

E(f'(t) — f3(£))*G(#) < const -2(t (2.26)

)
)-
The proofs of each of the above inequalities are quite similar (81mple application of the Lipschitz
condition and the It6 formula easily shows that |¢!(t) — ¢?(¢)|? and (f — f2)? are estimated from above
by the same expressions).

Let us prove, for example, the first inequality.
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Introduce the following notation: for each t € [0,7] we have

z(t) = ' (t) — *(OIPG(1),
h(t) = [€'(t) — E(1)PG(1),

/ ml(s) — m?(s) *ds,

p(t) = G(1) \771(8) i (s)[ds,

u(t) = G(1) ; €1 (s) — €(s)ds,

m k t 2
M (t) = (bij(sa 1’51) _bij(sa 2?52))dvj(8) )
m n 2
M2<t>:zz( (5.1 4€) = (s € AT 5))
=1 j=1
I(t) = Mi(t)G(1),
y(t) = Ma(t)G(t).

It is easy to see that

E(|¢'(t) — ¢*(H)PG(t)) < const-B(h(t) + u(t) + z(t) + p(t)).

Let us estimate each term on the right-hand side of inequality (2.27).
We have

Eh(t) = BEE*h(t) = B(I'(t) - €(t)|*E*G(t))
= E|e1(t) — €2(t)|* < const -z(t).
In a complete analogy, we write
Eu(t) < const -z(t).

Further, it is easy to see that
t
k() — (1) < /0 la(s, 7, €Y) — a(s, i, €2)2ds
t
T / e(s, ', €)ml(s) — c(s, 12, €2)m?(s) 2ds
0

+ /t lc(s,n", €N A(s, 0", €Y) — c(s,7%, E%) A(s, 0, €%)*ds
0

+ M (t) + Ma(t).
According to conditions (1) and (2) of the theorem, we obtain from (2.30)

x(t) < const(p(t) + I(t) + y(t) + d(t) + u(t)).

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

Note that in our calculations below there arise stochastic integrals with respect to the Wiener pro-
cesses v and W possessing cumbersome integrands. But according to condition (1) of the theorem, each
of them is a martingale equal to zero at the point ¢t = 0 (indeed, it is sufficient to note that each coefficient

is bounded and E(G(t))? < const). Denote these martingales by the symbol “mart.”

Using the It6 formula and condition (2), we obtain the following:
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p(t) = mart —i—/o x(s) ds;

(f)
m n t
I(t) = martJrZZ/ (bij(s,m", &) = bij(s,n*,€%)°G(s) ds
i=1 j=170
Smart—l—const(/o a:(s)ds—i—/o h(s)ds);
(g)
y(t) = mart—i—ZZ/ (cij(s,m', €Y — cij(s,m?, €2))G(s) ds
i=1 j=1"0
m.on t s
Cii\U Lol —Cij u, 2, 2 _ju Cij S, 1, 1 —Cij S, 2, 2
+gg/o(/o<< 1) = e ) AT 0) ) e €1) = 57, 2)
<(DI6H6) — k) (9) + (625) — me))g? o] ) s (232

=1

Now we note that just as in (j),

ii /Ot(cz'j(sanlaﬁl) - Cij(S,’r]Q’éQ))QG(S)dS < const (/Ot:c(s)ds + /Ot h(s)ds),

i=1 j=1
Recall that by condition (1) of the theorem,
|¢'| < const, |m‘| < const, i=1,2.
Thus if we apply the elementary inequality
1
ab < 5(a2 +b?)

and condition (2) of the theorem to the third term on the right-hand side of equality (2.32), we can easily
see that it is overestimated by the expression

const (/Ot x(s)ds + /Ot h(s)ds + /Ot y(s) ds).

y(t) < mart 4 const (/Ot z(s)ds + /Ot h(s)ds + /Ot y(s) ds). (2.33)

Now, from inequality (2.31), according to (i), (j), and (k), we find that

(t) < mart + const (/Ot z(s)ds + /Ot h(s)ds + y(t) + d(t) + u(t))

Therefore, we obtain

< mart + const (/Ot x(s)ds + /Ot h(s)ds + /Ot y(s)ds + u(t) + d(t)). (2.34)
From (2.28) we obtain

E /0 h(s) ds = /0 " Bh(s)ds < const /0 " o(s)ds.
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But z(t) is a positive increasing function. Hence
/Ot z(s)ds < /Ot z(t) ds < const -z(t)
and, therefore,
E/Ot h(s)ds < const -z(t). (2.35)
Further,
Ed(t) = EE*d(t) = E /O t Im!(s) — m2(s)|?ds - E*G(t) = 2(t). (2.36)
Now, averaging inequalities (2.33) and (2.34) and then adding them, we obtain
E(z(t) + y(t)) < const (/Ot E(xz(s) +y(s))ds + E /Ot h(s)ds + Eu(t) + Ed(t)). (2.37)
Hence, by (2.36), (2.29), and (2.37), we have
E(2(t) + y(t)) < const ( /0 " Bla(s) + y(s)) ds + z(t)) .

Solving this inequality and taking into account that the process y(t) > 0, we obtain

Ex(t) < const -z(t). (2.38)
Item (i) and inequality (2.35) yield

t
Ep(t) = E/ x(s)ds < const -z(t). (2.39)

0
Finally, the desired inequality (2.26) follows from inequality (2.27), according to relations (2.28),
(2.29), (2.38), and (2.39). 0

CHAPTER 3

ESTIMATIONAL STOCHASTIC EQUATIONS AND ROBUST ESTIMATORS IN
STATISTICAL MODELS ASSOCIATED WITH SEMIMARTINGALES. CONTIGUOUS
ALTERNATIVES

3.1. The Limiting Behavior of Roots of the Estimational Stochastic Equations

A key role in robust estimation theory is played by the Huber M-estimators. ([32,35,109,112-115]).
In general, M-estimators can be considered as follows.
Consider a sequence of filtered statistical models

&= {(Qn’]_-n’Fn = (.7:?),0 <t<T, (Qg,e €0 C Rl))}nzla (31)

(4

where for each n > 1 and 6 # ¢, the probability measures Qj and Qj, are equivalent, Qp ~ Qf,, F"* = Fp,
and T > 0 is a number, the o-algebra F™ is complete, and the filtration F™ satisfies the usual conditions
w.r.t. Q for some and, hence, for each 6 (see Subsection 3.3.1, (a), (d) and Remark 3.16 below).

Let for each § € © and n > 1 the process (L,(0,t),0 < ¢t < T) be a local (square-integrable)
QQp-martingale.

Denote L, () = L,(0,t)|;=r and consider the stochastic equation (with respect to the parameter 6)

Ln(0) = Ln(0,w) =0, n>1. (3.2)
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A sequence {T),(w), w € Q"},>1 of F"-measurable roots of these equations (i.e., for each n > 1,
T, (w) is a random variable defined on (", F™) with values in ©, and such that

L,(T,(w),w) =0, n>1) (3.3)

is called a generalized M -estimator.

Note that equality (3.3) can hold only asymptotically (in some sense, see, e.g., Theorem 3.1 below).

The proof of assertions concerning the asymptotic behavior of M-estimators as solutions of Eq. (3.2)
is carried out in two steps: first, the asymptotic properties are established for the left-hand side of Eq.
(3.2); second, the asymptotic properties of estimators (considered as implicit functions) are obtained
by linearization. In this way one can construct the so-called CLAN (consistent, linear, asymptotically
normal) estimators, which are asymptotically equivalent to M-estimators (see, e.g., (3.15) below). The
class of CLAN estimators is a basic class of estimators in robust estimation theory, developed below in
this chapter.

3.1.1. Local limiting behavior of roots. The Dugue—Cramer—Le Breton method. Given a
sequence of statistical models (3.1), let {c,(0)}n>1, cn(#) > 0, 6 € O, be a normalizing deterministic
sequence.

Consider the sequence of random variables {L,(6)}n>1 = {Ln(0,w), w € Q"},>1, depending on the
parameter 6 € O.

Remark 3.1. We will use the following abbreviation:
Qp- lim ¢" = K,
n—oo
where £ = {£,}n>1 is a sequence of random variables defined for each n on Q" and K is a real number.
This equality means that Vp > 0,

lim Qp{w € Q" : | (w) — K| > p} = 0.

Theorem 3.1. Let the following conditions hold:
(a) for each § € ©, li_)m cn(0) =0;

(b) for each n > 1, the mapping 6 ~» Ly(0) is continuously differentiable in 6 Qp-a.s. (Ln(8) =

DL (0));
(c) for each 0 € ©, there exists a function Ag(8,y), 8,y € O, such that
Q3 lim ¢2(0)La(y) = Ag(6.y) (3.4
and the equation
Aq(8,y) =0

with respect to the vam’qble y has a unique solution 0* = b?();
(d) Qp- li_)m c2(0) Ly, (0%) = —q(0), where vg(0) is a positive number for each 6 € ©;

(e) lim limsupQp{ sup  c2(0)|Ln(y) — Ln(6*)] > p} = 0 for each p > 0.
r—0 n—oo {y:|ly—0*|<r}

Then for each 0 € © there exists a sequence of random variables T = {T},}n>1 taking the values in
O such that

(I) lim Qj{Ln(T,) =0} =1;
n—oo
(II) Q- lim T, = 6%;
n}:)oo

(III) if {T),}n>1 is another sequence with properties (I) and (II), then
lim Qp{T, =T,} = 1.
n—oo

If, in addition,
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(f) the sequence of distributions {L{cy(0)Ln(0%) | Qf }}n>1 weakly converges to a certain distribution
D, then
(IV)
(i) L{vO)c, (0)(Tn — 0%) | Q5} = @,
-1 L * n
(i) G O)Tn 07 = OO g o), Rae) %o
1e(9)

Proof. 1. By the Taylor formula we have
Ly(y) = La(8") + La(0")(y — %) + [L(8) — La(67)](y — 6"),

where 6 = 0* + a(6%)(y — 6%), a(0*) € [0,1], and the point 6 is chosen so that § € F" (£ € F means that
the r.v. £ is F-measurable).
From this we obtain

cn(0)Ln(y) = cn(0)Ln(0%) = 1(0)(y — 07) +en(0,0%)(y — 07), (3.5)
where ¢, (y,0%) € F",
en(y,0%) = cp(O)[Ln(y) — Ln(0*)] + [ch(0)La(07) +10(0)], y € ©.
Obviously, conditions (d) and (e) ensure that

limlimsup@Q3{ sup  |en(y,0%)] > p} =0 (3.6)
r—=0 n—oco {y:ly—6*|<r}

for each p > 0.
2. We now show that there exists a family {Qg(n,r): n > 1, r >0, § € ©} with properties

(1) Qo(n,r) € 77,
(2) lim Tim inf Qg {Qe(n, 7)} = 1,
and for any r > 0, n > 1, and w € Qy(n,r) the equation
Ln(y) =0

has a unique solution T, in the segment |y — 0*| < r.
Expansion (3.5) yields

2(0)Ln(6* +uw)u = c2(0) Ly (0% u — u?yo(0) + u’en(,0%). (3.7)

n n

For any 8 € ©, n > 1, and r > 0, we define

0 9
Qyn,r) = { € 0 O L) < 20, up Jenly,6%) < 2404
2 {yly-orisr) 2
Obviously, Qg(n,r) € F™. Hence, if w € Qgy(r,n), then from Eq. (3.7) we obtain L, (6* + u)u < 0 for
lu| = r.
Since the mapping u ~ L, (6* + u) is continuous with respect to u, the equation L, (0* + u) = 0 for
|u| < has at least one solution wu, (6*) with |u,(0*)] < r.
It can be easily seen that if w € Qp(n,r) and |u| <7, then L,(60* +u) < 0.
On the other hand, for w € Qg(n,r) and |u| < r,

L, (0" + u,w) — Ly (0" + up(6%),w)

Ly
B / 50 Ln (0 + un(67)) + a(u — un(6%)), w)] dar
0
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Consequently,
1
L,(0" +u,w) = / L(0* 4 un(07) + a(u — un (0%)), w)(u — 1y (6%)) dox
0

and

L (0" 4+ u,w)(u — un, (6%))
1
= /0 L (0" 4+ un(0%) + a(u — un(0%)),w) (v — un (6%))2dar < 0,

provided that u # u,(0*). Hence L, (0* + u,w) # 0 for |u| < r, u # u,(0*). By the construction of the
set Qg(n,r) and due to conditions (c), (d), and (e) it is easily seen that (2) is true as well.
3. Now we construct the sequence T' = {T, },,>1 with properties (I), (II), and (III). Define

O = U Qo(n, k1.
530 G(na )

n

Obviously, Q9 € F". Let w € Q9. Then it follows from the previous statement that there exists a number
k(w) > 0 such that the equation Ly, (y) = 0 has a unique solution 7},(w) in the segment |y —6*| < (k(w))™?
with the mapping w ~» Tj,(w) which is Q2 N F"-measurable (see, e.g., [60]).
We set
Th(w) if we
T — n ny
n(w) { 0o if w¢ Ol
where 6 is a point in ©.
It is easily seen that, by construction, 7}, possesses properties (I), (II), and (III).
4. Finally, we prove assertion (IV). By expansion (3.5) we have

e (0) Ln(T) = €n(0) L (07) — vQ(0)cy ' (0)(Tr — 67)]
< [e(Tn, 0 )7g" (0)lInQ(8)cr (0)(T — 67)] (3-8)
and limsup Q§{|e,(Th,0*)| > p} = 0 Vp > 0, which follows directly from the relation
n—oo
(Ta—01<r}0{ swp  |en(s,0))] < p} C {Jen(Tw, 0%)] < p}.
{y:ly—0*[<r}

Denote X, := ¢,(0)(Ln(T7) — Ln(0%)), Yo := v0(0)c, 1 (0)(T, — 6%), and Z, = \an(Tn,G*)fyél(G)\.
Then inequality (3.8) takes the form
| X — Y| < Z,|Y,.

It is well known (see [8], Problem 2, Sec. 1.4) that if X,, converges weakly to X (X, — X) and
Zn Lt 0, then Y;,, = X. Thus, we obtain

lim L{o(0)c; " (0)(T, — 07) | Q5} = lim L{cn(0)Ln(07) | Q5 }-

Assertion (i) is proved. The proof of assertion (ii) easily follows from (i) and inequality (3.8). O
3.1.2. Global limiting behavior of roots. The Perlman-type conditions. We use the objects
introduced in Subsection 3.1.1. Assume that © = [a,b]. Furthermore, for convenience, we set a = —co
and b = +o0.

For every 6 we consider the set

Sp = {T = {Tn}nZI . for ecach n > 1,7}, € F*, and Q}- li_>m 2 (0)Ln(T},) = 0}.
n—oo
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Theorem 3.2. Let the following condition (supc) hold:
(supc)y the function Ag(0,y) is y-continuous for every 0;
(supc)g for any K, 0 < K < 00, and p > 0,

lim Qp{ sup |c;(0)Ln(y) — Ag(0,y)| > p} = 0.

ly|<K
Then N
I. The following alternative holds: if T € Sy, then either
Q5 lim T, = 6" = b2(6) (3.9)
or
T Qp{ITal > K} >0 (3.10)
for any K, 0 < K < 0.
II. If, in addition, the condition
(c) lim |Aq(6,y)| = K(6) >0
ly|—o0

holds and
im Q5{ sup |c2(0)Ly(y) — Aqg(0,y)| > p} =0

n—0o0 —oco<y<+00

for any p > 0, then (3.9) holds.

Proof. Let T = {fn}nzl € Sp and suppose that inequality (3.10) is not satisfied. Then there exists a
number Ky > 0 such that R

lim QF{|Ty| > Ko} = 0.

n—o0

Therefore,
Qi {Ic2(0)Ln(Tr) — Ag(0,T0)| > p} < Qp{IT0| > Ko}
+Q4{Ica(0)Ln(T,) — Ag(0,T0)| > p, |Th| < Ko} < Qp{|Tn| > Ko}

+Qp{ sup 1EO)Laly) — AB9)| > p} 50 a5 n— oo
ly| <Ko

On the other hand,
Q3- lim 2(0)L,(T,) =0

n—oo

and, hence,
Qp- nh_>no10 Ag(0,T,) =0. (3.11)
Now we assume that Eq. (3.9) also fails. Then one can choose € > 0 such that
Tim Qf{|T, — b9(0)| > e} > 0.
By condition (sup ¢)1,

Ae) = inf Ag(0,y)| >0,
© {yily*bQ(9)>€,\y|§Ko}| 2(6.9)l

whence
Jim Q3{180(0,T)| > Ae)}
> Tm Qp{IAq(0,T)| > Ale), |Tu| < Ko}
> Tm Qp{IT, —b9(0)| > &, |Tu| < Ko} >0,
which contradicts Eq. (3.11).
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In order to prove the second assertion of the theorem, it is sufficient to note that under condition
(c™),

inf [Ao(0.4)] >0
i Bl ey ROV

and to repeat the previous arguments. ]

Suppose that the conditions of Theorem 3.1 are satisfied.
For every n > 1, consider the set
A, ={w € Q" : the equation L,(y,w) =0 has at least one solution}.

Note that A, € F". Indeed, recall that the o-algebra F™ is complete, L, (y,-) € F™ for each fixed vy,
and L,(-,w) is a.s. continuous. Hence, the mapping (y,w) ~ L,(y,w) is measurable and B,, := {(y,w):
L,(y,w) =0} € B(Ry) x F". But A,, = IIgn(B,,), where IIgn (-) is a projection operator. Thus, A, € F".

Obviously, for any 6, we have Qfl C A, where the set Qfl is defined in item 3 of the proof of
Theorem 3.1.

Since, under the conditions of Theorem 3.1, Q2{Q9} — 1 for any 6, we have

. n -
Jim Qp{An} =1.
For each n > 1, we introduce the sets
S, = {Tn : ’fn is F™-measurable; Ln(fn) =0 if we Ay;
T, =06y if w¢ A},
where 6 is a real number.
We consider now the set of estimators

Ssol = {T' = {fn}nZI : Vn > 1, fn c Sn}

Corollary 3.1. If, along with the conditions of Theorem 3.1, conditions (supc) are satisfied for any 0,
then there exists an estimator T* = {T},>1 € Sso1 such that

Q7- lim T = b9(9) (3.12)
n—oo
for any 6. _
If, moreover, for any 0 condition (cT) is satisfied, then any estimator T € Sso has property (3.12).

Proof. It is sufficient to construct an estimator 7% = {7 },,>1 for which (3.10) fails for each 6.
For any n > 1 and ¢ > 0, there exists T, € S,, such that

|T*| < essinf|T,| +¢.
TnheSn

By virtue of Theorem 3.1, for any 6 there exists a sequence T'(8) = {T}, (0)}n>1 such that

Tim Qp{Ln(Tu(9)) = 0} = 1 (3.13)
and
Qp- lim T,(6) = b%(0). (3.14)

Thus, we have
Tm QITy| > K} < Tim Q{IT| > K, Ln(T0(6)) # 0} + T Q3{|T;| > K, Ln(Tn(9)) = 0}
< Tm Q}{La(T0(0)) # 0} + Tm Q3{|T0(0)| +< > K}.

The first and second terms on the right-hand side converge to zero by virtue of Egs. (3.13) and
(3.14). O
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Remark 3.2. We call conditions (sup c) and (c¢*) the Perlman-type conditions. In [79], Perlman inves-
tigates analogous problem in the i.i.d. case.

Remark 3.3. If the conditions of Corollary 3.1 are satisfied, then by virtue of Theorem 3.1, IV (ii) there
exists an estimator T' = {T},},>1 such that

Tn=0"+ 000 + Rn(6), 5.15)

1 0)Ra(0) % 0

If * = b%(0) = 6 and the distribution ® from Theorem 3.1, (f) is Gaussian, then we obtain a CLAN
estimator.

3.2. Robust Estimators in Discrete-Time Statistical Models

3.2.1. The statement of the problem. Section 3.2 deals with the robust estimation of a one-
dimensional parameter for the contaminated models described in terms of shrinking contamination neigh-
borhoods of nominal conditional densities.

Let a sequence of statistical models

£ = {5n}n21 = (Q”,F",Pg?,e €0 C Rl)}nzl

be given, where
O =xox [[x, Fr=Box]]B,
1 1

(Xo, By) and (X,B) are some measure Blackwell spaces (see [45]), g € Xp, x; € X, i > 1. We as-
sume that P;' ~ P", where P" is some probability on (Q",F"). Let {f" := (f*(0) := fl(x:,0 |
Ti—1,...,20))1<i<n fn>1 be the corresponding system of regular conditional densities, i.e.,

ngz(dz ‘ Ti—1, ...,.’l?()) = ff(z,é? ’ Ti—1, ...,xo)P"(dz ’ Ti—1, ...,CL'()), 7 2 1.
In addition,
fo(0) == fy(xo,0) = dngo/dP(?, Fg'o = Fg' | Bo, Py’ = P™ | Bo.

This system is referred to as a nominal system.

Suppose that the function f*(#) is continuously differentiable with respect to 6 for all 0 < i < n,
n > 1, P"-a.s.

We denote

"= (lf(@) = %lnfi”(e), 0<i< n) ,

Assume that for each n > 1 and 0 € O,
0 < I,(0) < oo, n 'I,,(0) = I(6) as n — oo, 0 < I(f) < oo.

Introduce the following abbreviations.
W =WwW(,z,....,x0) and U = U(i, x4, ...,x0), © > 1, are real functions, then we write

Wi(z | ) :=W(i,2z,xi—1,...,20), Ui(z):=U(3,2zi-1,...,20).
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Further, we introduce the measures fi,, = fin,(dz, di, z;0), p, = pn(dz, di, dz;0), and v, = v, (di, dz; 0)
defined by the relations

[ W= [ Wi | @)nlaz,dicas0) = n Y [Wite | 0)520 | 0)P2 Gz | o)
=1
W= [ W,

/Udl/n = /Ul(:c) Vp(di,dz,0) == nilEgZUi.
i=1

We consider the class of CLAN estimators.

The estimator T% = {Tff tn>1 is said to be CLAN if there exists a sequence of score functions
Y ={Y" := (Y'(2,0 | x)1<i<n}n>1, such that for each 6 the following conditions are satisfied:

(Cl) wn € LQ(Mn)a

/@b?(z,@ | ) f{"(z,0 | z)P]'(dz | x) =0, 0<i<mn, foreach n>1;
(c.2) the Lindeberg condition: for each a € (0, 1],
Pn
/(¢")21{¢n|>an1/z}dﬁn 240 as n— oc;
(c.3)
n\2 j Py P
(¥™) din AT (9),
~ Py
/1/1"l"d,un 4 4%(0) as n — oo,

where 0 < T¥(0) < o0, 0 < 4¥(6) < oo, T¥(#) and ¥ (0) are deterministic;
(c.4)
n~! > vi(@i,0 | x)

" Jomindg,

+ R,(0),
where
n2R.(6) % 0.

According to the central limit theorem for martingales (see [45]), we obtain from (c.1)—(c.4)
L{n"2(TY —0) | P§)} = N(0,T¥(6)/ (7 (6))?).

It should be noted that condition (c.2) and the ergodicity condition (c.3) are automatically satisfied in
“good” ergodic situations with a suitably chosen sequence 1.
We introduce shrinking contamination neighborhoods for nominal systems of conditional densities.
For each R > 0 and n > 1, we consider the following sets of functions:

AB = (A X = (P(2,0)), 1<i<n, Miz,0)>0, /)\”dun <R},
Hpy o= {H" € Lo(pn) : H" = (HM2,0 | 2)), 1<i<n,
/ HP (2,0 | 2)f2(2,0 | 2)PP(dz | ©) =0,

H'(2,0 | ©) > =M/ (z,0) pn-as., A" e AR}
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Now we define the neighborhood of conditional density f™ = (f*(2,0 | x))i<i<n,

Fp={mt ol = (70 2), 1<i<n: o0 =+ a7 V2HY " HY € 7). (3.16)
Assume that for each 6
sup Aj'(z,0) < oo. (3.17)

Remark 3.4. Obviously, by virtue of (3.17), f™ is a conditional density for a sufficiently large n. This
property is a sufficient condition for the asymptotic theory developed below. For convenience, without
loss of generality, assume that f™# is a density for all n > 1.

Remark 3.5. Consider the set of functions

B ={ M A = (72,0 | 7)), i<i<nm,

A" AT

n,\h n n

=1 — — —h

/ ( \/ﬁ)f +\/77 ’

At e AR, R = (R} (2,0 |z)), 1<i<n,

/ W20 | 2)PP(dz | 2) =1, KD (20| 2) > 0}

(the generalized Huber’s “gross error” model).
It is easy to see that there exists a one-to-one correspondence between the sets F; and ®% given by
the following relations:
=l
=N
H" =0 and A" is any density on the set {(i,z): A\}'(z,6) = 0}.
Recall that 6 and n are fixed.

A" on the set {(i,z) : \'(z,0) > 0};

Let Hgeq denote a class of sequences H = {H"},,>1 with the following properties:
(1) H™ € H' for each n > 1;
: : n,H n\2 373 —
) i o 7 0 )
where PO" s the probability measure corresponding to the set of conditional densities (f;" H
and to the initial density f§'(6).

The sequence {PO" ’H}nzl is referred to as the sequence of alternative measures or, briefly, alternatives.

Proposition 3.1. Let H = {H"},,>1 € Hgeq. Then:
. H
(i) (P"7) < (Pg);
(ii) if TV is CLAN, then

L{MA(TY - 0) = 62T (0)/4%(0) | P} N (0,1 (0)/(7%(0))),

)i<i<n € F

where
b 6) = [ v,
(iii) of
PTL
by (0) =5 ¥ (6),
where B3V (0) is deterministic, then

L{n' (T3 — 0) | BTy 5 N5 6) /7% (6). T (6) /(" (9))).
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Below, in Sec. 3.3, we prove this proposition in the general case.
Proposition 3.1 enables us to derive an explicit expression for the asymptotic mean-square error
under the alternatives {P,’ ’H}nzl (the risk functional). Namely, we have
lim lim EyY [n(TY — 0)2 A d] = D(y, H;6),

a—00 N—00
where
[B¥H(9)]* +T¥(6)
(7%(6))?
In what follows, we assume that all ergodicity conditions expressed in terms of the convergence of

integrals with respect to the measure (fi,,) and with respect to the measure (u,) are equivalent, i.e., if
¢ ={¢"}n>1 and x = {x" }n>1 are some sequences of functions with ¢", x"™ € La(uy) Vn > 1, then

D(y, H;0) = (3.18)

Pn
/(b"x"dﬁn A C = /(b"x"dun — C as n — oo.
Then we have

D(y, H;0) = lim Dy (4", H";0), (3.19)

/ deun)2+ /wan]
(o)

We introduce the optimization criterion and the optimization problem.

Let U and Hg be some classes of sequences ¢ = {¢"},>1 and H = {H"},>1 such that for each
¥ € ¥ and H € Hyg the conditions of Proposition 3.1 are satisfied.

The sequence of score functions ¢* = {¢p*"},>1 € ¥ is said to be (¥, Hy)-optimal in the minimax
sense with respect to the risk functional D(y, H; ) if

sup D(¢*,H;0) = inf sup D(y, H;0) (3.21)
HeHy VY HeHy

where

(3.20)

or, equivalently, if for each ¢ > 0 and ¢ € U, there exists H*¥ € Hy such that for each H € Hy, the
inequality

D(*, H;0) < D(¢p, H*¥;0)(1 +¢) (3.22)
is satisfied.

Remark 3.6. (3.21) < (3.22).
(1) (3.21) = (3.22). Indeed, from (3.21) V¢ € ¥, VH € Hyg we have

D(y*,H;0) < sup D(y, H;0).
HeHy
By the definition of the supremum, Ve > 0 IHSY € Hy:

D, H:0) < D(tb, HS¥: 0) + ¢ = D(sp, HY; 0 (1+;).
g, D i) < DU, HE530) + & = DU "\ D Eewe)

(2) (3.22) = (3.21). Indeed, (3.22) is true for each ¢ and H. Therefore,

sup D(y*,H;0) < sup D(¢,H;0) +e¢.
HeHy HeHy
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The last inequality yields

sup D(¢*,H;0) < inf sup D(¢,H;0)+e Ve >0.
HeHy pev HeHy

Hence,
sup D(¢*,H;0) < inf sup D(y, H;90).
HeMy VEY HeHy

The inverse inequality is trivial.

The CLAN estimator 7% = T%", which corresponds to the optimal sequence of score functions ¥*, is
called the (¥, Hy)-minimax estimator.

The problem is to construct an optimal sequence of score functions ¥*.

The solution of this problem is directly associated with the analytic form of the risk functional and
the classes ¥ and Hy with respect to which the minimax operation is taken.

In general, § = B, T' =T%, and v = 7 are functionals of the sequences 1, H, and [. In particular,
they are limits of certain scalar products (see previous definitions).

Two alternatives are possible:

(1) 6,1, and  preserve the form of the scalar product in an appropriate Lo(u)-space with a finite
or o-finite measure y;

(2) B,T, and v do not possess this property.

In the first case, by a suitable choice of the classes ¥ and Hg we arrive at the standard minimax
problem

nf (1, H)? + |19
in sup 5 ,
ve¥ g>0,[ H<R (¥,1)

with “rich” classes of alternatives. The solution of this problem is the Huber function. This type of
contamination will be called a full contamination.

In the second case, in order to solve the above minimax problem, we develop the “approximation
technique” which consists in the following: construct the optimal score function ¥*" for the fixed step n;
describe sufficiently wide classes ¥ and Hy such that the sequence ¢* = {¢p*"}>; is (¥, Hy)-optimal.

(3.23)

9

3.2.2. Fixed-step optimization problem. In this subsection, for each fixed n > 1, we construct the
optimal score function ¢*" with respect to the risk functional D, (¢, H;6) (see (3.19), (3.20)). More
precisely, ™ € WY is said to be optimal at the nth step if

sup D,(¢v*", H;0) = inf sup D,(v, H;0),
Y»er?

HeHT, O HeM?,
where
W= {0 € La(w): [ 9120|007 (6 | 2)PP(dx ] 2) =01 < i < m). (3.24)
Denote by
Q@ 010)i= [ Tmome)fi(:,0 | 2)PMdz | 2 (3.25

the conditional distribution of I}’(z,60 | ) with a given (4,z) and consider the equation (with respect to

8)
/b—ﬂ%@ﬂ@ﬁh@=m (3.26)
b:

where [z], = (£ Ab) V a, m > 0 is a number.
We denote by

B" = Bi(x,m, 0) == B(Q5 (0 | x),m)
the solution of Eq. (3.26).
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Remark 3.7. The question of solvability of Eq. (3.26) is considered below, in Lemma 3.2.

Assume that the distribution Q7'(-,0 | z) satisfies the following conditions: for each fixed n and 6
(a) Q7?(-,0 | =) has a unique median;

(b) Q{8 (,0,6)},0 | z) =0, where
B (x,0,0) = liinoﬁin(w,m, 6).

Note that the assertions of Theorem 3.3 below are true without condition (a). But the proof is
technically more complicated (see [119]).

Theorem 3.3. (i) There ezists an optimal Y™™ which is equal to
*,M n 10 * my, (0
W = (22,0 | 2) = B7 (2, m5 (0), "2 ) i (3.27)

where m} (0) is the unique solution of the equation

m_// B (x,m, 0)]™y

([y — Bz, m, )™ ))QM(dy, 0 | x)vn(di, dz, 6). (3.28)
(i1) This ¥*™ is pp-a.s. unique (up to a constant factor).

Proof. First we prove three lemmas. In the sequel, the parameter 6 is fixed and omitted.
Let for each n > 1

wnz{weLxM>3/wwwmﬁw|ma%w|m=a1SiSn_/wwmm=1}

Uy ={¢": [¥ (2| 2)| <7 pepras}, v>0,
y={yv:9v,NnVv,, # 0o}

Below we omit the index n as well.

Lemma 3.1. T' = {y: v >d '}, where

di= [ [ Iy~ med(@)Quldy | 2)v(di )
and med;(z) is the median of the distribution Q;(- | x).

Proof. First let us prove the inclusion I' C {y: v > d~!}.

Let ¢;(x) be a measurable function with |¢;(z)| < E;.|l|, where E;, is the sign of conditional
expectation (see (3.29) and Remark 3.10 below).

For eachyeI', v e ¥ NVY,,

1= | [ e | 20t ) - oD dide)

< [z 2) = ()|t di o).
Hence
. . -1 o1
vzcg/murm—@wmmmmﬂm) —d

by the well-known minimization property of the median.
The inverse inclusion follows from Lemma 3.3. U
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Everywhere below, by the derivative we mean the right derivative.
Denote

Eill] = / 1¥1Qi(dy | 2). (3.29)

Lemma 3.2. (1) For each m > 0, the equation

/ ly - A", Qi(dy | z) =0 (3.30)

has a unique measurable solution (;(x,m);
(2) there exists a constant C' > 1 such that

|Bi(z,m)| < CE;|l| (v-a.s.); (3.31)
(3) for each (i,x), the function m ~» B;(x,m) has a derivative Bi(x,m) and |5i(z,m)| < 1.

Proof. (1) We consider the function

£m,0) = [y~ A" @ildy | 2) (= iy (m, ).
It is easy to verify that

lly = B1]"h, — [y — Ba]"7, | < [ma1 —ma| V [B1 — Ba|

and hence f(m,[3) is continuous with respect to (m, 3). Further, we observe that

fhm, ) = — / I s geyemsn @i(dy | 2) <0, (3.32)

and ghrf f(m, B) = Fm. Therefore, for each fixed m > 0, Eq. (3.30) has a solution.
—Zoo

Recall that Q;(- | ) has a unique median. This implies that fz(m, ) <0 in a neighborhood of each
point (m, 3) such that f(m, ) = 0 and, according to the implicit function theorem, [3;(x, m) is continuous
in m.

Thus, there exists a solution 3;(x, m) of Eq. (3.30), which is unique and m-continuous. Finally, we
note that for fixed m, §;(x,m) is (i, z)-measurable, since it can be considered as a hitting time of level
zero by the continuous process f(; »y(m, 8). O

Remark 3.8. It is easy to verify that 1'1_r>n Bi(x,m) = 0 and if Q;({Bi(x,0)} | ) = 0, then G;(z,0) =
m—0o00

nlllI_{lO Bi(z, m) = med;(z).

(2) Recall that the function 8 — f(m,[3) is continuous, decreases from m to —m (see (3.32)), and
f(m, Bi(z,m)) = 0. Now the statement is equivalent to the existence of a constant C' > 1 such that

for each m > 0.
Let us prove, e.g., the first inequality. Show that for each m > 0,

It suffices to prove that
f(m, E; z|l] +m) <0 Vm > 0.
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This inequality follows from the following calculations:

F(m, Eig|l| + m) = /yI{Ei,z|l|<y<Ei,m|l|+2m}Qi(dy | z)
— Eio|l|Qi((Ei|l], Ei|l] +2m) | z)
—mQi(Eigl|l], Eiz|l| 4+ 2m) | z)
—mQi((—00, B 1|l]] | z)
+ mQ;i([E; z|l] + 2m, +00) | x)
< Eio[l|Qi((Eiplll, Eig|l] + 2m) | z)
+2mQ;i((E; z|l], Ei z|l| + 2m) | z)
— Ei2|l|Qi((Ei|l], Eix|l] +2m) | z)
— m{Qi(Eiz|l], Eizll] +2m) | 2) + Qi((—00, Bz |l]] | 2)
— Qi([Eigll] +2m,+00) | )} = 0.

Now we show that Ja > 2 such that
Bi(x,m) < aFE; 4|l
for each m > aF; ;]

1 2 1
Indeed, fix 60,O<€o<§,and take o > (1 Y )

—2 &
We have
Eio|lll > Eio(Igsap, ,iy) = aLix|l|Qi([al; 4|, +00) | z).
Thus,
1
Qi([aE¢7m|l|,+oo) | x) < . < &p.
Denote

€+ = Ql([aEl,ﬂfm + m’+oo) | CC),
e- = Qi((—00, aE;g|l] —m] | z).
In these notations,

ey <eg, mey < Ej,l|ll for each m >0

E; .||
el g, 11| Vm > 0), and for each m > aE; ]I,
Bl 4 S iz|l] YVm > 0), and for each m > oF; |l

f(m,aE;4|l]) = /yI{—m+aEi,w|l|§y§m+aEi,w|l|}Qi(dy | x)
— B l|(1—ey —e_) —m(e- —eq)
E,L7z|l| — aEl,x|l| + a5+Ei,x|l| + 0457E17z|l|
< — as,Ei,x|l| + Oé€+Ei7z|l| if e > g4,
2El,x|l| — aEl,x|l| + 2045+E¢7z|l| if e_ < €4

Ei |l|(1420e; —a) if e >e <0
) Eill|(242aey —a) if em<er [T

(indeed, mey <m

Finally, we obtain the following: da > 2,
Bi(x,m) < aE;z|l| < (a+1)E;|l] if m > aFE; ||,

whence the desirable result follows with C =1 + a.
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Remark 3.9. If we take gg = i, then we obtain o = 4 and hence |3;(x, m)| < 5E; ;||
Remark 3.10. |med;(x)| < E; ;4[]
Indeed, from the conditionally centering property of a random variable I, we have
E;|l] = 2E; I, 1T = max(0,1).
Hence
Ei o™ > Ei (M Igs g, uy) = 2B ol Qi([Eig|l], +00) | )
and, therefore,

Qi([Eie|l], +00) [ z) <

N| =

Remark 3.11. Inequality (3.31) holds for any conditionally centered random variable (not only for [).

(3) Suppose that (Am > 0) = (AB(m) > 0), where A denotes an increment.
Recall that in the neighborhood of the point (m, 3) such that f(m,3) = 0, we have fz(m,3) < 0.
From the implicit function theorem we obtain

. frln(m? B+ O) ’ﬁzﬁ(m)

Bm) = = o B p—stm

Thus we obtain

/ (L y—gi@m)>my — Ly—pi@@m)y<-m})Qi(dy | )

/I{m<yﬁi(m,m)<m}Qi(dy | 37)

Using Eq. (3.33), it is easy to verify that |5}(z, m)|
The consideration of the case (Am > 0) = (AB(m

Bi(x,m) =

(3.33)

<1
< 0) is quite similar. In this case,

/(I{yﬂi(z,m)>m} - I{yfﬁi(z,m)<fm})Qi(dy ‘ JI)
/I{—mgy—ﬁi(w,m)<m}Q’i(dy | 37)

Bi(x,m) =

Lemma 3.3. Ify €T, then (i)

inf /¢2dun = /(¢*)2dun,

YEV,NT

where
1
Wi | 2) = (= | 2) - Bila,m)™, ( [ [ mi i w)u(dzpdx)) L (33
and if v > d~1, then m is a solution of the equation
~1
m( [ [ st w@iay | w)u(dz',dm) - (3.35)

if y =d™ !, then
Yi(z,m| ) = d! sign(l;(z | ) — med;(z));

(ii) * = (Y (z,m | z))1<i<n 5 pn-a.s. unique.
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Remark 3.12. It is obvious that

/ / ly — Bula, m)| ™y Qu(dy | 2)(di, da)
- / / Iy — Bile, M)l — B, m)|Qu(dy | ) (di, dr) > 0

and this relation is equal to zero iff a random variable l;(z | z) = B;(z,m) (tn-a.s.). In this case, ¥,, = &
Proof. Note that if m > 0, then
m =y — Byl = lly/m — B/mlty] <yl

and by the Lebesgue theorem, the function

F(m) = m™! / / ly — B, M)y Qi(dy | 2)(di, da)

is continuous and, moreover, lim F(m) = 0, lim F(m) = d. Thus, the equation vF(m) = 1 has a
m—00 m—0

solution.
In what follows, for simplicity, we use the following notation:

I+ :: I+(y’i’;¢) _ { I{y—ﬁi(z,m)>m} lf (Am > 0) = (Aﬁz(m,w) > 0),
I{y—ﬁi(z,m)Zm} if (Am > 0) = (Aﬁz(m,w) < 0),
- I (i) = {f{y—mm)g-m} it (Am > 0) = (A8 (m, ) > 0),
I{y—ﬁi(w,m)<—m} if (Am > 0) = (Aﬁz(m,x) < 0),

P=1-1t-1".

If ¢ = ¢(y,,x) is some real function, then

[o= [ otwioQuay o)

JJo- [(J¢) = [ ([ sticoraiant )i o
We show that F(m) <
We rewrite F(m) as
=m" / / y — B(m)|™,.(y — B(m)).
Then, by virtue of statements (2) and (3) of Lemma 3.2, we have
{ / (y — BT+ —m@ ()T — (y — Bm)) T~
B ()T — 28 (m)(y — Bm)I°) - / [t st - 5}
= [ [1= 501 = = )1 = Fmly - )1
~ [ [lw- g0ty - oo .
The last equality follows from the equality
m/1+ — m/I— + /(y — B(m)I° =o. (3.37)
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Further,

() [ 5)1° - [ o)1)

S = somr ~ [ - pon2r]

70)2
! ff
by virtue of Eq. (3.37) and the Schwartz inequality.

Hence, in this case, Eq. (3.35) has a unique solution.

It is well known ([32]) that in this case and in the limit case as m — 0, the optimal score function
¥* has the form given by (3.34). O

\\

Proof of Theorem 3.3. From Lemmas 3.1 and 3.3 we have

inf sup D,(v,H) = inf (R2 24 inf u(m)) = inf ®(m),
YWl Hqun n(¥, H) ver i m:mZO,T%SW v(m) m>0 (m)

= [ - s, (3.38)
~ [ 1= st (3.39)
(for the notation see (3.36)).

Consider the behavior of the function ®(m). From Lemma 3.2 it immediately follows that there
exists ®'(m) and ®'(m) = 2v~3(m)p(m)q(m), where

p(m) = m(R* - p(m)), (3.40)
m) =m " 2[v(m) — u(m)], (3.41)

- / / (y — B(m))(y — B(m) + mpB'(m))I°

where ®(m) = (R*m? + u(m))v=2(m),

It is easy to verify that

We show that
¢'(m) < 0. (3.42)

)= =m? [ [ =1 =5 1)y - som)

//(I+ — I~ = 3'm)I%(y — B(m)) >m > 0.

Thus, there exists a unique point m* such that R? — p(m*) = 0.

Consider the function g(m). It is easy to verify that g(m) > 0 for each m, as immediately follows
from the assumption that @Q;(- | ) has a unique median and the definition of I°.

Hence there exists a unique minimum point m* of the function ®(m) given by Eq. (3.28).

Finally, the optimal ¢* has the form (3.27) and is unique (up to a constant factor). O

Indeed, we have

and
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3.2.3. Approximation by a fixed-step solution. Let for each n > 1 the system Q" = (Q7 (- | x))1<i<n
of regular conditional distributions on (Rg, B(R4)), d = 1,2, be given. Further, let (Mg, B(My)) be a
measure space of probability measures on (Ry, B(Ry)), where B(My) is a Borel o-algebra generated by
the open sets with respect to the Prokhorov metric. Define

£ro() = / L@z ¢loyeyvn(dis dz).

Definition. The sequence {Q"},>1 is said to be generalized weakly convergent to the random element
(r.e.) @ (this is denoted by Q" = @), if

L9258 L9 as n— oo,
where £9 is the distribution of the random element Q.

In other words, Q™ = @) means that

/ PQN(- | 2))vn(di, dz) — / F)L9(dv) - / F)L2(dv) as n — oo
for each continuous bounded functional F': M ; — R;.
Note that if

Q') = / QU (- | 2)vn(di, d) = / V()L™ (dv)

and

then

Indeed, it is sufficient to take

for f € Cy (the class of continuous bounded functions).
We fix the parameter 6 and omit it.
Let W0 be the class of sequences 1) = {¢)"},>1 with ¥ € U9 for each n > 1 (see (3.24)).
For every A C ¥, we introduce the set

H(A) = {{Hn}n21 € Mseq : SUP /(H")Qdun < 00,

/¢andﬂn Y e A}.

The symbol “a, —” means that the sequence {ay, }n>1 has a finite limit.

Everywhere below we use the following abbreviations.

If {Q™¥} or {Q™¥1¥2} generalized weakly converges to some random element, we write, for definite-
ness,

Qnﬂﬁ = Qw’ Qnﬂﬁlﬂbz = QI/JIJ/JQ'
Analogously, we write
anﬂll gaﬂt anﬂ/lhl/& g@lﬁlﬂl&‘
Finally, we denote
Lo = v Q% = v,
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Now we introduce the classes ¥ and Hy. Denote
QP 12) = [ Tewmer i | Pz o),

n 1 2 n n
Q) = /I{z:w}’"<z|z>,¢?’"<z|z>>e~}fi (] 2)F(dz | ).

Let ¥ be a subset of U0 with the following properties:

(1) the sequence {(1)™)?},>1 is uniformly integrable with respect to a sequence of measures {ji, }n>1;
(2) (1,92 € U) = (! € B¥"), where B¥* = {1 € VO: Q" = QV* ¥}

(3) | = {ln}nzl € \I/;

(4) if Q™% = Q, then

EQ{V : v has a unique median, /yu(dy) = O} =1;

(6) (e 0 )= (@eD)
Further, we suppose that
LY{v : v is nondegenerate, v({med}) =0} = 1.

Finally, define Hy = H (V).

Remark 3.13. Show, for example, that the set
C = {v: v has a unique median}
is measurable. Indeed, the functions
a(v) = inf{a : v(—o0,a] > 1/2}, b(v) =sup{b:v[b,00) > 1/2}

are measurable and C = {v : a(v) = b(v)}.

Remark 3.14. If Q?’l(- | ) is symmetric with respect to zero, then ﬁ(Q?’l(- | x),m) = 0. In this case,
in the definition of the class W, the property Q"’W”/’ = Qw2’¢ can be replaced by

anﬂl]dej g @1/’27’1/)
A similar remark is valid for property (4) as well.

Theorem 3.4. Let, for each n > 1, Y™™ be a score function, constructed in Theorem 3.3. Then the
sequence P* = {¢p*"},>1 is (¥, Hy)-optimal.

Proof. We prove some lemmas.

Lemma 3.4. The sequence ) := {I™ = 8", tn>1 € 0.

Proof. First, we prove that 1; € ¢ﬁ\y ®¥. Tt is easy to verify that if ™ and v are some measures on
€

(Ry, B(Ry)) such that ™ % v and the first marginal v; of v has a unique median, then S(v") — B(v) as
n — 0o, where the functional 3(-) is defined as a solution of the equation

/ w— ™ v(du, dv) = 0. (3.43)

Indeed, 5(v) = B(v1), where 5(v1) is the unique solution of Eq. (3.43) with v, instead of v.
If now

g = lim g(v"), B= lim S"),

— n—oo n—00

then there exist subsequences, say {n’'} and {n”}, such that

By =B, ") = B.
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Now, if we pass to the limit as n’ — oo (or n” — 00) in Eq. (3.43), where we substitute v (or v™")
for v, then from the uniqueness of the solution of Eq. (3.43) we obtain 8 = 3 = (v1) = B(v).
Introduce the mapping h : v — h(v) by the relation

h(v)() = / I (fu—0))m,, we v (du, dv),

and show that the mapping h is continuous (with respect to a weak convergence) at the point v, with
marginal v, having a unique median. This immediately follows from the continuity of the functional 3(-).
Indeed, for each continuous bounded function f on Ry we have

/f(u (™) (du, dv) /f w—p o)™ (du, do)

R / F(fu— BN )0 (du, do) = / Fu, 0)h(v)(du, dv).
Let ¥ € W. Obviously,
" = (BQ (- | 2),m)i<izn = (BQ(- | ©),m)1<i<n
and Q”“Z”’Z’ = h(Q™"Y). Now the convergence
QU = QU
follows from the convergence

Qn,lﬂl} = Qlﬂ/} X

Indeed, for any bounded continuous functional F' on My, the superposition F'(h) has the same properties.
It remains to verify property (4) from the definition of the class ¥. For each F' € Cy(M;), we have

[ QP | onldisda) = [ @7 2))waai, o), (3.44)
where the mapping h : v — ﬁ(y), v € My, given by
RO = [ I-spm,ev(dy)

is continuous. Note, in addition, that if v has a unique median or if [ yv(dy) = 0, then %(1/) has the same
property. Now we have

[ F@PC 2)ntdisde) = [ Po)enPan)
/ ()L (dv) — / W)LY (dv) = / )£ (dv),
where £¥ = L{h | £'}. Hence

Lﬁ{l;{z/ : v has a unique median, /yu(dy) = 0} =

since | € ¥ and, therefore, £! has the latter property. O
Corollary 3.2. If m, —m >0, then ¢ = {[I" — 8"|"n }n>1 € ¥.
Proof. It is sufficient to note that the function 8 = B(r, m) is continuous in both arguments. O

Lemma 3.5. The sequence ¢* = {¢p*"},>1 € ¥ (see (3.27)).
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Proof. It is sufficient to show that m} — m* > 0. From Eq. (3.28) we have
R2(m3)? + u(my) _ R2(m)?

1=
v(my,) — u(my)
(the functions u(m) and v(m) are defined in (3.38) and (3.39)).
Hence
—n,l -l
o vlm) _ [22Q" ) [ (ax)
(mn)2 < R2 < f R2 — f R2 < o0.
Therefore, the sequence {m/}} is bounded. Denote m; = liminf m}, mgo = limsupm;, and let {n'}

n—00 n— oo
and {n"} be subsequences such that m}, — m; and m, — my. Rewrite Eq. (3.28) as follows:

/ / mi,y, 2)Q"" (dy, dz), (3.45)

F(maya Z) = [y - Z]Tmy - ([y - Z] m)2‘
It is easy to see that in Eq. (3.45) we may pass to the limit as n — oco. Indeed, it is sufficient to
show that

where

QM = Q4. (3.46)

For each continuous bounded functional F' on M, we have

/ F(v) LB (dv) = / (h(v)) L™ (dv) — / F(h(v)) L (dv) = / F(v)LYP (dv),
where the mapping h : M; — M is given by the relation
h(v)(du,dv) = ég(,)(du)v(dv),

where dr, is the Dirac measure at the point a, and hence LY8 = L£(h | £Y). Note that the mapping h is

Ll-a.s. continuous. Thus relation (3.46) is proved.
Passing to the limit in Eq. (3.45) first as n’ — oo and then as n” — oo, we find that m; and mg are
solutions of the equation

2m? = / / m,y, 2)Q" (dy, dz). (3.47)

But this equation has a unique solution. Hence, mi = mo. O
In the sequel, we need the following sets:
o, = {H” € Lo(pn) : H' (2 | ) 2 0 (pn-a.s.), /H”dun < R},
Hy = {{H }n>1: H €0} Vn>1, {H"}n>1 € Hol,
where

H}(z | @) = H; (x| z) —/ﬁ?(z | ) fi'(z | 2) P (dz | ). (3.48)

It is easy to see that there exists a one-to-one correspondence between Hy and Hy: for each H € Hy,
there exists H € Hy such that D(¢y, H) = D(¢, H) for each v € ¥, and vice versa. We write H ~ H.

Consider the sequences ¢ = {¢"},,>1 for which sup D(v¢, H) < co. We call such ¢ admissible.
HeHy
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Lemma 3.6. The sequence 1 € VU is admissible iff there exists a constant ¢ > 0 such that

/I{|y>c}§w(dy) =0,

where
@nﬂll ® @1/1.
Proof. Assume that for each ¢ > 0,

lim I{¢{‘(z\x)>c},un(dzadlad$) = /I{y>c}Q (dy) > 0.

n—oo

Consider the function

1
H™ = (H" (2 | ©))1<i<n = (Rf{ng(zmx} (/ I{d)i"(z|w)>c}d:u’n) )

It will be proved in Lemma 3.9 that H® = {H"¢},,>1 € Hy. Now we have

—1 —2
Dwmmgﬁ&%/mmm@ 5ﬂw%@UWM4

and the last expression tends to +00 as ¢ — oo. O

1<i<n

Let v € ¥ be admissible and denote

n := esssup |y|.
Q" (dy)

It follows from Lemma 3.6 that n < co. Connect with v the sequence Q:[;,
)= {¥" 1 = {[¥" — 87, }nx1,
where 5" = (B(Q"(- | 2),m)izn.
Lemma 3.7. 1; e Vv, 1; s admassible, and 1) ~ 1;, i.e.,
D(},H)=D(y,H) VH € Hy.

Proof. It is sufficient to prove the last relation. We show, e.g., that

(/lb"H"dun)Q — (/J”H”dunf —0 as n— o0

(see (3.19) and (3.20)).

We have
o 2 _ 2
li_)m ‘(/ zp"H"d,un) — (/ zp"H"dun)

/ (@ — 7)) + (7, — [ — )7 )} H dp

ggﬂﬂw+&m%m

(3.49)

From the simple inequality (a + b)? < 2(a? + b%), the Schwartz inequality, and the definitions of ¥ and
Hy, we have

2
(/W)n + Jn)Hnd/an) < const.
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Hence, the right-hand side of inequality (3.49)

< const H@OK/W - [w"]"ny)”g

w( [, - - o1 P 1/2} — const. T (I} + I5).

n—

From the uniform integrability of {(¢™)?},>1 and the definition of n it immediately follows that
I — 0 as n — oo. Indeed,

(I)? Z/(y W]",)2Q"" (dy) —>/ Q" (dy)
/ / 2y (dy) L% (dv) = 0,

Ly v([=n,m)°) = 0} = 1,
where A€ denotes the complement of the set A.

since

In fact,
0= Q" (=) = [ vll=n)e¥(av).
Further,
@2 = [ [, - -7 @ . dz)
=+ [ [, - - 801 ot @) =0
L¥v: B(v) =0} = L%v: B(v) =0, v([-n,n)) =1}
= c{v: ["pldy) = 0, v(l—n,n)) =1}
—c*{v: [yvtdy =0, v =1} = £*{v: [yvidy) =0}
thanks to property (4) of the definition of the class . O

Lemma 3.8. If¢ € ¥ and @d)({y}) =0, then ' := Ity ,y € Hy.

Proof. For any 9° € ¥, we have

n,0 n,1 . . —n,p0 9
Qpi (Z | I‘)Q/}l (Z | CU) un(dzadzadx) = UI{V>y}Q (dua dv) 5

—)0
as follows from the uniform integrability of {(™%)?},>1 and the (Qd) ’¢—a.s.) continuity of the function

uI{v>y} . O

Let ¢ € ¥ and let zz be connected with 1.
Lemma 3.9. For Ve > 0 there exists H = {ﬁn,a}n21 such that:
(1) H € Hy; N N
(i) Tim sup Dy (4", H)(Dy (™, H"))~! <1+ const -¢.
n—00 HGO%
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Proof. Without loss of generality, we assume that

Q' ({n(1— o)} =0

and

Q" (n(1 — ) +00)) >0,
where n = esssup |y|. We set

Qw

-1 -1
—n,e -
B = Rlignsna-oy ( / I{{/I">n<1—a>}d”"> = Rla, ( / IAnd”"> !

where A, = {(z,4,z) : Jf(z | ) > n(1 —€)}. Define H™® by formula (3.48). Then

n 2 -2
T n,EN2 37 . Tioo 2. —1 n __ n
lim [ (H™%) dpi, = lim R°n Z[/IARJZ (/IAnfz) K/IAndﬂn)

i=1
L -2
< lim R? (/ IAnd,un> < 00,
n—o0

Jim [ Ty, dpn = /I{y>n(1—a)}§w(dy) > 0.

Now (i) follows from Lemma 3.8.
To prove (ii), it suffices to verify that

since

fore
liniinf >1—e. (3.50)
T sup /d}"H dpin
HeOn

Indeed,

sup D, (4", H) = Dy (", H")
HeOoy,

o (fom<au,) | ;gg%( [ dnn)Q )
oy | (o)

and (ii) follows from the definition of the classes ¥ and Hy.
But the left-hand side of expression (3.50)

> lim (n(1—€))(mm) ™ = (L —e))n~ =1 ¢,

where 7,, = esssup |y| and, obviously, 1, — 7. O
Q"

Remark 3.15. The essential point in the proof is that the relation 7, — n holds for QZ, whereas, in
general, it is not true for .

Proof of Theorem 3.4. For each ¢y € ¥ and H € Hy, from the fixed-step optimization problem we
have

Dy (™", H") < sup Dp(¢",H) = sup Dyn(¢", H).
HeH?, Heop,
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Let ¢ be connected with ¢. Then from item (ii) of Lemma 3.9 we obtain

D *,1n n 7
i Do HY ___151_5227 < 1+ const <,
noe Dy (Y, H) 0 HeO) Dn(¥, H')

and, therefore,
D(y*, H) < D(QZ, H)(1 + const -¢).

It remains to note that J ~ 1 and H ~ HE. O

We denote 3" = B(Q7(- | ), m*), where m* is a solution of Eq. (3.47).

Corollary 3.3. The sequence
O = {8 e = {1 = BT b

is optimal.
Corollary 3.4. If there exists a CLAN estimator T* =TV, then it is (U, Hy)-minimaz.
The proofs of the corollaries are obvious and we omit them.
3.2.4. Special models.
I.1. Independent identically distributed (i.i.d.) observations. Let f/'(z,0 | ) = f(z,6) be

x
a density (with respect to the Lebesgue measure), A\!'(z,0) = R, hl(z,0 | ) = h(z,0) be a density
with [ h%(2,0)f(2,0)dz < oo, and HM(2,0 | ) = h(z,0) — 1, 12,0 | z) = I(2,0) = 80lnf(z,0),

Y (2,0 | ©) = Y(z,0) with
/ $(2,0)(2,0) dz = 0,

/W@mm@@<m,ﬁ@:m@,

um:/mmw@m@<w

(/¢ze (2,0)f(2,0)d ) ‘/er f(z,0)d
(/¢ze z@ﬂz@@)

V*(2,0) = [I(2,0) — B(6, m*)]™ ., where 3(8,m*) is the solution of the equation

Then

D(y,H;0) =

/w%m—m@;ﬂ%mwzo

and m* satisfies the equation

Rom? = [{{1(2,6) = B0, m)]"1(2,0) — (U(z,6) ~ 56 m)1", )} £(2,0) .
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1.2. Independent, nonidentically distributed observations. For i > 1, let
X; =0+o0, Xo=0,

where 6 € R; is an unknown parameter, {¢;};>1 is an i.i.d. sequence of standard normal random variables
(r.v.), and the sequence {o;};>1 of numbers is such that o; > 0 and for each y € Ry,

Xn(y) :=n"1 ZI o 2eyy x(y) as n — oo.
=1
We note that

1i(X,0) = (Xi — 0)/o} ~N(0,0;%).
Assume that the function f(y) = y is uniformly integrable with respect to x;,. Then

n 11,0 120 —>/yxdy

(a) Let the contamination model be
N =0+0i, i>1 Yy=0
with
et =0-Z"e;+Z!W;, 1<i<n, n>1,
where (e;, Z]', W;)1<i<n is the 1.i.d. sequence of random vectors with mutually independent components,
P(ZF =1)=X/nY2, XA >0 is a number,
the density of the r.v. W; is h(z). Then for the density f;" H(2,0) of the r.v. Y, we have
F1(2,0) (0,01, 2) = 1 +n"Y2Hy(2,6), (3.51)

ooy, (=00
Hilz6) =2 ((b((z—@)/m) 1)‘

Here ¢(a,b,-) is the density of the function of the normal distribution N (a,b?,-) with parameters (a, b),
é(u) = ¢(0,1,u). Consider the class ¥ of all score functions of the form

vil2,0) = ¥((z - 0)/a?),

where

where ¢ (u) is a continuous function,
il < Klul, [ wla/o)s(w du=o

/zp (u/o;)p(u) du < oo, K >0 is a constant.

-0
Obviously, (I;);>1 € ¥, where [; = — ln¢> 2—2 .
= 00 o*

Let us show that all ergodicity conditions are satisfied. In particular,

/( 2dil, =n~ 12/ (z—0)/0) 60,0, 2) dz
= [ [t ot ducatan) — [ [ whu?)ow duday) =1, (3.52)
[t = [ [ty 260 duan(an) [ vty ot duxty) =
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Let
/MWMWWme<w-
Then

H = {(H;i(2,0))1<i<n}n>1 € Hu.
Obviously,

A / / (a2 H () $(s) duxn (dy) — / / Pluy¥2) H(w)p(w) dux(dy) = 67, (3.53)

where
(= (5 - )

From expressions (3.52) and (3.53) it is obvious that such a contamination is not full.
(b) Let the contamination model be as in (a), but (Z*)1<i<pn and (W;)1<i<p, be mutually independent
sequences of independent nonidentically distributed r.v. with

P(Z}' =1) = Mo, 1)/n'?,
and the density of the r.v. W; be h;(z) = h(z,0; '). Then ff’H has the form (3.51) with

(= 0) oo
Hilz6) = Ao )( oz~ 0)/a) ‘1>'

Denote by W the set of all score functions of the form
/llb'l:(z,a) :1/}((2_0)/0-%0-;1)7 { §n7

where ¥ (u1,uz) is continuous, |1(u1,us)| < Kluq||ug|, and K > 0 is a constant.
It is easy to verify that

12 —pl a2
Qn RUBRY) Q ,’lf) )
Indeed,

=0ty / Lo ur o ey dlu) du
=1

://I{(¢1(u,y1/2),¢2(u,y1/2))e.}dUXn(dy),

and for each f € CH% , we have

[ [ @ et ) = [ [t vy ) o) duxa(dy)
o [ [0 ), 2 )o) dux(a)

://f(zl,ZQ)awl’d}Q(le,dZQ).

A straightforward calculation shows that all ergodicity conditions are satisfied. Namely,

v — / / (4 (u, y2))2 () dur (dy),
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Assume that the functions A\(u;) and h(u;,ug) are continuous and

A(un)| < Aurl,  [h(w,ur)] < h(u)(1 + fua]),
/h2(u)/<b(u) du < oo, A >0 is a constant.

Then
H = {(Hi(2,0)i<n)}n>1 € Hy.
Indeed,

/ vHd, = / / W(u, y NG h(u, y'?) duxn (dy)
= [ [ ot N o) dutd) = 5

We have obtained the full contamination and, therefore, we can conclude that the optimal score function
P* is

Ui = 1(Xi = 0)/ (@) e, P21,
where m* is the solution of the equation

fim” = / / (luy/2)™, uy > = (fuy 1™, 2) () dux(dy)-

If the distribution x is unknown, then, by virtue of Theorem 3.4, the optimal sequence is ¥* =
{(;")1<i<n}n>1, where

Yt =X~ 0) /(D). 1<i<n,

X
1 —mj)

and m; is the solution of the above equation with x,, instead of x. Note that m} — m* as n — oo.

II. The Markov Chain

1. Stationary ergodic Markov chain. Let Yi,..., Y%, Yi11,..., Y, B > 1, n > k, be observations of
a stationary homogeneous ergodic Markov chain defined by the initial density fo(yk,...,y1,60) and the
transition density f(z,6 | yi—1,...,Yi—k), ¢ > k, where § € © C Ry is an unknown parameter.
Denote zg = (yk, .-, Y1), Ti = Yg+i, ¢ > 1, and let
f(?(xo’o):f(ane)? f{l(z?o ‘ w):f(z,e ‘ J;O)’
fi1(z,0 | x) = f(2,0 | zi_1, ...,x(()i)) if 1<i<k,
where CC(()i) = (Yg,---,¥;) and fi(z,0 | ) = f(2,0 | ©i—1,...,Ti—k), © > k.
Further, let

U= U v
q=k
where WY is the class of sequences ¥ = {(¢7")i<n }n>1 such that ¥ (2,0 | x) = (2,0 | xi—1,...,xi—q), P > q,
where 1) satisfies the usual conditions of integrability. Note that

l? = lz(z,é? ‘ .’B) = lz(z,G ’ Ti—1, ...,.’Bi,k), i >k,

and, hence, | € U*.
It is obvious that

(¢, H)| < Rsup || = sup [, H)|
HeHn

for each ¢ € ¥4 and H € H%, q1,q2 > k. Thus, we have
sup |(¢, H)| = Rsup [¢)]
HeH
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and

: o osup [+ Y]
inf sup D(vy, H;0) = inf inf ,
P S ¥ T (TN

where the inner product and the norm are considered in L?(R,, 1), where

dp = fer1(@gt1, -or, 21)dTgq1...day

and fy4+1 is the (¢ + 1)-length stationary density.
But the optimal score function ¥* for the standard optimization problem

sup [[2 + [ .
(1) wewa "

has the form
== B

where the pair (8*,m*) is the solution of Eqs. (3.26), (3.28), which does not depend on the index gq.
This result involves the case of the stationary ergodic AR(k) model (see Kiinsch, [57]):

k
Y, = Zal(ﬁ’)Yzel +ei, 1>k,
=1

where 0 € Ry, oy(6), 1 <1 <k, is a known function, differentiable in 6, and {e;};>1 is the i.i.d. sequence
with the density function g(-), g > 0.
In this case we have

k
Ji(z0 | zio1, ., mig) = 9(2 — Zal(9)wi—1)
=1

for ¢ > k and
k
li=—AE) D a(0)X; 1,
=1
where
. 0 0 ~
@ =zzald), A=z-lng(z), & =epi
Then Eqgs. (3.26) and (3.28) take the form
k m
/ [—)\(z) S (0t ﬁ] g(2)dz = 0,
=1 —m

m

R*m? = /(/{ [_)‘(z)gdlw)aﬁﬁll — B(z, ---,xl’m’a)] (—)\(z) gdlw)xkﬂl)

_ ( [—)\(z) zk: 61(0)2h 11—t — B(@hy ooy 21,1, 9)} " )2}9(2’) dz) Fi(@py oo 1) da..da,

=1 -m

—m

where fi(zg,...,x1) is a k-length stationary density.
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2. Ergodic Markov chain. The consideration of this case is quite similar to that of the previous one.
Note only that from ergodicity we have

/ F@Q (| a)(diydz) =n ' ES. FQY (| Ximty e Xig)

i=1
— /F(le’wz(- | £, ..., x1) fq(2g, ..., x1) dzyg...d21,

where f, is a g-length invariant density.

ITI. Stationary Ergodic M A(1) Model
Let ...,Y_1,Y0, Y1, ... be a stationary ergodic M A(1) process, i.e.,
Yi=v; —0vi_1, |0 <1,
where (v;) is a double infinite sequence of i.i.d. r.v. with common density g,
Ev; =0, Ev}< cc.
Let A :=g/g and
I, = /A2g < 0.
Denote
Xo =79 = (vo,v-1,...), X;=Y;, i>1,
and let for 1 < ¢ < n, Pen’i(- | Zi—1,...y20) bQ a regular conditional distribution of X; with a given
Fi—1 = 0(Xi—1,..., Xo). Then the density of P,”* with respect to the Lebesgue measure is

i—1

fi(z,0 | x) = 9(2 + Zaixi—j + HiUo)- (3.54)

j=1
Staab [92] considered a class of CLAN estimators T}, (Xp, ..., Xo) such that

n2(T, = 0) =n'72> "4y + opp (1)
j=1

with
Pglzﬁ{Xna"wXO}a w@,j :Qp@(ﬁj)’

where 1)y is a measurable mapping from H£ « R1 to Ry such that 1)y(71) is a square-integrable r.v.,
Ey(o(v1 | Do) =0, Eplhe(T1)c1A(v1)] =1, T = (vi,vi1,...),
C; = Z —9]%’_]'_1 = Zjé?]_lYi_j.
j=0 j=0
It is obvious that

L{n!*(T = 0) | P’} =5 N(0, c(vp)),

where c(yg) = Egy)Z ;.
Now we briefly describe a contamination model proposed by Staab [92], the so-called submodel. With-
in this model, the shrinking contamination neighborhood of the basic measure Py’ contains all measures

Qp such that Q§"® = B{™”, where P = L(t0), Q5 = [Tl Q5"

an,i) =1+ n_I/QEifi)P@(n’i), ei=¢e@i—1), fi=f(w), 1<i<n,
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where
e(-) >0, Epe(vg) <R, R>0, £(vg)€ Loo(FPp),
f()= -1, f(vo) € Loo(Fp), Ep(f(v1) | Do) = 0.
Obviously, (Qp) < (Pf'), and by the Le Cam third lemma,

L (T, = 0) | Q(f,2)} 5 N(b(wo, f,e), (o)),
where
b(vg, f,€) = Egte,1 - f1€1.

As usual, an asymptotic mean-square error is taken for the risk functional.

First of all, note that this scheme is a special case of the model given in the present work, if we restrict
the consideration to the classes ¥ and Hy of sequences ¢ = {(¢7")i<n}n>1 and H = {(H]")i<n }n>1 such
that ¥ (X, ..., Xo) = ¥(7;) and H(X;, ..., Xo) = €(T;—1) f(T;). Obviously, all ergodicity conditions are
satisfied. Note only that in this case the functional D(v, H; ) can be written in an explicit integral form
and hence we obtain standard minimax problem (3.23) with the resulting function

. 3 .
Vig = [GiA(vi) — 575,
where m* satisfies Eq. (3.28).
It remains to construct an estimator T,, = T, (X,,...,X1) with {(E:,G)ign}nzl in its asymptotic
expansion. Staab proposed an approach based on the assumption of the approximation 1, y by sufﬁc1ently
smooth @/[)\ZG(Xi, ...,X1) in such a way that: (1) the CLAN estimator 7;, corresponding to 1,[)”0 can be

constructed; (2) z/p\% can be replaced by E;e in an asymptotic expansion of T,,. To illustrate this approach,
Staab considered the case of standard normal innovations v;. Note that in this case,

ﬁﬁ ::Oa ¢n ¢%'_ [ (U2ﬂ25;M

where
i—1 i—
~ cnj—1 ~ i—1 .
C; = 2]93 Xi_j, V; = 29] Xi—j’ 1> 1.
=0 '

Let us go back to the general model considered in this paper. Assume again that Xy = 7y, X; = Y;,
i > 1, fi(2,0 | x) are defined by (3.54), and all the objects are introduced in a standard way (cf. full
model of [92]). For a correct definition of the class W it is sufficient to show that [ = {i"},>1 € ¥, i.e,,
for any bounded Lipschitz function F' : M — Ry,

/ (V)L™ (dv) %/ V)L (dv), (3.55)

where £ is defined by relation (3.58) below. Recall that I; = A(v;)c;(6),

i1
0) => 0 Xi j +ibvo.
5=0
Denote I; = A(v;)¢;(0) and show that
R, :=n"! ZE|F(Q£( | z)) — F(QZ( | z))| = 0 as n — oo, (3.56)

where

QU | z) = / Iiagwyme9(©) dv.
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Indeed,

R, < const -n~* ZEdBL(QZ(- | 2),Q4(- | #)) < const-n~? ZE’\CZ -G / |A(v)|g(v) dv — 0.

i=1 =1

Here dpr,(p1,p2) denotes a bounded Lipschitz metric on M (see, e.g., [88]). From ergodicity we have

n—oo

lim n~'Ep Y F(QL(- | z)) = EF(Q}(-|Y)) = / F(v)L!(dv), (3.57)

where Yo = (Yp,Y_1,...) and

1 . ~ J—
L {} - /I{Qll(,yo)e,}PG(dYO)- (3.58)
Now (3.55) follows from (3.56) and (3.57). By Theorem 3.4, the optimal sequence * = {¢*"},>1

is defined by the relation ¢;" = [l; — B¢ (m;)]mz ., where m} satisfies Eq. (3.28). Moreover, m} — m*,

—m

where m* satisfies Eq. (3.47). Hence (see Corollary 3.3), 1;;“ = [l; — Bf (m*)]™ .. is also optimal. Since 1;;“

m*
contains an unobservable variable vy, it becomes necessary to construct a sufficiently smooth function v;
depending only on the real observations (Y7, ..., Y,) such that

n
nVEN g — il = opp(1).
i=1
Let o; = [A(@:)¢ — @]T:n*, where 3; is a solution of the equation

/[@‘M@ — ﬁ]T;*g(v) dv =0.

‘We have R R
|7 — | < |A@;)e; — Avg)ei| + |87 — Bil.
Assume that the function A is such that

n~ 2N A@:)E — Alvi)ei| = opp(1)
=1

(e.g., satisfies the Lipschitz condition).
Now we have to show that

nfl/QZ 18; — B;| = opy(1).
=1

It suffices to verify that if 8(c) is a solution of the equation

/ [eA(w) — B g(v) dv = 0,

then the function §(c) has a Lipschitz property. With the latter in view, we calculate the derivative 8'(c)
and obtain

/A(U)I{|CA(U)—B|§m}g(U) dv

/ I{jen@w)—p1<my9(v) dv

It is easy to verify that '(c) is a continuous bounded function. Consequently,

() =

|B; — Bi| < const|c; — ¢l

and the desirable convergence holds.

2794



Let §n be a y/n-consistent estimator. For example, we may take the least-square estimator defined
by the equation

i=1
Define the estimator 7}, by the relation

v(0n)

n
where v(0) = PgL—Ji_)Ir;o n1 z;wfli (see Subsection 3.2.5).
£

Then A is a sufﬁcientl}7 smooth function with respect to 6 and the following asymptotic expansion
holds:

Wi )
v(0)

VAT —0)= =3 s omp () = =3 5 orp(1)

—x
)

1 n
— % Z; f;fa) + opy (1)

v

(see also Subsection 3.2.5 below).

IV. Innovation Contamination
One possible scheme for the realization of the contamination

et = Y2 HD (3.59)

(2
is as follows.
Let p = {pi}i>1, 7 = {7i}i>1, and 0 = {0;};>1 be mutually independent sequences of i.i.d. r.v.
Further, let the sequences of measurable functions
{(u?(wi—la <y L0, Y, 9)’ ’U)?(.’Bi_l, - 20, Y, 9), d?(.’l?i_l, -y 20, y))zgn}nZI

be such that the distributions of the random variables u]'(z;_1, ..., o, pi, 0) and w}'(z;_1, ..., Zo, 74, ) pos-
sess the densities f]'(z,60 | z) and h]'(z,60 | x), respectively, and the function d takes only values 0 and 1,
and

P{(d?(l‘i,h ey Ly O',L') == 1} == 77,71/2)\,?(561',1, ceuy $0).
Let
ifin = (1 - d?(yvzril’ ) 1/07 U))u?(yyilv ey 1/Onv Pi, 0)
+d; (Y, Y p)wt (Y, Y T, 0), 1 <i<n. (3.60)
Then the density f; ' of the conditional distribution Y/ with a given Y;" | = x;_1,..., Y’ = z¢ has the
form (3.59), where
Hi'(z,0 | x) = A (2)(hi' (2,0 | 2) — f"(2,0 | ©))/ fi' (2,0 | x).
Obviously, Y;" can be written as
Y'=01-Z)X'+Z!W, 1<i<n. (3.61)
Relation (3.61) coincides in its form with the replacement model in the sense of Martin and Yohai [70],
but it has a somewhat different meaning, since the triple (X, W, Z) of the process cannot be defined a

priori as is assumed in the definition of the replacement model. It includes the innovation contamination
in many models, in particular, in ARMA models.
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1. AR(1) model. We assume in (3.60) that u]’ = 0z;_1 +y, || < 1.

20=0, P{d?=1}= "2 x>0,

wy = 0x;—1 +y.
Then
VP = OV + (L= )i+ ' = 0¥, + 7Y, Yo =0,
corresponds to the innovation contamination for the AR(1) process defined by the relation
Xi=0X;_1+pi, Xo=0.
Let g and h be densities of r.v. p; and 7;, respectively. Then

20 | 2y, m1) = g(z — 021) (1 + 0 YV2H (2,0 | 2;_1)),

7

where

h—g

H(z,& | ﬂ7i,1) =A (Z - 9%171).

Obviously, this form of contamination is not full for score functions of the form ¢ (x; — 0z;_1,z;_1),
to which the maximum likelihood function

(2,0 | zi—1) = Az —Oxi—1)xim1, A:=g/g

belongs.
(b) Let
ro — 0, P{d? = 1} = A($i,1)n_1/2,
Wi (i1, -, Y, 0) 1= Oz 1 +W(2i-1,9)-

In this case,
Y'anHY'lTil_’_ﬁ’gL, YE)ZO,
where pl' = (1 —d}")p; + d}'w;.
Here
h(z — 9371'—1 ’ xi—l) — g(z — 91'2'_1
9(z —0x;—1)

H(Z,9 | CC,L',l) = )\(ﬂ?i,1)

and h(- | z;—1) is the density of the r.v. wW(z;—1,7;). This form of contamination is full for the score
function of type ¥ (x; — Ox;—1,z;—1).
(c) Let

xo=0, P{d}=1}= \z_1, ...,x(i_q)AO)n_l/Q,

wi' = 0xi—1 +W(Ti-1, ., T(i—g)r0:Y), ¢=> 1.

In this case, we again obtain the full contamination for score functions of the type ¥ (x; —
02i—1,Ti1, -, T(i—g)n0)-

(d) If d and w} are of the general form, then we obtain the full contamination with respect to the
general form of score functions.
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2. ARMA(p,q) model. For 1 <i <n, let

p i—1
u?(wi—l’ xO’y’ . ZZﬁk ’Yz wz j— k_Zsz w—r+ya
k=1j=1
where
Ty = (f()af—la )a g’m = Tm, m > 1’
and
o q
T = Y 6(0) k() Tt k, m <O,
1=0 k=0
where

Bo(0) = ao(6) =1, xr,(0 Z%Jrr k() ok (0).

The sequences (7;(0))i>o0 and (6;(#));>0 are uniquely deﬁned in a standard way by the vectors («;(0),
1<i<gq)and (8i(0), 1 <i<p), respectively (see [92], p. 1.5, (2.8), p. 1.6 (2.10)). Then with arbitrary
d? and w} and with p; = v;, i > 1, Yy = (vo,v—1, ...), Eq. (3.60) corresponds to the full contamination of
the innovation (vj;, j > 1) for the ARM A(p, q) process defined by the relation

p q
> BiOXi; =Y i@, i>1,
i=0 i=0

or an equivalent relation
p i—1
== 8OO Xij k=Y X Oy +vi, P21,
k=1 j=1
where

g
Xm = ZZ&Z(G)ak(ﬁ)vm,l,k, m S 0.

1=0 k=0
Indeed, in this case for ¢ > 1 we have
p i—1
I ke Be(0): ()Y,
k=1j=1
p 1—1
_ZZI{’L j— k<0}ﬁk )’Yz X j—k — ZXTZ v; :a?‘i‘a?’
k=1j=1
where U] = (1 — d}")v; + d'(w; — al').
For the AR(1) case, we illustrate the scope of application of the theory developed in this work.

Suppose that H(z,6 | x;—1) are such that they define contiguous alternatives, i.e., (P Yy 4 (Pg).
Then in case (a), the asymptotic bias is

g0 = [ [ wlepH@g() den(ay)

where 7(-) is the invariant measure corresponding to the process X, which leads to a minimax problem
whose solution, obviously, cannot be the Huber function. But in case (b),

UH = / / (2, y)H (2 | )g(2) dem(dy);

therefore, this case provides the full contamination and hence the Huber function is optimal in the given
class .
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Since in cases (c¢) and (d) we have full contamination for the given classes of score functions, the
general theory allows one to conclude that in these cases the Huber function is also optimal.

It should be noted that while in cases (a), (b), and (c) the risk functional can be written in an explicit
form involving the inner products and norm in an appropriately chosen La-space, in case (d) the nominal
conditional distribution defines the stationary ergodic AR(1) process, D(¢, H;0) cannot be written in an
explicit form, and the developed theory should be applied in its full capacity.

3.2.5. A method of constructing the optimal CLAN estimators. Let ¢ = {¢"},>1 € ¥ be a
sequence of score functions. Let {T',},>1 be some /n-consistent estimator of the unknown parameter 6,
i.e.,

nA(T,, — 0) = Opp(1). (3.62)
Consider the one-step approximation procedure
n Ln(Tn)
7 (Th)
where L, (0) = Z YM(z;,0 | ) and ¥ () is defined in (c.3) of the definition of the CLAN estimator.

TV =T, + (3.63)

Assume that for each n > 1 the function § — /(2,6 | z) is 6-continuously differentiable
tin(dz, di, dz)-a.s. with the derivatives (2,0 | z) and ¢ = {¢"},>1 € U,

Everywhere below, for any function ¢(z,6) we denote ¢(z,0) = (z,0).

907
Further, denote L, () = Z Y™ (xi,0 | ), B(n,u,0) := {y: |y — 0] <n'/?u} and suppose that the

following conditions are satlsﬁed foreach 6 €0, p>0,0<u <K, K >0,

lim Pj' { sup |n"1L,(y) +~¥(0)] > p} =0, (3.64)
=00 B(n,u,0)
sup |7 (y) —1¥(0)| = 0 as n — oo. (3.65)
B(n,u,0)

Proposition 3.2. If the above conditions are satisfied, then the estimator {Tff}nzl constructed in (3.63)
is CLAN.

Proof. It is sufficient to show that
n
n~! > vi(@i,0 | x)

T = = n(n”12). :
W=0+ 10 +opp(n”'/?) (3.66)

Now we rewrite Eq. (3.63) as follows:

w2 _ gy — M =06 (T = 14(0)
V(Tn)
+n1/2(Tn —0)[n" N (Ln(Tn) = Ln(8))(Tr — )" +14%(0)] | n~'Ln(6)
7¥(Th) W (Tn)
The first term on the right-hand side of Eq. (3.67) tends to zero by (3.62) and (3.65) while the last

term — by the ergodicity condition. Further, if L, () is asymptotically continuously differentiable with a
derivative 4% () (this means that V8 € ©, Vp > 0, Vu, 0 < u < K, K > 0,

léﬂ%;éﬂﬁﬁwa4>p}:®, (3.68)

(3.67)

lim P”{ sup

oo B(nu,0) [T
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then the second term in Eq. (3.67) tends to zero and (3.63) is satisfied. It remains to note that (3.64) is
a simple sufficient condition for (3.68). O

Now we give another sufficient condition for T%" = {T}" }n>1 to be a CLAN estimator, where
* = {¢*"},,>1 is the optimal score sequence.
Suppose that V0 € ©,Vp >0, 0 <u < K, K >0,

i Pp{ sup n'(L;() — Li(0)] > pf =0, (3.69)
n—00 B(n,u,0)
where L (u) = . 07" (z4,u | z), Yu € ©.
=1
Proposition 3.3. If conditions (3.64), (3.65), and (3.69) are satisfied, then the estimator TV =

{Tff*}nzl constructed in (3.63) with L (0) instead of L, (0) and v¥" instead of v¥ is CLAN.
Proof. We have

n

Ly (6) = Z[W(m )~ / Gr7 (2,0 | @) f7(2,6 | )P (dz | x>]

i=1
#30 [0 Df 0 | 2) Pz | 2)i= S om S al
i=1 i=1 i=1
= M (0) + AT(0), (3.70)
where for each ¢, 0 <t <1,
[nt] [nt]

MPO)=> mi, APO)=> ap, MP(0)=MP0O)|=1, A} = A7(6)|=1.
i=1 i=1
Introduce the abbreviation

[ereolomeo o« = [ e

for any function ¢" = ¢'(2,0 | z).
Now we observe that [¢*"f" = — [¢*™["f™ and

a0 =-3 / GO £ (3.71)
=1

Further, note that (M;{*())o<¢<1 is a Pj'-martingale with the square characteristic

n

oo = [ fesmrr - ([urer) ]

i=1

n . .
But n=t > [(¢7™)? fI* converges, since 1* € ¥ and
i=1

n 2 n
n! Z(/ ¢:’nlznfin) < const -n~? Z /(l?)fo 5,
i=1 gt

since [*"| < m} — m* < oo by the construction. Hence
lim lim Pp{n~"(M™(0)); > N} =0,
N—00on—o0

P,
and we conclude that n=1M7 () 2 0.
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Now (3.70) and (3.71) imply that for each § € © and p > 0,

lim Pp {\nflL* @)+~ (0)] > p} =0, (3.72)

n—oo

which leads to the relation V0 € ©, Vp > 0, Vu, 0 <u < K, K > 0,

pp{ swp n i)+ 47 0) > p} < Pp{ sup n7YEn() - Li0)] > 2}
B(n,u,0) B(n,u,0) 2

+Pp{In 1 i5(0) +47 @) > £} 50 as n oo,
and the desirable follows from Proposition 3.2. O

As we have seen above, it is necessary to study the question on the 6-differentiability of the function
Y*"(z,0 | x). Let us investigate this question based on the implicit function theorem and Egs. (3.26) and
(3.28).

Denote ® (i, z, 3,m,0) := [[y—B3]™,Qi(dy, 0 | z) (index n is fixed and omitted here) and let §;(z, m, )
be a solution of the equation

®(i,x,8,m,0) = 0. (3.73)
Using the implicit function theorem, we find that there exist 3/, and 3(= Bp), and
! (i,z,5,m,0)

ﬁ;n i7$7m70 = - . ‘ )
( ) (I)b(z,:U,ﬁ,m 0) B=Bi(x,m,0)
(s (3.74)
,8(1 T 6):— 6(Z7$7/67m 0)'
B P’ (i,x,ﬂ,m 0) 8= (2,m.0)
(note that @’ (z z,B,m,0) = —fI{‘y 81<myQi(dy; 0 | ) < 0 in a neighborhood of the solution of Eq.

(3.73), see (3.32) and the subsequent text).
Now we denote

F(,m) = (0, m) — R?
(see (3.40) and (3.41)).
Then again by the implicit function theorem, we have that there exists (), where m(0) is a solution
of the equation F'(6,m) = 0, and

= — 0T (3.75)

(F)(0,m) = ¢l (0,m) <0, see (3.42)).
Of course, one can obtain explicit formulas for 8 in terms of the basic system of conditional densities
{(fI*(2,0 | 2))i<n}n>1 and their derivatives by means of the calculation of &, @}, Fy, and Fy, based on

the above formulas.
It is now obvious that if the basic model is sufficiently smooth, then ¢*" is also smooth, and, e.g.,

U (2,0 | @) = (07 (2,0 | ) = 87" (2, 0) L in 2 01y 37 0,0 <, 00}

2

110, (0) (Lap (2, 000) -7 (0.0)2ms ) — L(in (z.010)—67 " (@.0)<—m3})>

where "™ and 70, are given by relations (3.74) and (3.75).
The high-order derivatives are calculated analogously.
Finally, assume that (3.65) holds with 4¥" instead of 4¥ and there exists a sequence of functions

o = {1 = {20 | 2))i<nn>1
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such that V0 € ©, Vu, 0 <u < K, K > 0,

poe max(|I7(z,y | )], 57" (2, y)|, i (W)]) < * (2,0 | x)

and .
n=3/2 Zc?’k(mi,ﬁ | z) 0 as n— oo
i=1
Proposition 3.4. If the above conditions are satisfied, then the assertion of Proposition 3.3 holds.
Proof. Indeed, for 0 < u < K, K > 0,

sup n EL )~ L0 <SS sup |97 ey | 0) — 07 (w10 2)
B(n,u,0) = 1B"U‘9)
IZ sup [¢""(zy,y | @)y — 0]
i—1 B(n,u,0 )

Pn
< const -n /2 Zc?’k(mi,ﬁ |z) 30 as n— oo.

i=1
O
3.3. Robust Estimators in General Statistical Models with Filtration
3.3.1. Specification of the model. Regularity. Ergodicity. (a) Let
&= (QafaF = (f.t)tZO’ {PQ’G € @}’ P) (376)

be a general statistical model with filtration. This means that (2, F, F, P) is a stochastic basis, i.e., a
complete probability space with filtration F' = (F;):>0 satisfying the usual conditions, Py is a probability
measure depending on the parameter 6 to be estimated, and © is an open subset of R;. It is assumed

that Py X P V0 € O,
Remark 3.16. Consider a statistical model
(QafaF’{POaH € @})

and assume that the set of measures
{Pg, RS @}

is such that Py loc Py for each 6’ # 6.

Fix some value of the parameter 6, say, 6y, and denote P = FPy,. Then Py ~ P V8 € ©. Now we
assume that (Q, F, F, P) is a stochastic basis. Thus we obtain the previous model with reference measure
P.

Remark 3.17. All the notation concerning the martingale theory that is used below can be found in
[45,67].

Let P(t) = P | F, Pyp(t) = Py | F; be the restrictions of the measures P and Py to the o-algebra F3,
and let pp = (pg(t))r>0 be the likelihood ratio process with cadlag trajectories. For simplicity we assume
that pp(0) = 1. As is well known (see [48]),

po = S (M) = exp{ My — L (M)} TT(L+ AMge S0,

where M € Mjo.(P) is a local P-martingale.
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(b) Let @ be some other probability measure on (€2, F, F') such that @ 12<C P and le—g =&(M), M
being a local P-martingale.

If m is a local P-martingale, then the process (Girsanov transform)
AmAM

Lim, M) :=m — it

S[m, M) =m — (M,m°) = (3.77)

1+AM

is a local Q-martingale.
(c) An experiment £ is said to be regular (see also [82]) if:

1. for each ¢ > 0 (P-a.s.), the function § — My(t,w) is continuously differentiable and the derivative

My := %Mg is a local P-martingale V0,

9 .
2. for all t > 0 (P-a.s.), there exists 20 Inpg = L(My, My) € M?(P), the class of square-integrable
Py-martingales; '
3. the Fisher information I(0) = Ey(L(Mjy, My)) is finite and positive.
(d) Consider the sequence of regular statistical models
E={&}tnz1 = {(Q" F" F" = (F'Joi<r, {Fy',0 € © C Ry}, P*) 1,
where T' > 0 is a number. '
Denote ¢, (0) = (I(6)) Y% = (EJ(L(M}, M}))r)~ /2. Then, if
(1)  lim ¢,(6) =0,

n—oo
~ P
(2) E@O)IB) 21 as n— oo,
where E;‘ = (L(M}, M}"))T, then we call the sequence & = {&,}n>1 ergodic.

3.3.2. CLAN estimators. Denote by M = M({Pj'},>1) the class of sequences of processes Ly =
{Lptn>1, Ly = (Lg(t), 0 <t < T) with the following properties:

(1) for each n > 1, L% € M*(P});

(2) the sequence {Lj },>1 satisfies the Lindeberg condition

/OT/ x2v, (dt, dz) 0 as n— oo Ve € (0,1], (3.78)
x|>€
where v, is the compensator (with respect to the measure Py') of the jump measure of the process ¢, (0)Ly;
3)
EONIEYr B TL(0) as n— 0o, 0<TL() < oo; (3.79)
(4)
¢2(0) (L, LIV, M))r 5 72(8) as n— 00, 0<yL(8) < os, (3.80)

I'1(0) and v,(0) are deterministic functions.
We assume that {L(Mg', M)} n>1 € M({P§}n>1). Note that if Ly € M({P§},n>1), then
L{en(O)Lg(T) | Pg') = N(0,TL(6)) (3.81)

as simply follows from the central limit theorem (CLT) for martingales (see, e.g., [45]).
The sequence TY = {T:F},,>1 of F-measurable random variables with values in © is called a CLAN
estimator if for each 6 € © there exists Ly € M({F}'},>1) such that

LT
TL =6+ o(1) + R, (6), (3.82)
(Lg, L(Mg', Mg'))r
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Pn
where c; 1 (0)R,(0) % 0 as n — oo.
It is obvious that

_ w I‘L(a)
L O)(TE-0| P SN (0, ) .
’ 72(6)
3.3.3. Shrinking neighborhoods. For each n > 1, denote by Py := {f’gnz f’gn ~ Pj'} some neigh-

borhood of the basic (core) probability measure P;'. We know that for each ﬁgf € Py, there exists
Ny € Mioc(Py) such that

Z}IZZ: = E(N}). (3.83)
If the martingale Ngl has the form
N = cn(0)Ng (3.84)
and
{Ppy < {Ppy, (3.85)

then we say that the sequence {156?}”21 belongs to the set of shrinking neighborhoods of the core sequence
{Fy' tn>1- B
For definiteness, denote such a set by Py and each element of Py by {P§'},>1 or by {F} ’N}nzl.

Proposition 3.5. Let {sz,N}nZI € Py and T* = {TE},>1 be the CLAN estimator with asymptotic
expansion (3.82). Then

1 L _ é% n,N \ w FL(H)
E(cn O =0) = o b | )—>/\/’(0, 3 (9)>, (3.86)

where B™ = (B, 0 < t < T) is the first characteristic of the process cn(0) Ly with respect to the measure
.
0

Proof. Let W = (W;), 0 <t < T, be a standard Wiener process defined on a stochastic basis (2, F, F, P).

T.(0
Denote M := %W. Then Cr = EP(M2) = T'(0). Further, denote X™ = ¢, () L%, and let
T 2
C:}J" =Cr +/ / 2" (dt, dx) — Z (/ xv™({t}, da:))
0 Jlz|<t je|<1

0<t<T
be the second modified characteristic of the semimartingale X™ with respect to the truncation function
h(z) = 2l{js)<1y-

sps Py 1n Fg
Then by conditions (3.78) and (3.79), I{jzj>c} - v — 0 as n — oo Ve € (0,1] and " % Cp = T'(0).
Hence (see [45])

~_£(T|PN
xp - By S
where E{,ﬁ = — fOT f|w|>1 xv™(dt,dx) is a first characteristic of the process X" with respect to the measure
Pn,N -
-
Now the desirable follows from conditions (3.82) and (3.83). O
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Proposition 3.6. Let the sequence {ﬁgf} be such that for each n > 1, 136? € Py, (3.83)(3.84) are
satisfied, Ny € M*(P}), and
lim Tim P{c2(0)(Ng)r > d} = 0. (3.87)

d—00 N—00

Let T = {TL},>1 be a CLAN estimator with asymptotic expansion (3.82). Then:
(1) {Py'} < {P}}, and, therefore, {Pg} € Pp; N
relation (3. remains true with ¢ , T instead o ;
2) relation (3.86 ' th ¢2(0)(Ly, N})r instead of B}
(3) if, in addition, there exists a deterministic limit

Br.(6) = B~ lim ¢ (0)(Lg, N§)r, (3.88)

(ﬁen— lim denotes the limit in probability), then

n—oo

c<c—1(9)(TnL —9) | ﬁ;) AN (

n

Pr.n() FL(é’))
v(0) " L)
Proof. Denote X" = c¢,(0)Ly. For each n > 1, the process X" is a semimartingale with a triplet of
predictable characteristics (—2Ifj,>1y - ", ¢i(Ly™), v") (with respect to the measure Py).

(3.89)

(1) The following necessary and sufficient condition for {ﬁen} < {Pg} is well known (see, e.g., [45]):

. D 1 3
Jim lim Py’ (hT (§;P£,P£> > n) =0, (3.90)
lim lim P} <sup an(t) > 77) =0, (3.91)
nN—00 N—00 t<T

1 ~ 1
where (ht (§;P§L,P9”)), 0 <t < T, is the Hellinger process of order 2’ and ay(t) = py(t)/py(t—),

where _
ary
n __ — N,
It can be easily seen that
1 DN pn 1 2 n

Indeed,
p,Pg

n(5B5) = g2 OW + 5 (X (1= 1+ aang)’)

But, since (1 — /1 + )2 < i fH—w)z < z2 for x > —1, we have
1 7 7 1 2 n,C 1 2 n\2 »r 1 2 n

h{ 5B B ) < gen(0)(Ng™) + 5 > 0)(ANG) < 5n(0)(Ng)- (3.93)

Further,
Py (Sup an(t) > 77) — Pp (sup(l + cn(0) AN (t)) > 77)
1<T 1<T
< Py (sup A (0)(AN;(1)? = 9 —1) < Py (Z cA(0) (AN (£)? = n - 1). (3.94)
1<T
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By virtue of the Lenglart inequality, for any 6 > 0 we have

Pg(zc )ANR(t )2n>< +P9(<Zc AN (t ))p’

t<T t<T

s d). (3.95)

Now assertion (1) follows from (3.90)—(3.95) and (3.87).
(2) Now we show that

(BT—C (0)(L2, N ‘40 as 1 — 0. (3.96)

Denote X @ = X" — dAX™ I axn)>1)- Since X" is a special semimartingale, the unique decompo-

sition
X'=M"'+A"

takes place with a predictable A".

Rewrite X as follows:

Yn =X" - wI{\z\Zl} * (/,Ln — Vn) - wI{\z\Zl} x ",
We have
Mn = X"~ l’[{|m|21} * (/.Ln — l/n).

Further, applying the triplet transformation formulas under an absolutely continuous change of mea-

sure, we obtain

B" = B" + ¢, (0)(M", N}).
Hence _
B" — c;(0)(L§, Ng') = B" — ca(0)(X" = M", Ng').
By the Lindeberg condition and the contiguity {ﬁen} < {Py}, we have

pn

P
B4 0.
Further,
2
(X" -M") = 372I{‘z‘21} * " — Z(/ rlfjg>1 - V" ({t} da:)) .
<
Again, the Lindeberg condition and the contiguity yield

=N

Bn
(X" =My 3 0. (3.97)
But by the Kunita—Watanabe inequality, (3.97), and (3.87), we obtain

- . Bn
(O X" —M",Ni); < (X" = M")rcZ(0)(N)r 20 as n— occ.

Assertion (2) is proved.

Assertion (3) is an easy consequence of assertion (2). O

Denote the measure ﬁ(;z = P N For the validity of (3.88), the existence of the deterministic limit
with respect to {Pj'},>1 is sufficient.
Now (3.89) implies simply that

lim lim E N{(c—l(e)(TnL —0)2A a} = D(L, N, 0), (3.98)

a—00 N—00 n

where Ej "N is the expectation with respect to the measure Py N and

653 N+ 11L(6')‘

D(L,N,0) = 2 (0)

(3.99)
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3.3.4. Optimization criteria. Denote N' = N ({Pj'},>1) the class of sequences of processes Ny =
{Ng }n>1 satistying conditions (3.84), (3.85), and (3.88), and, moreover, such that the process £(Ng')
from (3.83) is a uniformly integrable martingale with iItlf E(Ng) > 0.

Further, suppose that for each n > 1, ]ng € N%, R > 0, is some domain in MQ(PQ"). Consideration
of such a set N} is needed if we want to obtain a nontrivial optimization problem.

Remark 3.18. Under the above-mentioned conditions we obtain that: (1) 156? defined by (3.83) is a
probability measure, equivalent to Pj'; (2) {P;} < {FPj} and, therefore, D(L, N, ), given by (3.99), has
the statistical meaning of a risk functional (see (3.98)).

The CLAN estimator T* = {T¥},,>1 is called (M, N)-optimal in the minimax sense over the class of
CLAN estimators {T'V, L € M({P}}n>1)} for each 6 € O,
Ve>0, VLeM, NP €N, YNeN
EyN (e, (0)(Tr — )% A 3.100
i B (G OT 0PN (3100
aeenee Bg ((en (0)(T = 0))* Aa)

The score sequence Lj = {Ly"}n>1 € M({P}'}n>1) is said to be (M, N)-optimal in the minimax
sense if for each 0 € ©

sup D(L*,N,0) = inf sup D(L,N,0). (3.101)
NeN LeM Nen
It is obvious that if a score sequence Lj is optimal and the corresponding CLAN estimator exists,
then T* = T is also optimal.
Introduce the strong ergodicity condition: let for VK and Ry € MQ(Pg{L)

Py~ lim 2OV Ky, Ry)r =C < lim Eyc(0)(K},Ry)r = C (3.102)

(C > 0 is some constant).
Denote
(Eg (Ly, LMy, Mg'))r)?

Obviously, under condition (3.102),
D(L,N,0) = lim Dy(L",N",0). (3.104)

3.3.5. Calculation of the explicit form of the risk functional D, (L™, N™, 0). At the beginning of
this section the index n is fixed and omitted.

Consider the statistical model (3.76) (see also Remark 3.16) associated with the one-dimensional
F-adapted cadlag process X = (X;), 0 <t < T, in the following way: for each § € ©, Py is the unique
measure on (€2, F) such that the process X is a (P, F')-semimartingale with predictable characteristics
(B(8),C(0),vy) (with respect to the truncation function h(x) = xl{j,<13). Assume for convenience that
all measures Py coincide on Fy. Also, we assume that under the measure P, X is a semimartingale with
triplet B = B(0), C = C(0), v = vp.

We know ([45], Ch. III) that in this situation there exist a P-measurable positive function

Yy = {Yy(w,t,z), (w,t,z) € A x Ry x Ry}
and a predictable process (Gg(t)), 0 <t < T, with
|h(Yg — 1) v € Ape(P),
B - C e AL(P),
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such that the following is true:
(1) B(0)=B+f-C+h(Yy—1) s,
(2) C(0)=C, (3.105)
(3) vy=Yyxv, Yy>0.

In addition, the function Yy can be chosen in such a way that

alt) == v({thRy) = 1 ag(t) == vp({t},Ry) = To(t) = / Yo(t,o)v({t}, o) = 1.

If the measure P is such that any (P, F')-local martingale admits the integral representation property
with respect to X, then the likelihood-ratio process can be given by the explicit formula

= — =&(M,
po =5 E(My),
where
. Yy —a
My=0p - X+ (Yp—1+ T a * (p—v) € Mioe(P) (3.106)

0
(with the usual convention — = 0).

Assume that our statistical model is regular. Thus we assume that for almost all (w,t,z) (with
respect to the corresponding Dolean’s measure), the functions Gp: 0 ~ Fyg(w,t) and Yy: 6 ~ Yp(w,t, )

20 Bp and Yy = @Yg) and the differentiation under the

are continuously differentiable (we denote By =
integral sign is possible.
Let us calculate

AMyAM,

0 . . .
~=Inpy = My — (Mg, Mg) = 1T AN, = L(Mp, Mp).

00

Below we use the following proposition.

Proposition 3.7. Let P-martingales m and M admit integral representations

M=r~y-n+xx*(u-—v), (8.107)

where n is a continuous P-martingale, u is an integer-valued measure on [0,T] x E, E =Ry \ {0}, and v
is its P-compensator. _
Let P be a measure, P ~ P with
dP
— =&(M).
ap — M)

Then for the Girsanov transform L(m, M) (€ Mloc(ﬁ), see (3.77)) we have
Lm, M) = - (n— - (n)) + ® * (u — 7), (3.108)
where v is the ﬁ—compensator of the measure p and
v-¢ 9
= s 1
1+X—>?+1—>? <1} (3.109)

with

B(t) = /E bt 2)w({th dz),  X(t) = /E x(t 2)w({t}, dz).
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Proof. First, we note that
1+x—Xx>0,
since M is a density-determining martingale and P ~ P. Further, from the definition of the Girsanov
transform (3.77) we easily obtain
t,Be)Ip — (t
14 x(t, B)Ip — X(t)
where D = {(w,t) : u({t}, F) = 1} with the Dirac measure u({t},dzr) = dg,(dx).
On the other hand,

A # (11— ) = B(t, B) Ip — (1), (3.111)
where

B(t) — /E o(t,z)o({t}, dz) :%-I{WQ}. (3.112)

Now, substituting (3.109) and (3.112) into (3.111), we obtain
ALY (m, M) = A® * (u — v)

and, hence, the purely discontinuous part of the ﬁ—martingale L(m,M) is equal to ® x (u — v). The
continuous part

L(m, M) =m® — (m®, M) = B-n— [y (n).

O
From (3.106) we have
Y
Note that Yp(t) = [ Yp(t,2)v({t},dz) (:= ag(t)). Hence
Yo(t) = Yo(t) = ag(t).
Now from (3.106), (3.113), and (3.108) we obtain
L(M@,M@) :BQ(XC—59~C)+‘I>9* (/,L—Vg), (3.114)

where ]
Y ag

@0 - }/0 + 1 — ay 'I{a9<1}

with I{ag:l}de = 0.

We give a more detailed description of the function ®y.

For this purpose, recall (see [45]) that one can choose a version of characteristics C () and vy such
that

Cy(0) = (¢ - A%,
vg(w,dt,dz) = dAf(w)Bz’t(da:) (= v§(w, dt,dz) + vi(w, dt, dz))
= v§(w, dt, dz) + dA](w)BY (dx),

where v = If,,—0}Vp is a continuous part of v, the process A = (AD)o<i<T € .Afgc, A =(),0<t<T,
is a nonnegative predictable process, and B, ,(dz) is a transition kernel from (£ x Ry, P) into (Ry, B(Ry))

with BY ,({0}) = 0 and AAYBf ,(R;) < 1.
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Now for each integrable (with respect to vy) function ¢ = (Y(w, t,z)) we have

t
(Q:[) * l/@)t = (¢ * l/g)t + /0 & Q:[)(wa S, x)Bf),s(dx)dAgd

=g+ B0 [ vl o)l (o) ) 222
s<t 1
= W)+ Y ao(s) | W(w,s,2)d] (),
s<t Ry
where
ag(t) = AA!BY ,(Ry)
and

0 Bz,t (dz)
Qo t(dT) 10,1500 = ml{ag(t)>0}'

Thus, q&t(dw) is a probability measure:

I{ag(t)>0}/R &, (dz) = Ity y>0}-
1

Denote 0
dvg Gz (d)

= I :
dve o Quw,t(dz)

= fg(w,t,CC) (Slmply f@)
Then we have
a
Yy = Fylio—0y + ffef{ax)},
. . a ag
Yo = Folra—0) + (ffa + ffe) Ita>03-

Therefore (recall that Yy > 0),

Fy fo ag
by = 17, _ = — . T I .
0=, ao=0} + <f9 + +a9(1 — a9 {ag<1} | 1{ag>0}
Denote . .
. Fy fo 9 ag
B=p, =2, §==2 1)=—"_.
F' % fo " ap(1—ap)
Then

L(Mp, Mp) = 15(X° = Bp - C) + (18T (4p—0y + 1§ T(ay>01 + W {0<ap<1}) * (1t — Vo).

Further, let ]59 ~ P and N
dPy ~
— = E(M,
op — £(Mo)

with R

L _ 5o
My=PFo- X4 [Yp—1+ 221

(n—v)

1—a

(cf. (3.106)).
Then it is easy to see that
APy

= Sy = My, My)) = E(Ny)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)
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with Ny € Mioc(Fy), and, therefore,

- ~ Fy
No = (B9 — Bo)(X =By -C) + KFZ - 1) Tiap=1
ag fo ap — ag
— 1|1 — 7T — . 12
+ (aefe ) {ap>0} 7= ” {0<a9<1}:| * (1 —vp) (3.120)

Starting from Egs. (3.119) and (3.120), it is natural to represent the core martingale Ly and mar-
tingale Ny (for definitions see previous Subsections 3.3.2 and 3.3.3) as follows:

Ly = 92(X° = g - C) + (¥ {ag=0y + Y51 1ag>0) + Yo {0<ap<1y) * (1= vb), (3.121)
where % = % (w,t) if @ = ¢,b; % = 0 (w,t,z) if a = 7,6, and z/p\g =0;
Ny = HJ(X® = By - O) + (H{q,—01 + H{ Itay>0y + Hy Ijo<ag<1y) * (1 — vp), (3.122)

where H? = HY (w,t) if a = ¢,b; H? = H(w,t,2) if « = 7,0, and flg =0.
Let us again endow all the objects with the index n and introduce the Dolean measures

O (dt, dw) = c2(0) dCP P} (dw),
po™(dt, d, dw) = ¢ (0) Itap—oyv4 (dt, da) Py (dw),
3.123
(dt,dz,dw) = ci(@)[ ap=0yVg (dt, dz) Py (dw), ( )
(At dw) = 2(0)pf (w, dt) P (dw),
where the measure pj (w, dt) is defined by the relation
ZI{0<a n(w,)<13ap (W, t)(1 — ag(w,t)) VB € B(R}).
teB
Assume that for each a = ¢, 7,8,b and n > 1, 15", %", HO" € Lg(,ug’").
Denote
(lznv a=c,m,9J, b)u
= (0" a=¢,m,6,b),
) (3.124)
=(H", o =¢,m,0,b),
(ua , a=¢,m0d,b)
Then a simple calculation results in
2
(vt Mz’n) T
D, (L™, N™0) := D,(y", H";0) = —= , (3.125)

where the sign “x” denotes the integral, a = ¢, , 4, b.
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3.3.6. Fixed-step optimization problem for statistical models associated with semimartin-
gales. Fix the index n > 1, the real number R > 0, and consider the following sets of functions:

\IIQL :{q/)” = (wz’",a =c,m4,b): 1,[)2’" € L2(Mg’n)a a=c¢,m,0, bﬂ??’" = 0}- (3.126)
HE :{H” = (HO™ a =c¢,m,8,b) : HO™ € Ly(ud™), 0 = ¢, 7,8, b,
HI™ =0, HP"(w,t,2) > =20 (w, 1), A" (w,t) >0,
S UHS g 4+ NP " < RY. (3.127)
ks

The score function ¢*" = (Ya",a = ¢,7,6,b) € VY is said to be (U9, H%)-optimal in the minimax
sense if for each 0 € ©,

sup Dp(y*",H";0) = inf sup D,(y",H";0), (3.128)
HneNy, eV HneHy,

where D,,(¢™, H™;0) is given by (3.125).
Remark 3.19. Consider the following simple construction. Let the Hilbert spaces
L2(Qo, For o)y a=1,.4; QuNQ =92, aj

be given.
We denote

Q=UQ,, F=UFy={UAy: A€ F,, a=1,..,4},

pA) =Y pa(ANQy) VA€ F

and consider a new Hilbert space L2(£), F, ) with the inner product (-,-). If X,Y € Lo(Q, F, i), then,
obviously,

<X’ Y> = Z<Xou Ya>aa

[

where Xo = XIiq 3y, Yo =Ygy, and (:,-)q is the inner product in L2.
Now for each n > 1 and 6 let

Q =Q" x [0,T7;
Qo ={Q" x [0, T} N {(w,t) : apy =0} x Ry,
Q3 ={Q" x [0, T} N {(w,t) : ap > 0} x Ry,
Qu ={Q" x [0, T} N{(w,t) : 0 <ag <1} x{x}, x &Ry,

with the corresponding o-algebras and let

0,
m = (HQ,OZ =1, ’4) = (Hz}n,a = 0771-’5; Hy " x 5{)(})’

d(.) is the corresponding Dirac measure.
Further, let

X =(Xo,a=1,..,4) = (%", a=c,m,6,b),
Y=Y,a=1,.,4) = (1/12’",04 =c,m,0,b),
Z=Zya=1,..,4) = (H" o =c,m,d,b).
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Then the right-hand side of (3.128) can be written as follows:
(YZxp)2+Y2%xp

A= ol Zer (Y Xwp)? (3.129)
where
V={Y: VY xp=0 forall V=V(v,t)lg,(w,t,x) with [VY]*pu < oo}
But
R%(esssup|Y[)2 + Y2 xp
A= inf “(YX e . (3.130)
Indeed,

YZ 5| < |Y|Z] % p < esssup [V](Z] # 1) < Resssup Y|
B ©
For each € > 0 consider the sets
Al = {Y >0, Y >esssup|Y|— 5},
o

A% = {Y <0, =Y >esssup|Y| — 5}.
n

From the definition of esssup it follows that
p(AL U A%) > 0.
Suppose, e.g., that u(AL) > 0. Then we have

PAD =D pa(ALN Q) > 0.

Hence po (AL N Q) > 0 for some a = 1,2,3,4. Let, for definiteness,
p1(ALN Q) > 0.
Consider the function Z¢ = (Z§,0,0,0) with
75 = “Hanon
p1(AL N €y)
Now we obtain
|Z| % p=2Zxp=2Ziligyxp=2] 1 = R
and
=Y Ziltqy % 1 > (esssup Y| — a)R
o

for each € > 0, where A€ is a complement of the set A.
Now from (3.130) we obtain that the optimal Y has the form
Y* = const[X — G]",,, m >0,
B = B(w,t)[q;3(w, T, 2).
Our problem is to find equations for the pair (3, m) (compare with Sec. 3.2).

Remark 3.20. The above-mentioned optimization problem is an analytic problem and does not have a
statistical meaning. More exact specification of sets of score functions and alternatives are needed.
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As in the case of discrete time, denote

/ flne }qwt (dz), (3.131)

where the probability qfﬁ is given by (3.117) (see also (3.116)), and consider the equation with respect
to B (m > 0 is a number, [z]% = (x Ab) V a, a < b),

/ [y — 81" Q04 (dy, 6) = 0. (3.132)
Denote by

o = 3 (m, 0) = B(QLT(,0),m) (3.133)
the solution of Eq. (3.132).

Assume that the distribution Qi’ﬁ(-,&) satisfies conditions (a) and (b) after Remark 3.7 and
@Z’l([—a, al \ {0},0) > 0 for each a > 0, @ = ¢,7,b. The distribution @Z’l(.,e) is defined below, be-
fore Eq. (3.152).

Theorem 3.5. (i) There ezists optimal Y*" equal to

" if @ #,
o — ; e (3.134)
1" — B s (0), 050, if a =4,
where m(0) is the unique solution of the equation
R2m? = 3 {00, 10w e — (U], )2 e |
a#d
i {107 = B )27 s 7 — (" — B O] (3.135)
(i1) This ¥*™ is unique (up to a constant factor).
The proof is quite similar to that of Theorem 3.3 and we omit it here.

3.3.7. Comments and special models.

1. To make clear the notion of optimal (with respect to the risk functional D(L, N;6)) estimators in the
spirit of robust statistics, let us recall the asymptotic behavior of the estimational equation.
Consider the estimational stochastic equation

L,0)=L,0,w)=0, 6€0O, n>1,

where for each 6 and n the random variable L, (6,w) is defined on the stochastic basis (2", F", P").
Further, we consider a family Q@ = {Qp},>1 of measures, where for each # and n the measure Qj is
defined on the o-algebra F".

We know that if the conditions of Corollary 3.1 are satisfied, then there exists the CLAN estimator

L. (b9
7L — () - LoltZO) | ) (3.136)
Ln(b%(9))
with Q2-lim ;1 () R, (8) = 0, where b%(6) is the unique solution of the equation
Aq(0,y) =0

with
Aq(0,y) = Q- lim c;,(6)La(y)
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and {cp(0)}n>1 is some normalizing sequence. Thus we have

7L % Q(¢).

The quantity b9 (6) is called an asymptotic version of the estimator T* = {TF},~1.
Moreover, if the measure Qf depends on the parameter v in such a way that

b 0’
Q)" — Q" as v—0,

in certain sense, then one can define the so-called influence functional

QY Q0
TF{QG" AT 1 AQY™ ) = limy b~ (9) s b’ (6)

(3.137)

see |70]).
| [It lilould be mentioned that if for each n > 1, L,,(0) = L}(0)|i=r, where {L}(6), 0 <t < T},>1 €
M({P;}) and Qg’" = P}, then expansions (3.136) and (3.82) are equivalent and b2’ () = 6.

Now let v = y(n) = ¢,(f) (vecall that 6 is fixed) and P} = Q)™" be such as in Proposition 3.6. In
this case expansion (3.136) also remains true with respect to {159"}n21, since {ﬁ(,"} <{P}}, ie.,

L g
T, =60 as n— oo.

Hence b7 () = 0 and the asymptotic versions of TF = {TL}, >, for Py = {P}},>1 and By = {159"}n21
coincide (and are equal to 6).
Therefore, the direct transference of the notion of the influence functional is impossible.
Nevertheless, relations (3.86) and (3.88) allow us to define an analogous characteristic.
In view of these relations, the expression

en(0) (L, Np)1

can be regarded as a bias at a fixed “nth step” and the expression

Bn_ o 1 en(0)(Lg, Ng)r )\ _ Brn(9)
Pg- lim ¢, " (6) <0+ (e, LT, M) r 0) D)

n—oo

can be regarded as a “bias variation rate” (cf. (3.137)).

0 'y
M() can be interpreted as an influence functional. At the same time, 5( )
vL(8) 7z.(0)
ymptotic variance of the estimator 7" under the basic (core) sequence of measures Py = {P}'},>1 and,
therefore, the solution of the optimization problem based on the risk functional D(L, N;6) is equivalent

to the construction of the optimal B-robust estimator (see [32]).

Hence, is an as-

2. It is obvious from decomposition (3.119) that the score martingale L(Mgl, Mg) is fully specified by the
function I = (I, lx,s,1y), where the subscripts ¢, 7, d, and b have the following sense: ¢ corresponds to the
continuous part, 7 to the Poisson-type part, § to the jumps at predictable moments (including the basic
special case, the discrete-time case), and b to the binomial-type part of the score martingale.

3. Consider the case where
veé(dt,dx) = v°(dt) P,(dx),

v(dt, dz) = vg(dt) P (dw), (3.138)

where [ Pi(dx) = [ P/(dx) =1 (here the index n is omitted).
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In this case,

B _ fi 4
Fy f§ ag’
where .
dP dvg
Jo=2p %= e
Obviously,

/ f—ipte(dx) =0 Vvt
f5
Further, if we denote

wm = % - /%Pte(dw)

and
Yy = /q)[)WPte(dx),
then
/ Yy PP (dz) = 0.
In this case it is convenient to represent
H.=(Hr ,Hpy,)
with

/ H, P! (dz) =0.

Correspondingly, if we again endow the objects under consideration with the index n and introduce
the measures
pen(ds, dz, dw) = 2 (0)vg" (ds, dz) Py (dw)
and
W (ds, dw) = 2 (0)v™ (ds) Py (dw),
then everywhere there arise new objects with indices 7; and 7o instead of the objects with index m, for
example,

" = (lg,n lG,n l@,n lg,n’lz,n)’

YUy ) Vg )

0 on .0, 0, 0,
wn :( cmawﬂ-l’na Mn’% n’wb n)a

etc.
4. To make the sense of contamination models clear, let us consider some special cases.

(i) Diffusion-type process. We consider this case in detail.
Let, for each n > 1, &, = (§,.(t)), 0 <t < T, be a diffusion-type process with the differential

dén(t) = /Bn(ta gn? a)dt + de(t)’ én(o) = Oa (3139)

defined on the stochastic basis (Q, F, F = (F;),0 < t < T, P) with a Wiener process W,, = (W,,(t), F1),
0<t<T,given on it, # € © C Ry be an unknown parameter, 3, (¢, z,0) be a nonanticipating functional
foreachn >1, 6 € O.
This case is covered by the general scheme of statistical models £ = {&,},>1 in the following way.
We set 2" = Cjo 7}, the space of continuous functions (z;), 0 <t < T, where zg = 0, F" = Br = o(z:
x, t < T), F" = (F' = o(x: x5, s < t)), 0 < ¢t < T, P"is a Wiener measure, and Py is the
distribution of the process £, (with given 6). In other words, the coordinate process z = {z:(w), w € Cjo 17,
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0<t<T}, with 24(w) = wy, is a (P", F)-semimartingale with a triplet (0,¢,0), 0 <t < T', and a (P}, F)-
semimartingale with a triplet

(/ﬁn(s,x,H)ds, t,O), 0<t<T.

Assume that for each n > 1,

T T
P"(/O B2 (t,x,0)dt < oo) :PG"(/O B2 (t,x,0)dt < oo) =1.

Under these conditions there exists a unique weak solution of Eq. (3.139), Py’ ~ P", and the likelihood-
ratio process has the form

t 1 t
= exp(/ Bn(s,z,0)dxs — 5/ ﬂ%(s,m,@) ds) = &(My),
0 0
where .
M) :/ B(s,3,0)dzs, 0<t<T,
0

is a local (P", F')-martingale.
Further, let for each n > 1, x € Cjg 7}, and t € [0,7], the mapping 6 ~» 3,(t,z,0) be continuously

. . 0 :
differentiable (% 0= ﬂ), and
a t t i
_/ ﬁn(s’x70)dw.9:/ ﬁn(s’x70)dws’
a t t i
—/ ﬁn(s,x,H)ds:/ Bn(s,x,0)ds,

T .
0 < I%0) = EQ/O (Bu(t,z,0))%dt < oco.

Then the regularity conditions are satisfied, and

. 9 t
L(Mg,My) = 20 Inpg(t) = /0 Bn(s,x,0)(dxs — B (s, x,0)ds) € MQ(PG’,L),
I:(0) = Ey (L(Mg, M§))r.
Thus,

197(t, 2) = Bu(t, , 0),

T
C—2 I o,n P 2 ]
2() = B /0 (107 (1, ))2dt

The ergodicity means that ¢, (6) — 0 and
-1

T T pn
/ (B (b, 2, 0))2dt - (Eg/ (ﬁn(t,x,ﬁ))th) 1 as o oo
0 0
The score martingale L7 € M?(P}') is given by the formula
t
Ly(t) = / YO (s, x)(dxs — Buls,z,0)ds), 0<t<T.
0

The “contamination model” means that 1551 is the distribution of the process &, = (£,(t)), 0 <t < T,
with the differential

d€n(t) = (Bu(t,€n, 0) + ca(O)HE™(t,6,))dt + AWy (t),  &,(0) = 0.
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Hence the main objects are given by the following equalities:

NI(E) = /OtHM(s 2)(dws — Bu(s,2,0)ds), 0<t<T,

pm(dt, dz) == c2(0)dtP(dz), x € Ciomy,

(/OT]/ Ot ) HO™ (¢, ) dt Py d:c) /OT]/ (607 (1, ) 2dt P (d)
(/ OT]/ WO (t, )10 (t, 2)dLPy (da;)>

HY = {Hg’" : /C /O [HO™ (¢, 2)|dt P (de) < R}.
[0,T]

Finally, the optimal score martingale is

Dn(y", H";0) =

t
Ly"(t) = / (B (s, 2,0)]"7 %) (ds — Bu(s,,0)ds), 0<t<T,

where m () is the unique solution of the equation

T
R2m? — /C . /O B (t, 2, 0)] ™, B (t, 2, 0)dt Py (dar)

_ /C /O T([Bn(t,m,9)]Tm)2dtP(3L(d:c).
[0,T]

In the following special cases, we briefly describe only main objects.

(ii) Poisson-type point process. For each n > 1, let P be the distribution of the point process

&n = (&u(t)), 0 <t < T, with compensator vy (t fo ay(s)day, and let P™ be the distribution of the
point process with compensator a™.
Then

07 047) = [ S5 o, — ),

/ Y2 (dy — a(s)dal),

3

14(60) = I / (B9 a0~ 110,

The “contaminated” measure ﬁgf in this case is the distribution of the point process with the com-
pensator

t
() = /0 (ali(s) + cn(0) HEM (5)) o

Thus,

/ HYM(s)(dzs — af(s)dal).
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(iii) Processes with jumps at predictable moments. Consider the case where X¢ = 0, v¢ = 0.
Then from Egs. (3.120) and (3.122) we find that

angéL Eig _ ag 0,n 0,n

Clgfen -1 I{a3>0} + q1{0<a3<1} = Cn(o)(H(s I{ag>0} + Hb I{O<a§‘<1})~ (3.140)
To illustrate the role of terms with indices d and b, let us consider two special cases. Let for each

n>1

1
_ 1 ift=—-T, 1<i<n,
(1) a"(t) = aj(t) =@ =<~ " " n ==t
0, otherwise.
Then from (3.140) we obtain
n
f—il —1=c,(0)HI",
fe

i.e., a discrete-time model.

2) P} is the distribution of the point process &, = (£,(t)), 0 < ¢t < T, with the compensator

(2) F point p p
vy (dt,dz) = 671y (gm)ug(dt), where I/g’e(dt) = 0. Then ay = Azg(t)

Further, let Pj' be the distribution of the point process £, with the compensator v; possessing the
same properties.

Then (3.140) has the form

'd" —al 9
MI{O@QQ} = cn(0)Hy " Io<ap <1}

Hence,
t
Np() = / HY (geap <1y (doy — V3 (ds)), 0<t<T.
0

The simplest case of such a model is the binomial model with a random probability of success, i.e.,
when the observation is a sequence of indicators I7, ..., I}, ay = PP{I' = 1| F' 1}, 1 <i<n, F]'= O'(I;-L,
j<i).

The latter fact explains the meaning of the index b.

3.3.8. Construction of the sequence of optimal score functions. We need some auxiliary notions
concerning the weak convergence of o-finite distributions.

1. Let Q"(-), n > 1, and Q(-) be o-finite distributions on (Rg, B(Ry)), d = 1,2, satisfying the
conditions

/\xP@n(dw) <oo, m>1,

(3.141)
[ lelQtdo) < o,
where = € Ry, | - | is the usual norm in Ry, d = 1, 2.
Suppose that
/\wP@n(dw) — / |2[2Q(dz) as n — occ. (3.142)

Define the sets

Cy:= { f: f is a continuous function on Ry,

f(0) =0 and {(T; is bounded}, d=1,2.
T
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We say that the sequence of distributions {Q" (-)},>1 weakly converges to the distribution Q(-) and
write

Q" w Q as n— oo (3.143)
if relations (3.141) and (3.142) are satisfied, and

/f d:c —>/f Q(dx) as n—o0 VfeCy d=1,2.

2. Let Q" = Q74(-), n > 1, and Q@ = Qu¢(-) be regular conditional probability measures on
(Rg, B(Ry)), d =1,2. For each B € B(My), d=1,2, let

En’Q(B) = /I{ngt(,)eB}Vn(dw,dt)
and
L%(B) = /I{Qw,t(.)eB}V(dw,dt)

be o-finite distributions on (Mg, B(My)) induced by some o-finite measures v"(dw,dt) and v(dw,dt)
defined on (2 x [0,T], F x B([0,T])).
Here (Mg, B(My)), d = 1,2, are measure spaces of the probability measures on (Ry, B(Ry)), d = 1, 2,
and B(My) is a Borel o-algebra generated by open (with respect to the Prokhorov metric p) sets.
Introduce on (Ry, B(Ry)), d = 1,2, the measures

Q") = / V()L O(dv), n> 1, (3.144)
and
a() = / V()L8(dv), (3.145)

where v(-) € My, and suppose that these measures satisfy conditions (3.141) and (3.142).
Introduce the functional
= [Iafvido)

defined on the space (Mg, p), d = 1,2.
Then by conditions (3.141) and (3.142) we have
/ F(0) " (dv) — / o 2u(da) 9 (dv) = / 220" (dz) < o, (3.146)
/ F(v)L9(dv) = / |z|2Q(dx) < oo, (3.147)
and
/ () L™2 (dv) —>/ (V)L (dv) as n — oo. (3.148)
Denote

Cy ::{F : F' is a continuous functional on (Mg, p), d=1,2;
if 7(-) is a distribution degenerated at 0, then F(7)=0;
LACON bounded}, d=1,2.

Fv)

We say that the sequence of random measures {Q" },,>1 generalized weakly converges to the random
measure () and write
RlI=0Q as n— o
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if
£ % £ as n— oo.
The latter convergence means that conditions (3.146), (3.147), and (3.148) are satisfied, and

/ (V)L™ (dv) —>/ V)LP(dv) as n— oo, YFeCy d=1,2.

From definitions, it easily follows that

Q"=Q) =@ Q).

Indeed, it is sufficient to take
/f dl‘ feCy xRy (3.149)

We consider the case described in Subsection 3.3.5. As follows from (3.125), for each n > 1,
D,(L",N™;0) = D,(y", H";0).
Now we define the classes of sequences of functions ¥ and Hy such that if
Yp={¢Y"}p>1 €V and H={H"},>1 € Hy,
then
D(, H;0) (= D(L, N;6)) = lim Do(4", H";6)

(see (3.98), (3.99), (3.103), and (3.104)).
Then we construct the sequence * = {¢*"},>1 of score functions (¥, Hy)-optimal in the minimax
sense, i.e., the sequence ¥* € ¥ such that

sup D(¢*,H;0) = inf sup D(y, H;0)
HeHy pew HeHy

for each 6 € O.
Below the parameter 6 is fixed and omitted.

(i) Definition of the class ¥. Denote by U9 « = c,,d,b, the class of sequences ¥, = {Y8}n>1 such
that

(a)
Vo € La(pq) (3.150)

for each n > 1;
(b) for each n > 1 and 7 > 0 there exists a constant r = r(n) > 0 such that

Py (/ Iy QY (w, du) < rg) =1, (3.151)
and the sequence {r2},>; is bounded (for each fixed 7).
Here
@) = [ Tge it
where
fic.o(dt) = e, (0)dCY
fin o (dt, dx) = ¢ (0) Iran—oyvg (dt, d),
g, (dt, da) = e (0)Iqn0yvg (dt, dx),
i (dt) = 2 (0)p) (w. ).

C
First we define the classes ¥, for a = ¢, ,b.
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For each n > 1, we denote
aY 7¢ aY 717[]171:[]2
QZ ()= /I{wge}dHZa QZ ()= /I{(I/,gnwim)e.}dﬂga

where the measures p) are defined by (3.123).
Fix the sequence 1% € ¥ and introduce the set

—n 0 — 0
P = {1/1 ew Q" S Qn” } (3.152)
Let ¥, C Y be a set of sequences with the following properties:
(1)
lo € Wa; (3.153)
(2)
(V8 v2) € Vo) = (1} € B¥2); (3.154)
3)
(a € o0 9Y) = (tha € Wa); (3.155)

(4) the sequence {()7)?},>1 is uniformly integrable with respect to the sequence of measures {12 },,>1.

Assume, at last, that @la([—a, a] \ {0}) > 0 for each a > 0.
Let a = 4.
For each n > 1, we denote

QUY(- | w,t) = / Tpeqdlalde),

1,2
ngl) P (- |w,t) = /I{Qb;,n’ﬁ,ne}qit(dm)

(the measure g} ,(dx) is defined by (3.117)).
Fix the sequence wg € \I’g and introduce the set

o = {ypewf: i = QP (3.156)

Let U5 C U9 be the set of sequences 5 = {¢)7 },>1 with properties (1), (2), (3), and (4) with « =§
and, in addition,
()
@Zg =0 foreach n>1, (3.157)
(6)

(Qg’w = Q?) = L9 <{1/ : v does not have a unique median}
(3.158)
U{v : v is degenerated in 0} U {1/ : /yu(dy) # 0}) = 0.

Remark 3.21. Note that from (2) it follows that ¢, € ®¥= (take ¥} = 12 = 1), ) and, therefore,
anﬂl]a K @wa, a = C, Tr’ b,
Qnﬂba = Qd&s.

Now ¥ = (¥, a =¢,m,d,b).
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(ii) Definition of the class Hy. Let A, C ¥% o =c,,d,b.
Define for each a = ¢, 7,6,b

(1) sup [ (H2Pduy < o0
H(Aq) = ¢ {Ha}tn>1 "
@) [ Vi, Yoo € A
The symbol “a, —” means that the sequence {ay, }n>1 has a finite limit.
Let H(A) = (H(An), a = ¢, m,0,b), where A = (A, a = ¢, m,d,b).
We say that the sequence
H = {Hn}n21 = {HZ’ o = C’T(?d? b}nzl €B

if for each sequence of martingales {Nj}'},>1 defined by relation (3.122) with H} € La(uy), n > 1,
a = c,m,0,b, condition (3.87) of Proposition 3.6 is satisfied.
Denote for each n >1

K" = {H": N} € M*(P}); (N1 < K, (Py-a.s.),cn(0)ANY > R, > —1}, (3.160)
where the martingale Ng* (= Ng'(H")) is defined by relation (3.122) and K,, and R,, are real numbers.

Recall that in (3.122) the index n is omitted.
Define

(3.159)

Hy = {H ={H"} >, : H* € HENK", n>1; H € H(¥) N B}, (3.161)

where H, is defined by (3.127).
Finally, suppose that

EQ%({V : v is degenerate} U {v : v(medv) > 0}) = 0. (3.162)

Remark 3.22. Note that in the case of the discrete time, the property H" € K" is reduced to the
property sup \"(w,t) < co. See also Remark 3.4.
n,w,t
Remark 3.23. Consider, at the qualitative level, the assumptions used in the definition of classes ¥ and
Hy. We begin with the class ¥. Assumption (3.150) reflects the fact that in this work we do not come
out of the framework of the Lo-theory. Assumption (3.151) strengthens the admissibility property (see
Lemma 3.6), which statistically means that the “unbounded” score functions cannot be optimal, and they
a priori are excluded from our consideration. Next, we see that for a = ¢, 7, b and for o = ¢ the conditions
differ from each other and, therefore, they are given separately.
An additional assumption in the case of @ = J is

Q;[)(S =0,

which corresponds to the conditionally centering property of the score function /(2,0 | z) in discrete
time models (see Subsec. 3.2.1, the definition of CLAN estimators, (3)). This results in a necessity of
considering the parameter 5" — (3 (Q?’Z), which is a nonlinear functional defined on the space of probability
distributions. Note that technical condition (3.158) and the similar condition (3.162) ensure the continuity
of the functional 5™ with respect to the topology of a weak convergence of distributions (see Lemma 3.4).

The presence of the parameter 5" in relation (3.134) for the optimal score function *™ complicates
the verifying of the ergodic properties and results in a necessity of considering a generalized weak con-
vergence of distributions. This convergence reduces to a weak convergence of distributions on the metric
space of probability measures or, roughly speaking, to a weak convergence of distributions of distributions,
see (3.156) and (3.158) (cf. (3.152) and (3.154)).

Also, we note that conditions (3.141), (3.142), (3.146), (3.147), and (3.148) are based on condition
(3.150) and on property (4) of the definition of the class ¥, and, therefore, they appear to be natural.
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The necessity of condition (3.153) is obvious. Condition (3.154), which is based on relation (3.152)
strengthens, on one hand, the ergodicity properties (3.79) and (3.80) and, on the other hand, ensures
asymptotic “homogeneity” of score functions in the class V.

This implies the necessity of the requirement of convergence of joint distributions both in (3.152)
and (3.156).

Condition (3.155) (“completeness” of the class ¥) makes the class of score functions richer.

Proceed to the class Hg, namely, to relation (3.161). Begin with the end of the formula. Belonging
of the sequence H to the set H(¥) N B guarantees, on one hand, ergodic coordination of the classes ¥
and Hy (see (3.159), (2)) and, on the other hand, imposes boundedness type conditions on this sequence
(see conditions (3.159), (1), and (3.87)). In particular, belonging to the set B implies the contiguity
of the sequence of alternative measures {f’(,”} with respect to the sequence of basic measures {Pj'}.
Further, belonging of each term H™ of the sequence H to the set K™ implies a uniform integrability of
the exponential martingale £(c,(6)Ny') and also the fact that iItlf E(cn(0)Ng) > 0. These facts imply the

property ﬁen ~ Py

The nontriviality of the optimization problem (3.101) follows from the relation H" € H.

Finally, we note that the above definitions of the classes ¥ and Hy give statistical sense to the
risk functional D (v, H,0), to the optimization problem, and, as a result, to the whole problem of robust
estimation considered in this chapter.

Let ¢* = {¢*"},,>1 be the sequence of score functions constructed in Theorem 3.5 by relation (3.134).
Theorem 3.6. The sequence ¢¥* is (U, Hy)-optimal.

Proof. The method of proving Theorem 3.4 developed in Subsection 3.2.3, is general and can be used
with small changes in the considered case.

We illustrate this fact, taking as an example the proof of Lemma 3.9.

Introduce the functions

RItyn>na(1-)}
/ Tiypn>na(1—c)y i,

. R(I{¢§>n5(1s)} - / I{wg>n5(1a)}qg,t(dw))

I =
/ Tiynsns(1—e)ydprs

n,e __
H)® =

) a:C77T’b;

9

where 7, := esssup |z|.
@111
Obviously, flg’s = 0 and for each n > 1

R? / Huspa(1-e)y @ (w, du)
O (NP =3 / ()2 < 3 <K, Ppas,  (3.163)

2
“ ( / I{wg>na<1—a>}duﬁ)

for some constant K, 0 < K,, < oo, thanks to (3.151).

Thus, the process £(c,(0) N, ) is square integrable and hence a uniformly integrable martingale. In
particular, E€(c,(0)N,°) = 1.
Moreover, obviously, cn(H)AN(;L © > R,, > —1 for some constant R,,.
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Indeed, Hy® >0, a = ¢, m, b, and

—R / Iiynsns(1-e)y 20,4 (d)
> .

/ Tiyn=ns(1—e)ydprs

Hence if we denote by \"(w, t) the last expression without the sign “—,” we obtain that ¢, (6)\"(w,t) < 1
for some n > 1, by virtue of condition (3.151) and the fact that

n,e
H(S

inf / Typ>ns1-epydis > 0.

The latter follows from the definition of 7.
Without loss of generality, we assume that ¢, (0)\"(w,t) < 1 for any n > 1 (see also Remark 3.4).
Therefore, P} := E(cn,(0)Ny*°)- P} is a probability measure, equivalent for each n > 1 to the measure
Py, B~ PP
We prove now that the sequence {c2(0)(Ny**)r}n,>1 is stochastically bounded with respect to the

sequence of measures { Py },>1.
Denote

b, = /I{¢g>na(1_5)}d,ug, a=cm,0,b.
From (3.163) we obtain that for all n > 1,
Pi{w: (0)(Np)r < Ko} = 1.
But, as we have proved above, ﬁen ~ Pg'. Hence
Pp{w : () (Ny©)r < Kn} = 1.

Thus,
lim PP {c2()(Ny)r > d} < lim PMK,>d} =0 as d— oo,
n o

n—oo
since the sequence of numbers {K,,},>1 is bounded. Indeed, infd? > 0 by the definition of 7, and the
- n

sequence {r?},>1 from (3.151) is bounded for each o = ¢, m, 9, b.
Now, according to Remark 3.19, if n; = max{n, }, we take as H™ the function
[e%

H" =(0,H;",0,0),

where
e _ _Twponia-)
T [ s a-eydel

Note that condition (3.127) is trivially satisfied.
Hence, we obtain

ﬁnﬁ S ﬁq;
The assertion follows. O

Remark 3.24. The assertions of Corollaries 3.3 and 3.4 with obvious notational changes are also true.
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CHAPTER 4

THE ROBBINS-MONRO-TYPE STOCHASTIC DIFFERENTIAL EQUATIONS.
CONVERGENCE OF SOLUTIONS AND STRONG CONSISTENCY

The Robbins—Monro-type (RM-type) SDEs are introduced. This type of SDEs naturally includes
both generalized RM stochastic approximation algorithms with martingale noises and recursive estimation
procedures for general statistical models. The approach of the investigation of the a.s. convergence as
t — oo of the strong solution Z = (Z;):>0 of such type of equations is proposed. This approach is based
on the new description of the convergence sets of semimartingales and nonstandard representation of the
process of bounded variation (in the decomposition of the special semimartingale (Z2)¢>0) in the form of
the difference of two increasing predictable processes.

4.1. Specification of the Model. Standard and Nonstandard Representations

1. Let the following objects be given on the stochastic basis (Q, F, F' = (F¢)e>0, P):
(a) a random field H = {Hy(u), t >0, u € Ry} = {Hy(w,u), t > 0, w € Q, u € Ry} with properties
(i) for each u € Ry, the process H(u) = (Hy(u))i>0 € P (i.e., is predictable);
(ii) for each t > 0,
g =0 i u=o,
(4) Hi(u)u <0 forall w0
P-a.s.;
(b) a random field M = {M(t,u), t >0, u € Ry} = {M(w,t,u), w € Q, t > 0, u € Ry} such that for
each u € Ry the process M(u) = (M(t,u))i>0 € M2 ;
(c) a predictable increasing process K = (K;)i>o (i.e., K € VT NP).
We restrict the consideration to the following particular cases: for each u € Ry,
1°. M(u)=me M3 .
2°. M(u) = f(u) - m+ g(u) - n, where m € Mj, ., n € Mloc, the predictable processes f(u) =
f(t,u))s>0 and g( ) = (g(t,u))t>0 are such that the corresponding stochastic integrals are well defined,
and M(u) € M2 ..
3°. M(u) = ¢(u) - m+W(u)*(u—v), where m € M{__, the process p(u) = (¢(t,u))s>0 is predictable,
u is an integer-valued random measure on (2 X Ry x E, F @ B(R;) x &), v is its P-compensator, (F,E)
is the Blackwell space, and W(u) = (W(t,z,u), t >0, x € E) € P® £ (here all stochastic integrals are
assumed to be well defined, and M( ) € M ).

Later on, by the symbol fo M (ds,us), where u = (u;)t>0 is a predictable process, we denote the
following stochastic integrals:

t ¢
/f(s,us)dms+/ g(s,us)dns (in case 2°)
0 0
or
¢ ¢
/ go(s,us)dms—i—/ /W(s,x,us)(u—l/)(ds,dx) (in case 3°),
0 0 JE

provided the latter are well defined.
Consider the stochastic equation (RM procedure)

t t
thzo+/ HS(ZS_)dKS—i—/ M(ds, Z,_), t>0, ZyeF, (4.1)
0 0

or the differential form

dZ, = Hy(Z_)dK; + M(dt, Z,_), Zo € Fo. (4.2)
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We say that SDE (4.1) is of the Robbins—Monro type, since the drift coefficient satisfies the specific
condition (A).

Assume that there exists a unique strong solution Z = (Z;)¢>¢ of Eq. (4.1) on the whole time interval
[0, 00), M e M2, where

N t
M, ::/ M(ds, Zs_).
0

Certain sufficient conditions for this can be found in [23,25,44].
We study the problem of P-a.s. convergence Z; — 0 as t — oo.

2. We need some facts concerning semimartingale convergence sets [118].
For completeness we formulate them.
Let Xoo = tlim X¢, and let {X —} denote a set where X, exists and is a finite random variable.
— 00

Denote by V1 (V) a set of processes A = (A;)1>0, Ag =0, A € FND (ie., the process A is F-adapted
with cadlag trajectories) with nondecreasing (bounded variation on each interval [0, t]) trajectories. We
write X € P if X is a predictable process. Denote by Sp a class of special semimartingales, i.e., X € Sp
if X € FND and

X = Xo+ A+ M,

where A € VNP, M € Miyc.

If I',I'y € F, then I'y = I'y (P-a.s.) or I'y C I'y (P-a.s.) which means that P(I'y/AT's) = 0 or
P(I'1N(Q2\Tg)) =0, respectively, where A denotes the symmetric difference of sets.

Let X € Sp. We set A = A' — A2, where A', A2 € VT NP. Denote

A=(1+X_+A%) o4l (:: / (1+ X, + Ag_)‘ldAi).
0

Theorem 4.1. Let X € Sp, X > 0. Then
{Ayp <00} C{X =}Nn{4% <o} (P-as.).
Corollary 4.1.
{AL <o} ={(1+X_) oAl <oo}={Ax <0} (P-as.).
Remark 4.1. The theorems below have been proved in [67].

Introduce the following assumptions:
(1) EXy < oo
(2) one of the conditions («) and () below is satisfied:

(@) there exists € > 0 such that A}, € F; for all ¢ > 0,
(B) for any predictable Markov moment o,

EAA I 5 oy < 0.
Theorem (A). Let X € Sp, X >0, X = Xo+ A' — A2+ M, AL, A2 e VINP, M € My, and let
assumptions (1) and (2) be satisfied. Then
{AL <0} C{X =} Nn{4% <o} (P-as.).

Theorem (B). Let X € S,, X >0, X = Xg+X_oB+A' — A2+ M, B,A}, A2 e VT NP, M € My,
and let assumptions (1) and (2) (only for Al) be satisfied. Then

{AL <00} N{By < 0} C{X =}N{A% <0} (P-a.s.).
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Theorem (B) follows from Theorem (A) if we apply the latter to the process X - £71(B), where £(B)
is the Dolean exponential, i.e., the solution of the equation Y =14+Y_o B.

Now we reject assumptions (1) and (2) in both theorems based only on these theorems. Indeed,
consider the process Y = 1+ X. Obviously, {X —} ={Y —} (P-a.s.). Introduce the process

A:%oAle)ﬁmP.
‘We have B
X=X+ A - A4+ M=>Y=Yy+A'—A>+ M=Yy+Y_oA— A2+ M,

i.e., we obtain the decomposition of the process Y with A =0 and B = A (see Theorem (B)).
Now Theorem (B) yields that only under assumption (1),

{Ayp <00} C{Y =N {42 <ol ={X =}N{4% <0} (P-as.).
But {A, < 0o} = {AL < 00} (P-a.s.), since {4l < 00} C {Ay < o0} (P-a.s.) and
{AL < oo} N{X =} N{42 < oo} ={Ayx <o} N{X =} N{42 <o} (P-as.).

Thus, we obtain that the assertion of Theorem (A) is true without assumption (2). Applying the just-
proved fact to X - £71(B), we obtain that the assertion of Theorem (B) is also true without assumption

(2).
Further, we denote
X =XoAl+ A — A2+ M,
for each constant [ > 0. Obviously, EX} = F(XoAl) <.
Then, by Theorem (A),

{Al < oo} C{X' =} Nn{A% <0} (P-as.).
Hence {AL < oo} C {42, < oo} and
{AL, <00} C{X' 2} ={X' =} n({X = X"} +{X #X})
= {X 5}n{X =X} 4+{X'5}n{X # X'}
CH{X =}n{Xo <} +{Xo>1} (P-as.)

for each I > 0. Now we note that {Xy <1} 1 Q (P-a.s.) and {Xo >} | @ (P-a.s.) as | — oo.
Thus,

{AL < oo} C{X =} N lim{Xy <1} + lim {X( > I}
l—o00 l—o00
={X —-}NQ+o={X -} (P-as.).
Hence, we conclude that the assertion of Theorem (A) is true without condition (1) as well.
Corollary. The assertions of Theorems (A) and (B) are true without assumptions (1) and (2).

Remark 4.2. In [91], Theorem (A) was proved without assumptions (1) and (2). But the proof is not
correct.

Apply Theorem 4.1 to the semimartingale X; = Z?, t > 0. Using the It6 formula, we obtain the
following for the process (Z7)i>0:

dZ? = dA; + dNy, (4.3)
where
dAy = ay(Ze_)dEKy + By(Ze_)dKE + d(M),,
dNy = 2Z,_dM,; + Hy(Z,- ) AK,dM{ + d([M], — (M)7),
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with
ar(u) = 2H(u)u,
Bi(u) := H? (u)AK;.

Note that A = (A¢)>0 € VNP, N € Miqc.
Represent the process A in the form

A= Al — A? (4.4)
with
(1) { dA} = Bi(Zi-)dK{ + d(M),,
—dA? = oy(Z;_)dKy,
or
@) { dA} = [04(Ze ) ax, 20y + Bi(Ze )]V dKF + d(M),,
—dA} = {a(Z_) [ a,—o0y — [(Ze-) I ak 20y + Be(Ze-)]” YKy,

where [a|T = max(0,a) and [a]” = — min(0, a).

As follows from (A), ay(Z;—) < 0 for all ¢ > 0 and, therefore, representation (4.3) (1) directly
corresponds to the usual standard form of the process A (in (4.3), A = Al — A% with A! and A? from
(4.4) (1)). Therefore, representation (4.4) (1) of the process A is said to be standard, while representation
(4.4) (2) is said to be nonstandard.

4.2. The Convergence Theorem
Introduce the following group of conditions: for all uw € Ry and t € [0, 00),
B) (i) (M(uw) <K,
(i) he(u) < By(1+u?), By >0, B = (By)i>0 € P, Bo Koo < 00, where hy(u) = %;
0 0 ekl Hl <G, G20 0= (@, Ooki<w, t
(i) C?AK oK% < oo,
(ii) for each € > 0,

inf 0 Koo = 00;
ssltr\lg/s'a(u)' o

D) () [oe(w)Iak, 20y + Be(uw)]T < Dy(14u?), Dy >0, D = (D)0 € P, Do K&, < o0,
(ii) for each € > 0,

6<|£I‘1£1/6{|04(U)|I{AK:0} + [a(u)[{ar 0y + B(w)] ™} o Koo = 0.

Remark 4.3. In the above-mentioned case 1° for M(u) = m € MZ _, we do not require the condition
(m) < K and replace condition (B) by

(B (M) oo < 00.
Remark 4.4. Everywhere we assume that all conditions are satisfied P-a.s.
Remark 4.5. It is obvious that (I) (ii) = C o Ky = 0.
Theorem 4.2. Let conditions (A), (B), (I) or (A), (B), (II) be satisfied. Then

Zy —0 P-a.s. as t— oo.
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Proof. Assume, for example, that conditions (A), (B), and (I) are satisfied. Then by virtue of Corol-
lary 4.1 and (4.3) with standard representation (4.4) (1) of the process A, we obtain

{A+2%) oAl <o} C{Z% =} N {A% < oo} (4.5)
But from conditions (B) and (I) (i) we find that
{1+ 2% toAl <0} =Q (P-as.)
and, therefore,
{Z? 2y N{A% <0} =Q (P-as.). (4.6)
Denote Z2, = tli)r& Z% N = {Z% > 0}, and assume that P(N) > 0. In this case, from (I) (ii), by simple
arguments, we obtain
P(la(Z-)| 0o Koo = 0) > 0,
which contradicts Eq. (4.6). Hence P(N) = 0.
The proof of the second case is similar. O

In the following propositions the relationship between conditions (I) and (II) is given.
Proposition 4.1. (I) = (II).
Proof. From (I) (i;) we find
[t (W) Irak, 20y + Be(w)] ' < Bi(u) < CTAK(L +u?),
and if we take D; = CZAKy, then (II) (i) follows from (I) (iz).
Further, from (I) (i;) we obtain

| ()| Igarc,—op + [oe(w) + Be(w)] " Tiak,zoy = law(u)| — Be(w) > |oy(u)| — CFAK, (1 + E%)

for each € > 0 and u with € < |u| < é
Now (II) (ii) follows from (I) (iz) and (I) (ii). O
Proposition 4.2. Under (I) (i) we have (I) (ii) < (II) (ii).
The proof immediately follows from the previous proposition and the trivial implication (II) (ii) =
(1) (i)
4.3. Simple Sufficient Conditions for (I) and (II)

Introduce the following group of conditions: for each u € R; and ¢ € [0, c0),

(S.1)
(1) Gilul < |Hy(u)| < Glul, Gy>0, G= (G0, G=(Gs0€P, GokK; < oo,

% (iz) G?AKo K¢ < oo;
(i) Go Ky = o0 (4.7)
(S.2)
(i) G[-2+GAK]t o K¢ < oo; (4.8)
(i) G{2Iiar—oy + -2+ GAK] Iiags0} 0 Koo = 0. (4.9)
Proposition 4.3.
(5.1) = (D),

(S.1) (1), (S.2) = (ID).
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Proof. The first implication is obvious. As for the second one, we note that

o (W) I ax, 20y + Be(w) = —2|Hy(u)|[ull{ax, 20y + Hf (u)AK,

< | Hy(u)||ul[-21{a g, 20y + GIAK). (4.10)

Thus,

low () I ak, 20y + Be(w)] < [Hy(u)||ul[-2T(ak, 20 + GIAK]T

< ét[—QI{AKﬁgo} + étAKt]+|u2|
and (II) (i) follows from inequality (4.8) if we take
Dt — ét[—2 + étAKt]+I{AKt7éO}-

Further, from inequality (4.10) we find that

o (u) I a g, =0y + [t (W) I{aK 0y + Be(W)]™ > v’ Ge{2Lak,—0) + [~ 2L {ar, 20} + G AKY] ™}
and (II) (ii) follows from (4.9). O

Remark 4.6. (a) (S.1) = (S.2);

(b) under (S.1) (i) we have (S.1) (ii) < (S.2) (ii);

(c) (S8.2) (i) = (S.1) (ii).

Summarizing the above results, we come to the following conclusions: (a) if condition (S.1) (ii) is not
satisfied, neither is condition (S.2) (ii); (b) if conditions (S.1) (i;) and (S.1) (ii) are satisfied but condition
(S.1) (ig) is violated, then conditions (S.2) (i) and (S.2) (ii) can nevertheless be satisfied.

In this case, the nonstandard representation (4.4) (2) is useful.

Remark 4.7. Denote
GAK, =2+0;, 6 >—2 forall te|0,00).

It is obvious that if & < 0 for all ¢ € [0,00), then [-2 + GyAK,]* = 0. Therefore, condition (S.2) (i) is
trivially satisfied and (S.2) (ii) takes the form

Note that if G min(2, |0])o Ko, = 0o, then (4.11) holds, and the simplest sufficient condition for (4.11)
is
Go Ky =00, [0 > const>0
for all ¢t > 0.

Remark 4.8. Let conditions (A), (B), and (I) be satisfied. Since we apply Theorem 4.1 and its corol-
lary on the semimartingale convergence sets, we get rid of many “usual” restrictions such as “moment”
restrictions, boundedness of the regression function, etc.

Remark 4.9. As an example of a nonstandard representation we tried to show to what extent one of
numerous possible representations of the process A from (3.2) can be useful. Obviously, starting from the
purposes of statistical problems, some other useful representations are possible.
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4.4. Special Models

1. Discrete time.

(a) Recursive MLE in parametric statistical models. Let Xy, X1, ..., X;,, ... be observations taking
values in a measure space (X,B(X)) such that there exist regular conditional densities of distributions
(w.r.t. a measure p) fi(x;,0 | ;—1,....,20), t <n,n > 1, and § € R, is the parameter to be estimated.
Denote by Py the corresponding distribution on (2, F) := (X, B(X*°)). Identify the process X = (X;)i>o0
with the coordinate process and denote F,, = o(X;, i < n). If v = (X, X;-1,...,Xp) is a r.v., then by
Ey(¢ | Fi—1) we mean the following version of the conditional expectation:

Eg(?,[) ‘ f;'_l) = /w(z,Xi_l, ,Xo)fz(z,é? ‘ Xi—la ,X())/.L(dz)

if the last integral exists.
Assume that the usual regularity conditions are satisfied and denote
: 0

fi(zi, 0| ziz1,...,20)

= %fi(ﬂ%,@ | £i—1,...,20),

the maximum likelihood scores by

lZ(H) = ?(XZ,H ’ Xi—l’---;XO)’

and the empirical Fisher information by

n

1,(6) == 3" Eg(12(6) | Fii).

i=1
Also, we denote
bn(0,u) := Eg(In(0 + u) | Frn1)
and show that for each 6§ € Ry, n > 1,
bn(0,0) =0 (P-as.). (4.12)
Consider the following recursive procedure:
On =0p 1+ I, (00 1)00(0,_1), 6o € Fo.
Fixing 6 and denoting Z,, = 6,, — 6, we rewrite the last equation in the form
Zn="Zn1+ ;N0 + Zn1)bn(0, Zn1) + 1,20 + Zn_1)Amy,, Zo=6p — 9, (4.13)

where Am,, = Am(n, Z,,—1) with Am(n,u) = 1,(0 +u) — Eg(1l,(0 + u) | Fr-1).
Note that algorithm (4.13) is embedded into the stochastic approximation scheme (4.1) with
Hy(u) = I, (0 + w)bn (0, u) € Foy,
AK, =1,
AM (n,u) = I, 1 (0 +u)Am(n,u).

This example clearly shows the necessity of considering random fields H,(u) and M (n,u).
Remark 4.10. Let 8 € © C Ry, where © is an open proper subset of R;. It can be possible to define
the objects [,(0) and I,,(0) only on the set O, but for each fixed § € © the objects Hy,(u) and M (n,u)
are well-defined functions of the variable v on the whole Ry. Then under the conditions of Theorem 4.2,

0, — 0 Py-a.s. as n — oo, starting from an arbitrary 3. The example given below illustrates this
situation. The same example also shows the efficiency of representation (4.3) (2).
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(b) The Calton—Watson branching process with immigration. Let the process
Xz—l
Xi=)» Yij+1, i=12..,n X;=1,
j=1

be observed, where Y; ; are i.i.d. random variables having the Poisson distribution with the parameter 6,
6 > 0, to be estimated. If F; = (X}, j <), then

(GXZ_I)mil e—GXi_l

Py(X;=m | Fiq) = 1=1,2,..; m>1,

(m—1)! ’
whence we have "
14(0) = Xi—lo—HXi—l’ 1,(0) :H_IZXi—l‘
The recursive procedure has the form -
O = Opy + n L T i Xnms g (4.14)

n
> X1
=1

and if, as usual, Z,, = 0, — 0, then

Z7:L—1Xn—1 + _ En ’

> Xicr Y Xia

i=1 i=1

where ¢, = X,, — 1 — 6X,,_1 is a Pyp-square integrable martingale-difference. In fact, Ey(e,, | Fr—1) = 0,
n n

Eg(e2 | Fno1) = 0X,_1. In this case, H,(u) = —an_l/Z Xi—1, AM(n,u) = 5n/2 X1, AK =1,
i=1 i=1

and, therefore, they are well defined on the whole Rj.
Now we show that the solution of Eq. (4.14) coincides with the MLE

Tn = Ty — (4.15)

n

XX
0, = =%
> Xi1
i=1

It is easy to see that (§n)n21 is strongly consistent for all § > 0. Indeed,

n
&g
~ i=1
O —0 = 57—
> X
i=1

and the desirable follows from the strong law of large numbers for martingales and from the well-known
fact (see, e.g., [31]) that for all 6 > 0,

d Xig=o00 (Ppras.). (4.16)
=1

Derive this result as a corollary of Theorem 4.2.
First, we note that for each § > 0, conditions (A) and (B’) below are satisfied. Indeed,

2
—u* X, _
(A) Hy(w)u = 2271 <

n
> Xia
i=1
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for all uw # 0 (X; >0, i > 0);

(B) (Moo =03 —22L o,

thanks to (4.16).
Now, to illustrate the efficiency of condition (II), let us consider two cases:
(1) 0< 6 <1 and (2) 0 is arbitrary, i.e., 8 > 0.
In case (1), condition (I) is satisfied. In fact,

ol = (%1 / Z X )l

=

and
00 n 2
ZXgl/(ZXll) < 00
n=1 i=1

Pp-a.s. But if § > 1, then the last series diverges and condition (I) (i) is not satisfied.
On the other hand, the proof of the desirable convergence by verifying condition (II) is almost trivial.
Indeed, using Remark 4.7 and taking

én = Gn = Xn—l/i Xi—la

i=1

o0 ~
we obtain Y G, = oo Py-a.s., for all § > 0. Moreover, 6, = -2+ G, <0, |d,]| > 1.

n=1

2. RM algorithm with a deterministic regression function. Consider a particular case of algorithm
(4.1) with H;(w,u) = y:(w)R(u), where the process v = (Vt)t>0 € P,y > 0forallt > 0, dM (t,u) = vedmy,
m € MIQOC, ie.,

dZ; = "th(Zt_)th + ’)’tdmt, Zo € Fo.

(a). Let the following conditions be satisfied:

R(0) =0, R(u)u<0 forall u#0,

72 0 (M)oo < 00,

)
)
1) |R(u)| < C(1+|ul), C >0 is constant,
)
)
)

for each € > 0, inf |R(u)| >0,
e<u<l/e

Yo Ky <oo, VEt>0, ~oK, =00,
Y2AK o K&, < co.

Then Z; — 0 P-a.s. as t — oo.

Indeed, it is easy to see that (A), (B'), (1)—-(4) = (A), (B), and (I) of Theorem 4.2.

In [72], this result has been proved on the basis of the theorem on the semimartingale convergence
sets mentioned in Remark 4.1. In the case where K? # 0, this automatically leads to the “moment”
restrictions and also the additional assumption |R(u)| < const.
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(b). Let, as in case (a), conditions (A) and (B’) be satisfied. Moreover, assume that for each u € Ry and
t € ]0,00):

(1)  ou(u) + Be(u) <0,
(2) forall e>0, I.:== inf {—(a(u)+F(u))}o K = 0.
e<u<l/e
Then Z; — 0 P-a.s. as t — oo.
Indeed, it is not hard to verify that (1), (2) = (II).
The question arises whether is it possible for (1) and (2) to be satisfied.
Suppose, in addition, that

Cilu| < |R(u)| < Calu|, C1,Cy are constants, (4.17)
(3) 2 — ConAKy > 0,
(4) v(2 — CoyAK) o Koy = 0.

Then (3) = (1) and (4) = (2).
Indeed,

ar(u) + Bi(u) < Cryful’[-2 + Cop AKy) <0,
I. > C1e%{y(2 — CoyAK) 0 Koo} = oo.

Remark 4.11. (4) = y0 Ko = 0.

In [74], the convergence Z; — 0 P-a.s. as t — oo was proved under the following conditions:

(A) R(0) =0, R(u)u < 0 for all u # 0;

(M) there exists a nonnegative predictable process r = (r;);>0 integrable with respect to the process
K = (K})t>0 on any finite interval [0, ¢] with the following properties:

(a) 7oKy = o0
(b) Al =427 H—ro K)o (m)e < o0;
(c) all jumps of the process A' are bounded;

(d) ru? +y2AKR (1) < —2y:R(u)u, for all uw € R' and t € [0,00).

Show that (M) = (B'), (1), and (2).

It is obvious that (b) = (B’). Further, (d) = (1). Finally, (2) follows from (a) and (d) thanks to the
relation

L= ~le+5u)eKe=> &0 Koo = 00.
The implication is proved.

In the particular case where (4.7) holds and for all t > 0, wAK; < ¢, ¢ > 0 is a constant, and C}
and C5 in (4.17) are chosen so that 2C; — qC3 > 0 if we take 7 = by, b > 0 with b < 2C; — qC3, then (a)
and (d) are satisfied if v o K, = 0.

But these conditions imply (3) and (4). In fact, on one hand, 0 < 2C; — qC3 < C1(2 — ¢Cs) and,
therefore, item (3) follows, since 2 — Cyy,AK; > 2 — gCy > 0. On the other hand, item (4) follows from
Y(2 = CoyAK) o Koy > (2 — qCo)y 0 Ko = 0.

From what was said above, we can conclude that if conditions (A), (B'), (4.17), wAK; < q, ¢ > 0,
2—qC5 > 0, and y0 K, = 0o are satisfied, then the desirable convergence Z; — 0 P-a.s. takes place and,
therefore, there is no need for choosing the process r = (r¢);>0 with properties (M) (cf. [74], Remark 3.3
and Sec. 4).
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(c) Linear model (see, e.g., [72]). Consider the linear RM procedure

where b € B C (—00,0) and m € M3

dZy = by Zy dK; + wdmy, Zg € F,

loc®
Assume that

7?0 (m)os < 00, (4.18)
vo Ko = 00, (4.19)
VAK o K% < .

Then for each b € B, conditions (A), (B), and (I) are satisfied. Hence,

and,

10.

11.

Zy — 0 P-as. as t— oo. (4.20)

Now let (4.18) and (4.19) be satisfied, but P(y?AK o K% = 00) > 0.
At the same time, assume that B = [by, by], —00 < by < by < 0 and for all t > 0, 1 AK; < |by| L.
Then for each b € B, (4.20) holds.

Indeed,
[ae(u)Itaxc 2oy + Be(w)] T = [blyu?[—2 + [Blv AK T Ak 03]
< Iiagc 0y bl [=2 + |br | AK )T =0
therefore, (II) (i) is satisfied.

On the other hand,

inf  w*{2y/blI{aK 0y + 072 — [BIVAK I {aK 201} © Koo
e<[ul<1/e

> &2[b|y[2 — [ByAK] 0 Koo > €2[bly 0 Koo = o0.
Thus, (II) (ii) is also satisfied.
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