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Introduction

Stochastic equations, both differential and nondifferential, play an important role in many problems
of statistics of random processes, in particular, in problems of estimating the unknown parameters of
semimartingales. Many problems of the estimation theory are reduced to the investigation of questions
connected with the solvability (both strong and weak) of stochastic differential equations (SDEs) and
with the asymptotic behavior of solutions of stochastic estimational equations.

The formalization of a statistical problem and the desire to study it from the standpoint of generality
which is implied by the very essence of a statistical problem make it necessary to consider new specific
problems of stochastic analysis and use new methods of investigating previously known problems. Such
problems include the investigation of special types of stochastic differential equations and properties of
their solutions, and also the asymptotic behavior of the roots of estimational equations in the case of
a model disturbance in various formulations. Using the methods of martingale theory, one can make
a general statistical model with filtration and an important particular case of it, in which models are
associated with semimartingales, the objects of the research.

This monograph is concerned with studies of this kind.
Chapter 1 deals with the structure of all solutions of the Carathéodory-type stochastic differen-

tial equation whose drift coefficient satisfies the well-known Carathéodory condition from the theory of
ordinary differential equations.

The statistical problem that leads to such SDEs is the innovation problem for the nonlinear filtering
(estimation). Our assumption is that the investigated processes are Itô processes. Our aim is to present
such a process without losing information as a simpler and more convenient process for studying a dif-
fusion-type process. In doing so, it should only be assumed that the drift coefficient of the desired Itô
process is square integrable (with respect to the Lebesgue measure) with probability 1. It is desirable
not to strengthen the principal assumption which is natural in many senses (in investigating the absolute
continuity of measures of the corresponding processes, the structure of Itô functionals and diffusion-type
processes and so on).

However, the problem in such a general formulation has turned out to be rather difficult and still
remains unsolved.

Under various additional restrictions both on the structure of the processes considered and on the
kind of dependence of the processes participating in the scheme, this problem has been solved by many
authors. We will speak on this in more detail below when discussing the results of Chapter 2. Here,
in Chapter 1, the drift process is assumed to be a random variable independent of a Wiener process
participating in the scheme. Then the principal assumption holds trivially. Our aim is to confirm the
validity of the hypothesis about the existence of innovations (under the above-mentioned assumption only)
in this particular case.

However, it has turned out that the corresponding SDE (this problem is reduced to the proof of its
strong solvability) has a singularity at the point t = 0 and, therefore, the well-known results from the
SDE theory are not applicable in this case. Therefore, we have developed a theory of such SDEs and
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studied the global and local properties of solutions, as well as the structure of the integral funnel of all
solutions and so on. As a result, we have obtained a solution of the considered statistical problem.

Chapter 2 deals with the construction of an innovation process for the observed component of a
partially observable diffusion-type process in the one- and multidimensional cases. Such problems arise
in the estimation theory of partial likelihood schemes, the nonlinear filtering theory, and the theory of
stochastic control by incomplete data.

As mentioned above, the considered problem belongs to the range of previously existing problems
which demand new methods for their investigation. In particular, such methods include the generalized
Bayes formula, linear integral inequalities derived for the functional of “filter,” the stochastic version of
the Gronwall–Bellman lemma and so on. It is interesting to note that to solve even a one-dimensional
problem, one should use the multidimensional version of the lemma mentioned above. The use of these
methods made it possible to get rid of many assumptions like the assumption of smoothness on the
coefficients of the scheme.

In Chapter 3 the robust estimators for statistical models associated with semimartingales are con-
structed. We consider models with shrinking contamination neighborhoods, where a sequence of alterna-
tive measures is contiguous to a sequence of basic measures. As the basic class of estimators, we consider
the class of generalized CLAN (consistent, linear, asymptotically normal) estimators. Note that here sto-
chastic equations also play an important role, in particular, in the construction of these estimators. One
of the construction methods consists in studying the solvability of stochastic estimational equations and
the asymptotic behavior of their solutions for the model disturbance. Thus, we studied the problem of the
local limiting behavior of the roots of such equations by the appropriately generalized Dugue–Kramer–Le
Breton method. We also studied the global limiting behavior of the roots of these equations and obtained
the desired CLAN estimators. Using the results obtained, we construct B-robust estimators with respect
to the risk functional determined by the asymptotic mean-square error.

In considering the general model of statistical experiments we give the definition of the notion of
“shrinking contamination neighborhoods” and formulate the minimax optimization problem. We also
develop methods for finding optimal score functions, which, as it turns out, are the Huber functions.

We investigate the problem of robustness in two stages. In stage 1 we study separately and in great
detail an important particular case of the discrete time. The well-known special models of time series are
discussed. In stage 2 we consider the general case associated with semimartingales.

Finally, in Chapter 4 we introduce and investigate the Robbins–Monro-type stochastic differential
equation and, in particular, study the question whether the solution of this equation is convergent with
probability 1. Many generalized schemes of stochastic approximation and recursive estimation can be
reduced to equations of the considered type. In this context, we have obtained a theorem which includes
as particular cases many familiar results. The question how the results obtained here are related to the
previously known results is studied when treating the special cases.

Theorems and facts from the general theory of random processes used in the present work can be
found in [8,21,39,48,52,59,63, 82, 88, 99, 130].

Chapter 1 deals with the following one-dimensional SDE:

dξt = A(t, ξt)dt+ dWt, 0 ≤ t ≤ T, ξ0, (0.1)

where the function A(t, x): [0, T ]× R1 → R1 is a Borel-measurable function with respect to a pair (t, x),
W = (Wt) is a standard Wiener process, and ξ0 is a random variable, independent of W . We study the
structure of all solutions of this SDE.

In Sec. 1.1 we prove (Theorem 1.1) that Eq. (0.1) has a pathwise unique strong solution if and only
if it has a weak solution unique in law.

This result and a method of proof based on the Tanaka–Meyer formula and the Yamada–Watanabe
theorem [37, 126] were at first published in 1981 [101]. An analogous approach was developed in [62, 80]
in 1983 (see also [51,84]).
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The consideration of the example given at the end of Sec. 1.1 naturally leads to the question: what
is a sufficiently wide class of conditions for the existence and uniqueness of a weak or strong solution of
Eq. (0.1), without requiring, in general, that the measure corresponding to the constructed solution be
necessarily absolutely continuous with respect to a Wiener measure? Moreover, it will be interesting to
find conditions which would, perhaps, guarantee only the existence of weak and strong solutions of Eq.
(0.1) and, in this connection, to consider the relation between the sets of these solutions, in other words,
to study the structure of the class of all solutions of Eq. (0.1).

Note that Eq. (0.1) is equivalent to the ordinary differential equation (with a coefficient containing
“stochastics”)

dηt
dt

= Ã(t, ηt), η0 = ξ0, (0.2)

where Ã(t, x) = A(t, x+Wt), 0 ≤ t ≤ T , x ∈ R1.
As in the theory of ordinary (deterministic) differential equations, it is natural to study Eq. (0.2)

by the following scheme: first to study the local structure of the solutions of (0.2) and then to find the
conditions under which the solutions can be continued on the whole “time” interval.

The technique used for obtaining such theorems is the “truncation” of the coefficient of the equation
and finding sufficiently simple conditions which guarantee the existence of global solutions for the equation
with a “truncated” coefficient, which, obviously, leads to the existence theorems for local solutions of the
initial equation (see, e.g., [9, 15]).

The Carathéodory conditions are the well-known conditions of this type.
C-conditions:
(1) the function A(t, x) is measurable in t for any fixed x ∈ R1 and continuous in x for any fixed t,

0 ≤ t ≤ T ;
(2) there exists a Borel-measurable function m(t), m(t) ≥ 0, 0 ≤ t ≤ T , such that for any t ∈ [0, T ]

and x ∈ R1,

|A(t, x)| ≤m(t),

∫ T
0
m(t) dt <∞. (0.3)

Now we consider Eq. (0.2). Note that under the Carathéodory conditions in the theory of ordinary
differential equations the following statements are basic:

(a) there exists a solution of (0.2), i.e., for every fixed ω ∈ Ω there exists a continuous function

(ηt(ω)), 0 ≤ t ≤ T , satisfying Eq. (0.2) with Ã(t, x) = A(t, x+Wt(ω));
(b) there exist the so-called maximal and minimal solutions of (0.2) with a fixed initial condition;
(c) the cross section of the integral funnel of the solutions (i.e., the set of all solutions of Eq. (0.2)

“starting” from one point) for every t represents a closed interval.
However, these statements do not provide the existence of a solution (ηt(ω)), 0 ≤ t ≤ T , ω ∈ Ω, of

Eq. (0.2) at least measurable with respect to ω and, in particular, possessing the desirable property of
Fη0 ∨ FWt -measurability for every t, where FWt = σ(Ws, s ≤ t), or the existence of a strong solution of
Eq. (0.2).

The natural analogue of statement (c), saying that for any t ∈ [0, T ], at least one strong solution
passes through a point ξ (random variable) of a random interval It0 := {ξ: ξt0

≤ ξ ≤ ξt0 (P -a.s.)}, where

ξ
t0
and ξt0 are the lower and upper bounds of the integral funnel section at the point t = t0, is not true,

or, roughly speaking, strong solutions do not fill up the interval It0 . Moreover, if we consider the class
of all anticipating solutions (this notion is defined below) instead of the class of strong solutions of Eq.
(0.2), then the above-given statements (a), (b), and (c) hold.

It is well known ([3,51,84]) that the continuous process ξ = (ξt), 0 ≤ t ≤ T , is a strong solution of SDE
(0.1) on the given probability space (Ω,F , P ) and with respect to the fixed Wiener process W = (Wt),
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0 ≤ t ≤ T , and initial condition ξ0, if the process ξ is adapted to the P -augmented filtration (Fξ0 ∨FWt ),
0 ≤ t ≤ T , and satisfies SDE (0.1) with the initial condition ξ0.

If the solution process ξ is such that the random variable ξt is (Fξ0 ∨ FWT )-measurable for each t,
0 ≤ t ≤ T , then we call the process ξ an anticipating solution of SDE (0.1).

Note that we introduce the notion of the anticipating solution only for equations of the type (0.1),
i.e., for equations with unit diffusion coefficient.

The anticipating solution can be constructed, for example, simply as follows.
Let (ξ1t ) and (ξ2t ), 0 ≤ t ≤ T , be two “distinct” strong solutions of Eq. (0.1) and let A be an event

from FWT = σ(Wt, 0 ≤ t ≤ T ). Then it is obvious that the process

ξt = ξ1t I{A} + ξ2t I{Ac}, 0 ≤ t ≤ T, (0.4)

where I{·} is an indicator of the event {·}, is the anticipating solution of Eq. (0.1) and each of its

trajectories represents a trajectory of a strong solution (either (ξ1t ) or (ξ
2
t )). This construction suggests

only that every anticipating solution can be represented as a combination of strong solutions.
In Theorem 1.5, the above-mentioned hypothesis concerning the representation of anticipating so-

lutions in the form of a combination of strong solutions acquires a strong sense. Namely, Theorem 1.5
proves that for every anticipating solution ξ = (ξt), 0 ≤ t ≤ T , of Eq. (0.1), a measurable functional
Φ(t, ω, ω1), 0 ≤ t ≤ T , ω,ω1 ∈ C[0,T ] can be found, such that for any ω1 ∈ C[0,T ] the stochastic process
Φ(·, ·, ω1) is a strong solution of (0.1) and

ξt(ω) = Φ(t, ω, ω), 0 ≤ t ≤ T (P -a.s.),

where P is a standard Wiener measure defined on the measure space (C[0,T ],B[0,T ]) of continuous functions.
This theorem, together with Theorems 1.6, 1.2, 1.3, and 1.4, gives a complete description of the

integral funnel of all solutions of (0.1) in terms of strong solutions.
The structure of the solutions of the stochastic equations of general type has been studied in [128,129].

The application of the methods developed in these papers to SDE (0.1) leads to the fact that under

conditions on A(t, x) (e.g., |A(t, x)| ≤ m(t),
∫ T
0 m

1+ε(t) dt < ∞, ε > 0) it becomes possible to present
every weak solution (in a certain sense) in the form of a combination of anticipating solutions of Eq. (0.1).
To be more precise, if

(Ω,F , F = (Ft), P,W = (Wt), ξ = (ξt), 0 ≤ t ≤ T )

is a weak solution of Eq. (0.1), then one can find a combination of the objects

(Ω̃, F̃ , F̃ = (F̃t), P̃ , W̃ = (W̃t), ξ̃ = (ξ̃t), 0 ≤ t ≤ T,α)

(α is a random variable) and a measurable functional Φ(t, x, ω), 0 ≤ t ≤ T , x ∈ R1, ω ∈ C[0,T ], continuous

in t, such that the random variable α is independent of the Wiener process W̃ and uniformly distributed

on [0, 1], ξ̃ = (ξ̃t), 0 ≤ t ≤ T , and ξ = (ξt), 0 ≤ t ≤ T , have the same probability law, and for any

x ∈ [0, 1], the process Φ(t, x, W̃ ) represents an anticipating solution of Eq. (0.1) (with W̃ instead of W ),
and

ξ̃t = Φ(t, α, W̃ ), 0 ≤ t ≤ T (P -a.s.).

Obviously, the result obtained in Theorem 1.5 (the representation of an anticipating solution of Eq.
(0.1) in the form of a combination of strong solutions) together with that just described (the represen-
tation of a weak solution in the form of a combination of anticipating solutions) provides us with the
representation of a weak solution in the form of a combination of strong solutions.

In Theorem 1.7, a sufficient condition for the uniqueness of the solution of (0.1) is given, such that it
does not suggest an absolute continuity of the measure corresponding to the solution of (0.1) with respect
to a Wiener measure.

In Sec. 1.3, applying the “truncation technique” to Eq. (0.1), we deduce existence and extension
theorems for the local solutions of Eq. (0.1). Here (Proposition 1.2, Theorem 1.8 and its Corollary 1.1,
and Theorems 1.9, 1.10, and 1.11) conditions which guarantee the possibility of the extension of the

2712



solutions to the whole “time” interval [0,∞) under consideration, as well as conditions of the uniqueness
are given.

Note that in choosing the “truncation” function the local (i.e., with small t) properties of a Wiener
process are substantially used, in particular, the Lévy law of the iterated logarithm [38].

A survey of the results as well as many aspects of the theory of SDEs close to those considered by
us, can be found in [3,47,56,121,131,132].

Section 1.4 deals with special cases and examples illustrating different aspects of the suggested
approach.

The last section, Sec. 1.5, is devoted to the innovation problem for the process

dξt = θ dt+ dWt, ξ0,

where θ is a random variable independent of the process W .
The investigation of this statistical problem leads to the Carathéodory-type SDE, since the function

A(t, x) from (1.46) is an unbounded function near the point t = 0.
In Sec. 1.5 we give a positive solution of this problem.
A number of papers were devoted to the problem of innovations in different schemes. We briefly

describe here some of the main aspects and results.
Introduce a stochastic basis (Ω,F , F = (Ft), 0 ≤ t ≤ T , P ) with a Wiener process W = (W,F ), and

let a process β = (β, F ) be defined on it.
Let ∫ T

0
|βt| dt <∞ (P -a.s.)

and consider the Itô process ξ = (ξ, F ) with the differential

dξt = βtdt+ dWt, ξ0 = 0. (0.5)

In the general case, the existence of an innovation process for ξ means that the following assertions
hold.

I. (Representation). There exists a nonanticipating functional mt(X), 0 ≤ t ≤ T , x ∈ C[0,T ] such
that the process

W = (W,F ξ),

where

W t = ξt −

∫ t
0
ms(ξ) ds, (0.6)

is a Wiener process.
Here

F ξ = (Fξt ), 0 ≤ t ≤ T, (0.7)

where Fξt = σ(ξs, s ≤ t) is an augmented [51] σ-algebra generated by the process ξ up to the moment t.
Analogously, denote

FW =
(
FWt
)
, 0 ≤ t ≤ T, (0.8)

where FWt = σ(W s, s ≤ t) is an augmented σ-algebra generated by the process W up to the moment t.
II. (Coincidence of augmented filtrations).

FW = F ξ (modP ),

i.e., the process W contains the same information as the process ξ.
Statement I was proved for the first time by Shiryaev [87] and Kailath [22,49] under the assumption∫ T

0
E|βt(ω)| dt <∞,
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and later the condition was considerably weakened in the papers of Yershov [127], Toronjadze [96] (for
the case where βt(ω) = θ(ω) is a random variable), and Meyer [77], where under the assumption that

mt = E(βt | F
ξ
t )

exists (for almost all t w.r.t. the Lebesgue measure), it was shown that∫ T
0
|mt| dt <∞ (P -a.s.)

and statement I holds.
It is also known that if β and W are independent, then it is sufficient for statement I that∫ T

0
β2t dt <∞ (P -a.s.) (0.9)

(see Lipster and Shiryaev [66]).
Cirelson [13] has constructed an example of bounded β = (β, F ξ) for which statement I holds auto-

matically but statement II cannot take place.
Thus, for statement II to hold, additional assumptions on the type of the dependence of β on W

should be introduced.
For example, it is shown in [66] that if (β,W ) is a Gaussian system and condition (0.9) is satisfied,

then statements I and II hold.
If, on the other hand, β is assumed to be independent of W , then the sufficient conditions (of

boundedness) on β in statement II were successively weakened by different authors:
(a) Clark [14]: |βt(ω)| ≤ c <∞ (P -a.s.), where c is a nonrandom constant;
(b) Allinger and Mitter [2]:

E

∫ T
0
β2t dt <∞;

(c) Chitashvili [11]: ∫ T
0
E(β2t | F

ξ
t ) dt <∞ (P -a.s.).

There exists a conjecture that condition (0.9) is also sufficient for statement II to hold, but this
conjecture has not yet been proved.

In the special case, where

βt = θ

is a random variable, and, therefore, condition (0.9) holds automatically, statement II is proved in Chapter
1, Sec. 1.5.

The problem of filtration and control of a partially observable random process naturally leads to the
case of a special dependence of β on W arising under the assumption that the process ξ is the so-called
observable component of a diffusion-type process (η, ξ).

Consider the process (η, ξ) which is the solution of the following SDE:

dηt = at(ξ, η)dt + bt(ξ, η)dWt, η0= 0,

dξt = At(ξ, η)dt+ ct(ξ)dWt, ξ0 = 0,
(0.10)

where W is a multidimensional Wiener process, the coefficients a and A and b and c are vector- and
matrix-valued, respectively, nonanticipating functionals.

In such a scheme, the problem of innovations is solved for the following cases:
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(d) the so-called conditionally Gaussian scheme (see [66]): there exist coefficients a,A, b, and c such
that

at(x, y) = at(x)yt,

At(x, y) = At(x)yt,

bt(x, y) = bt(x),

ct(x) = ct(x),

which satisfy the Lipschitz and boundedness conditions with respect to the variable x;
(e) Krylov ([54, 55]) has considered the case of a multidimensional diffusion-type process in the

Markov case (i.e., for example,

At(x, y) = At(xt, yt)),

where the coefficients a,A, b, and c are sufficiently smooth and bounded.
Note that the existence of a “noise” correlation is not excluded here;
(f) Chitashvili [12] has studied the special case of scheme (0.10), the so-called triangular system

(one-dimensional), where the coefficients a,A, b, and c satisfy the Lipschitz condition with respect to the
two variables x and y and the condition of a linear growth.

The “noise” correlation is not excluded; however, specific additional conditions are imposed on it.
In Sec. 2.1, we prove the multidimensional stochastic version of the Gronwall–Bellman lemma (see,

e.g., [66]).
In the next two sections we consider a one-dimensional (Sec. 2.2) and multidimensional (Sec. 2.3)

partially observable diffusion type process of the form (0.10).
In Sec. 2.2 we consider the scheme given by SDE (2.1), and under the linear growth (in both space

variables x and y) and Lipschitz conditions (with respect to the variable x) on the coefficients of the
scheme we prove the existence of the innovation process W for the observable component ξ. In contrast
to case (f), the Lipschitz condition on at(x, y) and At(x, y) with respect to the variable y is not required
here.

In Sec. 2.3, we consider a multidimensional case and under the boundedness and the Lipschitz
conditions on the coefficients a,A, b, and c, we construct an innovation process.

This result generalizes case (e) in two directions: first we consider a non-Markov case, and second,
reject the smoothness conditions on the coefficients.

The results of Chapters 1 and 2 have been published in [95–103,107,108,111].
The problems considered in Chapter 3 belong to the asymptotic theory of robust estimation for

dependent observations.
The theory of robust estimation for the case of independent, identically distributed (i.i.d.) obser-

vations was investigated for the first time by Huber [34, 35] and developed by Hampel et al. [32]. The
key role in this theory is played by the M -estimators introduced by Huber as generalizations of the max-
imal likelihood estimates (MLE). The M -estimators can be constructed as solutions of the stochastic
estimational equation

n∑
i=1

ψ(Xi, θ) = 0, (0.11)

where Xi, i ≥ 1, are the i.i.d. observations with common density f(x, θ), θ ∈ Θ is an unknown parameter
to be estimated, the so-called score function ψ(x, θ) is such that Eθψ(X1, θ) = 0 and, hence, the left-hand
side of Eq. (0.11) is a martingale with respect to the measure generated by the density f(x, θ).

Proceeding from Eq. (0.11), one can construct the CLAN estimators [6, 112,113], which are asymp-
totically equivalent to the M -estimators. This class of estimators is one of the basic classes in the theory
of robust estimation.
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The necessity of extension of the class MLE to the class of M - or CLAN-estimators arises because of
the main assumption of the theory: the parametric family of distributions of observations is not exactly
specified, and observations are assumed to be distributed with density from some neighborhood of the
basic (core) density f(x, θ).

More frequently the so-called Huber’s gross error (contamination) model is considered. In this case
the “neighborhood” is given by the formula

ΦHε = {f̃(x, θ) : f̃(x, θ) = (1− ε)f(x, θ) + εh(x, θ)}, ε > 0, (0.12)

where h(x, θ) is a density from some class H. The class H is specified depending on the statistical problem

under consideration. Measures generated by densities f̃(x, θ) are called alternative measures or, simply,
alternatives, and H is called a class determining alternatives.

This model has a clear statistical meaning. Let Xi, i ≥ 1, be i.i.d. observations with density f(x, θ),
and Wi, i ≥ 1, be i.i.d. observations with density h(x, θ). Consider the i.i.d. sequence of 0–1 random
variables Zi, i ≥ 1, with

P (Zi = 1) = ε, i ≥ 1.

If the sequences (Xi), (Wi), and (Zi) are mutually independent, then the random variables

Yi = (1− Zi)Xi + ZiWi (0.13)

form i.i.d. observations with density f̃(x, θ). Thus the observations (Xi) are “contaminated” by the
observations (Wt).

Introduce a criterion of comparison of estimates based on a risk functional. Frequently, as this
functional there occurs an asymptotic mean-square error and the estimator is called optimal if it is a
minimax estimator with respect to the risk functional, where the maximum is taken over the class H,
whereas the minimum is taken over the class Ψ = {ψ(x, θ)} of functions, which determine the estimators
(in particular, over the class that determines the CLAN estimators).

In such a statement, MLEs are now not optimal. Optimal estimators are prescribed by the Huber
functions, included in the class of functions ψ(x, θ) determining M -estimators.

The optimal score functions have the form

ψ∗ = [l − β∗]m
∗

−m∗ , (0.14)

i.e., are centered, truncated, maximum likelihood scores, where β∗ is the centering parameter and m∗ is
the truncation parameter.

In the case where the “radius” ε of the neighborhood ΦHε depends on the time variable, i.e., ε = εn
and εn → 0 as n → ∞, we have the set of shrinking contamination neighborhoods {ΦHεn}. If now the

sequence of alternative measures {P̃nθ } is contiguous to that of basic measures {Pnθ }, then we obtain the
shrinking contamination neighborhoods with contiguous alternatives. The above-described scheme can
be generalized at least in two principal directions: (1) passage to an infinite-dimensional parameter set,
i.e., to semiparametric models and (2) passage to dependent observations ([33,57,70,92]) (composition of
these two directions is also possible).

Many aspects of the estimation theory dealing with semiparametric models for i.i.d. observations are
presented in [7,81,124]. A number of papers [26–30] are devoted to questions of the asymptotic theory of
estimation for semimartingale models.

In our work, the set of parameters Θ is one-dimensional and the observations are dependent.
As it turned out, when passing from the i.i.d. observations to the dependent observations, the

contamination model given by formula (0.12) (call it contamination of measures) and the model described
by formula (0.13) (call it contamination of trajectories or replacement model) do not coincide but, on the
contrary, radically differ.

Contamination of measures for dependent discrete time observations, more precisely, for a stationary
ergodic AR(p) model, was first investigated by Künsch [57]. Under certain assumptions on the model,
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he constructed a so-called optimal B-robust (“B” is the abbreviation of “bias”) estimate [32] and showed
that this estimate is given by the Huber function. Contamination of trajectories was first considered by
Martin and Yohai [70] for stationary ergodic time series. They have shown that in considering the process
of moving average, the Huber function provides no robust estimates.

Our approach generalizes contamination of measures (0.12) and, therefore, continues the investiga-
tions started by Künsch. Moreover, we consider shrinking contamination neighborhoods with contiguous
alternatives for statistical models with filtration associated with semimartingales.

Let us describe briefly the points concerning this model. First of all, we must clarify the notion
of M -estimators, investigate their asymptotic properties, and then consider the problem of constructing
these estimators (in particular, the CLAN estimators). To this end, in Sec. 3.1 we consider the general
stochastic estimational equations. Investigating the limiting behavior of roots of these equations, we
obtain the CLAN estimators. In Subsection 3.1.1 (Theorem 3.1) we investigate the question of asymptotic
solvability and asymptotic behavior of roots of these equations in the neighborhood of a fixed point θ of
the set of parameters Θ. All these classical questions for i.i.d. observations have been investigated by
Dugue and Cramer [19]. Le Breton has considered the case of the diffusion processes.

Subsection 3.1.2 (Theorem 3.2) concerns the investigation of global asymptotic properties of the
solutions. This scheme is less popular. We refer to the paper of Perlman [79]. Note only that the “local
theorem” provides us with the solution of the identification problem of unknown parameter, whereas the
“global theorem” allows us to construct consistent estimators.

Section 3.2 deals with the robust estimation problems in discrete time models and Sec. 3.3 with the
general case.

The basic results obtained in these sections can be summarized as follows.
(a) The main notions of robust estimation theory are generalized and the main objects of this theory

are introduced. On this basis, an optimization minimax problem is stated (with asymptotic mean-square
error as a risk functional) for shrinking contamination neighborhoods with contiguous alternatives for sta-
tistical models associated with semimartingales under the integral representation property for martingales
[67].

(b) Conditions are given under which optimal-in-the-minimax-sense score martingales (which deter-
mine optimal B-robust estimates) are defined by the Huber functions (Theorems 3.4 and 3.6).

Let us give a more detailed account of our approach. We consider an array scheme which is formalized
by the consideration of a sequence of statistical models E = {En}n≥1 (see Subsection 3.3.1). See also,
e.g., [36]. Note that for every n ≥ 1 the model En is assumed to be regular (see Subsection 3.3.2),
while the very sequence E is ergodic (see Subsection 3.3.1). We have introduced the concept of CLAN
estimators (see Subsection 3.3.2) and then, on the basis of the notion of an exponential martingale, we
have introduced the set of shrinking contamination neighborhoods of a core sequence of measures (see
Subsection 3.3.3) generalizing (0.12). We have also investigated the asymptotic properties of CLAN
estimators under the sequence of alternative measures belonging to this set and obtained the “biased”
estimates (Proposition 3.1).

Further, we investigate the question under what kind of conditions the sequence of alternative mea-
sures {P̃nθ } is contiguous to the basic sequence of measures {Pnθ } (see Subsection 3.3.3), establish an
exact form for asymptotic distributions of CLAN estimators under such a sequence of measures (Propo-
sition 3.2), and obtain an analogue of influence functionals (see Subsection 3.3.3 and (3.37)), which play
an important role in all these problems.

We need this preparatory work in order to introduce and calculate the risk functional (see Subsec-
tion 3.3.4) and also to formulate our optimization problem (see Subsection 3.3.4). However, the risk
functional D(L,N, θ), being the functional of a sequence of martingales determining the CLAN estima-
tors and of martingales determining alternatives, is, in the general case, an implicit function of these
sequences. Therefore, in the general case, it is impossible to obtain any constructive solution of the
optimization problem and to construct an optimal sequence of score martingales.
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Furthermore, we assumed that the martingales under consideration possess the integral representation
property (see Subsection 3.3.3) and on the basis of this property we worked out the so-called approximation
technique as follows: starting from relation (3.104), we first fix index n ≥ 1 and then consider the
optimization problem associated with the risk functional Dn(L

n,Nn, θ) (see (3.103)). Stochastic analysis
(in the presence of the integral representation property of martingales) allows us to deduce an explicit
formula for calculating Dn(L

n,Nn, θ) (see (3.125)) and for describing explicitly the classes Ψ0n and HRn
of functions for which the optimization minimax problem is stated and solved (see Subsection 3.3.8, 1, 2,
(i), (ii)). As a result, we obtain a score martingale whose integrands in the integral representation are
Huber functions (see Theorem 3.5).

Then we construct classes Ψ andHΨ of sequences of functions, which determine the score martingales,
and the martingales determine the alternatives, respectively (see Subsection 3.3.8), in such a way that
the score martingale, which is optimal for each fixed step n with respect to Dn(L

n,Nn, θ), would form a
sequence of optimal martingales with respect to the risk functional D(L,N, θ) (see Theorem 3.6).

We end with the survey of Sec. 3.2.
This section deals with the discrete-time statistical models. We have singled this case out of the

general ones, considered in Sec. 3.3, for the following reasons:
1. This case is one of the most important particular cases involving many known time-series models.

A large number of papers are devoted to the investigation of various aspects of robust estimation for the
i.i.d. observations and for various classes of time series. This allows us to compare earlier known results
with those obtained by us (see Subsection 3.2.4). In the general case we lose this possibility.

2. The objects introduced in this section are simple and give way to the statistical interpretation.
3. Making use of the compact and simple objects under consideration, we present all proofs in detail.
4. The methods of proof of the basic theorems (see Theorems 3.3 and 3.4) are rather common and

after slight changes and remarks can be applied to the general case. All these arguments used in Sec. 3.3,
help us to avoid not substantial but cumbersome calculations.

In Subsection 3.2.2, we state and solve the optimization problem for the fixed nth step. The solution
is the Huber function ψn = [ln − βn]mn−mn (see Theorem 3.3). The equation for the optimal truncation
level m∗n is derived, studied, and used for the approximation. Moreover, this equation can be applied
to the investigation of the differentiability of the optimal score function ψ∗,n with respect to θ (see
Subsection 3.2.5). Such equations have never been studied, even for i.i.d. case. This is a point of this
subsection.

In Subsection 3.2.3, we introduce classes of sequences of score functions Ψ and alternatives HΨ.
The ergodicity conditions formulated in the definitions of these classes ensure optimality of the sequence
ψ∗ = {ψ∗,n}n≥1, where ψ∗,n is the optimal score function constructed at the fixed nth step (see The-
orem 3.4). The ergodicity conditions in the definition of the class Ψ are rather involved because the
centering parameter βn is a nonlinear functional of the conditional distribution of maximum likelihood
scores, Qn,l. If this distribution is symmetric with respect to zero and hence βn = β(Qn,l) = 0, then the
ergodicity conditions are simplified, i.e., the usual condition of weak convergence for averaged distributions
is sufficient.

Subsection 3.2.4 is devoted to examples of various special models illustrating various aspects of the
problem. Below we briefly discuss this point and indicate the relations to the known results of different
authors.

The i.i.d. case in a more strict (uniform) setting was considered for the first time by Bickel [5, 6].
Note that in Model I.2 we consider independent, nonidentically distributed observations, i.e., the

simplest but nonstationary process. None of the earlier known approaches can be applied in this case.
The stationary ergodic AR(k) model for the contamination neighborhoods of a fixed “radius” ε > 0
was studied by Künsch [57]. He considered a multidimensional parameter, formulated the optimization
problem in the Hampel setting and solved it, and, as a result, obtained the Huber function. Our approach
to this case is described in Model II. Staab [92] considered the stationary ergodic ARMA(p, q) models.
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In Model III we show that Staab’s approach is covered by ours. Case (b) of Model I.2, Model II, and
Model III in Staab’s setting, and cases 1(b) and 1(c) of Model IV illustrate the situation where the risk
functional D(ψ,H, θ) can be expressed explicitly, and contamination is full. Case (a) of Model I.2 and
case 1(a) of Model IV correspond to the situation where the minimax problem is reduced to the form
(3.23), but contamination is not full. Model III in the general setting and case 1(d) of Model IV illustrate
the situation where the above theory can be applied in its full capacity.

In the last subsection, Subsection 3.2.5, a method of constructing optimal CLAN estimators is given.
The results of this chapter have been published in [104,109,112–117,119,120].
In Chapter 4, the SDE of the form

dZt = Ht(Zt−)dKt +M(dt, Zt−), Z0 (0.15)

is considered. Here Ht(u) andM(t, u), t ∈ [0,∞), u ∈ R1, are random fields with the following properties:
for each u ∈ R1, the process (Ht(u))t≥0 is predictable, the process M(u) = (M(t, u))t≥0 is a locally
square-integrable martingale, and k = (Kt)t≥0 is an increasing predictable process. The family M(u),
u ∈ R1, is assumed to possess the integral representation properties of various types.

If u = (ut)t≥0 is a predictable process, we use the symbol
∫ t
0 M(ds, us) for the notation of the

corresponding stochastic integral andM(dt, ut) is its “differential.” For instance, ifM(u) = f(u) ·m, then∫ t
0 M(ds, us) :=

∫ t
0 f(us) dms and M(dt, ut) = f(ut)dmt. For details, see Sec. 4.1.

We call SDE (0.15) the Robbins–Monro-type (RM-type) SDE if the drift coefficient Ht(u) satisfies
the following conditions: for all t ∈ [0,∞) P -a.s.

Ht(0) = 0,

Ht(u)u < 0 for all u �= 0.

SDE (0.15) naturally includes the RM stochastic approximation algorithms with martingale noises

(see, e.g., [68, 72–76]). For example, if Ht(u) = γtR(u) and M(t, u) =
∫ t
0 γs dms, where γ = (γt)t≥0 is

a nonnegative predictable process, R(u) is a deterministic function (regression function) with R(0) = 0,
R(u)u < 0, andm = (mt)t≥0 is some locally square-integrable martingale, SDE (0.15) gives the generalized
RM procedure introduced in [72].

In the paper of Lazrieva and Toronjadze [110], the algorithm of constructing the recursive maximum
likelihood estimation procedures for general statistical models with filtration was proposed. In the case
of discrete time, this procedure is given in Example 1(a) below and is embedded in (0.15), while it is not
covered by the generalized RM algorithm, although it should be mentioned that in the i.i.d. case the
classical RM algorithm contains recursive estimation procedures ([1, 64,78,85,86]).

Thus, the consideration of the RM-type SDE (0.15) allows us to study both stochastic approximation
and recursive estimation procedures by a common approach.

The question of strong solvability of SDE (0.15) is well investigated (see, e.g., [23–25,44,71,83,84]).
Assume that there exists a unique strong solution Z = (Zt)t≥0 of (0.15) on the whole interval [0,∞).

In Chapter 4 we study only the problem of P -a.s. convergence Zt → 0 as t→∞.
Our approach to this problem is based on two representations, standard and nonstandard, of the

predictable bounded variation process a = (At)t≥0 in the decomposition of the semimartingale (Z2t )t≥0
in the form of the difference of two predictable increasing processes A1 = (A1t )t≥0 and A

2 = (A2t )t≥0 and
uses Theorem 4.1 on convergence sets of nonnegative semimartingales [65,67].

Two groups of conditions, (I) and (II), connected with the standard and nonstandard representations
are introduced in Sec. 4.2. On this basis, the main result, concerning the convergence Zt → 0 P -a.s. as
t→∞ is formulated (see Theorem 4.2).

In the same section, the relationship between groups of conditions (I) and (II) are also investigated.
In the next section, Sec. 4.3, some simple sufficient conditions for (I) and (II) are given.
In the last section, Sec. 4.4, the series of examples illustrating the efficiency of all aspects of our

approach is given.
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The results of Chapter 4 have been published in [105,106,110,118].
In conclusion, we note that in [4,10,16–18,20,41–43,46,53,61,68,69,89,90,94,122,123,125] one can

find many questions concerned with the statistics of random processes which are close in spirit to the
problems presented in Chapters 3 and 4.

Chapter 1

STRUCTURE OF SOLUTIONS OF A ONE-DIMENSIONAL SDE WITH UNIT
DIFFUSION COEFFICIENT

1.1. Regular Equations

Consider the following one-dimensional stochastic differential equation (SDE)

dξt = A(t, ξt)dt+ dWt, 0 ≤ t ≤ T, ξ0, (1.1)

where W = (Wt), 0 ≤ t ≤ T , is a standard Wiener process, a function A(t, x): [0, T ] × R1 → R1 is
Borel-measurable with respect to a pair of variables (t, x), and ξ0 is an arbitrary real random variable
(r.v.) independent of W .

An SDE is said to be regular in law (weakly regular) ([126]) if there exists at least one weak solution
and if all solutions (which can be defined in different probability spaces) with the same initial distributions
have the same probability law.

An SDE is said to be strongly regular ([126]) if there exists a strong solution which is pathwise unique.
The strong regularity implies the regularity in law.
Now we show that for SDE (1.1) the two notions are equivalent.
Recall the following facts.

Proposition 1.1. Let ξi = (ξit), 0 ≤ t ≤ T , i = 1, 2, be two Itô processes with differentials

dξit = ai(t, ω)dt+ bi(t, ω)dWt, 0 ≤ t ≤ T, ξi0, i = 1, 2,

and let

η(t) = max(ξ1t , ξ
2
t ), 0 ≤ t ≤ T.

Then

η(t) = η(0) +

∫ t
0
I{ξ1s>ξ2s}dξ

1
s +

∫ t
0
I{ξ2s≥ξ1s}dξ

2
s +

1

2
Λξ
1−ξ2

t (0),

where Λξt (a) is a semimartingale (the Itô process) local time at the point a ∈ R1 ([51,84]).

Proof. It immediately follows from the simple relation

η(t) = (ξ1t − ξ
2
t )
+ + ξ2t ,

where x+ = max(0, x), and the Tanaka–Meyer formula that if X = (Xt), 0 ≤ t ≤ T , is a continuous
semimartingale, then

X+t = X+0 +

∫ t
0
I(0,∞)(Xs)dXs +

1

2
ΛXt (0).

Remark 1.1. It is well known [84] that

ΛXt (0) = lim
ε→0

1

ε

∫ t
0
I(0,ε)(Xs)d〈X〉s. (1.2)

The following simple lemma is given for the completeness.
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Lemma 1.1. Let ξ1 and ξ2 be two r.v. such that

ξ1 ≥ ξ2 (P -a.s.),

and the distribution functions of r.v. ξ1 and ξ2 coincide:

Fξ1(x) = Fξ2(x) ∀x ∈ R1.

Then ξ1 = ξ2 (P -a.s.).

Proof. Denote ηi = f(ξi), i = 1, 2, where f(x), x ∈ R1, is a strongly increasing bounded function, e.g.,
f(x) = arctan x. Let ζ = η1 − η2. Then, from the conditions of the lemma, we obtain

ζ ≥ 0, Eζ = 0.

Hence ζ = 0 (P -a.s.). The assertion follows.

Theorem 1.1 (of equivalence). Equation (1.1) is strongly regular if and only if it is regular in law.

Proof. The necessity is obvious. Now we prove the sufficiency.
Let SDE (1.1) be regular in law and let ξ1 and ξ2 be two weak solutions of (1.1) defined on the same

probability space, and ξ10 = ξ20 (P -a.s.).
According to Proposition 1.1, it is easy to see that the continuous stochastic processes η(t) =

max(ξ1t , ξ
2
t ) and η(t) = min(ξ1t , ξ

2
t ), 0 ≤ t ≤ T , are solutions of (1.1) since Λξ

1−ξ2

t (0) = 0 (see (1.2)).
Due to the conditions of the theorem, these processes have the same probability law. But for each t,
0 ≤ t ≤ T ,

η(t) ≤ ξ1t , ξ
2
t ≤ η(t) (P -a.s.)

and, therefore, according to Lemma 1.1,

η(t) = ξ1t = ξ2t = η(t) (P -a.s.).

The desirable statement follows immediately if we use the Yamada–Watanabe theorem [126] claiming
that the existence of a pathwise unique weak solution implies the existence of a unique strong solution.

The approach used in Proposition 1.1 for the equation

dξt = A(t, ξt)dt+B(t, ξt)dWt, 0 ≤ t ≤ T, ξ0 (1.3)

results, for the maximum η(t) of two solutions (ξ1t ) and (ξ2t ), 0 ≤ t ≤ T , in the following formula:

η(t) = η(0) +

∫ t
0
(A(s, η(s))ds +B(s, η(s))dWs)

+ lim
ε↓0

1

4ε

∫ t
0
(B(s, ξ1s )−B(s, ξ

2
s ))
2I{|ξ1s−ξ2s |≤ε}ds,

from which it becomes obvious that the statement of Theorem 1.1 is valid for (1.3) if we assume that the
function B(t, x) satisfies the Hölder condition

|B(t, x)−B(t, y)| ≤ b(t)|x− y|α, α ≥
1

2
,

and ∫ T
0
b2(t)dt <∞.

Note, however, that it is impossible to get rid of the assumptions on the function B(t, x) in (1.3).
To see this, we refer to the well-known example due to Tanaka [37]

dξt = B(ξt)dWt, 0 ≤ t ≤ T, ξ0 = 0,

where B(x) = 1 and B(x) = −1 if x > 0 and x < 0, respectively.
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To illustrate Theorem 1.1, we consider a simple sufficient condition for the existence and uniqueness
of the weak solution (and, hence, by Theorem 1.1 for the strong solution) of (1.1), having a measure
absolutely continuous with respect to the measure of the process ξt =Wt + ξ0, 0 ≤ t ≤ T .

Example. Let for any t, 0 ≤ t ≤ T , and x ∈ R1

|A(t, x)| ≤ K(1 + |x|), K = const <∞.

More general conditions of this type are given in [66].

1.2. The Carathéodory-Type SDE. Existence Theorem. Description of the Integral Funnel

Assume for simplicity that ξ0 = 0.
As the stochastic basis (Ω,F , F = (Ft), 0 ≤ t ≤ T,P ), we consider (C[0,T ],B[0,T ], B = (B[0,t]),

0 ≤ t ≤ T , P T ), with the measure space (C[0,T ],B[0,T ]) of continuous functions ω = ωt, 0 ≤ t ≤ T , ω0 = 0,

a standard Wiener measure P T and P T -augmented filtration B = (B[0,t]), 0 ≤ t ≤ T .
Denote by W = (Wt), 0 ≤ t ≤ T , the coordinate process Wt(ω) = ωt, 0 ≤ t ≤ T . Then, with the

measure P T the process W is a standard Wiener process. Further, let FW = (FWt ), 0 ≤ t ≤ T , be the
P T -augmented filtration generated by the process W , FWt = σ(Ws, s ≤ t).

Let Ξ denote the class of all anticipating solutions of Eq. (1.1) and Ξs be the class of all strong
solutions of this equation.

Assume that A(t, x) satisfies the Carathéodory conditions (C-conditions above, see Introduction).

Theorem 1.2. If C-conditions hold, then there exists an anticipating solution of Eq. (1.1).

Proof. Denote η(t) = ξt −Wt, 0 ≤ t ≤ T . We write Eq. (1.1) as

dη(t) = A(t, η(t) +Wt)dt, 0 ≤ t ≤ T, η(0) = 0, (1.4)

and consider the sequence {ηj(t)}, j ≥ 1, 0 ≤ t ≤ T , given by the following relation: for any j ≥ 1,

ηj(t) =


0 if 0 ≤ t ≤

T

j
,∫ t−T

j

0 A(s, ηj(s) +Ws)ds if
T

j
< t ≤ T.

(1.5)

We will need for our discussion the following two lemmas. Lemma 1.2 is of interest in itself.

Lemma 1.2. Sequence (1.5) is (relatively) compact in C[0,T ].

Proof. Indeed, η1(t) = 0 for any t, 0 ≤ t ≤ T . If j ≥ 2, then for any t, by (0.3) we have

|ηj(t)| ≤

∫ (t−T
j

)+

0
|A(s, ηj(s) +Ws)|ds ≤M

((
t−

T

j

)+)
≤M(T ) <∞,

where x+ = max(0, x), M(t) =
∫ t
0 m(s) ds, 0 ≤ t ≤ T .
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Further, for any t1, t2 ∈ [0, T ] and any j ≥ 1,

|ηj(t2)− ηj(t1)| ≤

∣∣∣∣∫
(
t2−

T
j

)+
(
t1−

T
j

)+ |A(s, ηj(s) +Ws)|ds

∣∣∣∣
≤

∣∣∣∣∫
(
t2−

T
j

)+
(
t1−

T
j

)+ m(s) ds

∣∣∣∣
=

∣∣∣∣∫
(
t2−

T
j

)+

0
m(s) ds−

∫ (t1−Tj )+
0

m(s) ds

∣∣∣∣
=

∣∣∣∣M
((

t2 −
T

j

)+)
−M

((
t1 −

T

j

)+)∣∣∣∣.
Hence, sequence (1.5) is uniformly bounded and uniformly continuous; therefore, it is relatively compact
in C[0,T ].

Let {xn(ω), ω ∈ Ω}, n ≥ 1, be a sequence of random elements defined on some complete probability
space (Ω,F , P ) with values in some complete separable metric space (X,σp(X), ρ), where ρ is a metric in
X and σp(X) is a Borel σ-algebra generated by the metric ρ.

Lemma 1.3. If the sequence {xn(ω), ω ∈ Ω}n≥1 is a (relatively) compact (P -a.s.) in X, then there exists
a sequence of random variables {ηj(ω)}j≥1, nj : Ω→ N = (1, 2, 3, ...) such that

(1)

n1(ω) <∞, n2(ω) <∞, ..., (P -a.s.),

nj(ω) < nj+1(ω) ∀j ≥ 1 (P -a.s.);

(2) for any j ≥ 1, the random element (xnj(ω)(ω), ω ∈ Ω) is F/σp(X)-measurable;
(3) the subsequence {xnj(ω)(ω), ω ∈ Ω}j≥1 of the sequence {xn(ω), ω ∈ Ω}n≥1 converges with proba-

bility 1.

Proof. By virtue of the (P -a.s.) compactness of the sequence {xn(ω), ω ∈ Ω}n≥1, there exists a P -null
set B, P (B) = 0, such that for any ω ∈ Ω \ B the sequence {xn(ω)}n≥1 is a (relatively) compact set.
Further, let {ym}m≥1 be a countable dense set of elements of the space X.

Denote

Om,ε = {x ∈ X : ρ(x, ym) < ε}, ε > 0.

By virtue of the compactness of the sequence {xn(ω)}n≥1, one can choose a finite subcovering from the
covering {Om, 1

2
}m≥1 of the sequence {xn(ω)}n≥1. Therefore, there exists at least one ball, which contains

an infinite number of elements of the sequence {xn(ω)}n≥1 (this fact can be analytically written as follows:
there exists a number m = m(ω) <∞ such that lim

n→∞
ρ(xn, ym) < 1/2).

Now we define the number m1(ω) by the relation

m1(ω) = min{m : lim
n→∞

ρ(xn(ω), ym) < 1/2}

and set

n1(ω) = min{n : ρ(xn(ω), ym1(ω)) < 1/2}.
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It is obvious that m1(ω) <∞ and n1(ω) <∞. Similarly, for any j ≥ 2, we set

mj(ω) = min

{
m : lim

n→∞
ρ(xn(ω), ym) <

1

2j
, ρ(ym, ymj−1(ω)) <

1

2j−1

}
,

nj(ω) = min

{
n > nj−1(ω) : ρ(xn(ω), ymj (ω)) <

1

2j

}
.

Note that for each j ≥ 1, mj(ω) < ∞ (each subsequence of a compact sequence is compact itself),
nj(ω) <∞. Obviously, the sequence {nj(ω)}j≥1 satisfies requirement (1) and random element {xnj(ω)(ω),
ω ∈ Ω} satisfies requirement (2) for each j ≥ 1.

It remains to show that the sequence {xnj(ω)(ω), ω ∈ Ω}j≥1 converges with probability 1. To this

end it is sufficient to verify its (P -a.s.) fundamentality.
For each m ≥ 1 we have

ρ(xnj(ω)(ω), xnj+m(ω)(ω)) ≤
∞∑
i=j−1

1

2j
→ 0 as j →∞ (P -a.s.).

Before proving the theorem, we note that by virtue of Lemmas 1.2 and 1.3 just proved, there exists
a subsequence {ηjk(ω)(ω)}k≥1 of sequence (1.5) such that

lim
n→∞

ηjk(ω)(t, ω) = η(t, ω), 0 ≤ t ≤ T,

uniformly with respect to t. Thus, η(t, ω) is a continuous process.
Now we recall that A(t, x) is a function continuous in the variable x, satisfying (0.3). Hence we

have obtained the required statement by letting k →∞ (and using the Lebesgue-dominated convergence
theorem) in the relation

ηjk(t) =

∫ t
0
A(s, ηjk(s) +Ws) ds−

∫ t
(
t− T

jk

)+ A(s, ηjk(s) +Ws) ds.

Remark 1.2. The solution ξ = (ξt), 0 ≤ t ≤ T , just constructed is, generally speaking, an anticipating
solution of Eq. (1.1), since the sequence {jk(ω)}k≥1 may depend on the whole trajectory of the Wiener
process W = (Wt), 0 ≤ t ≤ T .

Let Ξ1 and Ξ2 be subsets of the set Ξ of anticipating solutions of Eq. (1.1).
Denote 

ξt = ess sup
Ξ1

(ξt), 0 ≤ t ≤ T,

ξ
t
= ess inf

Ξ2
(ξt), 0 ≤ t ≤ T.

(1.6)

Theorem 1.3. Stochastic processes ξ = (ξt), 0 ≤ t ≤ T , and ξ = (ξ
t
), 0 ≤ t ≤ T , are anticipating

solutions of Eq. (1.1).

Proof. We consider again Eq. (1.4) and give the proof in terms of the process η(t) = ξt−Wt, 0 ≤ t ≤ T .
We show, for example, that the process η(t) = ξt −Wt, 0 ≤ t ≤ T , is an anticipating solution of

Eq. (1.4).
In order to do this, we denote

ηmaxm = max{η1(t), ..., ηm(t)}, 0 ≤ t ≤ T,

for any natural number m, where ηi(t) for any i = 1, ...,m is an anticipating solution of Eq. (1.4). Just
similarly to what has been done in Proposition 1.1, we can show that the following lemma holds.
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Lemma 1.4. The stochastic process ηmaxm (t), 0 ≤ t ≤ T , is an anticipating solution of Eq. (1.4).

Before proving the theorem, we note that for any t1, t2 ∈ [0, T ],

|η(t2)− η|(t1) ≤ ess sup
Ξ1

∣∣∣∣∫ t2
t1

|A(s, η(s) +Ws)| ds

∣∣∣∣ ≤ |M(t2)−M(t1)|,

where M(t) =
∫ t
0 m(s) ds, 0 ≤ t ≤ T , i.e., η(t), 0 ≤ t ≤ T , is uniformly continuous with probability 1.

It is now obvious that for any ε > 0 there exist a finite partition {tj}ε, j = 1, 2, ...,m, of the interval
[0, T ] and the anticipating solutions ηj(t), 0 ≤ t ≤ T , j = 1, 2, ...,m, of Eq. (1.4) such that

0 ≤ η(tj)− ηj(tj) ≤ ε,

and for any t1, t2 ∈ (tj , tj+1), j = 1, ...,m − 1,

|η(t2)− η(t1)| ≤ ε,

|ηmaxm (t2)− η
max
m (t1)| ≤ ε.

Thus, for any ε > 0 and any t, 0 ≤ t ≤ T ,

|η(t)− ηmaxm (t)| ≤ 3ε.

To complete the proof it is sufficient to pass to the limit in the relation

ηmaxm (t) =

∫ t
0
A(s, ηmaxm (s) +Ws) ds.

Assume that Ξi = Ξ, i = 1, 2, i.e., ess sup and ess inf in (1.6) are taken on the whole set Ξ of
anticipating solutions of Eq. (1.1). In these cases, stochastic processes ξ = (ξt) and ξ = (ξ

t
), 0 ≤ t ≤ T ,

are called, respectively, the maximal and minimal solutions of Eq. (1.1).

Theorem 1.4. The maximal solution ξ = (ξt), 0 ≤ t ≤ T , and minimal solution ξ = (ξ
t
), 0 ≤ t ≤ T , are

strong solutions of Eq. (1.1).

Proof. Show, for example, that ξ = (ξt), 0 ≤ t ≤ T , is a strong solution of Eq. (1.1).
For any fixed s, 0 ≤ s ≤ T , denote by Ξ[0,s] a class of all anticipating solutions (ξst ), 0 ≤ t ≤ s, of

Eq. (1.1) defined on the interval [0, s] (by Theorem 1.2, the class Ξ[0,s] is not empty), i.e., it is a set of

the FWs -measurable for every t, 0 ≤ t ≤ s, stochastic processes (ξst ), 0 ≤ t ≤ s, such that

P s
(
ξst =

∫ t
0
A(u, ξsu) du+Wt, 0 ≤ t ≤ s

)
= 1,

where P s = P T /B[0,s] is a restriction of the Wiener measure P T to the σ-algebra B[0,s].
Put

ξ
s
t = ess sup

Ξ[0,s]

(ξst ), 0 ≤ t ≤ s, 0 ≤ s ≤ T.

In such notation, the statement of the theorem takes the following form: for any l, 0 ≤ l ≤ T , the

random variable ξ
T
l is FWl -measurable.

It is obvious that if we solve problem (1.1) consecutively in the interval [0, l], with the initial condition
ξ0 = 0 (i.e., if we construct an anticipating solution (ξlt), 0 ≤ t ≤ l), then in the interval [l, T ] with the
initial condition ξll , “sticking together” the constructed solutions, we obtain an anticipating solution on

the whole interval [0, T ], coinciding with (ξlt), 0 ≤ t ≤ l, on the interval [0, l].
In other words, any anticipating solution (ξst ), 0 ≤ t ≤ s, 0 ≤ s ≤ T , of Eq. (1.1) can be extended to

the whole interval [0, T ].

2725



Hence, considering an anticipating solution (ξ
l
t), 0 ≤ t ≤ l, on the interval [0, l] and extending it

to the whole interval [0, T ], we obtain an anticipating solution (ξTt ), 0 ≤ t ≤ T , which by virtue of the

definition of (ξ
T
t ), 0 ≤ t ≤ T , is such that

P T (ξTt ≤ ξ
T
t , 0 ≤ t ≤ T ) = 1. (1.7)

Now, since

P T (ξTl = ξ
l
l) = 1,

we obtain from (1.7)

P T (ξ
l
l ≤ ξ

T
l ) = 1.

We now have to prove that

P T (ξ
T
l ≤ ξ

l
l) = 1.

To this end, we define on the space Ω = C[0,T ] the operator

Λ(ω) =

(
Λ1
Λ2

)
(ω) =

(
u

v

)
, (1.8)

where ω ∈ C[0,T ], u ∈ C[0,l] v ∈ C[l,T ], Λ1(ω) = u, Λ2(ω) = v,

ut = ωt, 0 ≤ t ≤ l,

and
vt = ωt − ωl, l ≤ t ≤ T.

Note that

ωt =

{
ut, 0 ≤ t ≤ l;
vt + ul, l ≤ t ≤ T.

Denote by B[l,T ] = σ(ωt − ωl, l ≤ t ≤ T ) the augmented σ-algebra generated by increments. Then,

obviously, B[0,T ] = B[0,l] ∨ B[l,T ], B[0,l] and B[l,T ] being independent under a probability measure P T .

Denote, further, by P l a Wiener measure defined on the σ-algebra B[0,l] and by P l,T a Wiener measure
defined on B[l,T ]. Obviously, the operator Λ provides a one-to-one measure-preserving transformation of
the space C[0,T ] onto C[0,l] × C[l,T ], i.e.,

Λ : (C[0,T ],B[0,T ], P
T )� (C[0,l],B[0,l], P

l)× (C[l,T ],B[l,T ], P
l,T ),

and for any B ∈ B[0,T ],

P T (B) = (P l × P l,T )(ΛB),

where ΛB = {Λ(ω) : ω ∈ B}.
Introduce the functional

φ(t, u, v) = ξ
T
t

(
Λ−1
(
u

v

))
, 0 ≤ t ≤ T, u ∈ C[0,l], v ∈ C[l,T ], (1.9)

where the operator Λ−1 is inverse to Λ. Obviously,

P l × P l,T
(
(u, v) : φ(t, u, v) =

∫ t
0
A(s, φ(s, u, v)) ds

+Wt

(
Λ−1
(
u

v

))
, 0 ≤ t ≤ l

)
= 1.

From the definition of the operator Λ and the coordinate Wiener process W it follows that (P l,T -a.s.) for
every v

P l
(
u : φ(t, u, v) =

∫ t
0
A(s, φ(s, u, v)) ds +Wt(Λ

−1
1 (u)), 0 ≤ t ≤ l

)
= 1.
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Thus, (P l,T -a.s.) for every v, the process φ(t, u, v), 0 ≤ t ≤ l, belongs to the class of anticipating solutions
Ξ[0,l] (obviously, if t ∈ [0, l],

Wt

(
Λ−1
(
u

v

))
=Wt(Λ

−1
1 (u)) =Wt(ω)).

Hence (P l,T -a.s.) for every v

P l
(
u : φ(l, u, v) ≤ ξ

l
l

(
Λ−1
(
u

v

)))
= 1,

which implies that (P T -a.s.) for every ω

P T (ξ
T
l ≤ ξ

l
l | Λ2)(ω) = 1

(recall that the σ-algebras B[0,l] and B[l,T ] are independent under the probability measure P T ). Finally,
by averaging, we obtain

P T (ξ
T
l ≤ ξ

l
l) = 1.

Theorem 1.5. For every anticipating solution ξ = (ξt), 0 ≤ t ≤ T , of Eq. (1.1), there exists a measurable
functional Φ(t, ω, ω1) defined on the measure space

([0, T ]× C[0,T ] ×C[0,T ], σ([0, T ]) × B[0,T ] × B[0,T ])

such that for any ω1 ∈ C[0,T ], Φ(·, ·, ω1) ∈ Ξs, i.e., Φ(·, ·, ω1) is a strong solution of Eq. (1.1) and

ξt(ω) = Φ(t, ω, ω), 0 ≤ t ≤ T (P -a.s.).

Proof. Given an anticipating solution ξ = (ξt), 0 ≤ t ≤ T , we denote by (ξstrt (s, x)), s ≤ t ≤ T ,
0 ≤ s ≤ T , x ∈ R1, a strong solution of Eq. (1.1), considered in the interval [s, T ], with the initial
condition ξstrs (s, x) = x. By Theorem 1.4, such a solution exists. We fix t1, 0 < t1 < T . Using the
notation introduced in the proof of the previous theorem, we note that there exists an event B ∈ B[t1,T ],

P t1,T (B) = 1, such that for any v ∈ B,

P t1
(
u : φ(t, u, v) =

∫ t
0
A(s, φ(s, u, v)) ds +Wt(Λ

−1
1 (u)), 0 ≤ t ≤ t1

)
= 1,

where the functional φ(t, u, v) is defined as in (1.9), i.e., φ(t, u, v) = ξt

(
Λ−1
(
u

v

))
, l := t1.

Now we consider the functional

φ̃(t, u, v) =

{
φ(t, u, v) if v ∈ B,
ξstrt (0, 0) if v /∈ B,

(1.10)

where u ∈ C[0,t1], v ∈ C[t1,T ] are given by (1.8) with l := t1.
Define the following functional:

Φ̃(t, ω, ω1) = φ̃(t,Λ1(ω),Λ2(ω1)), (1.11)

where (ω,ω1) ∈ C[0,T ] × C[0,T ], 0 ≤ t ≤ T , the operators Λ1 and Λ2 are defined by relation (1.8), l := t1.

Further, we define the functional Φ1(t, ω, ω1) by the relations

Φ0(t, ω, ω1) = ξt(ω),

Φ1(t, ω, ω1) = U(Φ0, t1, t, ω, ω1)

:=


Φ̃(t, ω, ω1) if 0 ≤ t ≤ t1;

ξt(ω) if t > t1 and Φ̃(t1, ω, ω1) = Φ̃(t1, ω, ω);

ξstrt (t1, Φ̃(t1, ω, ω1)) if t > t1 and Φ̃(t1, ω, ω1) �= Φ̃(t1, ω, ω).

(1.12)

It can be easily seen that:
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(1) for any ω1 ∈ Ω, the process Φ1(·, ·, ω1) is an anticipating solution of Eq. (1.1);
(2) for any fixed ω1 ∈ Ω and any t, 0 ≤ t ≤ T ,

Φ1(t, ·, ω1) is F
Φ0
t -measurable

and

Φ1(t, ·, ω1) is F
W
t1 -measurable

for t ≤ t1;
(3) Φ1(t, ω, ω) = ξt(ω), 0 ≤ t ≤ T (P -a.s.).

For any t2 �= t1, 0 ≤ t2 ≤ T , on the basis of the functional Φ1(t, ω, ω1), by the same technique
as above, we can construct a functional Φ2(t, ω, ω1) such that properties (1) and (3) hold without any
changes and property (2) is transformed into the following property:

(2′) for any fixed ω1 ∈ Ω and any t, 0 ≤ t ≤ T , a functional Φ2(t, ·, ω1) is FΦ
1

t -measurable and Φ2(t, ·, ω1)
is FWtk -measurable for t < tk, k = 1, 2.

Namely,

Φ2(t, ω, ω1) = U(Φ1, t1, t, ω, ω1),

i.e., one is to proceed from the anticipating solution (Φ1(t, ·, ω1)), 0 ≤ t ≤ T , of Eq. (1.1) instead of the
given anticipating solution (ξt), 0 ≤ t ≤ T (see (1.10), (1.11), and (1.12)).

Consider a dense sequence of points {tn}n≥1 of the interval [0, T ] and define a sequence of functionals
{Φn(t, ω, ω1)}n≥1 recursively by the relation

Φn(t, ω, ω1) = U(Φn−1, tn, t, ω, ω1), n ≥ 1,

Φ0(t, ω, ω1) = ξt(ω).

We show that

Φ(t, ω, ω1) = inf
n

sup
m≥n

Φm(t, ω, ω1)

possesses the property required in the theorem.
The fact that Φ(t, ·, ω1) is measurable with respect to FWt follows from the following statement:

for any n ≥ 1, Φn+1(t, ·, ω1) is FΦ
n

t -measurable and Φn(t, ·, ω1) is FWtk -measurable for every tk ≥ t,
k = 1, 2, ..., n.

This implies that

sup
m≥n

Φm(t, ·, ω1)

possesses a similar property, and hence Φ(t, ·, ω1) is FWtk -measurable for every tk ≥ t, k = 1, 2, ..., i.e.,

Φ(t, ·, ω1) is FWt+ -measurable. But F
W
t+ = FWt . Hence, Φ(t, ·, ω1) is FWt -measurable for every t, 0 ≤ t ≤ T .

Further, we note that for any m = 1, 2, ... and for fixed ω1, the process Φm(t, ·, ω1), 0 ≤ t ≤ T ,
satisfies Eq. (1.1). Thus, by Theorem 1.3, the process Φn(t, ·, ω1) = sup

m≥n
Φm(t, ·, ω1), 0 ≤ t ≤ T , and the

process Φ(t, ·, ω1) = inf
n
Φn(t, ·, ω1), 0 ≤ t ≤ T , are solutions of Eq. (1.1) for any fixed ω1.

Finally, by our construction,

Φ(t, ω, ω) = ξt(ω), 0 ≤ t ≤ T (P -a.s.).

Remark 1.3. If, in representation (0.4), the event A ∈ B[0,T ], then ξt(ω) = Φ(t, ω, ω) (P -a.s.) with

Φ(·, ω, ω1) = I{A}(ω1)ξ
1
· (ω) + I{Ac}(ω1)ξ

2
· (ω).

2728



Now we pass to the description of the integral funnel of the solutions of Eq. (1.1).
Denote

Vt = {ξt : ((ξt), 0 ≤ t ≤ T ) ∈ Ξ},

V st = {ξt : ((ξt), 0 ≤ t ≤ T ) ∈ Ξs},

for any t, 0 ≤ t ≤ T , i.e., Vt (respectively, V st ) is a set of random variables ξt which represents a section of
the integral funnel of the anticipating (respectively, strong) solution set of Eq. (1.1) at the point t. Note
that in all cases, Eq. (1.1) is “solved” under the same initial conditions.

Let, further,

Vt(ω) = {ξt(ω) : ((ξt), 0 ≤ t ≤ T ) ∈ Ξ},

V st (ω) = {ξt(ω) : ((ξt), 0 ≤ t ≤ T ) ∈ Ξs},

i.e., let Vt(ω) (respectively, V
s
t (ω)) be a set of points from R1 such that through each of these points there

passes a trajectory (with fixed ω) of at least one anticipating (respectively, strong) solution of (1.1).
In other words, Vt(ω) (respectively, V

s
t (ω)) represents a section of Vt (respectively, of V

s
t ) at the

point ω.
It is obvious that V st ⊂ Vt and V

s
t (ω) ⊂ Vt(ω) (P -a.s.).

Theorem 1.6. For any t, 0 ≤ t ≤ T :
(1) a section Vt of the integral funnel of all anticipating solutions of Eq. (1.1) coincides with the

subset H of all FWT -measurable random variables such that with probability 1,

ξ
t
≤ η ≤ ξt,

where ξ
t
and ξt are defined by (1.6), i.e.,

Vt = {η, η ∈ H : ξ
t
≤ η ≤ ξt (P -a.s.)};

(2) Vt(ω) = V st (ω) (P -a.s.).

Proof. We fix t0, 0 ≤ t0 ≤ T . Let a random variable η ∈ H, where H is a set of all FWT -measurable
random variables with

ξ
t0
≤ η ≤ ξt0 (Pa.s.).

We show that: (1) there exists an anticipating solution ξ = (ξt), 0 ≤ t ≤ T , of Eq. (1.1) such that ξt0 = η;
(2) for any fixed ω0 ∈ Ω ≡ C[0,T ] there exists a strong solution ξt(ω,ω0) of Eq. (1.1) such that

ξt0(ω0, ω0) = η(ω0).

Indeed, it can be easily seen that if we consider the Carathéodory scheme with the “initial” condition
ζt0 = η, i.e.,

ζt = −

∫ t0
t

A(s, ζs) ds+Wt −Wt0 + η, ζt0 = η, (1.13)

and take the sequence

ηj(t) =


η if t0 −

t0
j
≤ t ≤ t0,

−

∫ t0
t+

t0
j

A(s, ηj(s) +Ws −Wt0) ds+ η if 0 ≤ t ≤ t0 −
t0
j
, j ≥ 1,

as an approximated solution (i.e., denote η(t) = ζt − (Wt −Wt0) and rewrite Eq. (1.13) as

dη(t) = A(t, η(t) +Wt −Wt0) dt, η(t0) = η, 0 ≤ t ≤ t0,
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see (1.4) and (1.5)), we can, similarly to Theorem 1.2, construct a solution (ζt), 0 ≤ t ≤ t0, of Eq. (1.13)
such that ζt0 = η. By the extension (see the proof of Theorem 1.4), we obtain a solution (ζt) of Eq. (1.13)
defined on the whole interval [0, T ].

Further, we denote

τ =

 sup
0≤t≤t0

{t : ζt = ξt or ζt = ξ
t
},

0 if ζt �= ξt, ζt �= ξ
t
, 0 ≤ t ≤ t0,

and set

ξt =


ξ
t
if 0 ≤ t ≤ τ, ζτ = ξ

τ
, τ > 0,

ξt if 0 ≤ t ≤ τ, ζτ = ξτ , τ > 0,

ζt if τ ≤ t.

It is obvious that the process ξ = (ξt), 0 ≤ t ≤ T , ξt0 = η, constructed above is the solution of Eq.
(1.1) desired in (1).

Further, it follows from Theorem 1.5 that the desired in (2) strong solution is

ξt(ω,ω0) = Φ(t, ω, ω0),

where Φ is a functional from Theorem 1.5 constructed from the solution ξ of Eq. (1.1) which was obtained
in (1).

Indeed,
η(ω0) = ξt0(ω0) = Φ(t0, ω0, ω0) = ξt0(ω0, ω0).

Finally, we give a sufficient condition for the uniqueness of the solution of Eq. (1.1).

Theorem 1.7. Let the function A(t, x) together with the C-conditions (see (0.3)) satisfy the relation∫ T
0

inf
y∈R1

sup
x∈R1

|A(t, x) −A(t, y)|2dt <∞. (1.14)

Then there exists a pathwise unique strong solution of SDE (1.1).

Proof. It is well known that for any ε > 0 there exists a measurable (with respect to t) function yt,
0 ≤ t ≤ T , such that∫ T

0
sup
x∈R1

|A(t, x) −A(t, yt)|
2dt ≤

∫ T
0

inf
y∈R1

sup
x∈R1

|A(t, x)−A(t, y)|2dt+ εT <∞. (1.15)

Denote

Γt =

∫ t
0
γsds,

where γt = A(t, yt), and define the stochastic process ζ = (ζt) to be the equality

ζt = Γt +Wt, 0 ≤ t ≤ T.

Lemma 1.5. If Pξ, Pξ, and Pζ are measures on (C[0,T ],B[0,T ]) corresponding to the processes ξ = (ξt),

ξ = (ξ
t
), and ζ = (ζt), 0 ≤ t ≤ T , respectively, where ξ and ξ are strong solutions of Eq. (1.1) defined in

Theorem 1.4, then
Pξ � Pζ , Pξ � Pζ .

Proof. Let us show, for example, that Pξ � Pζ . By (1.15),

P

(∫ T
0
(A(t, ξt)− γt)

2dt <∞

)
= 1.

Hence (see [66]), Pξ−Γ � PW . But Γt is a deterministic function and, therefore, Pξ � PW+Γ = Pζ .
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Lemma 1.6. For any A ∈ B[0,T ],
Pξ(A) = Pξ(A).

Proof. By the above lemma and the form of densities [66], we obtain

Pξ(A) =

∫
A

dPξ

dPζ
(z) dPζ(z) =

∫
A

dPξ

dPζ
(z) dPζ (z) = Pξ(A).

Getting back to the proof of the theorem, we note that if ξ1 = (ξ1t ) and ξ
2 = (ξ2t ) are two arbitrary

solutions of Eq. (1.1), then

P
(
ξ
t
≤ ξ1t , ξ

2
t ≤ ξt, 0 ≤ t ≤ T

)
= 1,

which, together with Lemmas 1.6 and 1.1, leads to the relation

P
(
ξ
t
= ξ1t = ξ2t = ξt, 0 ≤ t ≤ T

)
= 1.

Remark 1.4. A simpler than (1.14) condition∫ T
0
m2(t) dt <∞

will, certainly, ensure the uniqueness of the strong solution of Eq. (1.1), but already in the simple case

A(t, x) ≡ A(t),
∫ T
0 A

2(t) dt = +∞, where Eq. (1.1) has a unique strong solution, this condition is not
satisfied.

Remark 1.5. If we replace the symbol
∫ T
0 in condition (1.14) by

∫ T
ε , ε > 0, then there exists a unique

strong solution ξstrt (ε, x) of Eq. (1.1) in the interval [ε, T ] with the initial condition ξstrε (ε, x) = x, x ∈ R1.
In this case, the functional Φ(t, ω, ω1) from Theorem 1.5 can be constructed rather simply.
Namely,

Φ(t, ω, ω1) = lim
n→∞

Φn(t, ω, ω1),

where for any n ≥ 1

Φn(t, ω, ω1) =


U

(
Φn−1,

1

n
, t, ω, ω1

)
if t ≤

1

n
;

ξstrt

(
1

n
,Φn

(
1

n
, ω, ω1

))
if t >

1

n
,

Φ0(t, ω, ω1) = ξt(ω).

1.3. The Carathéodory-Type SDE. Local Solutions: Existence and Extension Theorems

In this section, we consider Eq. (1.1) on the whole time interval [0,∞). For convenience we assume
that ξ0 = 0.

Fix T > 0 and let g(t), 0 ≤ t ≤ T , g(0) = 0 be a continuous decreasing function. Let, further,

τgu = inf{t > 0 : |ut| ≥ g(t)} ∧ T (1.16)

(with the usual convention inf ∅ =∞), where a ∧ b = min(a, b), u ∈ C[0,T ].

Let Ξloc,g and Ξloc,gs denote the classes of anticipating and strong local solutions of Eq. (1.1), i.e., we
say, e.g., that the continuous stochastic process ξ = (ξt), defined, perhaps, only on a stochastic interval

[0, τgξ ], belongs to the class Ξloc,gs if P (τgξ > 0) = 1 and the process (ξt∧τgξ
) is adapted to the filtration

(FW
t∧τgξ

) and is such that for every t,

ξt∧τgξ
=

∫ t∧τgξ
0

A(s, ξs) ds+Wt∧τgξ
(P -a.s.),
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or, equivalently,

ξt =

∫ t
0
A(s, ξs) ds+Wt (t ≤ τ gξ , P -a.s.).

The coefficient A(t, x) of Eq. (1.1) is assumed to satisfy the following two conditions:

(1) the function A(t, x) is measurable in t for any fixed x ∈ R1 and continuous in x for any fixed t ≥ 0;
(2) there exists a continuous function M(t), M(t) ≥ 0, 0 ≤ t ≤ T , M(0) = 0, such that for any t,

0 ≤ t ≤ T , ∫ t
0
A(s, αs +M(s)) ds ≤M(t), (1.17)

where

αt = (1 + ε)

(
2t ln ln

1

t

)1/2
, ε > 0, (1.18)

is the Kolmogorov–Khinchin–Lévy upper function [38], and

A(t, x) = sup
|y|≤x
|A(t, y)|, x ∈ R1. (1.19)

Remark 1.6. Condition (0.3) implies (1.17). It is sufficient to set

M(t) =

∫ t
0
m(s) ds, 0 ≤ t ≤ T.

Remark 1.7. The function M(t) from (1.17) can be constructed as follows. For each n ≥ 1, t ∈ [0, T ],
we set

Mn(t) =

∫ t
0
A(s,Mn−1(s) + αs) ds, M(0) ≡ 0. (1.20)

It is easy to see that ∀t ∈ [0, T ] and n ≥ 1,

Mn+1(t) ≥Mn(t)

(since A(t, x) ≥ 0 and A(t, x) ↑ x). Hence, there exists

lim
n→∞

Mn(t) :=M(t), 0 ≤ t ≤ T (1.21)

(finite or infinite). The function A(t, x) is left-continuous. Therefore, if we pass to the limit as n→∞ in
(1.20), we obtain

lim
n→∞

Mn(t) =

∫ t
0
A(s, lim

n→∞
Mn(s) + αs) ds,

i.e.,

M(t) =

∫ t
0
A(s,M(s) + αs) ds,

where M(t) is defined by (1.21).
If we now assume that the sequence {Mn}n≥1 is bounded, Mn(t) ≤ h(t) ∀n ≥ 1, t ∈ [0, T ], and h(t)

is a finite function, then the function M(t) from (1.21) satisfies all the desirable conditions.
Obviously, the functionM =M(t), 0 ≤ t ≤ T , just constructed, is the minimal solution of inequality

(1.17), and M(t) ↑ t.

We set

Ã(t, x) =

{
A(t, x) if |x| ≤ βt,
A(t, βt signx) if |x| > βt,

(1.22)

where βt = αt +M(t), 0 ≤ t ≤ T .
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Along with Eq. (1.1), we consider an auxiliary equation

dξt = Ã(t, ξt)dt+ dWt, 0 ≤ t ≤ T, ξ0 = 0 (1.23)

(with “truncated” coefficient). Denote by Ξ̃ and Ξ̃s the classes of anticipating and strong solutions of Eq.
(1.23). The following proposition will help to establish a relation between global and local solutions of
Eq. (1.1).

Proposition 1.2. If the process ξ = (ξt), 0 ≤ t ≤ T , belongs to the class Ξ̃ (Ξ̃s, respectively), then

ξ = (ξt), 0 ≤ t ≤ T , belongs to the class Ξloc,β (Ξ
loc,β
s , respectively).

Proof. Indeed,

ξt =

∫ t
0
Ã(s, ξs) ds+Wt =

∫ t
0
A(s, ξs) ds+Wt

(t ≤ τβξ , P -a.s.). It is enough to show that

P (τβξ > 0) = 1.

Denoting ηt = ξt −Wt, we obtain

τβξ = inf{t > 0 : |ξt| ≥ βt} ∧ T

= inf{t > 0 : |ηt +Wt| ≥M(t) + αt} ∧ T

≥ inf{t > 0 : |ηt|+ |Wt| ≥M(t) + αt} ∧ T

≥ inf{t > 0 : |Wt| ≥ αt} ∧ T = ταW ∧ T,

since by (1.17), |η(t)| ≤M(t) ∀t ∈ [0, T ] (recall that the process ξ satisfies Eq. (1.23)). But by the law of
the iterated logarithm,

P (ταW > 0) = 1.

Now we note that for any t, 0 ≤ t ≤ T , and x ∈ R1,

|Ã(t, x)| ≤ A(t, βt) ≡ m(t),

i.e., Ã(t, x) satisfies the Carathéodory condition (0.3).
Thus, by virtue of Proposition 1.2, it suffices to substitute in the statements of Theorems 1.2–1.6 the

phrase “local solution” instead of the word “solution” and the stochastic interval [0, τβξ ] instead of the

interval [0, T ], in order for these statements to be also valid for the case under consideration (i.e., under
condition (1.17)).

The following theorem allows us to extend the solutions of Eq. (1.1) to the whole interval [0,∞).

Theorem 1.8. Let the following two conditions be satisfied:
(a) for any s, s ≥ 0, and x, x ∈ R1, there exist a point T s,x, T s,x ≥ T0 > 0 (where T0 is a fixed

point) and a continuous function Ms,x(T ) ≥ 0, Ms,x(0) = 0, defined on [0, T s,x] such that for any t,
0 ≤ t ≤ T s,x, ∫ t

0
sup

|y|≤Ms,x(u)+αu

|A(s+ u, x+ y)| du ≤Ms,x(t); (1.24)

(b) for s = 0, there exist a point T 0,0, T 0,0 > 0, and a continuous function M0,0(t) > 0, M0,0(0) = 0,
defined on [0, T 0,0], such that for any t, 0 ≤ t ≤ T 0,0, inequality (1.24) holds only at the point x = 0.

2733



Proof. Denote βs,xt = αt+Ms,x(t), 0 ≤ t ≤ T s,x, and define the sequence of hitting times (τn)n≥1 by the
following recursive equalities:

τ1(ω) = inf{t > 0 : |ωt| ≥ β
0,0
t } ∧ T

0,0,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

τn(ω) = inf{t > τn−1 : |ωt − ωτn−1 | ≥ β
τn−1,ωτn−1
t−τn−1 } ∧ {τn−1 + T τn−1,ωτn−1},

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(1.25)

For any (s, x) ∈ [0,∞) × R1, consider Eq. (1.1) on the interval [s,∞) with the initial condition
ξs = x.

Then it follows from the above-stated results and from the assumptions of the theorem that there
exists an anticipating solution (ξt(s, x)) of the equation such that ξs(s, x) = x and

P

{
ξt(s, x) = x+

∫ t
s

A(u, ξu(s, x)) du +Wt −Ws, s ≤ t ≤ τs,x + s

}
= 0,

where

τs,x = [inf{t > s : |ξt(s, x)− x| ≥ β
s,x
t−s} − s] ∧ T

s,x. (1.26)

Let the stochastic process (ξt), t ≥ 0, be given by the relation

ξt =

{
ξt(0, 0) if 0 ≤ t ≤ τ1,

ξt(τn, ξτn) if τn ≤ t ≤ τn+1, n ≥ 1,

where in definition (1.25) of hitting times one has to substitute the values of the process ξ, i.e., τn ≡ τn(ξ).
Now we note that

|ξt(s, x)− x− (Wt −Ws)| ≤M
s,x(t− s) (s ≤ t ≤ τs,x + s, P -a.s.).

Hence
τs,x ≥ τ

0
s (P -a.s.),

where
τ0s := [inf{t > s : |Wt −Ws| ≥ αt−s} − s] ∧ T

0,0.

By the definition, for all n ≥ 1,

τn = τn−1 + τn−1,ξτn−1 , τ0 = 0.

Let the sequence τ∗n be given recursively by the following formula: for any n ≥ 1,

τ∗n = τ∗n−1 + τ0τ∗n−1 , τ∗0 = 0.

Now we recall that by the law of the iterated logarithm

P (τ0s > 0) = 1

and from the strong Markov property of a Wiener process W = (Wt), the sequence {τ0τ∗n−1
}n≥1 is an i.i.d.

sequence. Hence

τ∗n =
n∑
i=1

τ0τ∗i−1
→∞ as n→∞ (P -a.s.).

But
P (τn ≥ τ

∗
n) = 1.

Thus,
τn →∞ as n→∞ (P -a.s.).
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Remark 1.8. If we take a strong solution of Eq. (1.1) as the initial solution ξt(s, x) which is involved in
the proof of the theorem, then, obviously, the extension will also be strong.

Corollary 1.1. Change condition (a) in the formulation of Theorem 1.8 as follows:
(a′) for some real number H > 0 and for any s, 0 ≤ s ≤ T , and x, |x| ≤ H, there exist a real number

T s,x, T s,x ≥ TH > 0, and a continuous function Ms,x(t) ≥ 0, Ms,x(0) = 0, defined on [0, T s,x], such that
for any t, 0 ≤ t ≤ T s,x, inequality (1.24) holds.

Then the (anticipating or strong) solution ξ = (ξt) of Eq. (1.1) can be extended up to the moment
τHξ , where τ

H
ξ is defined by (1.16).

The proof is obvious.

Theorem 1.9. Under the condition of Theorem 1.8, the equality

ξt(ω) = Φ(t, ω, ω), t ≥ 0 (P -a.s.)

holds, where the functional Φ(t, ω, ω1) has the properties described in Theorem 1.5.

Proof. We will use the notation introduced in the proof of the previous theorem and Theorem 1.5.
Let ξ = (ξt), t ≥ 0, be some anticipating solution of Eq. (1.1). For any (s, x) ∈ [0,∞) × R1, we will

consider Eq. (1.1) in the interval [s,∞) with the initial condition ξs = x. Then from the conditions of
the theorem and due to the above-stated results it follows that there exist:

(1) an anticipating solution of Eq. (1.1), ξt(s, x), s ≤ t ≤ τs,x + s, ξs(s, x) = x;
(2) a strong solution of Eq. (1.1), ξstrt (s, x), s ≤ t ≤ τs,x + s, ξstrs (s, x) = x;

(3) the functional Φξs,x(t, ω, ω1) with the properties stated in Theorem 1.5. The Markov moment τs,x
is defined by (1.26).

Let Φ1(t, ω, ω1) denote a functional corresponding to the process ξ = (ξt), t ≥ 0, and coinciding with

Φξ0,0(t, ω, ω1) in the interval 0 ≤ t ≤ τ0,ξ0 .
For any n > 1, we construct the functional Φn(t, ω, ω1) in the following way. In the interval 0 ≤ t ≤

τn−1(Φn−1), we set
Φn(t, ω, ω1) = Φn−1(t, ω, ω1).

If, otherwise, t ≥ τn−1(Φn−1), then:
(1) for the ω1 for which

ξτn−1(Φn−1)(ω) = Φn−1(τn−1(Φn−1), ω, ω1),

we set
Φn(t, ω, ω1) = Φξ

τn−1(Φn−1),ξτn−1(Φn−1)
(t, ω, ω1);

(2) for the ω1 for which

ξτn−1(Φn−1)(ω) �= Φn−1(τn−1(Φn−1), ω, ω1),

we set
Φn(t, ω, ω1) = ξstrt (τn−1(Φn−1),Φn−1(τn−1(Φn−1), ω, ω1)).

Similarly to the proof of the previous theorem, we can prove that

P (τn(Φn) ≥ τ
∗
n) = 1

and P (τ∗n →∞ as n→∞) = 1.

Theorem 1.10. Let the conditions of Theorem 1.8 hold and let for any s > 0,∫ T s,x
0

inf
|z|≤βs,xu

sup
|y|≤βs,xu

|A(s+ u, x+ y)−A(s+ u, x+ z)|2du <∞, (1.27)

where βs,xt = αt +Ms,x(t).
If s = 0, then inequality (1.27) can take place only at the point x = 0.
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Then there exists a pathwise unique strong solution of Eq. (1.1) on the whole interval [0,∞).

Proof. It is similar to the proof of Theorem 1.8 and is omitted here.

Corollary 1.2. Change condition (a) in the formulation of Theorem 1.10 as follows:
(a′′) for any real number H > 0 and for any x, |x| ≤ H, and s, s > 0, there exist a real number

T s,x ≥ TH > 0, and a continuous function Ms,x(t) ≥ 0, Ms,x(0) = 0, defined on [0, T s,x], such that for
any t, 0 ≤ t ≤ T s,x, inequality (1.27) holds.

Then there exists a local strong pathwise unique solution of Eq. (1.1) satisfying the equality

ξt∧τHξ
=

∫ t∧τHξ
0

A(s, ξs) ds+Wt∧τHξ
(P -a.s.),

for each H > 0 (τHξ is defined in (1.16)), and if

τ = lim
H→∞

τHξ ,

then
lim
t↑τ
|ξt| = +∞ (τ <∞, P -a.s.),

i.e., there exists a pathwise unique strong solution of Eq. (1.1) defined up to the explosion time τ .

Proof. It is obvious and is omitted here.

Remark 1.9. Let the function A(t, x) : [0, T ]× R1 → R1 be
(1′) Borel-measurable in the pair (t, x);
(2′)

lim
t→0

sup
|x|≤αt

|A(t, x)| <∞, (1.28)

where αt is defined by (1.18).

For each t ∈ [0, T ], ε > 0, denote

α̃t =
(
1 +

ε

2

)(
2t ln ln

1

t

)1/2
, M(t) =

ε

2

(
2t ln ln

1

t

)1/2
.

Obviously, αt = α̃t +M(t), and by (1.28),

lim
t→0

A(t, αt) <∞, (1.29)

where A(t, x) is given by (1.19).
Since the function A(t, αt) is bounded (see (1.29)) in the neighborhood of the point t = 0, we obtain∫ t

0
A(s, αs) ds = O(t) as t→ 0.

Hence, there exists a point t0 > 0 such that ∀t ∈ [0, t0],∫ t
0
A(s, α̃s +M(s)) ds =

∫ t
0
A(s, αs) ds ≤M(t). (1.30)

Obviously,

inf
|y|≤αt

sup
|x|≤αt

|A(t, x) −A(t, y)|2 ≤ 4( sup
|x|≤αt

|A(t, x)|)2 = 4A
2
(t, αt).

Thus, we obtain ∫ t0
0

inf
|y|≤αt

sup
|x|≤αt

|A(t, x) −A(t, y)|2dt <∞. (1.31)
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For each t ∈ [0, t0] and x ∈ R1, we denote

Ã(t, x) =

{
A(t, x) if |x| ≤ αt,

A(t, αt signx) if |x| > αt,

and consider Eq. (1.23).

Since for any x ∈ R1, |Ã(t, x)| ≤ |A(t, αt)| and

lim
t→0
|Ã(t, x)| ≤ lim

t→0
|A(t, αt)| <∞,

we obtain
|Ã(t, x)| ≤ c <∞

for any t ∈ [0, t0], x ∈ R1.
Therefore, by [131], Eq. (1.23) (with the truncated coefficient) is strongly regular. On the other

hand, condition (1.17) and condition (b) of Theorem 1.8 are satisfied in the interval [0, t0] (see (1.30)
and (1.31)). Now, similarly to the proofs of Proposition 1.2 and Theorem 1.8 (where we do not use the
continuity of the function A(t, x) in the variable x), we can easily verify that the following theorem is
valid.

Theorem 1.11. Under conditions (1′) and (2′), Eq. (1.1) is locally strongly regular.

1.4. Special Cases and Examples

Let A(t, x) be a Borel-measurable function continuous with respect to x.
1. (a) There exists a constant c <∞ such that |A(t, x)| ≤ c for any x ∈ R1 and t ∈ [0, T ].
Then there exists a pathwise unique strong solution of Eq. (1.1) (see [75]).
(b) There exist constants H and CH < ∞ such that |A(t, x)| ≤ CH for any t, 0 ≤ t ≤ T , and x,

|x| ≤ H.
Then there exists a pathwise unique local strong solution of Eq. (1.1) defined up to the moment τHξ

(see (1.16)).
(c) If condition (b) is satisfied for all H, H > 0, then there exists a pathwise unique strong solution of

(1.1) defined up to the explosion time τ = lim
H→∞

τHξ , which is a generalization of the analogous statement

for the case where A(t, x) satisfies a local Lipschitz condition.
2. Let there exist a constant r0 > 0 and a function b(t, r) with b(t, r) ≥ 0,∫ T

0
b(t, r) dt <∞ ∀r,

and for |x| ≤ r0,
|A(t, x)| ≤ b(t, r0), 0 ≤ t ≤ T.

Then the conditions of Theorems 1.8 and 1.10 are satisfied if for any (s, x) ∈ [0,∞) × R1, we take
T s,x = T0 > 0 so small that M(t) + αt ≤ r0, where

M(t) =

∫ t
0
b(s, r0) ds.

If, in addition, ∫ T
0
b2(s, r) ds <∞ ∀r,

then Eq. (1.1) is strongly regular on the whole interval [0,∞).
3. (a) Let there exist a constant c > 0 such that for each t ∈ [0,∞)

|A(t, x)| ≤ c(1 + |x|) ∀x ∈ R1.

We now find the functionMs,x(t) and the point T0 such that conditions (1.24) and (1.27) be satisfied.
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Indeed, it is sufficient to show that for each (s, x) there exists a function Ms,x(t) such that∫ t
0
c(1 + |x|+ αu +Ms,x(u)) du ≤Ms,x(t) (1.32)

for each t ∈ [0, T0], T0 > 0, and ∫ T0
0

A
2
(s+ u, x+ αu +Ms,x(u)) du <∞.

We set
Ms,x(t) := At+B|x|t,

where A > 0 and B > 0 are some constants. From inequality (1.32) we obtain

ct+ c|x|t+ cK(t) + cA
t2

2
+ cB|x|

t2

2
≤ At+B|x|t, (1.33)

where K(t) =
∫ t
0 αsds.

Since inequality (1.33) is true at the point t = 0, it is sufficient to require that the inequality

c+ c|x|+ cαt + cAt+ cB|x|t ≤ A+B|x|

for the derivatives (in the variable t) of the left- and right-hand sides of inequality (1.33) be satisfied.
For this, it is sufficient to require that

c(1 + αt +At) ≤ A,

c(1 +Bt) ≤ B.

But the left-hand sides of the previous inequalities are increasing functions of t. Therefore, if we find the
constants A and B from the equalities

c(1 + αT0 +AT0) = A,

c(1 +BT0) = B,

where T0 > 0 is a constant, and take T0 <
1

c
, then the function

Ms,x(t) =
c(1 + αT0)

1− cT0
t+

c

1− cT0
|x|t, 0 ≤ t ≤ T0,

and the point T0 satisfies all the requirements.
(b) More generally, let

|A(t, x)| ≤ at + bt|x|, (1.34)

where (at) and (bt) are deterministic functions,

at ≥ 0, bt ≥ 0, 0 ≤ t ≤ T,∫ T
0
atdt <∞,

∫ T
0
btdt <∞, x ∈ R1.

It is easy to see that if we consider the equation

Ms,x(t) =

∫ t
0
as+udu+ (|x|+ c+ V s,x)

∫ t
0
bs+udu, (1.35)

for a function Ms,x, where

c = αT , V s,x =

∫ T0
0

as+udu+ (|x|+ c)

∫ T0
0

bs+udu

1−

∫ T0
0

bs+udu
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(note that V s,x =Ms,x(T0)) and take T0 > 0 so small that for any s, 0 ≤ s ≤ T ,∫ T0
0

bs+udu < 1,

then the function Ms,x(t) and the point T0 > 0 constructed in (1.35) satisfy all the requirements of
inequality (1.24).

If, in addition, we require that∫ T
0
a2t dt <∞ and

∫ T
0
b2tdt <∞, (1.36)

then condition (1.27) is also satisfied.
4. Now we show that conditions (1.24) and (1.27) are essential.
(a) This example is very simple. Let A(t, x) = φ(t), i.e., it does not depend on the variable x.
Then inequality (1.24) is satisfied if and only if∫ T0

0
|φ(t)|dt <∞.

Indeed, if the last inequality is satisfied and we denote M(t) =
∫ t
0 |φ(s) ds, then inequality (1.24) is

satisfied. The inverse is also trivial. Hence, if inequality (1.24) is not satisfied, then Eq. (1.1) has no
sense.

(b) Let

A(t, x) = 2a(t)|x|1/2 signx, 0 ≤ t ≤ T, x ∈ R1,

where a(t) = α
−1/2
t α′t, where αt is defined in (1.18) and α′t is its derivative.

It is easy to see that A(t, x) = 2a(t)|x|1/2 (see (1.19)).
Rewrite inequality (1.24) in the following equivalent form:∫ t

0
A(s, βs) ds+ αt ≤ βt, 0 ≤ t ≤ T,

where βt = αt +M(t) and show that βt = (3 + 2
√
2)αt, 0 ≤ t ≤ T , satisfies the last inequality.

Indeed, ∫ t
0
A(s, βs) ds+ αt = 2(3 + 2

√
2)1/2

∫ t
0
a(t)α

1/2
t dt+ αt

= 2(3 + 2
√
2)1/2

∫ t
0
α−1/2s α′sα

1/2
s ds+ αt

=
(
2(3 + 2

√
2)1/2 + 1

)
αt = (3 + 2

√
2)αt = βt.

On the other hand,∫ T
0

4a2(t) inf
|z|≤βt

sup
|y|≤βt

∣∣∣|y|1/2 sign y − |z|1/2 sign z∣∣∣2 dt = 4(3 + 2
√
2)

∫ T
0
(α′s)

2ds =∞. (1.37)

Hence, (1.27) is false.
Now we construct two different local strong solutions of Eq. (1.1).
Note that for each t ∈ [0, T ], ∫ t

0
A(s, αs) ds− αt = αt, (1.38)∫ t

0
A(s,−αs) ds+ αt = αt. (1.39)
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Construct a sequence of processes (ξ1,n)n≥0 = {(ξ
1,n
t ), 0 ≤ t ≤ T}n≥0, putting

ξ1,0t = αt,

ξ1,nt =

∫ t
0
A(s, ξ1,n−1s ) ds+Wt, n = 1, 2, ...,

(1.40)

for each t.
By the law of the iterated logarithm (t ≤ ταW , P -a.s.),

ξ
1,1
t =

∫ t
0
A(s, αs) ds+Ws = αt + αt +Wt ≥ αt = ξ

1,0
t .

Hence,

ξ
1,n
t =

∫ t
0
A(s, ξ1,n−1s ) ds+Wt ≥

∫ t
0
A(s, ξ1,n−2s ) ds+Wt = ξ

1,n−1
t (t ≤ ταW , P -a.s.)

for each n ≥ 2. Thus, sequence (1.40) is (t ≤ ταW , P -a.s.) nondecreasing.
By induction it is easy to verify that

|ξ1,nt | ≤ βt, 0 ≤ t ≤ T (t ≤ ταW , P -a.s.)

for each n ≥ 0.
Indeed,

|ξ1,1t | ≤

∫ t
0
A(s, αs) ds+ αt ≤

∫ t
0
A(s, βs) ds+ αt = βt

(t ≤ ταW , P -a.s.), and if |ξ1,n−1t | ≤ βt (t ≤ ταW , P -a.s.), then

|ξ1,nt | ≤

∫ t
0
A(s, ξ1,n−1s ) ds+ αt ≤

∫ t
0
A(s, βs) ds+ αt = βt,

as was required.
Hence, there exists a finite limit

ξ1t = lim
n→∞

ξ1,nt (t ≤ ταW , P -a.s.) (1.41)

which satisfies Eq. (1.1) with ξ10 = 0, and by the construction, the process (ξ1t∧ταW
) is FWt∧ταW

-adapted.

Therefore, we construct a ταW -local strong solution ξ1 of Eq. (1.1) such that

αt ≤ ξ
1
t ≤ βt (t ≤ ταW , P -a.s.).

Starting from Eq. (1.39), one can construct a ταW -local strong solution ξ
2 of Eq. (1.1) with

−αt ≥ ξ
2
t ≥ −βt (t ≤ ταW , P -a.s.).

Finally, note that there is no function β∗ = (β∗t ) such that β∗t < βt and conditions (1.24) and (1.27) are
satisfied. Indeed, if β∗ satisfies condition (1.24), then β∗ ≥ α. Thus, by (1.37), condition (1.27) does not
hold.

5. (a) The example below shows that condition (1.34) is not necessary for the existence of a strong
solution of Eq. (1.1).

Consider the linear equation

dξt = atξtdt+ dWt, 0 ≤ t ≤ T, ξ0 = 0, (1.42)

where the function a = (at) is such that∫ T
ε

|at| dt <∞ for any ε > 0.
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Along with Eq. (1.42) we consider the equation

dξt = atξtdt+ dWt, ε ≤ t ≤ T, ξε = C ∈ R1 (1.43)

with the same coefficient at, ε ≤ t ≤ T , as in Eq. (1.42).
Obviously, (1.43) has a unique strong solution given by the formula

ξCt = exp

(∫ t
ε

audu

)
(C −Wε) +

∫ t
ε

exp

(∫ t
s

audu

)
asWsds+Wt,

ξε = C, ε ≤ t ≤ T.

If, in addition, ∫ T 0
0
|at| dt <∞

for some small number T 0 > 0, then taking ε = 0, we obtain that Eq. (1.42) has a unique strong solution,
(ξ0t ), 0 ≤ t ≤ T . Condition (1.24) here takes the form∫ T 0

0
exp

(∫ T 0
s

|au| du

)
|as|αsds <∞,

where αt is defined by (1.18).
Under such a condition, the general solution of Eq. (1.42) has, obviously, the form

ξCt = C exp

(∫ t
t0

audu

)
+

∫ t
t0

exp

(∫ t
s

audu

)
asWsds+Wt,

0 ≤ t, t0 ≤ T,

(1.44)

where C is a function of ω, ω ∈ Ω.
If ∫ T 0

0
atdt = +∞,

then ξCt is a solution of Eq. (1.42) for any C.
In this case, the functional Φ(t, ω, ω1) from Theorem 1.5 takes the form

Φ(t, ω, ω1) = ξ
C(ω1)
t (ω), ω, ω1 ∈ Ω.

Thus it is seen that the inclusion of the solution of Eq. (1.42) in different classes of solutions (strong,
anticipating) depends on the choice of C(ω).

If ∫ T 0
0

atdt = −∞,

then we must take C = 0 in (1.44).
(b) It is well known ([126]) that if the stochastic process ξ = (ξt), 0 ≤ t ≤ T , is adapted to a family

of σ-algebras (Ft), 0 ≤ t ≤ T , to which, in turn, a Wiener process W = (Wt), 0 ≤ t ≤ T , is adapted, then
the pathwise uniqueness of the weak solution of the general equation (1.3) implies that the solution ξ is,
actually, a strong one.

Now, with the example of Eq. (1.42) we show that with a specific choice of the function at one can
construct a (pathwise) unique anticipating (but not a strong) solution of Eq. (1.42) on the whole interval
[0, T ]. Thus, the condition that the solution is adapted to (Ft), 0 ≤ t ≤ T , in [126] cannot be omitted.
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Indeed, set, e.g.,

at =


0 if t = 0,

c1
t
, 0 < c1 <

1

2
if 0 ≤ t ≤

T

2
,

c2

t− T2
, c2 < 0 if

T

2
< t ≤ T.

It can be easily seen that there is no solution of Eq. (1.43) with the initial condition ξT/2 �= 0 in the

interval

[
T

2
, T

]
, but there exists a unique solution with the initial condition ξT/2 = 0. The last condition,

in turn, defines C = C(ω) uniquely in formula (1.44) of the general solution of Eq. (1.42) on the interval[
0,
T

2

]
. Namely,

C(ω) = − exp

(
−

∫ T/2
t0

audu

)[∫ T/2
t0

exp

(∫ T/2
s

audu

)
asWsds+WT/2

]
∈ FWT/2.

Thus, the solution just constructed is a pathwise unique anticipating solution of Eq. (1.42) on the
whole interval [0, T ] but, obviously, it is not strong.

1.5. Innovation Problem for Nonlinear Filtering

Consider a stochastic basis (Ω,F , F = (Ft), t ≥ 0, P ) with a Wiener processW = (Wt), t ≥ 0, defined
on it, and let θ be a random variable independent of W with a distribution function F (a) = P (θ ≤ a),
a ∈ R1.

Further, we consider the Itô process ξ = (ξt), t ≥ 0, with the differential

dξt = θdt+ dWt, t ≥ 0, ξ0 = 0. (1.45)

We want to construct an innovation process W , i.e., represent the process ξ in the form of the
diffusion-type process:

dξt = Atdt+ dW t, t ≥ 0, ξ0 = 0,

where the process At is F
ξ
t -measurable for every t and W = (W t), t ≥ 0, is a Wiener process with

FWt = Fξt , t ≥ 0 (mod P ).

Note that both σ-algebras are augmented with respect to the measure P for each t ≥ 0.
In order to do this, we introduce the function A(t, x): [0,∞)× R1 → R1 by the formula

A(t, x) =



∫ +∞
−∞

a exp

(
ax−

a2t

2

)
dF (a)∫ +∞

−∞
exp

(
ax−

a2t

2

)
dF (a)

if t > 0,

0 if t = 0.

(1.46)

From the Bayes formula we have

A(t, ξt) = E(θ | Fξt ) (dt× P -a.s.).

Thus, by virtue of [77], W = (W t), t ≥ 0, where

W t = ξt −

∫ t
0
A(s, ξs) ds (1.47)

is a Wiener process adapted to (Fξt ), t ≥ 0.
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Under rather strong restrictions on the distribution F of the random variable θ it has been shown
that the Wiener process constructed in (1.47) is an innovation process. In [14], θ was assumed to be
bounded, in [66] the pair (θ,W ) was assumed to be Gaussian, and in [96], E|θ| <∞.

If we write Eq. (1.47) in the form

dξt = A(t, ξt) dt+ dW t, t ≥ 0, ξ0 = 0 (1.48)

and consider Eq. (1.48) as a stochastic differential equation, then we note that the problem of the
construction of an innovation process can be solved by proving the existence of the unique strong solution
of Eq. (1.48).

a. Direct Probabilistic Proof

Application of Theorem 1.1 makes it possible to reduce the problem of construction of the unique
solution of Eq. (1.48) to a simpler problem: that is, to the proof of the weak uniqueness of the solution
of Eq. (1.48).

Note that the existence of a weak solution of Eq. (1.48) follows directly from (1.47).
We show first that for any s > 0 and z ∈ R1, Eq. (1.48), considered in the interval t ≥ s > 0 with

the initial condition ξs = z, is strongly regular.
With this aim in view, we fix s > 0 and z ∈ R1 and consider the following Itô process:

ξt(s, z) = z + θs,z · (t− s) +Wt −Ws, t > s, (1.49)

where θs,z is a random variable independent of the future increments Wt −Ws, t ≥ s > 0, of a Wiener
process W , and P (θs,z ≤ a) = Fs,z(a), a ∈ R1, with

Fs,z(a) =

∫ a
−∞

ebz−
b2s
2 dF (b)∫ +∞

−∞
ebz−

b2s
2 dF (b)

. (1.50)

We introduce the function

As,z(t, x) =



∫ +∞
−∞

a exp

(
ax−

a2(t− s)

2

)
dFs,z(a)∫ +∞

−∞
exp

(
ax−

a2(t− s)

2

)
dFs,z(a)

for t > s;

0 for t = s.

(1.51)

Note that for any s > 0 and z ∈ R1,

As,z(t, ξt(s, z)) = E(θs,z | F
ξ(s,z)
t ) (dt× P -a.s.).

Thus, by virtue of [77], in this case we have again that

W t(s, z) = ξt(s, z) − z −

∫ t
s

As,z(u, ξu(s, z)) du (1.52)

is a Wiener process with respect to the filtration (F
ξ(s,z)
t ), t ≥ s > 0.

Substituting Eq. (1.50) into (1.51), we obtain

As,z(t, x) = A(t, x+ z).

Hence, by virtue of Eq. (1.52), we obtain

dξt(s, z) = A(t, ξt(s, z)) dt + dW t(s, z), ξs(s, z) = z, t ≥ s > 0. (1.53)

Consequently, the process ξt(s, z), t ≥ s, z ∈ R1, is a weak solution of Eq. (1.53) and hence, of
Eq. (1.48), on the whole interval [0,∞) with the initial condition ξs(s, z) = z.
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It can be easily seen now that the function A(t, x) is bounded in the domain

{(t, x) : 0 < s ≤ t ≤ T, |x| ≤ H, 0 < T <∞, 0 < H <∞}.

Indeed,

|A(t, x)| ≤

∫ +∞
−∞
|a| exp

(
|a|H −

a2s

2

)
dF (a)∫ +∞

−∞
exp

(
−|a|H −

a2T

2

)
dF (a)

<∞.

Hence, by virtue of Corollary 1.2, Eq. (1.48), considered on the interval [s,∞), ξs = z, z ∈ R1, for
any s > 0 is strongly regular until the explosion time (see the definition in the statement of Corollary 1.2).

As we can see, the weak solution which was constructed earlier (see Eq. (1.47)) is finite on the whole
interval [s,∞), and we obtain that Eq. (1.48) is strongly regular on the whole interval [s,∞), s > 0, for
any initial condition ξs = z ∈ R1.

Thus, there exists a non-anticipating functional Φt(s, z, (uτ − us, τ ≥ s)), s > 0, t ≥ s, z ∈ R1,
u ∈ C[s,∞), such that for any weak solution (ξt,Wt), t ≥ s > 0, of Eq. (1.48), with the initial condition

ξs = η, where η is a random variable independent of the σ-algebra FW[s,∞), the following relation holds:

ξt = Φt(s, η, (Wτ −Ws, τ ≥ s)) (P -a.s.).

Now we introduce a measure Qs,z(·) on the space (C[s,∞),B[s,∞)). For any s > 0, z ∈ R1, we set

Qs,z(B) = P (Φ·(s, z, (Wτ −Ws, τ ≥ s)) ∈ B),

where B ∈ B[s,∞).
Obviously, Qs,z(B) = P (ξ(s, z) ∈ B).
One can easily verify the following properties of the measure Qs,z: for all s > 0 and z ∈ R1 we have

(1) Qs,z
(
θ̂ := lim

t→∞

ut
t
exists

)
= 1;

(2) Qs,z
(
(W t(s, z) := ut − z − (t − s)θ̂, t ≥ s) ∈ B

)
= P s(B), where P s is a Wiener measure on

(C[s,∞)B[s,∞));

(3) Qs,z(θ̂ ≤ a) = Fs,z(a), a ∈ R1;

(4) Qs,z
(
θ̂ ≤ a, (W t(s, z), t ≥ s) ∈ B

)
= Fs,z · P s(B);

(5) if (ξt) is a weak solution of Eq. (1.48) on the whole interval [0,∞), then

P ((ξt, t ≥ s) ∈ B | ξs = z) = Qs,z(B).

Now let ξ̃t, t ≥ 0, be a weak solution of Eq. (1.48) considered on the interval t ≥ 0 with the initial

condition ξ̃0 = 0. Let P
ξ̃
(·) be a distribution corresponding to the process ξ̃, P (·) be a Wiener measure

on the space (C[0,∞),B[0,∞)), and Pξ̃s(·) be a distribution of the random variable ξ̃s, where s > 0 is a fixed

point. It is obvious that the following equalities are true:
(1′)

P
ξ̃

(
lim
t→∞

ut
t

exists
)
=

∫
R1

P
ξ̃

(
lim
t→∞

ut
t

exists | us = z
)
P
ξ̃s
(dz)

=

∫
R1

Qs,z

(
lim
t→∞

ut
t

exists
)
P
ξ̃s
(dz) = 1.

Let lim
t→∞

ξ̃t
t
= θ̃.

For any s > 0, z ∈ R1, we have
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(2′)

P
ξ̃

(
(ut − us − θ̃(t− s), t ≥ s) ∈ B

)
=

∫
R1

P
ξ̃

(
(ut − us − θ̃(t− s), t ≥ s) ∈ B | us = z

)
P
ξ̃s
(dz)

=

∫
R1

Qs,z(B) · Pξ̃s(dz) =

∫
R1

P s(B)P
ξ̃s
(dz) = P s(B),

where B ∈ B[s,∞).
(3′)

P
ξ̃

(
(ut − us − θ̃(t− s), t ≥ s) ∈ B, θ̃ ≤ a

)
=

∫
R1

P
ξ̃

(
(ut − us − θ̃(t− s), t ≥ s) ∈ B, θ̃ ≤ a | us = z

)
P
ξ̃s
(dz)

=

∫
R1

Qs,z(B, θ̃ ≤ a)Pξ̃s(dz) =

∫
R1

P s(B)Fs,z(a)Pξ̃s(dz) = P s(B)F̃ (a),

where F̃ (a) is the distribution of the random variable θ̃.

(4′) P (θ̃ ≤ a | ξ̃s = z) = Fs,z(a).

Thus, if W̃t = ξ̃t − θ̃t, t ≥ 0, then by virtue of properties (2′) and (3′), we easily obtain that the

σ-algebra σ(θ̃) is independent of the σ-algebra FW̃[0,+∞) = σ
(
∪s>0σ(W̃τ−W̃s, τ ≥ s)

)
. But FW̃[0,∞) = σ(W̃t),

t ≥ 0 = FW̃0+ ∨ F
W̃
[0+,∞) = F

W̃
[0+,∞), since F

W̃
0+ = FW̃0 = (∅,Ω) (mod P ). Hence W̃t, t ≥ 0, is a Wiener

process independent of the random variable θ̃. In order to show that the distribution of ξ̃ coincides
with that of ξ and, therefore, that Eq. (1.48) has a unique weak solution, it is sufficient to show that

F̃ (a) = F (a), a ∈ R1.
It can be easily seen that

P (θ̃ ≤ a | F ξ̃s ) = P (θ̃ ≤ a | ξ̃s) = F
s,ξ̃s

(a), a ∈ R1, s > 0 (P
ξ̃
-a.s.). (1.54)

But

lim
s→0+

P (θ̃ ≤ a | F ξ̃s ) = P (θ̃ ≤ a | F ξ̃0+)

by virtue of the properties of the reverse martingale.
Further, we note that P

ξ̃
� PW and FW0+ = FW0 . Thus, by the zero–one law,

P (θ̃ ≤ a | F ξ̃0+) = P (θ̃ ≤ a) = F̃ (a) (P
ξ̃
-a.s.).

Finally, by virtue of (1.54),

F̃ (a) = lim
s→0+

F
s,ξ̃s

(a) = F (a).

b. Proof Based on the Extension of Theorem 1.1

Let (C[0,T ],B[0,T ]) be a measure space of continuous functions. Let, further, Y ∈ B[0,T ].
We call the continuous process ξ = (ξt), 0 ≤ t ≤ T , a Y -solution (see [126]) (weak or strong) of Eq.

(1.1) if the process ξ satisfies Eq. (1.1) and is such that

P{((ξt), 0 ≤ t ≤ T ) ∈ Y } = 1.

Similarly the notions of Y -weakly and Y -strongly regular equations can be introduced.
Consider the class

K = {Y : u, v ∈ Y =⇒ u ∨ v, u ∧ v ∈ Y },

where u ∨ v = max(ut, vt), 0 ≤ t ≤ T , and u ∧ v = min(ut, vt), 0 ≤ t ≤ T .
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It can be easily seen that an analogue of Theorem 1.1 holds also for Y -solutions.
Namely, the following theorem takes place.

Theorem 1.1′. For any Y ∈ K, Eq. (1.1) is Y -strongly regular iff Eq. (1.1) is Y -weakly regular.

The proof coincides with that of Theorem 1.1. The only difference is that here we can apply the
Yamada–Watanabe theorem formulated for Y -solutions.

Namely, if Eq. (1.1) has a Y -weak solution and if any two Y -weak solutions given on the same
(arbitrary) probability space with the same initial distributions coincide pathwise, then Eq. (1.1) has a
pathwise unique Y -strong solution.

Consider the class

Y0 =

{
u ∈ C[0,T ] :

∫ T
0
A2(t, ut) dt <∞

}
.

It is obvious that Y0 ∈ K.
The solution (weak or strong) of Eq. (1.1) is called an AC-solution (absolutely continuous solution)

if the measure corresponding to this solution is absolutely continuous with respect to the measure of the
process ξ0 +W .

It follows from the criterion of absolute continuity of the measure of the diffusion process with respect
to the Wiener measure (see [66]) that any Y0-solution is an AC-solution and vice versa.

On the other hand (as follows from the form of the Radon–Nikodym derivative), the AC-solutions
are equivalent in distributions, which implies the following corollary.

Corollary 1.3. If there exists a weak AC-solution of Eq. (1.1), then it is a pathwise unique strong
AC-solution.

Returning to the innovation problem, note that Eq. (1.48) has a weak solution, namely, the initial
process ξ (see (1.47)). But the measure of the Itô process ξ is absolutely continuous with respect to the
Wiener measure (see (1.45)). The problem is solved.

Chapter 2

PARTIALLY OBSERVABLE DIFFUSION-TYPE PROCESSES. CONSTRUCTION OF
AN INNOVATION PROCESS

2.1. A Stochastic Version of the Gronwall–Bellman Lemma

The following lemma is a stochastic version (multidimensional) of the well-known Gronwall–Bellman
lemma.

Lemma 2.1. Let, on a stochastic basis (Ω,F , F = (Ft), 0 ≤ t ≤ T , P ), the following objects be given:
(1) a multidimensional continuous process Xt = (X1t , ...,X

n
t ) with Xt ≥ 0 (P -a.s.), 0 ≤ t ≤ T ;

(2) a matrix process

Kt = (Kijt ), i, j = 1, ..., n, 0 ≤ t ≤ T, K(0) = 0,

which is increasing and continuous;
(3) a multidimensional continuous local martingale

Mt = (M1t , ...,M
n
t ), M i0 = 0, i = 1, ..., n.

Let

0 ≤ Xt ≤

∫ t
0
XsdKs +Mt, 0 ≤ t ≤ T (P -a.s.).

Then
P
(
sup
0≤t≤T

‖Xt‖ = 0
)
= 1,
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where ‖Xt‖ =
n∑
j=1
|Xjt |.

Proof. Note that if B is an increasing process, M ∈Mcloc, and 0 ≤Mt +Bt, then if EBτ <∞, where τ
is a stopping time, Mt∧τ is a supermartingale.

Indeed,

Mt∧τ ≥ −Bt∧τ ≥ −Bτ .

Hence, Mt∧τ is bounded by an integrable random variable and, therefore, is a supermartingale.
It is obvious that

‖Xt‖ ≤

∫ t
0
‖Xs‖ dK̃s + M̃t,

where

K̃t := t+ sup
0≤s≤t
‖Xs‖+ max

1≤i,j≤n
Kijt , M̃t =

n∑
i=1

M it .

Consider the stopping time τc defined by the equality

K̃τc = c.

We show that for

Bt =

∫ t
0
‖Xs‖ dK̃s,

EBτc <∞ is true.
Indeed,

Bt ≤ sup
0≤s≤t
‖Xs‖K̃t ≤ (K̃t)

2.

Hence,

Bτc ≤ (K̃τc)
2 = c2.

Thus, M̃t∧τc is a supermartingale and EM̃t∧τc ≤ 0.
Changing the time Xτc = Y (c), we obtain

‖Y (c)‖ ≤

∫ τ
0
‖Xs‖ dK̃s + M̃τc .

Since τc = K̃−1(c), we have

‖Y (c)‖ ≤

∫ c
0
‖Y (l)‖ dl + M̃τc .

Hence,

E‖Y (c)‖ ≤

∫ t
0
E‖Y (l)‖ dl.

The latter, by the Gronwall–Bellman lemma, leads to the equality E‖Y (c)‖ = 0, which implies
Y (c) = 0 (P -a.s.). But this means that sup

c
‖Xτc‖ = 0 and since τc →∞ as c→∞, we have sup

0≤t≤T
‖Xt‖ = 0

(P -a.s.).
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2.2. Innovation Problem for a Component of the Diffusion-Type Process

Consider a diffusion-type process (η, ξ) which is a solution of the following SDE:

dηt = at(ξ, η)dt + bt(η)dvt, η0 = 0,

dξt = At(ξ, η)dt + dWt, ξ0 = 0, 0 ≤ t ≤ T,
(2.1)

where v and W are independent Wiener processes and a, b, and A are nonanticipating functionals.
Let gt(x, y), 0 ≤ t ≤ T , x, y ∈ C[0,T ] denote any of the functionals at(x, y), At(x, y) and assume that

the following conditions are satisfied for any x, x, y ∈ C[0,T ] and t ∈ [0, T ]:
(1) the Lipschitz condition with respect to the variable x,

|gt(x, y)− gt(x, y)|
2 ≤ const

(
(xt − xt)

2 +

∫ t
0
(xs − xs)

2dKs

)
;

(2) the linear growth condition

|gt(x, y) ≤ const

(
1 + x2t + y2t +

∫ t
0
(x2s + y2s) dKs

)
,

where K = (Kt), K0 = 0, is an increasing continuous function;
(3) the coefficient bt(y) is such that the equation

dζt = bt(ζ)dvt, ζ0 = 0

has a unique strong solution.

Theorem 2.1. Let (η, ξ) = (ηt, ξt), 0 ≤ t ≤ T , be a strong solution of SDE (2.1). If conditions (1), (2),
and (3) are satisfied, then there exists an innovation Wiener process W = (W,F ξ) for the process ξ, and

FW = F ξ (mod P ).

Remark 2.1. The process W = (W,F ξ) and the filtrations FW and F ξ are defined in the Introduction,
(0.6), (0.7), and (0.8).

Proof. For simplicity we consider the case where bt(y) = 1 (in the general case it is sufficient to consider
a distribution of the solution of the equation

dζ = b dv

instead of the Wiener distribution). We suppose also that dKt = dt.
Both assertions of the theorem will be proved if we show that the process ξ is represented in the form

of a diffusion-type process

dξt = mt(ξ)dt+ dW t, ξ0 = 0, 0 ≤ t ≤ T, (2.2)

where the process m = (mt(ξ)) is F
ξ-adapted, W = (W,F ξ) is a Wiener process, and Eq. (2.2) has a

unique strong solution.
As mt we take

mt(ξ) = E(At | F
ξ
t ),

where At = At(ξ, η(ξ, v)), η(ξ, v) = (ηt(ξ, v)), 0 ≤ t ≤ T , is a strong solution of the first equation of
system (2.1) with given ξ.

The condition of linear growth, as is well known [66], leads to the existence of moments of all orders
for ξ and η and, surely, to the existence of mt and to its square integrability, i.e.,∫ T

0
m2t (ξ) dt <∞ (P -a.s.)

(moreover, this condition implies E
T∫
0

m2t (ξ) dt <∞).
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Thus, the process W = (W,F ξ) with

W t = ξt −

∫ t
0
ms(ξ) ds

is a Wiener process and, hence, we have to prove the strong solvability of Eq. (2.2).
Since the weak solution of (2.1) has just been constructed, we prove the strong uniqueness of Eq. (2.2).
We use the generalized Bayes formula (see, e.g., [66]) to obtain an explicit expression for mt(ξ).
Introduce the following distributions on the measure space (C[0,T ],B[0,T ]) of continuous functions:

∀B ∈ B[0,T ] let Qv(B) = P (v ∈ B) and Qη(B) =
∫

C[0,T ]

I{y:η(ξ,y)∈B}Qv(dy).

Note that the process v is independent of the Wiener process W and, again, by the condition of
linear growth, the following Bayes’ formula is true (P -a.s.):

mt(ξ) = E
(
At(ξ, η(ξ, v)) | F

ξ
t

)
=

∫
C[0,T ]

At(ξ, η(ξ, y)) exp

[∫ t
0
As(ξ, η(ξ, y))

−ms(ξ)) dW s −
1

2

∫ t
0
(As(ξ, η(ξ, y)) −ms(ξ))

2ds

]
Qv(dy).

Change the integration variable and pass to the distribution of the process η with a given ξ, Qη(·).
We obtain

mt(ξ) =

∫
C[0,T ]

At(ξ, y) exp

[∫ t
0
(As(ξ, y)−ms(ξ)) dW

−
1

2

∫ t
0
(As(ξ, y)−ms(ξ))

2ds

]
Qη(dy)

=

∫
C[0,T ]

At(ξ, y) exp

[∫ t
0
(As(ξ, y)−ms(ξ)) dW s

−
1

2

∫ t
0
(As(ξ, y)−ms(ξ))

2ds

]
exp

[∫ t
0
as(ξ, y) dvs −

1

2

∫ t
0
a2s(ξ, y) ds

]
Qv(dy). (2.3)

The theorem will be proved if we establish the following: if the processes ξ1 and ξ2 defined on the
same probability space are the solutions of the equation

dξit = misdt+ dW t (2.4)

such that

P

(∫ T
0
(mit)

2dt <∞

)
= 1, i = 1, 2, (2.5)

where mit = mt(ξ
i), then

P
(
sup
0≤t≤T

|ξ1t − ξ
2
t | = 0

)
= 1.

Let ξ1 and ξ2 satisfy Eq. (2.4) and condition (2.5) with the initial notation for both the probability
space and Wiener process (for convenience).

Condition (2.5) implies that the distributions of ξ1 and ξ2 are absolutely continuous w.r.t. a Wiener
measure and, moreover, the distributions Qξ1 , Qξ2 , and Qξ of ξ

1, ξ2, and ξ, respectively, coincide, i.e.,
Qξ1(·) = Qξ2(·) = Qξ(·), · ∈ B[0,T ].

Note that

P
(
sup
0≤t≤T

|ξ1t − ξ
2
t | = 0

)
≥ P

(∫ T
0
(m1t −m

2
t )
2dt = 0

)
.
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We prove that the last probability is equal to 1.
Introduce the following notation and simplification: for i = 1, 2, t ∈ [0, T ],

Ait(y) = At(ξ
i, y), mit = mt(ξ

i), ait(y) = at(ξ
i, y),

git(y) = exp

[∫ t
0
(Ais(y)−m

i
s)dW s −

1

2

∫ t
0
(Ais(y)−m

i
s)
2ds

]
exp

[∫ t
0
ais(y)dvs −

1

2

∫ t
0
(ais(y))

2ds

]
,

Gt(y) =
1

2
(g1t (y) + g2t (y)), Qv(dy) = Q(dy),∫

C[0,T ]

f(y)Q(dy) =

∫
f(y)Q(dy),

where f is an integrable function.
Note that ∫

Gt(y)Q(dy) = 1,

(Qξ1 = Qξ2 = Qξ).
Further, we denote

zt =

∫ t
0
(m1s −m

2
s)
2ds, 0 ≤ t ≤ T.

The square for any expression f will be written by using the brackets (f)2 (instead of f2 = (f(ξ2)).
The exact values of the constants appearing during the estimation does not matter and it is not necessary
to observe their change.

Fix t and consider the difference m1t −m
2
t . It can be easily seen that

m1t −m
2
t =

∫
(A1t (y)g

1
t (y)−A

2
t (y)g

2
t (y))Q(dy)

=
1

2

[∫
(A1t (y)−A

2
t (y))Gt(y)Q(dy)

+

∫
(A1t (y) +A2t (y))(g

1
t (y)− g

2
t (y))Q(dy)

]
.

Using the Schwartz inequality and the simple inequality

|ex − ey| ≤
ex + ey

2
|x− y|,

we obtain the estimate

(m1t −m
2
t )
2 ≤ const

{∫
(A1t (y)−A

2
t (y))

2Gt(y)Q(dy)

+

∫
(A1t (y) +A2t (y))

2Gt(y)Q(dy)

[∫ (∫ t
0
A1s(y)−A

2
s(y))dW s

)2
Gt(y)Q(dy)

+

∫ (∫ t
0
(m1s −m

2
s)dW s

)2
Gt(y)Q(dy) +

∫ (∫ t
0
(a1s(y)− a

2
s(y))dvs

)2
Gt(y)Q(dy)
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+

∫ (∫ t
0
(m1s −m

2
s)
2ds

)(∫ t
0
(m1s +m2s)

2ds

)
Gt(y)Q(dy)

+

∫ (∫ t
0
(A1s(y)−A

2
s(y))

2ds

)(∫ t
0
(m1s +m2s)

2ds

)
Gt(y)Q(dy)

+

∫ (∫ t
0
(m1s −m

2
s)
2ds

)(∫ t
0
(A1s(y) +A2s(y))

2ds

)
Gt(y)Q(dy)

+

∫ (∫ t
0
(a1s(y)− a

2
s(y))

2ds

)(∫ t
0
(a1s(y)− a

2
s(y))

2ds

)
Gt(y)Q(dy)

+

∫ (∫ t
0
(A1s(y)−A

2
s(y))

2ds

)(∫ t
0
(A1s(y) +A2s(y))

2ds

)
Gt(y)Q(dy)

]}
.

Each integral should be estimated separately. We have:
1. By condition (1) of the theorem, from Eq. (2.2) and definition of mi, i = 1, 2, we have

(A1t (y)−A
2
t (y)) ≤ const

[
(ξ1t − ξ

2
t )
2 +

∫ t
0
(ξ1s − ξ

2
s)
2ds

]
≤ const

∫ t
0
(m1s −m

2
s)
2ds = const ·zt.

Hence ∫
(A1t (y)−A

2
t (y))

2Gt(y)Q(dy) ≤ const ·zt. (2.6)

2. It can be easily seen that∫
(A1t (y) +A2t (y))

2Gt(y)Q(dy) ≤ const
2∑
i=1

∫
(Ait(y))

2git(y)Q(dy) = const
2∑
i=1

µit, (2.7)

where

µit =

∫
(Ait(y))

2git(y)Q(dy).

Now we note that

P

(∫ T
0
µitdt <∞

)
= 1, i = 1, 2.

Indeed, denote ηi = η(ξi, v) and recall that Qξ1 = Qξ2 = Qξ. We obtain∫
(Ait(y))

2git(y)Q(dy) = E
(
A2t (ξ

i, ηi) | Fξ
i

t

)
.

But it is well known (see [66]) that ∃C > 0,

E[(ξit)
2 + (ηit)

2] ≤ eCt − 1.

Thus, by virtue of condition (2) of the theorem,∫ T
0
EA2t (ξ

i, ηi)dt <∞.

The following three terms are denoted by I1, I2, and I3 and studied later on:
3.

I1t =

∫ (∫ t
0
(A1s(y)−A

2
s(y))dW s

)2
Gt(y)Q(dy).

4.

I2t =

∫ (∫ t
0
(a1s(y)− a

2
s(y))dys

)2
Gt(y)Q(dy).
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5.

I3t =

∫ (∫ t
0
(m1s −m

2
s)dW s

)2
Gt(y)Q(dy) =

(∫ t
0
(m1s −m

2
s)dW s

)2
.

Applying inequality (2.6) and similar estimates with the functions ait(y), i = 1, 2, instead of the

functions Ait(y), i = 1, 2, and denoting γt =
2∑
i=1

t∫
0

(mis)
2ds, we obtain

6. ∫ (∫ t
0
(m1s −m

2
s)
2ds

)(∫ t
0
(m1s +m2s)

2ds

)
Gt(y)Q(dy) ≤ const ·γtzt.

7. ∫ (∫ t
0
(A1s(y)−A

2
s(y))

2ds

)(∫ t
0
(m1s +m2s)

2ds

)
Gt(y)Q(dy) ≤ const ·γtzt.

8. ∫ (∫ t
0
(m1s −m

2
s)
2ds

)(∫ t
0
(A1s(y) +A2s(y))

2ds

)
Gt(y)Q(dy)

≤ const ·zt

( 2∑
i=1

∫ (∫ t
0
(Ais(y))

2ds

)
git(y)Q(dy)

)
= const ·ztI

4
t ,

where

I4t =
2∑
i=1

∫ (∫ t
0
(Ais(y))

2ds

)
git(y)Q(dy).

9. ∫ (∫ t
0
(a1s(y)− a

2
s(y))

2ds

)(∫ t
0
(a1s(y) + a2s(y))

2ds

)
Gt(y)Q(dy) ≤ const ·ztI

5
t ,

where

I5t =
2∑
i=1

∫ (∫ t
0
(ais(y))

2ds

)
git(y)Q(dy).

10. ∫ (∫ t
0
(A1s(y)−A

2
s(y))

2ds

)(∫ t
0
(A1s(y) +A2s(y))

2ds

)
Gt(y)Q(dy) ≤ const ·ztI

4
t .

Combining the estimates obtained in 1–10, denoting

δt = max

(
γt,

2∑
i=1

µit

)
,

and taking, for simplicity, const ≡ 1, we obtain

(m1t −m
2
t )
2 ≤ zt(1 + δt + I4t + I5t ) + δt(I

1
t + I2t + I3t ).

Our next aim is to estimate the integrals I1, ..., I5. By application of the Itô formula to the integrands
of I1, ..., I5, we obtain linear stochastic inequalities whose solution gives the desired estimates.

We perform this procedure taking as an example the integral I1. Introduce the product stochastic
basis

(Ω̃, F̃ , F̃ = (F̃t), 0 ≤ t ≤ T, P̃ )

= (Ω,F , F = (Ft), 0 ≤ t ≤ T,P )× (C[0,T ],B[0,T ], B = (B[0,t]), 0 ≤ t ≤ T,Q),

where Q is a Wiener measure, and let

W t =W t(ω, y) =W t(ω), ξit = ξit(ω, y) = ξit(ω), i = 1, 2,

vt = vt(ω, y) = vt(y) = yt.
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Then a Wiener process v is independent of processes W , ξ1, and ξ2. Moreover,

I1t = I1t (ξ
1, ξ2) = Ẽ(i1t (ξ

1, ξ2, v) | Fξ
1,ξ2

t )

with

i1t (ξ
1, ξ2, v) = i1t (y),

where the process i1t (y) = i1t (ω, y) defined on the stochastic basis (Ω̃, F̃ , F̃ , P̃ ) is given by the formula

i1t (y) =

(∫ t
0
(A1s(y)−A

2
s(y)) dW s

)2
Gt(y),

or, in more detail,

i1t (ω, y) =

(∫ t
0
(A1s(ω, y)−A

2
s(ω, y)) dW s

)2
Gt(ω, y),

where

Gt(ω, y) =
1

2
(g1t (ω, y) + g2t (ω, y)),

git(ω, y) = Et

(∫ ·
0
(Ais(ω, y)−m

i
s) dW s

)
Et

(∫ ·
0
ais(ω, y) dvs

)
,

where i = 1, 2, and Et(M) is the Dolean exponential of the martingale M (see [67]).

Applying the Itô formula to each summand (recall that G =
1

2
(g1 + g2)), after addition and some

simple calculations we obtain

i1t (y) =
1

2

∫ t
0

2∑
i=1

[(∫ s
0
(A1u(y)−A

2
u(y)) dW u

)2
(Ais(y)−m

i
s)g
i
s(y) dW s

+ 2

(∫ s
0
(A1u(y)−A

2
u(y)) dW u

)
(A1s(y)−A

2
s(y))g

i
s(y) dW s

+

(∫ t
0
(A1u(y)−A

2
u(y)) dW u

)2
ais(y)g

i
s(y) dvs

]
+

∫ t
0
(A1s(y)−A

2
s(y))

2Gs(y) ds

+

∫ t
0

(∫ s
0
(A1u(y)−A

2
u(y)) dW u

)
(A1s(y)−A

2
s(y))

( 2∑
i=1

(Ais(y)−m
i
s)g
i
s(y)

)
ds. (2.8)

Estimate the integrand of the last summand (using the simple inequality ab ≤
1

2
(a2 + b2)), we easily

obtain that this summand is less than or equal to∫ t
0

(∫ s
0
(A1u(y)−A

2
u(y)) dW u

)2
Gs(y) ds+ const

∫ t
0
(A1s(y)−A

2
s(y))

2Gs(y)l1(s, y) ds

≤

∫ t
0
i1s(y) ds+ const

∫ t
0

(∫ s
0
(m1u −m

2
u)
2du

)
l1(s, y) ds, (2.9)

where l1(s, y) =
2∑
i=1

((Ais(y))
2 + (mis)

2).

Hence, from (2.8) we obtain a linear stochastic inequality for i1t of the form

i1t (y) ≤

∫ t
0
i1s(y) ds+ const

∫ t
0

(∫ s
0
(m1u −m

2
u)
2du

)
Gs(y)l1(s, y) ds

+

∫ t
0
K1(s, y) dW s +

∫ t
0
p1(s, y) dvs, 0 ≤ t ≤ T. (2.10)
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Solving the last inequality, we obtain the estimate

i1t (y) ≤

∫ t
0
K1(s, y) dW s +

∫ t
0
p1(s, y) dvs +

∫ t
0

(∫ s
0
(m1u −m

2
u)
2du

)
l1(s, y) ds, (2.11)

where K1, p1, and l1 (l1 ≥ 0) are random processes with

P

(∫ T
0
(K1(s, y))

2ds <∞

)
= P

(∫ T
0
(p1(s, y))

2ds <∞

)
= 1 (Q-a.s.),

P

(∫ T
0

(∫
l1(s, y)Q(dy)

)
ds <∞

)
= 1.

(2.12)

Quite similarly we estimate i2t in the expression

I2t =

∫
i2t (y)Q(dy).

A direct application of the Itô formula to I3 yields

I3t =

∫ t
0
(m1s −m

2
s)
2ds+

∫ t
0
K3(s) dW s

with

P

(∫ T
0
(K3(s))

2ds <∞

)
= 1.

By a simple application of the Itô formula, we obtain for the integrands i4t and i
5
t of integrals I

4
t and

I5t , respectively:

iit(y) =

∫ t
0
Ki(s, y) dW s +

∫ t
0
pi(s, y) dvs +

∫ t
0
li(s, y)ds, i = 4, 5,

where

P

(∫ T
0
(Ki(s, y))

2ds <∞

)
= P

(∫ T
0
(pi(s, y))

2ds <∞

)
= 1 (Q-a.s.)

and li ≥ 0, i = 4, 5, with

P

(∫ T
0

(∫
li(s, y)Q(dy)

)
ds <∞

)
= 1.

For the further consideration we need the following lemma.

Lemma 2.2. Let X(t, y) = X(t, ω, y) be an Itô process (defined on the above-mentioned product space)
with

0 ≤ X(t, y) =

∫ t
0
n(s, y) dW s +

∫ t
0
m(s, y) dvs +

∫ t
0
u(s, y) ds,

where W t = W t(ω) and vt = vt(y) are Wiener processes and u(t, y) ≥ 0 (recall that n(s, y) = n(s, ω, y),
m(s, y) = m(s, ω, y), and u(s, y) = u(s, ω, y)).

Assume that

P

(∫ T
0

(∫
u(s, y)Q(dy)

)
ds <∞

)
= 1

and

P

(∫ T
0
(n(s, y))2ds <∞

)
= P

(∫ T
0
(m(s, y))2ds <∞

)
= 1 (Q-a.s.).
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Denote

ζ(t, y) =

∫ t
0
n(s, y) dW s +

∫ t
0
m(s, y) dvs,

η(t, y) =

∫ t
0
u(s, y) ds.

Then if τ = τ(ω, y) = τ(ω) is an (Ft)-stopping time (and, therefore, (F̃t)-stopping time) such that τ ≤ T
and

E

∫
η(τ, y)Q(dy) <∞,

then the process

ζ(t ∧ τ) =

∫
ζ(t ∧ τ, y)Q(dy)

is an (Ft)-supermartingale with
sup
0≤t≤T

E|ζ(t ∧ τ)| <∞,

and, in particular,

P

(
sup
0≤t≤T

∫
X(t, y)Q(dy) <∞

)
= 1.

Proof. Consider the (F̃t)-stopping time

τc = τc(y) = inf{t > 0 : ζ(t, y) ≥ c} ∧ T, c > 0.

Note that for each y, τc is an (Ft)-stopping time.
It is obvious that for each y (Q-a.s.), ζ(t ∧ τ ∧ τc, y) is a uniformly integrable Ft-martingale with

ζ−(t ∧ τ, y), 0 ≤ t ≤ T , where ζ− = max(0,−ζ).
The conditions of the lemma result in

sup
0≤t≤T

Eζ−(t ∧ τ) ≤

∫
E sup
0≤t≤T

ζ−(t ∧ τ, y)Q(dy) <∞.

By the Fatou lemma, for each y (Q-a.s.),

Eζ(t ∧ τ, y) ≤ lim
c→∞

Eζ(t ∧ τ ∧ τc, y) = 0.

This leads to the relation

Eζ+(t ∧ τ) =

∫
(Eζ+(t ∧ τ, y))Q(dy)

=

∫
Eζ(t ∧ τ, y)Q(dy) +Eζ−(t ∧ τ) ≤ sup

0≤t≤T
Eζ−(t ∧ τ).

Hence,

sup
0≤t≤T

E|ζ(t ∧ τ)| <∞. (2.13)

Further, let s ≤ t. Then, again, by the Fatou lemma, we obtain

E(ζ(t ∧ τ, y) | Fs) ≤ lim
c→∞

E(ζ(t ∧ τ ∧ τc, y) | Fs) = lim
c→∞

ζ(s ∧ τ ∧ τc, y) = ζ(s ∧ τ, y)

for each y (Q-a.s.) and by an average with respect to the measure Q(dy) we obtain

E

(∫
ζ(t ∧ τ, y)Q(dy) | Fs

)
≤

∫
ζ(s ∧ τ, y)Q(dy), s ≤ t.

Hence, ζ(t ∧ τ) is an (Ft)-supermartingale.
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Now we consider the (Ft)-stopping time

σc = inf
{
t > 0 :

∫
η(t, y)Q(dy) ≥ c

}
∧ T, c > 0.

Obviously,

lim
c→∞

P (σc = T ) = 1 (2.14)

and from the martingale inequalities (see [66]) it follows that

P
(

sup
0≤t≤σc

ζ(t) <∞
)
= 0. (2.15)

To prove the last assertion of the lemma, it is enough to show that

P
(
sup
0≤t≤T

ζ(t) <∞
)
= 1.

For all a > 0 we have

P
(
sup
0≤t≤T

ζ(t) > a
)
≤ P

(
sup
0≤t≤σc

ζ(t) > a, σc = T
)

+P
(
sup
0≤t≤T

ζ(t) > a, σc < T
)
≤ P

(
sup
0≤t≤σc

ζ(t) > a
)
+ P (σc < T ).

Passing to the limit first as a→∞ and then as c→∞, we obtain from inequalities (2.14) and (2.13) the
desirable result.

Applying this lemma to I4 and I5, we obtain

P
(
sup
0≤t≤T

Iit <∞
)
= 1, i = 4, 5.

Put

Γt = max

(
1 + δt + I4t + I5t ;

∫
li(t, y)Q(dy), i = 1, 2; (K3t )

2

)
.

We have

P

(∫ T
0

Γtdt <∞

)
= 1.

Finally, combining the obtained inequalities, we obtain

zt ≤

∫ t
0
Γszsds+

∫ t
0
Γs(I

1
s + I2s + I3s ) ds,

I1t ≤

∫ t
0
Γszsds+ ζ1(t), I2t ≤

∫ t
0
Γszsds+ ζ2(t),

I3t ≤ zt + ζ3(t) ≤

∫ t
0
Γszsds+

∫ t
0
Γs(I

1
s + I2s + I3s ) ds+ ζ3(t),

where ζi, i = 1, 2, 3, are local martingales.
To complete the proof, it is sufficient to refer to Lemma 2.1. Indeed, if for each t we set

Xt = (zt, I
1
t , I

2
t , I

3
t ), Mt = (0, ζ1(t), ζ2(t), ζ3(t)), dKt = αΓtdt,

where α is the matrix

α =


1 1 1 1
1 0 0 0
1 0 0 0
1 1 1 1

 ,

then we obtain the desirable result.
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2.3. Coincidence of σ-Algebras in a Filtering Problem of a Multidimensional Partially
Observable Diffusion-Type Process

Let Rl, l = m,n, k, be Euclidean spaces with a fixed orthonormal basis and the usual Euclidean
norm | · |.

Fix T > 0.
Let (C l[0,T ],B

l
[0,T ]), l = m,n, k, be measure spaces of continuous l-dimensional functions with the

uniform metric, and let a(t, x, y) and A(t, x, y) be, respectively, m- and n-dimensional vectors, σ1(t, x, y)
and σ2(t, x, y) be, respectively, (m× k)- and (n× k)-matrices defined for t ∈ [0, T ], x ∈ Cm[0,T ], y ∈ C

n
[0,T ]

(nonrandom).
Let a k-dimensional Wiener process W = (W,F ) be given on a stochastic basis (Ω,F , F = (Ft), 0 ≤

t ≤ T,P ).
Consider the following system of SDEs:

dη(t) = a(t, η, ξ)dt + σ1(t, η, ξ)dWt, η(0) = 0,

dξ(t) = A(t, η, ξ)dt + σ2(t, ξ)dWt, ξ(0) = 0.
(2.16)

Denote by g(t, x, y) each of the coefficients a,A, σ1, and σ2 of (2.16). Assume that g(t, x, y) is a
non-anticipating functional and

(1) |g(t, x, y)| ≤ const for all t, x, y; const > 0;
(2) the functional g(t, x, y) satisfies the Lipschitz condition with respect to the pair (x, y):

|g(t, x1, y1)− g(t, x2, y2)|
2 ≤ const

(
|x1(t)− x2(t)|

+|y1(t)− y2(t)|+

∫ t
0
(|x1(s)− x2(s)|

2 + |y1(s)− y2(s)|
2) dKs

)
,

where K(t) ≥ 0, K(0) = 0 is an increasing right-continuous nonrandom function, and | · | is a norm on a
suitable Euclidean space.

We set

σ(t, y) = σ2(t, y)σ
∗
2(t, y),

where ∗ denotes transposition;
(3) assume that there exists a constant λ > 0 such that for all t ∈ [0, T ], y ∈ Cn[0,T ], and u =

(u1, ..., un) ∈ Rn,
n∑
i,j=1

σij(t, y)uiuj ≥ λ|u|
2.

If conditions (1) and (2) hold, then as is well known, there exists a pathwise unique strong solution
of Eq. (2.16).

Further, if σ1/2 is a positive symmetric square root of the matrix σ, then, thanks to condition (3),
there exists the matrix σ−1/2, which is a bounded function of (t, y) ∈ [0, T ] ×Cn[0,T ].

Denote by

F ξ = (Fξt ), 0 ≤ t ≤ T,

the P -augmented filtration generated by the process ξ and consider the process

W (t) =

∫ t
0
σ−1/2(s, ξ) dξ(s) −

∫ t
0
σ−1/2(s, ξ)E(A(s, η, ξ) | Fξs ) ds, (2.17)

where E(· | Fξs ) = E(· | Fξs )(ω, s) is a (ω, s)-measurable modification of a conditional expectation.
Further, we denote the P -augmented filtration generated by the process W by

FW = (FWt ), 0 ≤ t ≤ T.
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Theorem 2.2. In scheme (2.16), under conditions (1), (2), and (3), the process W = (W,F ξ), defined
by Eq. (2.17), is an innovation process, i.e., a Wiener process with

FW = F ξ (mod P ).

Proof. Let us show that system (2.16) can be reduced to the following triangular system:

dη(t) = a(t, η, ξ)dt + c(t, η, ξ)dW̃ (t) + b(t, η, ξ)dv(t), η(0) = 0,

dξ(t) = A(t, η, ξ)dt + σ̃(t, ξ)dW̃ (t), ξ(0) = 0,
(2.18)

where σ̃ = σ1/2, b and c are some matrices satisfying conditions (1) and (2), and v and W̃ are independent
Wiener processes (the dimensions of the just-described objects are given in the proof below).

Indeed, let

dW̃ = σ̃−1σ2dW

(for simplicity, here and below, the arguments of the functions and processes will be omitted). Obviously,

W̃ is an n-dimensional Wiener process with

σ̃dW̃ = σ2dW.

Denote
L = I − σ∗2(σ

−1)σ2, c = σ1σ
∗
2σ
−1/2,

where I is the identity matrix, and consider the process x with

dx = LdW.

It is easy to see that the processes x and W̃ are independent and

σ1dW = cdW̃ + σ1LdW.

It is well known that the matrix L can be represented in the form

L =MBD,

where the matrix B is nondegenerate and matrices M , B, and D have dimensions m×p, p×p, and p×k,
respectively, where p ≤ k − n (obviously, it is always possible to take k − n > 0).

Further, the matrix
E = BDD∗B∗

is nondegenerate. Hence

LdW =ME1/2(E−1/2BDdW ).

Now, if we take

dv = E−1/2BDdW,

then v is a Wiener process independent of W̃ , and we obtain the desirable system (2.18).
In scheme (2.18), without loss of generality (due to condition (3)), we can set

σ̃(t, y) = I,

where I is the identity matrix.

Below we omit the sign “∼” over the process W̃ and simply write W .
The process W with

dW (t) = dξ(t)−m(t, ξ) dt,

where
m(t, ξ) = E(A(t, η, ξ) | Fξt ),

is, as is well known, a Wiener process.
Thus, from the second equation of system (2.18) we derive

dW (t) = dξ(t)−A(t, η, ξ)dt = dW (t) + [m(t, ξ)−A(t, η, ξ)]dt.
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Hence,

dη(t) = a(t, η, ξ)dt + b(t, η, ξ)dv(t) + c(t, η, ξ)dW (t) + c(t, η, ξ)[m(t, ξ) −A(t, η, ξ)]dt.

It follows from conditions (1) and (2) that the last equation has a strong solution, i.e.,

η(t) = F (t, v, ξ),

where F (t, x, y) is a nonanticipating functional.
Therefore, we obtain

dξ(t) = φ(t, v, ξ)dt + dWt (= m(t, ξ)dt+ dW (t)), (2.19)

where
φ(t, x, y) = A(t, F (t, x, y), y)

is a superposition of nonanticipating functionals and hence itself is nonanticipating.

Obviously, FW ⊂ Fξ (mod P ), by the construction of the process W . Thus, it remains to prove that

Fξ ⊂ FW (mod P ). To this end, it suffices to show the pathwise uniqueness of the solution of Eq. (2.19).
The proof then follows from the Yamada–Watanabe theorem.

Denote by µ(dx) a distribution of the Wiener process v on a measure space (Ck[0,T ],B
k
[0,T ]). Recall

that the processes v and W are independent. Hence, from the Bayes formula we have

m(t, ξ) = E(φ(t, v, ξ) | Fξt ) =

∫
Ck
[0,T ]

φ(t, x, ξ)ρ(t, x, ξ)µ(dx), (2.20)

where

ρ(t, x, ξ) = exp(f(t, x, ξ)),

f(t, x, ξ) :=
n∑
p=1

∫ t
0
(φp(s, x, ξ)−mp(s, ξ)) dW p(s)−

1

2

∫ t
0
|φ(s, x, ξ) −m(s, ξ)|2ds.

(2.21)

Introduce the probability space

(Ω̃, F̃ , P̃ ) = (Ω× Ck[0,T ],F × B
k
[0,T ], P × µ),

ω̃ = (ω, x), and let ξ̃(ω̃) = ξ(ω), ṽ(ω̃) = x. Then ṽ is a Wiener process independent of the process ξ.

Denoting expectations with respect to measures P̃ and µ by Ẽ and Eµ, respectively, we obtain from
(2.20)

m(t, ξ̃) =

∫
Ck
[0,T ]

φ(t, x, ξ̃)ρ(t, x, ξ̃)µ(dx)

:= Eµ
(
φ(t, ṽ, ξ̃)ρ(t, ṽ, ξ̃)

)
= Ẽ

(
φ(t, ṽ, ξ̃)ρ(t, ṽ, ξ̃) | F ξ̃t

)
(P -a.s.), (2.22)

where ṽ and ξ̃ are independent.
For simplicity, introduce the notation:
(a) in Eq. (2.22) we omit the sign “∼”;
(b) each constant is denoted by const;
(c) in condition (2) we set dK(t) = dt;
(d)

G(t) =
1

2
(ρ1(t) + ρ2(t)), ρi(t) = ρ(t, v, ξi),

mi(ξ) = m(t, ξi), φi(t) = φ(t, v, ξi), f i(t) = f(t, v, ξi),

where ξi (i = 1, 2) are two solutions of Eq. (2.19) defined on the space introduced above.
It obviously follows from condition (1) of the theorem that the distributions of ξ1 and ξ2 coincide.

2759



In particular,

EµG(t) = 1, 0 ≤ t ≤ T.

According to (2.22), for each i = 1, ..., n we have

m1i (t)−m
2
i (t) = Eµ(φ1i (t)− φ

2
i (t))G(t) +Eµ(ρ1(t)− ρ2(t))

1

2
(φ1i (t) + φ2i (t)) (2.23)

for each t.

Hence, if we use the inequality |ex − ey| ≤
1

2
(ex + ey)|x− y|, then we obtain

|ρ1(t)− ρ2(t)| ≤ G(t)|f1(t)− f2(t)|.

Note that, according to condition (1),

|φi(t)| ≤ const, i = 1, 2, for all t.

Thus, from Eq. (2.23) we obtain

|m1i (t)−m
2
i (t)| ≤ const

[
Eµ
(
|φ1i (t)− φ

2
i (t)|

√
G(t)

√
G(t)

)
+Eµ

(
|f1(t)− f2(t)|

√
G(t)

√
G(t)

)]
, i = 1, 2, ..., n.

Squaring each part of the last inequalities, applying the elementary relation (a+ b)2 ≤ 2a2 + 2b2 and the
Schwartz inequality, and then averaging and summing up, we obtain

E|m1(t)−m2(t)|2 ≤ const[E|φ1(t)− φ2(t)|2G(t) +E(f1(t)− f2(t))2G(t)]. (2.24)

Denote

z(t) = E

∫ t
0
|m1(s)−m2(s)|2ds (2.25)

and show that each summand in inequality (2.24) is less than or equal to const ·z(t).
Then we obtain from (2.24)

z(t) ≤ const

∫ t
0
z(s) ds, 0 ≤ t ≤ T,

whence, according to the Gronwall–Bellman lemma, we have

P (z(T ) = 0) = 1.

Now the assertion of the theorem follows from the inequality

P
(
sup
0≤t≤T

|ξ1(t)− ξ2(t)| = 0
)
≥ P (z(T ) = 0).

Thus, we have to prove that for each t,

E|φ1(t)− φ2(t)|2G(t) ≤ const ·z(t),

E(f1(t)− f2(t))2G(t) ≤ const ·z(t).
(2.26)

The proofs of each of the above inequalities are quite similar (simple application of the Lipschitz
condition and the Itô formula easily shows that |φ1(t)− φ2(t)|2 and (f1 − f2)2 are estimated from above
by the same expressions).

Let us prove, for example, the first inequality.
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Introduce the following notation: for each t ∈ [0, T ] we have

x(t) = |η1(t)− η2(t)|2G(t),

h(t) = |ξ1(t)− ξ2(t)|2G(t),

d(t) = G(t)

∫ t
0
|m1(s)−m2(s)|2ds,

p(t) = G(t)

∫ t
0
|η1(s)− η2(s)|2ds,

u(t) = G(t)

∫ t
0
|ξ1(s)− ξ2(s)|2ds,

M1(t) =
m∑
i=1

k∑
j=1

(∫ t
0
(bij(s, η

1, ξ1)− bij(s, η
2, ξ2)) dvj(s)

)2
,

M2(t) =
m∑
i=1

n∑
j=1

(∫ t
0
(cij(s, η

1, ξ1)− cij(s, η
2, ξ2)) dW j(s)

)2
,

l(t) =M1(t)G(t),

y(t) =M2(t)G(t).

It is easy to see that

E(|φ1(t)− φ2(t)|2G(t)) ≤ const ·E(h(t) + u(t) + x(t) + p(t)). (2.27)

Let us estimate each term on the right-hand side of inequality (2.27).
We have

Eh(t) = EEµh(t) = E(|ξ1(t)− ξ2(t)|2EµG(t))

= E|ξ1(t)− ξ2(t)|2 ≤ const ·z(t). (2.28)

In a complete analogy, we write

Eu(t) ≤ const ·z(t). (2.29)

Further, it is easy to see that

|η1(t)− η2(t)|2 ≤

∫ t
0
|a(s, η1, ξ1)− a(s, η2, ξ2)|2ds

+

∫ t
0
|c(s, η1, ξ1)m1(s)− c(s, η2, ξ2)m2(s)|2ds

+

∫ t
0
|c(s, η1, ξ1)A(s, η1, ξ1)− c(s, η2, ξ2)A(s, η2, ξ2)|2ds

+M1(t) +M2(t). (2.30)

According to conditions (1) and (2) of the theorem, we obtain from (2.30)

x(t) ≤ const(p(t) + l(t) + y(t) + d(t) + u(t)). (2.31)

Note that in our calculations below there arise stochastic integrals with respect to the Wiener pro-
cesses v and W possessing cumbersome integrands. But according to condition (1) of the theorem, each
of them is a martingale equal to zero at the point t = 0 (indeed, it is sufficient to note that each coefficient
is bounded and E(G(t))2 ≤ const). Denote these martingales by the symbol “mart.”

Using the Itô formula and condition (2), we obtain the following:

2761



(e)

p(t) = mart+

∫ t
0
x(s) ds;

(f)

l(t) = mart+
m∑
i=1

n∑
j=1

∫ t
0
(bij(s, η

1, ξ1)− bij(s, η
2, ξ2))2G(s) ds

≤ mart+ const

(∫ t
0
x(s) ds+

∫ t
0
h(s) ds

)
;

(g)

y(t) = mart+
m∑
i=1

n∑
j=1

∫ t
0
(cij(s, η

1, ξ1)− cij(s, η
2, ξ2))2G(s) ds

+
m∑
i=1

n∑
j=1

∫ t
0

(∫ s
0
(cij(u, η

1, ξ1)− cij(u, η
2, ξ2)) dW j(u)

)
(cij(s, η

1, ξ1)− cij(s, η
2, ξ2))

×

( n∑
i=1

[(φ1i (s)−m
1
i (s))ρ

1(s) + (φ2i (s)−m
2
i (s))ρ

2(s)]

)
ds. (2.32)

Now we note that just as in (j),

m∑
i=1

n∑
j=1

∫ t
0
(cij(s, η

1, ξ1)− cij(s, η
2, ξ2))2G(s)ds ≤ const

(∫ t
0
x(s)ds+

∫ t
0
h(s)ds

)
.

Recall that by condition (1) of the theorem,

|φi| ≤ const, |mi| ≤ const, i = 1, 2.

Thus if we apply the elementary inequality

ab ≤
1

2
(a2 + b2)

and condition (2) of the theorem to the third term on the right-hand side of equality (2.32), we can easily
see that it is overestimated by the expression

const

(∫ t
0
x(s) ds+

∫ t
0
h(s) ds+

∫ t
0
y(s) ds

)
.

Therefore, we obtain

y(t) ≤ mart+ const

(∫ t
0
x(s) ds+

∫ t
0
h(s) ds+

∫ t
0
y(s) ds

)
. (2.33)

Now, from inequality (2.31), according to (i), (j), and (k), we find that

x(t) ≤ mart+ const

(∫ t
0
x(s) ds+

∫ t
0
h(s) ds+ y(t) + d(t) + u(t)

)
≤ mart+ const

(∫ t
0
x(s) ds+

∫ t
0
h(s) ds+

∫ t
0
y(s) ds+ u(t) + d(t)

)
. (2.34)

From (2.28) we obtain

E

∫ t
0
h(s) ds =

∫ t
0
Eh(s) ds ≤ const

∫ t
0
z(s) ds.
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But z(t) is a positive increasing function. Hence∫ t
0
z(s) ds ≤

∫ t
0
z(t) ds ≤ const ·z(t)

and, therefore,

E

∫ t
0
h(s) ds ≤ const ·z(t). (2.35)

Further,

Ed(t) = EEµd(t) = E

∫ t
0
|m1(s)−m2(s)|2ds · EµG(t) = z(t). (2.36)

Now, averaging inequalities (2.33) and (2.34) and then adding them, we obtain

E(x(t) + y(t)) ≤ const

(∫ t
0
E(x(s) + y(s))ds+E

∫ t
0
h(s)ds+Eu(t) +Ed(t)

)
. (2.37)

Hence, by (2.36), (2.29), and (2.37), we have

E(x(t) + y(t)) ≤ const

(∫ t
0
E(x(s) + y(s)) ds+ z(t)

)
.

Solving this inequality and taking into account that the process y(t) ≥ 0, we obtain

Ex(t) ≤ const ·z(t). (2.38)

Item (i) and inequality (2.35) yield

Ep(t) = E

∫ t
0
x(s) ds ≤ const ·z(t). (2.39)

Finally, the desired inequality (2.26) follows from inequality (2.27), according to relations (2.28),
(2.29), (2.38), and (2.39).

Chapter 3

ESTIMATIONAL STOCHASTIC EQUATIONS AND ROBUST ESTIMATORS IN
STATISTICAL MODELS ASSOCIATED WITH SEMIMARTINGALES. CONTIGUOUS

ALTERNATIVES

3.1. The Limiting Behavior of Roots of the Estimational Stochastic Equations

A key role in robust estimation theory is played by the Huber M -estimators. ([32,35,109,112–115]).
In general, M -estimators can be considered as follows.
Consider a sequence of filtered statistical models

E = {(Ωn,Fn, Fn = (Fnt ), 0 ≤ t ≤ T, (Q
n
θ , θ ∈ Θ ⊂ R1))}n≥1, (3.1)

where for each n ≥ 1 and θ �= θ′, the probability measures Qnθ and Q
n
θ′ are equivalent, Q

n
θ ∼ Q

n
θ′ , F

n = FnT ,
and T > 0 is a number, the σ-algebra Fn is complete, and the filtration Fn satisfies the usual conditions
w.r.t. Qnθ for some and, hence, for each θ (see Subsection 3.3.1, (a), (d) and Remark 3.16 below).

Let for each θ ∈ Θ and n ≥ 1 the process (Ln(θ, t), 0 ≤ t ≤ T ) be a local (square-integrable)
Qnθ -martingale.

Denote Ln(θ) = Ln(θ, t)|t=T and consider the stochastic equation (with respect to the parameter θ)

Ln(θ) = Ln(θ, ω) = 0, n ≥ 1. (3.2)
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A sequence {Tn(ω), ω ∈ Ωn}n≥1 of Fn-measurable roots of these equations (i.e., for each n ≥ 1,
Tn(ω) is a random variable defined on (Ωn,Fn) with values in Θ, and such that

Ln(Tn(ω), ω) = 0, n ≥ 1) (3.3)

is called a generalized M -estimator.
Note that equality (3.3) can hold only asymptotically (in some sense, see, e.g., Theorem 3.1 below).
The proof of assertions concerning the asymptotic behavior ofM -estimators as solutions of Eq. (3.2)

is carried out in two steps: first, the asymptotic properties are established for the left-hand side of Eq.
(3.2); second, the asymptotic properties of estimators (considered as implicit functions) are obtained
by linearization. In this way one can construct the so-called CLAN (consistent, linear, asymptotically
normal) estimators, which are asymptotically equivalent to M -estimators (see, e.g., (3.15) below). The
class of CLAN estimators is a basic class of estimators in robust estimation theory, developed below in
this chapter.

3.1.1. Local limiting behavior of roots. The Dugue–Cramer–Le Breton method. Given a
sequence of statistical models (3.1), let {cn(θ)}n≥1, cn(θ) > 0, θ ∈ Θ, be a normalizing deterministic
sequence.

Consider the sequence of random variables {Ln(θ)}n≥1 = {Ln(θ, ω), ω ∈ Ωn}n≥1, depending on the
parameter θ ∈ Θ.

Remark 3.1. We will use the following abbreviation:

Qnθ - limn→∞
ξn = K,

where ξ = {ξn}n≥1 is a sequence of random variables defined for each n on Ωn and K is a real number.
This equality means that ∀ρ > 0,

lim
n→∞

Qnθ {ω ∈ Ω
n : |ξn(ω)−K| > ρ} = 0.

Theorem 3.1. Let the following conditions hold:
(a) for each θ ∈ Θ, lim

n→∞
cn(θ) = 0;

(b) for each n ≥ 1, the mapping θ ❀ Ln(θ) is continuously differentiable in θ Qnθ -a.s. (L̇n(θ) =
∂

∂θ
Ln(θ));

(c) for each θ ∈ Θ, there exists a function ∆Q(θ, y), θ, y ∈ Θ, such that

Qnθ - limn→∞
c2n(θ)Ln(y) = ∆Q(θ, y) (3.4)

and the equation
∆Q(θ, y) = 0

with respect to the variable y has a unique solution θ∗ = bQ(θ);
(d) Qnθ - limn→∞

c2n(θ)L̇n(θ
∗) = −γQ(θ), where γQ(θ) is a positive number for each θ ∈ Θ;

(e) lim
r→0

lim sup
n→∞

Qnθ{ sup
{y:|y−θ∗|≤r}

c2n(θ)|L̇n(y)− L̇n(θ
∗)| > ρ} = 0 for each ρ > 0.

Then for each θ ∈ Θ there exists a sequence of random variables T = {Tn}n≥1 taking the values in
Θ such that

(I) lim
n→∞

Qnθ {Ln(Tn) = 0} = 1;

(II) Qnθ - limn→∞
Tn = θ∗;

(III) if {T̃n}n≥1 is another sequence with properties (I) and (II), then

lim
n→∞

Qnθ{Tn = T̃n} = 1.

If, in addition,
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(f) the sequence of distributions {L{cn(θ)Ln(θ∗) | Qnθ }}n≥1 weakly converges to a certain distribution
Φ, then

(IV)

(i) L{γQ(θ)c
−1
n (θ)(Tn − θ

∗) | Qnθ }
w
→ Φ,

(ii) c−1n (θ)(Tn − θ
∗) =

c−1n (θ)Ln(θ
∗)

γQ(θ)
+Rn(θ), Rn(θ)

Qnθ→ 0.

Proof. 1. By the Taylor formula we have

Ln(y) = Ln(θ
∗) + L̇n(θ

∗)(y − θ∗) + [L̇n(θ)− L̇n(θ
∗)](y − θ∗),

where θ = θ∗ + α(θ∗)(y − θ∗), α(θ∗) ∈ [0, 1], and the point θ is chosen so that θ ∈ Fn (ξ ∈ F means that
the r.v. ξ is F-measurable).

From this we obtain

c2n(θ)Ln(y) = c2n(θ)Ln(θ
∗)− γQ(θ)(y − θ

∗) + εn(θ, θ
∗)(y − θ∗), (3.5)

where εn(y, θ
∗) ∈ Fn,

εn(y, θ
∗) = c2n(θ)[L̇n(y)− L̇n(θ

∗)] + [c2n(θ)L̇n(θ
∗) + γQ(θ)], y ∈ Θ.

Obviously, conditions (d) and (e) ensure that

lim
r→0

lim sup
n→∞

Qnθ
{

sup
{y:|y−θ∗|≤r}

|εn(y, θ
∗)| > ρ

}
= 0 (3.6)

for each ρ > 0.
2. We now show that there exists a family {Ωθ(n, r): n ≥ 1, r ≥ 0, θ ∈ Θ} with properties

(1) Ωθ(n, r) ∈ F
n,

(2) lim
r→0

lim inf
n→∞

Qnθ {Ωθ(n, r)} = 1,

and for any r > 0, n ≥ 1, and ω ∈ Ωθ(n, r) the equation

Ln(y) = 0

has a unique solution Tn in the segment |y − θ∗| ≤ r.
Expansion (3.5) yields

c2n(θ)Ln(θ
∗ + u)u = c2n(θ)Ln(θ

∗)u− u2γQ(θ) + u2εn(θ, θ
∗). (3.7)

For any θ ∈ Θ, n ≥ 1, and r > 0, we define

Ωθ(n, r) =

{
ω ∈ Ωn : |c2n(θ)Ln(θ

∗) <
γQ(θ)r

2
, sup
{y:|y−θ∗|≤r}

|εn(y, θ
∗)| <

γQ(θ)

2

}
.

Obviously, Ωθ(n, r) ∈ Fn. Hence, if ω ∈ Ωθ(r, n), then from Eq. (3.7) we obtain Ln(θ
∗+ u)u < 0 for

|u| = r.
Since the mapping u ❀ Ln(θ

∗ + u) is continuous with respect to u, the equation Ln(θ
∗ + u) = 0 for

|u| ≤ r has at least one solution un(θ∗) with |un(θ∗)| ≤ r.
It can be easily seen that if ω ∈ Ωθ(n, r) and |u| ≤ r, then L̇n(θ

∗ + u) < 0.
On the other hand, for ω ∈ Ωθ(n, r) and |u| ≤ r,

Ln(θ
∗ + u, ω)− Ln(θ

∗ + un(θ
∗), ω)

=

∫ 1
0

∂

∂α
[Ln((θ

∗ + un(θ
∗)) + α(u− un(θ

∗)), ω)] dα.
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Consequently,

Ln(θ
∗ + u, ω) =

∫ 1
0
L̇(θ∗ + un(θ

∗) + α(u− un(θ
∗)), ω)(u − un(θ

∗)) dα

and

Ln(θ
∗ + u, ω)(u− un(θ

∗))

=

∫ 1
0
L̇n(θ

∗ + un(θ
∗) + α(u− un(θ

∗)), ω)(u− un(θ
∗))2dα < 0,

provided that u �= un(θ
∗). Hence Ln(θ

∗ + u, ω) �= 0 for |u| ≤ r, u �= un(θ
∗). By the construction of the

set Ωθ(n, r) and due to conditions (c), (d), and (e) it is easily seen that (2) is true as well.
3. Now we construct the sequence T = {Tn}n≥1 with properties (I), (II), and (III). Define

Ωθn := ∪
k>0

Ωθ(n, k
−1).

Obviously, Ωθn ∈ F
n. Let ω ∈ Ωθn. Then it follows from the previous statement that there exists a number

k(ω) > 0 such that the equation Ln(y) = 0 has a unique solution T̃n(ω) in the segment |y−θ∗| ≤ (k(ω))−1

with the mapping ω ❀ T̃n(ω) which is Ωθn ∩ F
n-measurable (see, e.g., [60]).

We set

Tn(ω) =

{
T̃n(ω) if ω ∈ Ωθn,
θ0 if ω /∈ Ωθn,

where θ0 is a point in Θ.
It is easily seen that, by construction, Tn possesses properties (I), (II), and (III).
4. Finally, we prove assertion (IV). By expansion (3.5) we have

|cn(θ)Ln(Tn)− cn(θ)Ln(θ
∗)− γQ(θ)c

−1
n (θ)(Tn − θ

∗)|

≤ |ε(T n, θ
∗)γ−1Q (θ)||γQ(θ)c

−1
n (θ)(Tn − θ

∗)| (3.8)

and lim sup
n→∞

Qnθ {|εn(Tn, θ
∗)| ≥ ρ} = 0 ∀ρ > 0, which follows directly from the relation

{|Tn − θ
∗| ≤ r} ∩ { sup

{y:|y−θ∗|≤r}
|εn(y, θ

∗)| < ρ} ⊂ {|εn(Tn, θ
∗)| < ρ}.

Denote Xn := cn(θ)(Ln(Tn) − Ln(θ∗)), Yn := γQ(θ)c
−1
n (θ)(Tn − θ∗), and Zn := |εn(Tn, θ∗)γ

−1
Q (θ)|.

Then inequality (3.8) takes the form

|Xn − Yn| ≤ Zn|Yn|.

It is well known (see [8], Problem 2, Sec. 1.4) that if Xn converges weakly to X (Xn
w
→ X) and

Zn
P
→ 0, then Yn

w
→ X. Thus, we obtain

lim
n→∞
L{γQ(θ)c

−1
n (θ)(Tn − θ

∗) | Qnθ } = lim
n→∞
L{cn(θ)Ln(θ

∗) | Qnθ }.

Assertion (i) is proved. The proof of assertion (ii) easily follows from (i) and inequality (3.8).

3.1.2. Global limiting behavior of roots. The Perlman-type conditions. We use the objects
introduced in Subsection 3.1.1. Assume that Θ = [a, b]. Furthermore, for convenience, we set a = −∞
and b = +∞.

For every θ we consider the set

Sθ =
{
T̂ = {T̂n}n≥1 : for each n ≥ 1, T̂n ∈ F

n, and Qnθ - limn→∞
c2n(θ)Ln(T̂n) = 0

}
.
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Theorem 3.2. Let the following condition (sup c) hold:
(sup c)1 the function ∆Q(θ, y) is y-continuous for every θ;
(sup c)2 for any K, 0 < K <∞, and ρ > 0,

lim
n→∞

Qnθ
{
sup
|y|≤K
|c2n(θ)Ln(y)−∆Q(θ, y)| > ρ

}
= 0.

Then
I. The following alternative holds: if T̂ ∈ Sθ, then either

Qnθ - limn→∞
T̂n = θ∗ = bQ(θ) (3.9)

or

lim
n→∞

Qnθ {|T̂n| > K} > 0 (3.10)

for any K, 0 < K <∞.
II. If, in addition, the condition

(c+) lim
|y|→∞

|∆Q(θ, y)| = K(θ) > 0

holds and
lim
n→∞

Qnθ
{

sup
−∞<y<+∞

|c2n(θ)Ln(y)−∆Q(θ, y)| > ρ
}
= 0

for any ρ > 0, then (3.9) holds.

Proof. Let T̂ = {T̂n}n≥1 ∈ Sθ and suppose that inequality (3.10) is not satisfied. Then there exists a
number K0 > 0 such that

lim
n→∞

Qnθ {|T̂n| > K0} = 0.

Therefore,

Qnθ
{
|c2n(θ)Ln(T̂n)−∆Q(θ, T̂n)| > ρ

}
≤ Qnθ {|T̂n| > K0}

+Qnθ
{
|c2n(θ)Ln(T̂n)−∆Q(θ, T̂n)| > ρ, |T̂n| ≤ K0

}
≤ Qnθ{|T̂n| > K0}

+Qnθ
{
sup
|y|≤K0

|c2n(θ)Ln(y)−∆(θ, y)| > ρ
}
→ 0 as n→∞.

On the other hand,

Qnθ - limn→∞
c2n(θ)Ln(T̂n) = 0

and, hence,

Qnθ - limn→∞
∆Q(θ, T̂n) = 0. (3.11)

Now we assume that Eq. (3.9) also fails. Then one can choose ε > 0 such that

lim
n→∞

Qnθ
{
|T̂n − b

Q(θ)| > ε
}
> 0.

By condition (sup c)1,
∆(ε) = inf

{y:|y−bQ(θ)>ε,|y|≤K0}
|∆Q(θ, y)| > 0,

whence

lim
n→∞

Qnθ {|∆Q(θ, T̂n)| > ∆(ε)}

≥ lim
n→∞

Qnθ {|∆Q(θ, T̂n)| > ∆(ε), |T̂n| ≤ K0}

≥ lim
n→∞

Qnθ {|T̂n − b
Q(θ)| > ε, |T̂n| ≤ K0} > 0,

which contradicts Eq. (3.11).
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In order to prove the second assertion of the theorem, it is sufficient to note that under condition
(c+),

inf
{y:|y−bQ(θ)|≥ε}

|∆Q(θ, y)| > 0

and to repeat the previous arguments.

Suppose that the conditions of Theorem 3.1 are satisfied.
For every n ≥ 1, consider the set

An = {ω ∈ Ω
n : the equation Ln(y, ω) = 0 has at least one solution}.

Note that An ∈ Fn. Indeed, recall that the σ-algebra Fn is complete, Ln(y, ·) ∈ Fn for each fixed y,
and Ln(·, ω) is a.s. continuous. Hence, the mapping (y, ω) ❀ Ln(y, ω) is measurable and Bn := {(y, ω):
Ln(y, ω) = 0} ∈ B(R1)×Fn. But An = ΠΩn(Bn), where ΠΩn(·) is a projection operator. Thus, An ∈ Fn.

Obviously, for any θ, we have Ωθn ⊂ An, where the set Ωθn is defined in item 3 of the proof of
Theorem 3.1.

Since, under the conditions of Theorem 3.1, Qnθ {Ω
θ
n} → 1 for any θ, we have

lim
n→∞

Qnθ{An} = 1.

For each n ≥ 1, we introduce the sets

Sn =
{
T̃n : T̃n is Fn-measurable; Ln(T̃n) = 0 if ω ∈ An;

T̃n = θ0 if ω /∈ An
}
,

where θ0 is a real number.
We consider now the set of estimators

Ssol = {T̃ = {T̃n}n≥1 : ∀n ≥ 1, T̃n ∈ Sn}.

Corollary 3.1. If, along with the conditions of Theorem 3.1, conditions (sup c) are satisfied for any θ,
then there exists an estimator T ∗ = {T ∗n}n≥1 ∈ Ssol such that

Qnθ - limn→∞
T ∗n = bQ(θ) (3.12)

for any θ.

If, moreover, for any θ condition (c+) is satisfied, then any estimator T̃ ∈ Ssol has property (3.12).

Proof. It is sufficient to construct an estimator T ∗ = {T ∗n}n≥1 for which (3.10) fails for each θ.
For any n ≥ 1 and ε > 0, there exists T ∗n ∈ Sn such that

|T ∗n | ≤ ess inf
T̃n∈Sn

|T̃n|+ ε.

By virtue of Theorem 3.1, for any θ there exists a sequence T̂ (θ) = {T̂n(θ)}n≥1 such that

lim
n→∞

Qnθ {Ln(T̂n(θ)) = 0} = 1 (3.13)

and

Qnθ - limn→∞
T̂n(θ) = bQ(θ). (3.14)

Thus, we have

lim
n→∞

Qnθ {|T
∗
n | > K} ≤ lim

n→∞
Qnθ {|T

∗
n | > K,Ln(T̂n(θ)) �= 0}+ lim

n→∞
Qnθ {|T

∗
n | > K,Ln(T̂n(θ)) = 0}

≤ lim
n→∞

Qnθ {Ln(T̂n(θ)) �= 0} + lim
n→∞

Qnθ{|T̂n(θ)|+ ε > K}.

The first and second terms on the right-hand side converge to zero by virtue of Eqs. (3.13) and
(3.14).
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Remark 3.2. We call conditions (sup c) and (c+) the Perlman-type conditions. In [79], Perlman inves-
tigates analogous problem in the i.i.d. case.

Remark 3.3. If the conditions of Corollary 3.1 are satisfied, then by virtue of Theorem 3.1, IV (ii) there
exists an estimator T = {Tn}n≥1 such that

Tn = θ∗ +
Ln(θ

∗)

γQ(θ)
+Rn(θ),

c−1n (θ)Rn(θ)
Qnθ→ 0.

(3.15)

If θ∗ = bQ(θ) = θ and the distribution Φ from Theorem 3.1, (f) is Gaussian, then we obtain a CLAN
estimator.

3.2. Robust Estimators in Discrete-Time Statistical Models

3.2.1. The statement of the problem. Section 3.2 deals with the robust estimation of a one-
dimensional parameter for the contaminated models described in terms of shrinking contamination neigh-
borhoods of nominal conditional densities.

Let a sequence of statistical models

E = {En}n≥1 := (Ωn,Fn, Pnθ , θ ∈ Θ ⊂ R
1)}n≥1

be given, where

Ωn = X0 ×
n∏
1

X , Fn = B0 ×
n∏
1

B,

(X0,B0) and (X ,B) are some measure Blackwell spaces (see [45]), x0 ∈ X0, xi ∈ X , i ≥ 1. We as-
sume that Pnθ ∼ Pn, where Pn is some probability on (Ωn,Fn). Let {fn := (fni (θ) := fni (xi, θ |
xi−1, ..., x0))1≤i≤n}n≥1 be the corresponding system of regular conditional densities, i.e.,

Pnθ,i(dz | xi−1, ..., x0) = fni (z, θ | xi−1, ..., x0)P
n(dz | xi−1, ..., x0), i ≥ 1.

In addition,

fn0 (θ) := fn0 (x0, θ) = dPnθ,0/dP
n
0 , Pnθ,0 = Pnθ | B0, P

n
0 = Pn | B0.

This system is referred to as a nominal system.
Suppose that the function fni (θ) is continuously differentiable with respect to θ for all 0 ≤ i ≤ n,

n ≥ 1, Pn-a.s.
We denote

ln =

(
lni (θ) :=

∂

∂θ
ln fni (θ), 0 ≤ i ≤ n

)
,

In(θ) = Enθ

n∑
i=0

(lni (θ))
2.

Assume that for each n ≥ 1 and θ ∈ Θ,

0 < In(θ) <∞, n
−1In(θ)→ I(θ) as n→∞, 0 < I(θ) <∞.

Introduce the following abbreviations.
If W =W (i, xi, ..., x0) and U = U(i, xi, ..., x0), i ≥ 1, are real functions, then we write

Wi(z | x) :=W (i, z, xi−1, ..., x0), Ui(x) := U(i, xi−1, ..., x0).
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Further, we introduce the measures µ̂n = µ̂n(dz, di, x; θ), µn = µn(dz, di, dx; θ), and νn = νn(di, dx; θ)
defined by the relations∫

W dµ̂n :=

∫
Wi(z | x)µ̂n(dz, di, x; θ) := n−1

n∑
i=1

∫
Wi(z | x)f

n
i (z, θ | x)P

n
i (dz | x),∫

W dµn := Enθ

∫
W dµ̂n,∫

U dνn :=

∫
Ui(x) νn(di, dx, θ) := n−1Enθ

n∑
i=1

Ui.

We consider the class of CLAN estimators.
The estimator Tψ = {Tψn }n≥1 is said to be CLAN if there exists a sequence of score functions

ψ = {ψn := (ψni (z, θ | x)1≤i≤n}n≥1, such that for each θ the following conditions are satisfied:
(c.1) ψn ∈ L2(µn),∫

ψni (z, θ | x)f
n
i (z, θ | x)P

n
i (dz | x) = 0, 0 ≤ i ≤ n, for each n ≥ 1;

(c.2) the Lindeberg condition: for each a ∈ (0, 1],∫
(ψn)2I{|ψn|>an1/2}dµ̂n

Pnθ→ 0 as n→∞;

(c.3) ∫
(ψn)2dµ̂n

Pnθ→ Γψ(θ),∫
ψnlndµ̂n

Pnθ→ γψ(θ) as n→∞,

where 0 < Γψ(θ) <∞, 0 < γψ(θ) <∞, Γψ(θ) and γψ(θ) are deterministic;
(c.4)

Tψn = θ +

n−1
n∑
i=1

ψni (xi, θ | x)∫
ψnlndµ̂n

+Rn(θ),

where

n1/2Rn(θ)
Pnθ→ 0.

According to the central limit theorem for martingales (see [45]), we obtain from (c.1)–(c.4)

L
{
n1/2(Tψn − θ) | P

n
θ )
} w
→N (0,Γψ(θ)/(γψ(θ))2).

It should be noted that condition (c.2) and the ergodicity condition (c.3) are automatically satisfied in
“good” ergodic situations with a suitably chosen sequence ψ.

We introduce shrinking contamination neighborhoods for nominal systems of conditional densities.
For each R > 0 and n ≥ 1, we consider the following sets of functions:

ΛnR :=
{
λn : λn = (λni (x, θ)), 1 ≤ i ≤ n, λni (x, θ) ≥ 0,

∫
λndνn ≤ R

}
,

HnR :=
{
Hn ∈ L2(µn) : H

n = (Hni (z, θ | x)), 1 ≤ i ≤ n,∫
Hni (z, θ | x)f

n
i (z, θ | x)P

n
i (dz | x) = 0,

Hni (z, θ | x) ≥ −λ
n
i (x, θ) µn-a.s., λn ∈ ΛnR

}
.
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Now we define the neighborhood of conditional density fn = (fni (z, θ | x))1≤i≤n,

FnR =
{
fn,H : fn,H = (fn,Hi (z, θ | x)), 1 ≤ i ≤ n : fn,H = (1 + n−1/2Hn)fn : Hn ∈ HnR

}
. (3.16)

Assume that for each θ

sup
i,x,n

λni (x, θ) <∞. (3.17)

Remark 3.4. Obviously, by virtue of (3.17), fn,H is a conditional density for a sufficiently large n. This
property is a sufficient condition for the asymptotic theory developed below. For convenience, without
loss of generality, assume that fn,H is a density for all n ≥ 1.

Remark 3.5. Consider the set of functions

ΦnR =
{
fn,λ,h : fn,λ,h =

(
f
nλ,h
i (z, θ | x)

)
, i ≤ i ≤ n,

fn,λ,h =

(
1−

λn
√
n

)
fn +

λn
√
n
hn,

λn ∈ ΛnR, hn = (hni (z, θ | x)), 1 ≤ i ≤ n,∫
hni (z, θ | x)P

n
i (dz | x) = 1, hni (z, θ | x) ≥ 0

}
(the generalized Huber’s “gross error” model).

It is easy to see that there exists a one-to-one correspondence between the sets FnR and ΦnR given by
the following relations:

Hn = λn
hn

fn
− λn on the set {(i, x) : λni (x, θ) > 0};

Hn = 0 and hn is any density on the set {(i, x) : λni (x, θ) = 0}.

Recall that θ and n are fixed.

Let Hseq denote a class of sequences H = {Hn}n≥1 with the following properties:
(1) Hn ∈ HnR for each n ≥ 1;

(2) lim
N→∞

lim
n→∞

Pn,Hθ

{∫
(Hn)2dµ̂n > N

}
= 0,

where Pn,Hθ is the probability measure corresponding to the set of conditional densities (fn,Hi )1≤i≤n ∈ FnR
and to the initial density fn0 (θ).

The sequence {Pn,Hθ }n≥1 is referred to as the sequence of alternative measures or, briefly, alternatives.

Proposition 3.1. Let H = {Hn}n≥1 ∈ Hseq. Then:

(i) (Pn,Hθ ) ✁ (Pnθ );

(ii) if Tψ is CLAN, then

L{n1/2(Tψn − θ)− b
ψ,H
n (θ)/γψ(θ) | Pn,Hθ }

w
→N (0,Γψ(θ)/(γψ(θ))2),

where

bψ,Hn (θ) =

∫
ψnHndµ̂n;

(iii) if

bψ,Hn (θ)
Pnθ→ βψ,H(θ),

where βψ,H(θ) is deterministic, then

L{n1/2(Tψn − θ) | P
n,H
θ }

w
→N (βψ,H(θ)/γψ(θ),Γψ(θ)/(γψ(θ))2).
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Below, in Sec. 3.3, we prove this proposition in the general case.
Proposition 3.1 enables us to derive an explicit expression for the asymptotic mean-square error

under the alternatives {Pn,Hθ }n≥1 (the risk functional). Namely, we have

lim
a→∞

lim
n→∞

E
n,H
θ [n(Tψn − θ)

2 ∧ a] = D(ψ,H; θ),

where

D(ψ,H; θ) =
[βψ,H(θ)]2 + Γψ(θ)

(γψ(θ))2
. (3.18)

In what follows, we assume that all ergodicity conditions expressed in terms of the convergence of
integrals with respect to the measure (µ̂n) and with respect to the measure (µn) are equivalent, i.e., if
φ = {φn}n≥1 and χ = {χn}n≥1 are some sequences of functions with φn, χn ∈ L2(µn) ∀n ≥ 1, then∫

φnχndµ̂n
Pnθ→ C ⇐⇒

∫
φnχndµn → C as n→∞.

Then we have

D(ψ,H; θ) = lim
n→∞

Dn(ψ
n,Hn; θ), (3.19)

where

Dn(ψ,H; θ) =

[(∫
ψH dµn

)2
+

∫
ψ2dµn

]
(∫

ψlndµn

)2 . (3.20)

We introduce the optimization criterion and the optimization problem.
Let Ψ and HΨ be some classes of sequences ψ = {ψn}n≥1 and H = {Hn}n≥1 such that for each

ψ ∈ Ψ and H ∈ HΨ the conditions of Proposition 3.1 are satisfied.
The sequence of score functions ψ∗ = {ψ∗,n}n≥1 ∈ Ψ is said to be (Ψ,HΨ)-optimal in the minimax

sense with respect to the risk functional D(ψ,H; θ) if

sup
H∈HΨ

D(ψ∗,H; θ) = inf
ψ∈Ψ

sup
H∈HΨ

D(ψ,H; θ) (3.21)

or, equivalently, if for each ε > 0 and ψ ∈ Ψ, there exists Hε,ψ ∈ HΨ such that for each H ∈ HΨ, the
inequality

D(ψ∗,H; θ) ≤ D(ψ,Hε,ψ; θ)(1 + ε) (3.22)

is satisfied.

Remark 3.6. (3.21) ⇐⇒ (3.22).
(1) (3.21) =⇒ (3.22). Indeed, from (3.21) ∀ψ ∈ Ψ, ∀H ∈ HΨ we have

D(ψ∗,H; θ) ≤ sup
H∈HΨ

D(ψ,H; θ).

By the definition of the supremum, ∀ε > 0 ∃Hε,ψ ∈ HΨ:

sup
H∈HΨ

D(ψ,H; θ) ≤ D(ψ,Hε,ψ; θ) + ε = D(ψ,Hε,ψ; θ)

(
1 +

ε

D(ψ,Hε,ψ; θ)

)
.

(2) (3.22) =⇒ (3.21). Indeed, (3.22) is true for each ψ and H. Therefore,

sup
H∈HΨ

D(ψ∗,H; θ) ≤ sup
H∈HΨ

D(ψ,H; θ) + ε.
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The last inequality yields

sup
H∈HΨ

D(ψ∗,H; θ) ≤ inf
ψ∈Ψ

sup
H∈HΨ

D(ψ,H; θ) + ε ∀ε > 0.

Hence,
sup
H∈HΨ

D(ψ∗,H; θ) ≤ inf
ψ∈Ψ

sup
H∈HΨ

D(ψ,H; θ).

The inverse inequality is trivial.

The CLAN estimator T ∗ = Tψ
∗
, which corresponds to the optimal sequence of score functions ψ∗, is

called the (Ψ,HΨ)-minimax estimator.
The problem is to construct an optimal sequence of score functions ψ∗.
The solution of this problem is directly associated with the analytic form of the risk functional and

the classes Ψ and HΨ with respect to which the minimax operation is taken.
In general, β = βψ,H , Γ = Γψ, and γ = γψ are functionals of the sequences ψ,H, and l. In particular,

they are limits of certain scalar products (see previous definitions).
Two alternatives are possible:
(1) β,Γ, and γ preserve the form of the scalar product in an appropriate L2(µ)-space with a finite

or σ-finite measure µ;
(2) β,Γ, and γ do not possess this property.
In the first case, by a suitable choice of the classes Ψ and HΨ we arrive at the standard minimax

problem

inf
ψ∈Ψ

sup
H≥0,

∫
H≤R

〈ψ,H〉2 + ‖ψ‖2

〈ψ, l〉2
, (3.23)

with “rich” classes of alternatives. The solution of this problem is the Huber function. This type of
contamination will be called a full contamination.

In the second case, in order to solve the above minimax problem, we develop the “approximation
technique” which consists in the following: construct the optimal score function ψ∗,n for the fixed step n;
describe sufficiently wide classes Ψ and HΨ such that the sequence ψ∗ = {ψ∗,n}≥1 is (Ψ,HΨ)-optimal.

3.2.2. Fixed-step optimization problem. In this subsection, for each fixed n ≥ 1, we construct the
optimal score function ψ∗,n with respect to the risk functional Dn(ψ,H; θ) (see (3.19), (3.20)). More
precisely, ψ∗,n ∈ Ψ0n is said to be optimal at the nth step if

sup
H∈HnR

Dn(ψ
∗,n,H; θ) = inf

ψ∈Ψ0n
sup
H∈HnR

Dn(ψ,H; θ),

where

Ψ0n =
{
ψn ∈ L2(µ) :

∫
ψni (z, θ | x)f

n
i (z, θ | x)P

n
i (dz | x) = 0, 1 ≤ i ≤ n

}
. (3.24)

Denote by

Qni (·, θ | x) :=

∫
I{z:lni (z,θ|x)∈·}f

n
i (z, θ | x)P

n
i (dz | x) (3.25)

the conditional distribution of lni (z, θ | x) with a given (i, x) and consider the equation (with respect to
β) ∫

[y − β]m−mQ
n
i (dy, θ | x) = 0, (3.26)

where [x]ba = (x ∧ b) ∨ a, m > 0 is a number.
We denote by

βn := βni (x,m, θ) := β(Qni (·, θ | x),m)

the solution of Eq. (3.26).
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Remark 3.7. The question of solvability of Eq. (3.26) is considered below, in Lemma 3.2.

Assume that the distribution Qni (·, θ | x) satisfies the following conditions: for each fixed n and θ
(a) Qni (·, θ | x) has a unique median;
(b) Qni ({β

n
i (x, 0, θ)}, θ | x) = 0, where

βni (x, 0, θ) = lim
m→0

βni (x,m, θ).

Note that the assertions of Theorem 3.3 below are true without condition (a). But the proof is
technically more complicated (see [119]).

Theorem 3.3. (i) There exists an optimal ψ∗,n which is equal to

ψ∗,n =
(
[lni (z, θ | x)− β

n
i (x,m

∗
n(θ), θ)]

m∗n(θ)
−m∗n(θ)

)
1≤i≤n

, (3.27)

where m∗n(θ) is the unique solution of the equation

R2m2 =

∫ ∫
([y − βni (x,m, θ)]

m
−my

− ([y − βni (x,m, θ)]
m
−m)

2)Qni (dy, θ | x)νn(di, dx, θ). (3.28)

(ii) This ψ∗,n is µn-a.s. unique (up to a constant factor).

Proof. First we prove three lemmas. In the sequel, the parameter θ is fixed and omitted.
Let for each n ≥ 1

Ψn =

{
ψn ∈ L2(µn) :

∫
ψni (z | x)f

n
i (z | x)P

n
i (dz | x) = 0, 1 ≤ i ≤ n,

∫
ψnlndµn = 1

}
,

Ψγ,n = {ψ
n : |ψni (z | x)| ≤ γ µn-a.s.}, γ > 0,

Γn = {γ : Ψn ∩Ψγ,n �= ∅}.

Below we omit the index n as well.

Lemma 3.1. Γ = {γ : γ ≥ d−1}, where

d :=

∫ ∫
|y −medi(x)|Qi(dy | x)ν(di, dx)

and medi(x) is the median of the distribution Qi(· | x).

Proof. First let us prove the inclusion Γ ⊂ {γ: γ ≥ d−1}.
Let φi(x) be a measurable function with |φi(x)| ≤ Ei,x|l|, where Ei,x is the sign of conditional

expectation (see (3.29) and Remark 3.10 below).
For each γ ∈ Γ, ψ ∈ Ψ ∩Ψγ,

1 =

∣∣∣∣∫ ψi(z | x)(li(z | x)− φi(x))µ(dt, di, dx)

∣∣∣∣
≤ γ

∫
|li(z | x)− φi(x)|µ(dt, di, dx).

Hence

γ ≥

(
inf
φ

∫
|li(z | x)− φi(x)|µ(dz, di, dx)

)−1
= d−1

by the well-known minimization property of the median.
The inverse inclusion follows from Lemma 3.3.
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Everywhere below, by the derivative we mean the right derivative.
Denote

Ei,x|l| :=

∫
|y|Qi(dy | x). (3.29)

Lemma 3.2. (1) For each m > 0, the equation∫
[y − β]m−mQi(dy | x) = 0 (3.30)

has a unique measurable solution βi(x,m);
(2) there exists a constant C ≥ 1 such that

|βi(x,m)| ≤ CEi,x|l| (ν-a.s.); (3.31)

(3) for each (i, x), the function m ❀ βi(x,m) has a derivative β′i(x,m) and |β′i(x,m)| ≤ 1.

Proof. (1) We consider the function

f(m,β) =

∫
[y − β]m−mQi(dy | x) (:= f(i,x)(m,β)).

It is easy to verify that

|[y − β1]
m1
−m1 − [y − β2]

m2
−m2 | ≤ |m1 −m2| ∨ |β1 − β2|

and hence f(m,β) is continuous with respect to (m,β). Further, we observe that

f ′β(m,β) = −

∫
I{−m+β<y≤m+β}Qi(dy | x) ≤ 0, (3.32)

and lim
β→±∞

f(m,β) = ∓m. Therefore, for each fixed m > 0, Eq. (3.30) has a solution.

Recall that Qi(· | x) has a unique median. This implies that f ′β(m,β) < 0 in a neighborhood of each

point (m,β) such that f(m,β) = 0 and, according to the implicit function theorem, βi(x,m) is continuous
in m.

Thus, there exists a solution βi(x,m) of Eq. (3.30), which is unique and m-continuous. Finally, we
note that for fixed m, βi(x,m) is (i, x)-measurable, since it can be considered as a hitting time of level
zero by the continuous process f(i,x)(m,β).

Remark 3.8. It is easy to verify that lim
m→∞

βi(x,m) = 0 and if Qi({βi(x, 0)} | x) = 0, then βi(x, 0) =

lim
m→0

βi(x,m) = medi(x).

(2) Recall that the function β → f(m,β) is continuous, decreases from m to −m (see (3.32)), and
f(m,βi(x,m)) = 0. Now the statement is equivalent to the existence of a constant C ≥ 1 such that

f(m,CEi,x|l|) ≤ 0, f(m,−CEi,x|l|) ≥ 0

for each m > 0.
Let us prove, e.g., the first inequality. Show that for each m > 0,

βi(x,m) ≤ Ei,x|l|+m.

It suffices to prove that

f(m,Ei,x|l|+m) ≤ 0 ∀m > 0.
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This inequality follows from the following calculations:

f(m,Ei,x|l|+m) =

∫
yI{Ei,x|l|≤y≤Ei,x|l|+2m}Qi(dy | x)

−Ei,x|l|Qi((Ei,x|l|, Ei,x|l|+ 2m) | x)

−mQi((Ei,x|l|, Ei,x|l|+ 2m) | x)

−mQi((−∞, Ei,x|l|] | x)

+mQi([Ei,x|l|+ 2m,+∞) | x)

≤ Ei,x|l|Qi((Ei,x|l|, Ei,x|l|+ 2m) | x)

+ 2mQi((Ei,x|l|, Ei,x|l|+ 2m) | x)

−Ei,x|l|Qi((Ei,x|l|, Ei,x|l|+ 2m) | x)

−m{Qi(Ei,x|l|, Ei,x|l|+ 2m) | x) +Qi((−∞, Ei,x|l|] | x)

−Qi([Ei,x|l|+ 2m,+∞) | x)} = 0.

Now we show that ∃α > 2 such that

βi(x,m) ≤ αEi,x|l|

for each m > αEi,x|l|.

Indeed, fix ε0, 0 < ε0 <
1

2
, and take α ≥

(
2

1− 2ε0
∨

1

ε0

)
.

We have
Ei,x|l| ≥ Ei,x(|l|I{l≥αEi,x|l|}) ≥ αEi,x|l|Qi([αEi,x|l|,+∞) | x).

Thus,

Qi([αEi,x|l|,+∞) | x) ≤
1

α
≤ ε0.

Denote

ε+ = Qi([αEi,x|l|+m,+∞) | x),

ε− = Qi((−∞, αEi,x|l| −m] | x).

In these notations,
ε+ ≤ ε0, mε+ ≤ Ei,x|l| for each m > 0

(indeed, mε+ ≤ m
Ei,x|l|

αEi,x|l|+m
≤ Ei,x|l| ∀m > 0), and for each m > αEi,x|l|,

f(m,αEi,x|l|) =

∫
yI{−m+αEi,x|l|≤y≤m+αEi,x|l|}Qi(dy | x)

− αEi,x|l|(1 − ε+ − ε−)−m(ε− − ε+)

≤


Ei,x|l| − αEi,x|l|+ αε+Ei,x|l|+ αε−Ei,x|l|

− αε−Ei,x|l|+ αε+Ei,x|l| if ε− ≥ ε+,

2Ei,x|l| − αEi,x|l|+ 2αε+Ei,x|l| if ε− < ε+

=

{
Ei,x|l|(1 + 2αε+ − α) if ε− ≥ ε+

Ei,x|l|(2 + 2αε+ − α) if ε− < ε+

}
≤ 0.

Finally, we obtain the following: ∃α > 2,

βi(x,m) ≤ αEi,x|l| ≤ (α + 1)Ei,x|l| if m > αEi,x|l|,

βi(x,m) ≤ Ei,x|l|+m ≤ (α+ 1)Ei,x|l| if m ≤ αEi,x|l|,

whence the desirable result follows with C = 1+ α.
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Remark 3.9. If we take ε0 =
1

4
, then we obtain α = 4 and hence |βi(x,m)| ≤ 5Ei,x|l|.

Remark 3.10. |medi(x)| ≤ Ei,x|l|.
Indeed, from the conditionally centering property of a random variable l, we have

Ei,x|l| = 2Ei,xl
+, l+ = max(0, l).

Hence

Ei,xl
+ ≥ Ei,x(l

+I{l≥Ei,x|l|}) ≥ 2Ei,xl
+Qi([Ei,x|l|,+∞) | x)

and, therefore,

Qi([Ei,x|l|,+∞) | x) ≤
1

2
.

Remark 3.11. Inequality (3.31) holds for any conditionally centered random variable (not only for l).

(3) Suppose that (∆m > 0)⇒ (∆β(m) ≥ 0), where ∆ denotes an increment.
Recall that in the neighborhood of the point (m,β) such that f(m,β) = 0, we have f ′β(m,β) < 0.

From the implicit function theorem we obtain

β′(m) = −
f ′m(m,β + 0)|β=β(m)
f ′β(m,β)|β=β(m)

.

Thus we obtain

β′i(x,m) =

∫
(I{y−βi(x,m)>m} − I{y−βi(x,m)≤−m})Qi(dy | x)∫

I{−m<y−βi(x,m)≤m}Qi(dy | x)
. (3.33)

Using Eq. (3.33), it is easy to verify that |β′i(x,m)| ≤ 1.
The consideration of the case (∆m > 0)⇒ (∆β(m) < 0) is quite similar. In this case,

β′i(x,m) =

∫
(I{y−βi(x,m)≥m} − I{y−βi(x,m)<−m})Qi(dy | x)∫

I{−m≤y−βi(x,m)<m}Qi(dy | x)
.

Lemma 3.3. If γ ∈ Γ, then (i)

inf
ψ∈Ψn∩Ψγ,n

∫
ψ2dµn =

∫
(ψ∗)2dµn,

where

ψ∗i (z,m | x) = [li(z | x)− βi(x,m)]m−m

(∫ ∫
[y − βi(x,m)]m−myQi(dy | x)ν(di, dx)

)−1
, (3.34)

and if γ > d−1, then m is a solution of the equation

m

(∫ ∫
[y − βi(x,m)]m−myQi(dy | x)ν(di, dx)

)−1
= γ; (3.35)

if γ = d−1, then

ψ∗i (z,m | x) = d−1 sign(li(z | x)−medi(x));

(ii) ψ∗ = (ψ∗i (z,m | x))1≤i≤n is µn-a.s. unique.
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Remark 3.12. It is obvious that∫ ∫
[y − βi(x,m)]m−myQi(dy | x)ν(di, dx)

=

∫ ∫
[|y − βi(x,m)|]m0 |y − βi(x,m)|Qi(dy | x)ν(di, dx) ≥ 0

and this relation is equal to zero iff a random variable li(z | x) = βi(x,m) (µn-a.s.). In this case, Ψn = ∅.

Proof. Note that if m > 0, then

|m−1[y − β]m−my| = |[y/m− β/m]1−1y| ≤ |y|

and by the Lebesgue theorem, the function

F (m) := m−1
∫ ∫

[y − βi(x,m)]m−myQi(dy | x)ν(di, dx)

is continuous and, moreover, lim
m→∞

F (m) = 0, lim
m→0

F (m) = d. Thus, the equation γF (m) = 1 has a

solution.
In what follows, for simplicity, we use the following notation:

I+ := I+(y, i, x) =

{
I{y−βi(x,m)>m} if (∆m > 0)⇒ (∆βi(m,x) ≥ 0),

I{y−βi(x,m)≥m} if (∆m > 0)⇒ (∆βi(m,x) < 0),

I− := I−(y, i, x) =

{
I{y−βi(x,m)≤−m} if (∆m > 0)⇒ (∆βi(m,x) ≥ 0),

I{y−βi(x,m)<−m} if (∆m > 0)⇒ (∆βi(m,x) < 0),

I0 = 1− I+ − I−.

If φ = φ(y, i, x) is some real function, then∫
φ :=

∫
φ(y, i, x)Qi(dy | x),∫ ∫

φ =

∫ (∫
φ

)
:=

∫ (∫
φ(y, i, x)Qi(dy | x)

)
ν(di, dx).

(3.36)

We show that F ′(m) < 0.
We rewrite F (m) as

F (m) = m−1
∫ ∫

[y − β(m)]m−m(y − β(m)).

Then, by virtue of statements (2) and (3) of Lemma 3.2, we have

F ′(m) = m−2
{∫ ∫

[(y − β(m))I+ −mβ′(m)I+ − (y − β(m))I−

+mβ′(m)I− − 2β′(m)(y − β(m))I0]−

∫ ∫
[y − β(m)]m−m(y − β(m))

}
= m−2

{
m

∫ ∫
[(y − β(m))I+ − (y − β(m))I− − β′(m)(y − β(m))I0]

−

∫ ∫
[y − β(m)]m−m(y − β(m))

}
.

The last equality follows from the equality

m

∫
I+ −m

∫
I− +

∫
(y − β(m))I0 = 0. (3.37)
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Further,

F ′(m) = m−2
∫ [
−mβ′(m)

∫
(y − β(m))I0 −

∫
(y − β(m))2I0

]
= m−2

∫ [
−m

∫
I+ −

∫
I−∫

I0

∫
(y − β(m))I0 −

∫
(y − β(m))2I0

]
= m−2

∫ [
(
∫
(y − β(m))I0)2∫

I0
−

∫
(y − β(m))2I0

]
< 0,

by virtue of Eq. (3.37) and the Schwartz inequality.
Hence, in this case, Eq. (3.35) has a unique solution.
It is well known ([32]) that in this case and in the limit case as m → 0, the optimal score function

ψ∗ has the form given by (3.34).

Proof of Theorem 3.3. From Lemmas 3.1 and 3.3 we have

inf
ψ∈Ψ0n

sup
H∈HnR

Dn(ψ,H) = inf
γ∈Γ

(
R2γ2 + inf

m:m≥0,
m
v(m)≤γ

u(m)

v(m)

)
= inf
m≥0

Φ(m),

where Φ(m) = (R2m2 + u(m))v−2(m),

u(m) =

∫ ∫
([y − β(m)]m−m)

2, (3.38)

v(m) =

∫ ∫
[y − β(m)]m−my (3.39)

(for the notation see (3.36)).
Consider the behavior of the function Φ(m). From Lemma 3.2 it immediately follows that there

exists Φ′(m) and Φ′(m) = 2v−3(m)p(m)q(m), where

p(m) = m(R2 − ϕ(m)), (3.40)

ϕ(m) = m−2[v(m)− u(m)], (3.41)

q(m) =

∫ ∫
(y − β(m))(y − β(m) +mβ′(m))I0.

It is easy to verify that

ϕ(m) ≥ 0, ϕ(m)→∞0 as m→0∞ .

We show that

ϕ′(m) < 0. (3.42)

Indeed, we have

ϕ′(m) = −m−2
∫ ∫

(I+ − I− − β′(m)I0)(y − β(m))

and ∫ ∫
(I+ − I− − β′(m)I0)(y − β(m)) > m > 0.

Thus, there exists a unique point m∗ such that R2 − ϕ(m∗) = 0.
Consider the function q(m). It is easy to verify that q(m) > 0 for each m, as immediately follows

from the assumption that Qi(· | x) has a unique median and the definition of I0.
Hence there exists a unique minimum point m∗ of the function Φ(m) given by Eq. (3.28).
Finally, the optimal ψ∗ has the form (3.27) and is unique (up to a constant factor). �
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3.2.3. Approximation by a fixed-step solution. Let for each n ≥ 1 the system Qn = (Qni (· | x))1≤i≤n
of regular conditional distributions on (Rd,B(Rd)), d = 1, 2, be given. Further, let (Md,B(Md)) be a
measure space of probability measures on (Rd,B(Rd)), where B(Md) is a Borel σ-algebra generated by
the open sets with respect to the Prokhorov metric. Define

Ln,Q(·) =

∫
I{Qni (·|x)∈·}νn(di, dx).

Definition. The sequence {Qn}n≥1 is said to be generalized weakly convergent to the random element
(r.e.) Q (this is denoted by Qn ⇒ Q), if

Ln,Q
w
→ LQ as n→∞,

where LQ is the distribution of the random element Q.

In other words, Qn ⇒ Q means that∫
F (Qni (· | x))νn(di, dx) =

∫
F (ν)Ln,Q(dν)→

∫
F (ν)LQ(dν) as n→∞

for each continuous bounded functional F :Md → R1.
Note that if

Q
n
(·) :=

∫
Qni (· | x)νn(di, dx) =

∫
ν(·)Ln,Q(dν)

and

Q(·) =

∫
ν(·)LQ(ν),

then

(Qn ⇒ Q)⇒ (Q
n w
→ Q).

Indeed, it is sufficient to take

F (ν) =

∫
f(y)ν(dy)

for f ∈ Cb (the class of continuous bounded functions).
We fix the parameter θ and omit it.
Let Ψ0 be the class of sequences ψ = {ψn}n≥1 with ψn ∈ Ψ0n for each n ≥ 1 (see (3.24)).
For every A ⊂ Ψ0, we introduce the set

H(A) =
{
{Hn}n≥1 ∈ Hseq : sup

n

∫
(Hn)2dµn <∞,∫

ψnHndµn →, ∀ψ ∈ A
}
.

The symbol “an →” means that the sequence {an}n≥1 has a finite limit.
Everywhere below we use the following abbreviations.
If {Qn,ψ} or {Qn,ψ1,ψ2} generalized weakly converges to some random element, we write, for definite-

ness,

Qn,ψ ⇒ Qψ, Qn,ψ1,ψ2 ⇒ Qψ1,ψ2 .

Analogously, we write

Q
n,ψ w
→ Q

ψ
, Q

n,ψ1,ψ2 w→ Q
ψ1,ψ2

.

Finally, we denote

Ln,Q
ψ

:= Ln,ψ, LQ
ψ

:= Lψ.
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Now we introduce the classes Ψ and HΨ. Denote

Qn,ψi (· | x) =

∫
I{z:ψi(z|x)∈·}f

n
i (z | x)P

n
i (dz | x),

Qn,ψ
1,ψ2

i (· | x) =

∫
I{z:(ψ1,ni (z|x),ψ2,ni (z|x))∈·}f

n
i (z | x)P

n
i (dz | x).

Let Ψ be a subset of Ψ0 with the following properties:
(1) the sequence {(ψn)2}n≥1 is uniformly integrable with respect to a sequence of measures {µn}n≥1;

(2) (ψ1, ψ2 ∈ Ψ)⇒ (ψ1 ∈ Φψ
2
), where Φψ

2
= {ψ ∈ Ψ0: Qn,ψ

2,ψ ⇒ Qψ
2,ψ};

(3) l = {ln}n≥1 ∈ Ψ;
(4) if Qn,ψ ⇒ Q, then

LQ
{
ν : ν has a unique median,

∫
y ν(dy) = 0

}
= 1;

(5) (ψ̃ ∈ ∩
ψ∈Ψ

Φψ)⇒ (ψ̃ ∈ Ψ).

Further, we suppose that

Ll{ν : ν is nondegenerate, ν({med}) = 0} = 1.

Finally, define HΨ = H(Ψ).

Remark 3.13. Show, for example, that the set

C = {ν : ν has a unique median}

is measurable. Indeed, the functions

a(ν) = inf{a : ν(−∞, a] ≥ 1/2}, b(ν) = sup{b : ν[b,∞) ≥ 1/2}

are measurable and C = {ν : a(ν) = b(ν)}.

Remark 3.14. If Qn,li (· | x) is symmetric with respect to zero, then β(Qn,li (· | x),m) = 0. In this case,

in the definition of the class Ψ, the property Qn,ψ
2,ψ ⇒ Qψ

2,ψ can be replaced by

Q
n,ψ2,ψ w

→ Q
ψ2,ψ

.

A similar remark is valid for property (4) as well.

Theorem 3.4. Let, for each n ≥ 1, ψ∗,n be a score function, constructed in Theorem 3.3. Then the
sequence ψ∗ = {ψ∗,n}n≥1 is (Ψ,HΨ)-optimal.

Proof. We prove some lemmas.

Lemma 3.4. The sequence ψ̃ := {[ln − βn]m−m}n≥1 ∈ Ψ.

Proof. First, we prove that ψ̃ ∈ ∩
ψ∈Ψ

Φψ. It is easy to verify that if νn and ν are some measures on

(R2,B(R2)) such that νn
w
→ ν and the first marginal ν1 of ν has a unique median, then β(νn)→ β(ν) as

n→∞, where the functional β(·) is defined as a solution of the equation∫
[u− β]m−mν(du, dv) = 0. (3.43)

Indeed, β(ν) = β(ν1), where β(ν1) is the unique solution of Eq. (3.43) with ν1 instead of ν.
If now

β = lim
n→∞

β(νn), β = lim
n→∞

β(νn),

then there exist subsequences, say {n′} and {n′′}, such that

β(νn
′
)→ β, β(νn

′′
)→ β.
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Now, if we pass to the limit as n′ →∞ (or n′′ →∞) in Eq. (3.43), where we substitute νn
′
(or νn

′′
)

for ν, then from the uniqueness of the solution of Eq. (3.43) we obtain β = β = β(ν1) = β(ν).
Introduce the mapping h : ν → h(ν) by the relation

h(ν)(·) =

∫
I{([u−β(ν)]m−m,v∈·}ν(du, dv),

and show that the mapping h is continuous (with respect to a weak convergence) at the point ν, with
marginal ν1, having a unique median. This immediately follows from the continuity of the functional β(·).

Indeed, for each continuous bounded function f on R2 we have∫
f(u, v)h(νn)(du, dv) =

∫
f([u− β(νn)]m−m, v)ν

n(du, dv)

→

∫
f([u− β(ν)]m−m, v)ν(du, dv) =

∫
f(u, v)h(ν)(du, dv).

Let ψ ∈ Ψ. Obviously,

βn = (β(Qn,li (· | x),m))1≤i≤n = (β(Qn,l,ψi (· | x),m)1≤i≤n

and Qn,ψ̃,ψ = h(Qn,l,ψ). Now the convergence

Qn,ψ̃,ψ ⇒ Qψ̃,ψ

follows from the convergence

Qn,l,ψ ⇒ Ql,ψ.

Indeed, for any bounded continuous functional F onM2, the superposition F (h) has the same properties.
It remains to verify property (4) from the definition of the class Ψ. For each F ∈ Cb(M1), we have∫

F (Qn,ψ̃i (· | x))νn(di, dx) =

∫
F (h̃(Qn,li (· | x)))νn(di, dx), (3.44)

where the mapping h̃ : ν → h̃(ν), ν ∈M1, given by

h̃(ν)(·) =

∫
I{[y−β(ν)]m−m∈·}ν(dy)

is continuous. Note, in addition, that if ν has a unique median or if
∫
yν(dy) = 0, then h̃(ν) has the same

property. Now we have ∫
F (Qn,ψ̃i (· | x))νn(di, dx) =

∫
F (v)Ln,ψ̃(dv)

=

∫
F (h̃(ν))Ln,l(dν)→

∫
F (h̃(v))L1(dv) =

∫
F (ν)Lψ̃(dν),

where Lψ̃ = L{h̃ | L1}. Hence

Lψ̃
{
ν : ν has a unique median,

∫
yν(dy) = 0

}
= 1,

since l ∈ Ψ and, therefore, L1 has the latter property.

Corollary 3.2. If mn → m > 0, then ψ = {[ln − βn]mn−mn}n≥1 ∈ Ψ.

Proof. It is sufficient to note that the function β = β(ν,m) is continuous in both arguments.

Lemma 3.5. The sequence ψ∗ = {ψ∗,n}n≥1 ∈ Ψ (see (3.27)).
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Proof. It is sufficient to show that m∗n → m∗ > 0. From Eq. (3.28) we have

1 =
R2(m∗n)

2 + u(m∗n)

v(m∗n)
≥
R2(m∗n)

2

v(m∗n)

(the functions u(m) and v(m) are defined in (3.38) and (3.39)).
Hence

(m∗n)
2 ≤

v(m∗n)

R2
≤

∫
x2Q

n,l
(dx)

R2
→

∫
x2Q

l
(dx)

R2
<∞.

Therefore, the sequence {m∗n} is bounded. Denote m1 = lim inf
n→∞

m∗n, m2 = lim sup
n→∞

m∗n, and let {n′}

and {n′′} be subsequences such that m∗n′ → m1 and m
∗
n′′ → m2. Rewrite Eq. (3.28) as follows:

R2(m∗n)
2 =

∫ ∫
F (m∗n, y, z)Q

n,l,β
(dy, dz), (3.45)

where

F (m, y, z) = [y − z]m−my − ([y − z]m−m)
2.

It is easy to see that in Eq. (3.45) we may pass to the limit as n → ∞. Indeed, it is sufficient to
show that

Qn,l,β ⇒ Ql,β. (3.46)

For each continuous bounded functional F onM2, we have∫
F (ν)Ln,l,β(dν) =

∫
F (h(ν))Ln,l(dν)→

∫
F (h(ν))L1(dν) =

∫
F (ν)L1,β(dν),

where the mapping h :M1 →M2 is given by the relation

h(ν)(du, dv) = δβ(ν)(du)ν(dv),

where δ{a} is the Dirac measure at the point a, and hence Ll,β = L(h | Ll). Note that the mapping h is

Ll-a.s. continuous. Thus relation (3.46) is proved.
Passing to the limit in Eq. (3.45) first as n′ →∞ and then as n′′ →∞, we find that m1 and m2 are

solutions of the equation

R2m2 =

∫ ∫
F (m, y, z)Q

l,β
(dy, dz). (3.47)

But this equation has a unique solution. Hence, m1 = m2.

In the sequel, we need the following sets:

OnR =
{
Hn ∈ L2(µn) : H

n
i (z | x) ≥ 0 (µn-a.s.),

∫
Hndµn ≤ R

}
,

HΨ = {{H
n
}n≥1 : H

n
∈ OnR ∀n ≥ 1, {Hn}n≥1 ∈ HΨ},

where

Hni (z | x) = H
n
i (z | x)−

∫
H
n
i (z | x)f

n
i (z | x)P

n
i (dz | x). (3.48)

It is easy to see that there exists a one-to-one correspondence between HΨ and HΨ: for each H ∈ HΨ,
there exists H ∈ HΨ such that D(ψ,H) = D(ψ,H) for each ψ ∈ Ψ, and vice versa. We write H ∼ H.

Consider the sequences ψ = {ψn}n≥1 for which sup
H∈HΨ

D(ψ,H) <∞. We call such ψ admissible.
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Lemma 3.6. The sequence ψ ∈ Ψ is admissible iff there exists a constant c > 0 such that∫
I{|y|>c}Q

ψ
(dy) = 0,

where

Q
n,ψ w
→ Q

ψ
.

Proof. Assume that for each c > 0,

lim
n→∞

∫
I{ψni (z|x)>c}µn(dz, di, dx) =

∫
I{y>c}Q

ψ
(dy) > 0.

Consider the function

Hn,c = (Hn,ci (z | x))1≤i≤n :=

(
RI{ψni (z|x)>c}

(∫
I{ψni (z|x)>c}dµ

n

)−1)
1≤i≤n

.

It will be proved in Lemma 3.9 that Hc = {Hn,c}n≥1 ∈ HΨ. Now we have

D(ψ,Hc) ≥ lim
n→∞

[
c2R2

(∫
I{ψn>c}dµn

)−1
+

∫
(ψn)2dµn

][∫
ψnlndµn

]−2
,

and the last expression tends to +∞ as c→∞.

Let ψ ∈ Ψ be admissible and denote

η := ess sup
Q
ψ
(dy)

|y|.

It follows from Lemma 3.6 that η <∞. Connect with ψ the sequence ψ̃,

ψ̃ = {ψ̃n}n≥1 = {[ψ
n − βn]η−η}n≥1,

where βn = (β(Qn,ψi (· | x), η))i≤n.

Lemma 3.7. ψ̃ ∈ Ψ, ψ̃ is admissible, and ψ ∼ ψ̃, i.e.,

D(ψ̃,H) = D(ψ,H) ∀H ∈ HΨ.

Proof. It is sufficient to prove the last relation. We show, e.g., that(∫
ψnHndµn

)2
−

(∫
ψ̃nHndµn

)2
→ 0 as n→∞

(see (3.19) and (3.20)).
We have

lim
n→∞

∣∣∣∣(∫ ψnHndµn

)2
−

(∫
ψ̃nHndµn

)2∣∣∣∣ ≤ lim
n→∞

∣∣∣∣∫ (ψn + ψ̃n)Hndµn

∣∣∣∣
×

∣∣∣∣∫ {(ψn − [ψn]η−η) + ([ψn]η−η − [ψn − βn]η−η)}H
ndµn

∣∣∣∣. (3.49)

From the simple inequality (a + b)2 ≤ 2(a2 + b2), the Schwartz inequality, and the definitions of Ψ and
HΨ, we have (∫

(ψn + ψ̃n)Hndµn

)2
≤ const.
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Hence, the right-hand side of inequality (3.49)

≤ const lim
n→∞

[(∫
(ψn − [ψn]η−η)

2

)1/2
+

(∫
([ψn]η−η − [ψn − βn]η−η)

2dµn

)1/2]
:= const lim

n→∞
(In1 + In2 ).

From the uniform integrability of {(ψn)2}n≥1 and the definition of η it immediately follows that
In1 → 0 as n→∞. Indeed,

(In1 )
2 =

∫
(y − [y]η−η)

2Q
n,ψ

(dy)→

∫
(y − [y]η−η)

2Q
ψ
(dy)

=

∫ ∫
(y − [y]η−η)

2ν(dy)Lψ(dν) = 0,

since

Lψ{ν : ν([−η, η]c) = 0} = 1,

where Ac denotes the complement of the set A.
In fact,

0 = Q
ψ
([−η, η]c) =

∫
ν([−η, η]c)Lψ(dν).

Further,

(In2 )
2 =

∫ ∫
([y]δ−η − [y − z]η−η)

2Q
n,ψ,β

(dy, dz)

→

∫ ∫
([y]η−η − [y − β(ν)]η−η)

2ν(dy)Lψ(dν) = 0,

since

Lψ{ν : β(ν) = 0} = Lψ{ν : β(ν) = 0, ν([−η, η]) = 1}

= Lψ
{
ν :

∫
[y]η−ην(dy) = 0, ν([−η, η]) = 1

}
= Lψ

{
ν :

∫
y ν(dy) = 0, ν([−η, η]) = 1

}
= Lψ

{
ν :

∫
y ν(dy) = 0

}
= 1,

thanks to property (4) of the definition of the class Ψ.

Lemma 3.8. If ψ ∈ Ψ and Q
ψ
({y}) = 0, then ψ1 := I{ψ>y} ∈ HΨ.

Proof. For any ψ0 ∈ Ψ, we have∫
ψn,0i (z | x)ψn,1i (z | x)µn(dz, di, dx) =

∫
uI{ν>y}Q

n,ψ0,ψ
(du, dv)→,

as follows from the uniform integrability of {(ψn,0)2}n≥1 and the (Q
ψ0,ψ

-a.s.) continuity of the function
uI{v>y}.

Let ψ ∈ Ψ and let ψ̃ be connected with ψ.

Lemma 3.9. For ∀ε > 0 there exists H
ε
= {H

n,ε
}n≥1 such that:

(i) H
ε
∈ HΨ;

(ii) lim
n→∞

sup
H∈OnR

Dn(ψ̃
n,H)(Dn(ψ̃

n,H
n,ε
))−1 ≤ 1 + const ·ε.

2785



Proof. Without loss of generality, we assume that

Q
ψ̃
({η(1 − ε)}) = 0

and

Q
ψ̃
((η(1 − ε),+∞)) > 0,

where η = ess sup

Q
ψ̃

|y|. We set

H
n,ε

= RI{ψ̃n>η(1−ε)}

(∫
I{ψ̃n>η(1−ε)}dµn

)−1
:= RIAn

(∫
IAndµn

)−1
,

where An = {(z, i, x) : ψ̃ni (z | x) > η(1− ε)}. Define Hn,ε by formula (3.48). Then

lim
n→∞

∫
(Hn,ε)2dµ̂n = lim

n→∞
R2n−1

n∑
i=1

[∫
IAnf

n
i −

(∫
IAnf

n
i

)2](∫
IAndµn

)−2
≤ lim
n→∞

R2
(∫

IAndµn

)−2
<∞,

since

lim
n→∞

∫
IAndµn =

∫
I{y>η(1−ε)}Q

ψ̃
(dy) > 0.

Now (i) follows from Lemma 3.8.
To prove (ii), it suffices to verify that

lim inf
n→∞

∣∣∣∣∫ ψ̃nH
n,ε
dµn

∣∣∣∣
sup
H∈OnR

∣∣∣∣∫ ψ̃nH dµn

∣∣∣∣ ≥ 1− ε. (3.50)

Indeed,

sup
H∈OnR

Dn(ψ̃
n,H) = Dn(ψ̃

n,H
n,ε
)

+

R2
(∫

ψ̃nH
n,ε
dµn

)
(∫

ψ̃nlndµn

)2 ·


sup
H∈OnR

(∫
ψ̃nH dµn

)2
(∫

ψ̃nH
n,ε
dµn

)2 − 1
 ,

and (ii) follows from the definition of the classes Ψ and HΨ.
But the left-hand side of expression (3.50)

≥ lim
n→∞

(η(1 − ε))(ηn)
−1 = (η(1− ε))η−1 = 1− ε,

where ηn = ess sup

Q
n,ψ̃

|y| and, obviously, ηn → η.

Remark 3.15. The essential point in the proof is that the relation ηn → η holds for ψ̃, whereas, in
general, it is not true for ψ.

Proof of Theorem 3.4. For each ψ ∈ Ψ and H ∈ HΨ, from the fixed-step optimization problem we
have

Dn(ψ
∗,n,Hn) ≤ sup

H∈HnR

Dn(ψ
n,H) = sup

H∈OnR

Dn(ψ
n,H).
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Let ψ̃ be connected with ψ. Then from item (ii) of Lemma 3.9 we obtain

lim
n→∞

Dn(ψ
∗,n,Hn)

Dn(ψ̃n,H
n,ε
)
≤ lim
n→∞

sup
H∈OnR

Dn(ψ̃
n,H)

Dn(ψ̃n,H
n,ε
)
≤ 1 + const ·ε,

and, therefore,

D(ψ∗,H) ≤ D(ψ̃,H
ε
)(1 + const ·ε).

It remains to note that ψ̃ ∼ ψ and H
ε
∼ Hε.

We denote β
n
= β(Qni (· | x),m

∗), where m∗ is a solution of Eq. (3.47).

Corollary 3.3. The sequence

ψ
∗
= {ψ

∗,n
}n≥1 := {[l

n − β
n
]m
∗

−m∗}n≥1

is optimal.

Corollary 3.4. If there exists a CLAN estimator T ∗ = Tψ
∗
, then it is (Ψ,HΨ)-minimax.

The proofs of the corollaries are obvious and we omit them.

3.2.4. Special models.

I.1. Independent identically distributed (i.i.d.) observations. Let fni (z, θ | x) ≡ f(z, θ) be
a density (with respect to the Lebesgue measure), λni (x, θ) ≡ R, hni (z, θ | x) ≡ h(z, θ) be a density

with
∫
h2(z, θ)f(z, θ) dz < ∞, and Hni (z, θ | x) ≡ h(z, θ) − 1, lni (z, θ | x) ≡ l(z, θ) =

∂

∂θ
ln f(z, θ),

ψni (z, θ | x) ≡ ψ(z, θ) with ∫
ψ(z, θ)f(z, θ) dz = 0,∫

ψ2(z, θ)f(z, θ) dz <∞, In(θ) ≡ nI(θ),

I(θ) =

∫
l2(z, θ)f(z, θ) dz <∞.

Then

D(ψ,H; θ) =

R2
(∫

ψ(z, θ)H(z, θ)f(z, θ) dz

)2
+

∫
ψ2(z, θ)f(z, θ) dz(∫

ψ(z, θ)l(z, θ)f(z, θ) dz

)2 ,

ψ∗(z, θ) = [l(z, θ)− β(θ,m∗)]m
∗

−m∗ , where β(θ,m
∗) is the solution of the equation∫

[l(z, θ)− β]m
∗

−m∗f(z, θ) dz = 0

and m∗ satisfies the equation

R2m2 =

∫ {
[l(z, θ)− β(θ,m)]m−ml(z, θ)− ([l(z, θ)− β(θ,m)]m−m)

2
}
f(z, θ) dz.
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I.2. Independent, nonidentically distributed observations. For i ≥ 1, let

Xi = θ + σiεi, X0 = 0,

where θ ∈ R1 is an unknown parameter, {εi}i≥1 is an i.i.d. sequence of standard normal random variables
(r.v.), and the sequence {σi}i≥1 of numbers is such that σi > 0 and for each y ∈ R1,

χn(y) := n−1
n∑
i=1

I{σ−2i <y}
→ χ(y) as n→∞.

We note that

li(Xi, θ) = (Xi − θ)/σ
2
i ∼ N (0, σ

−2
i ).

Assume that the function f(y) = y is uniformly integrable with respect to χn. Then

n−1In(θ) = n−1
n∑
i=1

σ−2i →

∫
yχ(dy).

(a) Let the contamination model be

Y ni = θ + σiε
n
i , i ≥ 1, Y0 = 0

with

εni = (1− Zni )εi + Zni Wi, 1 ≤ i ≤ n, n ≥ 1,

where (εi, Z
n
i ,Wi)1≤i≤n is the i.i.d. sequence of random vectors with mutually independent components,

P (Zni = 1) = λ/n1/2, λ > 0 is a number,

the density of the r.v. Wi is h(z). Then for the density fn,Hi (z, θ) of the r.v. Y ni we have

f
n,H
i (z, θ)/φ(θ, σi, z) = 1 + n−1/2Hi(z, θ), (3.51)

where

Hi(z, θ) = λ ·

(
h((z − θ)/σi)

φ((z − θ)/σi)
− 1

)
.

Here φ(a, b, ·) is the density of the function of the normal distribution N (a, b2, ·) with parameters (a, b),
φ(u) = φ(0, 1, u). Consider the class Ψ of all score functions of the form

ψi(z, θ) = ψ((z − θ)/σ2i ),

where ψ(u) is a continuous function,

|ψ(u)| ≤ K|u|,

∫
ψ(u/σi)φ(u) du = 0,∫

ψ2(u/σi)φ(u) du <∞, K > 0 is a constant.

Obviously, (li)i≥1 ∈ Ψ, where li =
∂

∂θ
lnφ

(
z − θ

σ2i

)
.

Let us show that all ergodicity conditions are satisfied. In particular,∫
(ψ)2dµ̂n = n−1

n∑
i=1

∫
(ψ((z − θ)/σ2i ))

2φ(θ, σi, z) dz

=

∫ ∫
(ψ(uy1/2))2φ(u) duχn(dy)→

∫ ∫
(ψ(uy1/2))2φ(u) duχ(dy) = Γψ,∫

ψl dµ̂n =

∫ ∫
ψ(uy1/2)uy1/2φ(u) duχn(dy)→

∫
ψ(uy1/2)uy1/2φ(u) duχ(dy) = γψ.

(3.52)

2788



Let ∫
(h(u)/φ(u))2φ(u) du <∞.

Then

H = {(Hi(z, θ))1≤i≤n}n≥1 ∈ HΨ.

Obviously,

bψ,Hn =

∫ ∫
ψ(uy1/2)H(u)φ(u) duχn(dy)→

∫ ∫
ψ(uy1/2)H(u)φ(u) duχ(dy) = βψ,H , (3.53)

where

H(u) = λ ·

(
h(u)

φ(u)
− 1

)
.

From expressions (3.52) and (3.53) it is obvious that such a contamination is not full.
(b) Let the contamination model be as in (a), but (Zni )1≤i≤n and (Wi)1≤i≤n be mutually independent

sequences of independent nonidentically distributed r.v. with

P (Zni = 1) = λ(σ−1i )/n1/2,

and the density of the r.v. Wi be hi(z) = h(z, σ−1i ). Then fn,Hi has the form (3.51) with

Hi(z, θ) = λ(σ−1i )

(
h((z − θ)/σi, σ

−1
i )

φ((z − θ)/σi)
− 1

)
.

Denote by Ψ the set of all score functions of the form

ψi(z, θ) = ψ((z − θ)/σi, σ
−1
i ), i ≤ n,

where ψ(u1, u2) is continuous, |ψ(u1, u2)| ≤ K|u1||u2|, and K > 0 is a constant.
It is easy to verify that

Q
n,ψ1,ψ2 w

→ Q
ψ1,ψ2

.

Indeed,

Q
n,ψ1,ψ2

(·) = n−1
n∑
i=1

∫
I{(ψ1(u,σ−1i ),ψ2(u,σ

−1
i ))∈·}

φ(u) du

=

∫ ∫
I{(ψ1(u,y1/2),ψ2(u,y1/2))∈·} duχn(dy),

and for each f ∈ Cb
R2
, we have∫ ∫

f(z1, z2)Q
n,ψ1,ψ2

(dz1, dz2) =

∫ ∫
f(ψ1(u, y1/2), ψ2(u, y1/2))φ(u) duχn(dy)

→

∫ ∫
f(ψ1(u, y1/2), ψ2(u, y1/2))φ(u) duχ(dy)

=

∫ ∫
f(z1, z2)Q

ψ1,ψ2
(dz1, dz2).

A straightforward calculation shows that all ergodicity conditions are satisfied. Namely,

Γψ =

∫ ∫
(ψ(u, y1/2))2φ(u) duχ(dy),

γψ =

∫ ∫
(ψ(u, y1/2))2uy1/2φ(u) duχ(dy).
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Assume that the functions λ(u1) and h(u1, u2) are continuous and

|λ(u1)| ≤ λ|u1|, |h(u, u1)| ≤ h(u)(1 + |u1|),∫
h2(u)/φ(u) du <∞, λ > 0 is a constant.

Then

H = {(Hi(z, θ)i≤n)}n≥1 ∈ HΨ.

Indeed, ∫
ψHdµ̂n =

∫ ∫
ψ(u, y1/2)λ(y1/2)h(u, y1/2) duχn(dy)

→

∫ ∫
ψ(u, y1/2)λ(y1/2)h(u, y1/2) duχ(dy) = βψ,H .

We have obtained the full contamination and, therefore, we can conclude that the optimal score function
ψ∗ is

ψ∗i = [(Xi − θ)/(σ
2
i )]
m∗

−m∗ , i ≥ 1,

where m∗ is the solution of the equation

R2m2 =

∫ ∫
([uy1/2]m−muy

1/2 − ([uy1/2]m−m)
2)φ(u) duχ(dy).

If the distribution χ is unknown, then, by virtue of Theorem 3.4, the optimal sequence is ψ∗ =
{(ψ∗,ni )1≤i≤n}n≥1, where

ψ
∗,n
i = [(Xi − θ)/(σ

2
i )]
m∗n
−m∗n

, 1 ≤ i ≤ n,

and m∗n is the solution of the above equation with χn instead of χ. Note that m∗n → m∗ as n→∞.

II. The Markov Chain

1. Stationary ergodic Markov chain. Let Y1, ..., Yk, Yk+1, ..., Yn, k ≥ 1, n ≥ k, be observations of
a stationary homogeneous ergodic Markov chain defined by the initial density f0(yk, ..., y1, θ) and the
transition density f(z, θ | yi−1, ..., yi−k), i > k, where θ ∈ Θ ⊂ R1 is an unknown parameter.

Denote x0 = (yk, ..., y1), xi = yk+i, i ≥ 1, and let

fn0 (x0, θ) = f(x0, θ), fn1 (z, θ | x) = f(z, θ | x0),

fni (z, θ | x) = f(z, θ | xi−1, ..., x
(i)
0 ) if 1 ≤ i ≤ k,

where x
(i)
0 = (yk, ..., yi) and fi(z, θ | x) = f(z, θ | xi−1, ..., xi−k), i > k.

Further, let

Ψ = ∪
q≥k

Ψq,

where Ψq is the class of sequences ψ = {(ψni )i≤n}n≥1 such that ψ
n
i (z, θ | x) = ψ(z, θ | xi−1, ..., xi−q), i > q,

where ψ satisfies the usual conditions of integrability. Note that

lni ≡ li(z, θ | x) = li(z, θ | xi−1, ..., xi−k), i > k,

and, hence, l ∈ Ψk.
It is obvious that

|〈ψ,H〉| ≤ R sup |ψ| = sup
H∈Hq1

|〈ψ,H〉|

for each ψ ∈ Ψq1 and H ∈ Hq2, q1, q2 ≥ k. Thus, we have

sup
H∈H
|〈ψ,H〉| = R sup |ψ|

2790



and

inf
ψ∈Ψ

sup
H∈H

D(ψ,H; θ) = inf
q≥k

inf
ψ∈Ψq

sup |ψ|2 + ‖ψ‖2

(〈ψ, l〉)2
,

where the inner product and the norm are considered in L2(Rq, µ), where

dµ = fq+1(xq+1, ..., x1)dxq+1...dx1

and fq+1 is the (q + 1)-length stationary density.
But the optimal score function ψ∗ for the standard optimization problem

sup |ψ|2 + ‖ψ‖2

(〈ψ, l〉)2
⇒
ψ∈Ψq

min

has the form

ψ∗ = [l − β∗]m
∗

−m∗ ,

where the pair (β∗,m∗) is the solution of Eqs. (3.26), (3.28), which does not depend on the index q.
This result involves the case of the stationary ergodic AR(k) model (see Künsch, [57]):

Yi =
k∑
l=1

αl(θ)Yi−l + εi, i > k,

where θ ∈ R1, αl(θ), 1 ≤ l ≤ k, is a known function, differentiable in θ, and {εi}i≥1 is the i.i.d. sequence
with the density function g(·), g > 0.

In this case we have

fi(z; θ | xi−1, ..., xi−k) = g

(
z −

k∑
l=1

αl(θ)xi−1

)
for i > k and

li = −λ(ε̃i)
k∑
l=1

α̇l(θ)Xi−1,

where

α̇l =
∂

∂θ
αl(θ), λ =

∂

∂z
ln g(z), ε̃1 = εk+i.

Then Eqs. (3.26) and (3.28) take the form∫ [
−λ(z)

k∑
l=1

α̇l(θ)xi−l − β

]m
−m

g(z) dz = 0,

R2m2 =

∫ (∫ {[
−λ(z)

k∑
l=1

α̇l(θ)xk+1−l − β(xk, ..., x1,m, θ)

]m
−m

(
−λ(z)

k∑
l=1

α̇l(θ)xk+1−l

)

−

([
−λ(z)

k∑
l=1

α̇l(θ)xk+1−l − β(xk, ..., x1,m, θ)

]m
−m

)2}
g(z) dz

)
fk(xk, ..., x1) dxk...dx1,

where fk(xk, ..., x1) is a k-length stationary density.
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2. Ergodic Markov chain. The consideration of this case is quite similar to that of the previous one.
Note only that from ergodicity we have∫

F (Qn,ψ
1,ψ2

i (· | x)(di, dx) = n−1E

n∑
i=1

F (Qψ
1,ψ2(· | Xi−1, ...,Xi−q))

→

∫
F (Qψ

1,ψ2(· | xq, ..., x1)fq(xq, ..., x1) dxq...dx1,

where fq is a q-length invariant density.

III. Stationary Ergodic MA(1) Model

Let ..., Y−1, Y0, Y1, ... be a stationary ergodic MA(1) process, i.e.,

Yi = vi − θvi−1, |θ| < 1,

where (vi) is a double infinite sequence of i.i.d. r.v. with common density g,

Evi = 0, Ev2i <∞.

Let Λ := ġ/g and

Ig =

∫
Λ2g <∞.

Denote

X0 = v0 = (v0, v−1, ...), Xi = Yi, i ≥ 1,

and let for 1 ≤ i ≤ n, Pn,iθ (· | xi−1, ..., x0) be a regular conditional distribution of Xi with a given

Fi−1 = σ(Xi−1, ...,X0). Then the density of Pn,iθ with respect to the Lebesgue measure is

fi(z, θ | x) = g

(
z +

i−1∑
j=1

θixi−j + θiv0

)
. (3.54)

Staab [92] considered a class of CLAN estimators Tn(Xn, ...,X0) such that

n1/2(Tn − θ) = n−1/2
n∑
j=1

ψθ,j + oPnθ (1)

with

Pnθ = L{Xn, ...,X0}, ψθ,j = ψθ(vj),

where ψθ is a measurable mapping from
∏1
−∞R1 to R1 such that ψθ(v1) is a square-integrable r.v.,

Eθ(ψθ(v1 | v0) = 0, Eθ[ψθ(v1)c1Λ(v1)] = 1, vi = (vi, vi−1, ...),

ci =
∞∑
j=0

−θjvi−j−1 =
∞∑
j=0

jθj−1Yi−j.

It is obvious that

L{n1/2(Tn − θ) | P
n
θ }

ω
→ N (0, c(ψθ)),

where c(ψθ) = Eθψ
2
θ,1.

Now we briefly describe a contamination model proposed by Staab [92], the so-called submodel. With-
in this model, the shrinking contamination neighborhood of the basic measure Pnθ contains all measures

Qnθ such that Q
(n,0)
θ = P

(n,0)
θ , where P

(n,0)
θ = L(v0), Qnθ =

∏n
i=0Q

(n,i)
θ ,

Q
(n,i)
θ = (1 + n−1/2εifi)P

(n,i)
θ , εi = ε(vi−1), fi = f(vi), 1 ≤ i ≤ n,
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where

ε(·) ≥ 0, Eθε(v0) ≤ R, R > 0, ε(v0) ∈ L∞(Pθ),

f(·) ≥ −1, f(v0) ∈ L∞(Pθ), Eθ(f(v1) | v0) = 0.

Obviously, (Qnθ )✁ (Pnθ ), and by the Le Cam third lemma,

L{n1/2(Tn − θ) | Q
n
θ (f, ε)}

w
→N (b(ψθ, f, ε), c(ψθ)),

where

b(ψθ, f, ε) = Eθψθ,1 · f1ε1.

As usual, an asymptotic mean-square error is taken for the risk functional.
First of all, note that this scheme is a special case of the model given in the present work, if we restrict

the consideration to the classes Ψ and HΨ of sequences ψ = {(ψni )i≤n}n≥1 and H = {(Hni )i≤n}n≥1 such
that ψni (Xi, ...,X0) = ψ(vi) and H

n
i (Xi, ...,X0) = ε(vi−1)f(vi). Obviously, all ergodicity conditions are

satisfied. Note only that in this case the functional D(ψ,H; θ) can be written in an explicit integral form
and hence we obtain standard minimax problem (3.23) with the resulting function

ψ
∗
i,θ = [ciΛ(vi)− β

∗
i ]
m∗

−m∗ ,

where m∗ satisfies Eq. (3.28).

It remains to construct an estimator Tn = Tn(Xn, ...,X1) with {(ψ
∗
i,θ)i≤n}n≥1 in its asymptotic

expansion. Staab proposed an approach based on the assumption of the approximation ψ
∗
i,θ by sufficiently

smooth ψ̂ni,θ(Xi, ...,X1) in such a way that: (1) the CLAN estimator Tn corresponding to ψ̂ni,θ can be

constructed; (2) ψ̂ni,θ can be replaced by ψ
∗
i,θ in an asymptotic expansion of Tn. To illustrate this approach,

Staab considered the case of standard normal innovations vi. Note that in this case,

β∗i = 0, ψ̂ni = ψ̂i = [ciΛ(v̂i)]
m∗

−m∗ ,

where

ĉi =
i−1∑
j=0

jθj−1Xi−j , v̂i =
i−1∑
j=0

θj−1Xi−j, i ≥ 1.

Let us go back to the general model considered in this paper. Assume again that X0 = v0, Xi = Yi,
i ≥ 1, fi(z, θ | x) are defined by (3.54), and all the objects are introduced in a standard way (cf. full
model of [92]). For a correct definition of the class Ψ it is sufficient to show that l = {ln}n≥1 ∈ Ψ, i.e.,
for any bounded Lipschitz function F :M→ R1,∫

F (ν)Ln,l(dν)→

∫
F (ν)L1(dν), (3.55)

where L1 is defined by relation (3.58) below. Recall that li = Λ(vi)ci(θ),

ci(θ) =
i−1∑
j=0

jθj−1Xi−j + iθiv0.

Denote li = Λ(vi)ci(θ) and show that

Rn := n−1
n∑
i=1

E|F (Qli(· | x))− F (Q
l
i(· | x))| → 0 as n→∞, (3.56)

where

Qli(· | x) =

∫
I{Λ(v)ci∈·}g(v) dv.
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Indeed,

Rn ≤ const ·n−1
n∑
i=1

EdBL(Q
l
i(· | x), Q

l
i(· | x)) ≤ const ·n−1

n∑
i=1

E|ci − ci|

∫
|Λ(v)|g(v) dv → 0.

Here dBL(ρ1, ρ2) denotes a bounded Lipschitz metric onM (see, e.g., [88]). From ergodicity we have

lim
n→∞

n−1Eθ

n∑
i=1

F (Qli(· | x)) = EF (Ql1(· | Y 0)) =

∫
F (ν)L1(dν), (3.57)

where Y 0 = (Y0, Y−1, ...) and

Ll{·} =

∫
I
{Ql1(·|Y 0)∈·}

Pθ(dY 0). (3.58)

Now (3.55) follows from (3.56) and (3.57). By Theorem 3.4, the optimal sequence ψ∗ = {ψ∗,n}n≥1
is defined by the relation ψ∗,ni = [li − β∗i (m

∗
n)]
m∗n
−m∗n

, where m∗n satisfies Eq. (3.28). Moreover, m∗n → m∗,

where m∗ satisfies Eq. (3.47). Hence (see Corollary 3.3), ψ̃∗i = [li − β∗i (m
∗)]m

∗

−m∗ is also optimal. Since ψ̃
∗
i

contains an unobservable variable v0, it becomes necessary to construct a sufficiently smooth function ψ̂i
depending only on the real observations (Y1, ..., Yn) such that

n−1/2
n∑
i=1

|ψ̃∗i − ψ̂i| = oPnθ (1).

Let ψ̂i = [Λ(v̂i)ĉi − β̂i]m
∗

−m∗ , where β̂i is a solution of the equation∫
[ĉiΛ(v)− β]

m∗

−m∗g(v) dv = 0.

We have

|ψ∗i − ψ̂i| ≤ |Λ(v̂i)ĉi − Λ(vi)ci|+ |β
∗
i − β̂i|.

Assume that the function Λ is such that

n−1/2
n∑
i=1

|Λ(v̂i)ĉi − Λ(vi)ci| = oPnθ (1)

(e.g., satisfies the Lipschitz condition).
Now we have to show that

n−1/2
n∑
i=1

|β∗i − β̂i| = oPnθ (1).

It suffices to verify that if β(c) is a solution of the equation∫
[cΛ(v) − β]m−mg(v) dv = 0,

then the function β(c) has a Lipschitz property. With the latter in view, we calculate the derivative β′(c)
and obtain

β′(c) =

∫
Λ(v)I{|cΛ(v)−β|≤m}g(v) dv∫
I{|cΛ(v)−β|≤m}g(v) dv

.

It is easy to verify that β′(c) is a continuous bounded function. Consequently,

|β∗i − β̂i| ≤ const |ci − ĉi|

and the desirable convergence holds.
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Let θ̂n be a
√
n-consistent estimator. For example, we may take the least-square estimator defined

by the equation
n∑
i=1

v̂i(θ)ĉi(θ) = 0.

Define the estimator T ∗n by the relation

T ∗n = θ̂n +
ψ̂i(θ̂n)

γ(θ̂n)
,

where γ(θ) = Pnθ - limn→∞
n−1

n∑
i=1

ψ∗i li (see Subsection 3.2.5).

Then Λ is a sufficiently smooth function with respect to θ and the following asymptotic expansion
holds:

√
n(T ∗n − θ) =

1
√
n

n∑
i=1

ψ̂i
γ(θ)

+ oPnθ (1) =
1
√
n

n∑
i=1

ψ̃∗i
γ(θ)

+ oPnθ (1)

=
1
√
n

n∑
i=1

ψ
∗
i

γ(θ)
+ oPnθ (1)

(see also Subsection 3.2.5 below).

IV. Innovation Contamination

One possible scheme for the realization of the contamination

f
n,H
i = fni (1 + n−1/2Hni ) (3.59)

is as follows.
Let ρ = {ρi}i≥1, τ = {τi}i≥1, and σ = {σi}i≥1 be mutually independent sequences of i.i.d. r.v.

Further, let the sequences of measurable functions

{(uni (xi−1, ..., x0, y, θ), wni (xi−1, ..., x0, y, θ), dni (xi−1, ..., x0, y))i≤n}n≥1

be such that the distributions of the random variables uni (xi−1, ..., x0, ρi, θ) and w
n
i (xi−1, ..., x0, τi, θ) pos-

sess the densities fni (z, θ | x) and h
n
i (z, θ | x), respectively, and the function dni takes only values 0 and 1,

and

P{(dni (xi−1, ..., x0, σi) = 1} = n−1/2λni (xi−1, ..., x0).

Let

Y ni = (1− dni (Y
n
i−1, ..., Y0, σ))u

n
i (Y

n
i−1, ..., Y

n
0 , ρi, θ)

+ dni (Y
n
i−1, ..., Y

n
0 , ρi)w

n
i (Y

n
i−1, ..., Y

n
0 , τi, θ), 1 ≤ i ≤ n. (3.60)

Then the density fn,Hi of the conditional distribution Y ni with a given Y ni−1 = xi−1, ..., Y
n
0 = x0 has the

form (3.59), where

Hni (z, θ | x) = λni (x)(h
n
i (z, θ | x)− f

n
i (z, θ | x))/f

n
i (z, θ | x).

Obviously, Y ni can be written as

Y ni = (1− Zni )X
n
i + Zni W

n
i , 1 ≤ i ≤ n. (3.61)

Relation (3.61) coincides in its form with the replacement model in the sense of Martin and Yohai [70],
but it has a somewhat different meaning, since the triple (X,W,Z) of the process cannot be defined a
priori as is assumed in the definition of the replacement model. It includes the innovation contamination
in many models, in particular, in ARMA models.
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1. AR(1) model. We assume in (3.60) that uni = θxi−1 + y, |θ| < 1.
(a) Let

x0 = 0, P{dni = 1} = λn−1/2, λ > 0,

wni := θxi−1 + y.

Then

Y ni = θY ni−1 + (1− dni )ρi + dmi τi = θY ni−1 + ρ̂ni , Y0 = 0,

corresponds to the innovation contamination for the AR(1) process defined by the relation

Xi = θXi−1 + ρi, X0 = 0.

Let g and h be densities of r.v. ρi and τi, respectively. Then

f
n,H
i (z, θ | xi−1, ..., x1) = g(z − θxi−1)(1 + n−1/2H(z, θ | xi−1)),

where

H(z, θ | xi−1) = λ
h− g

g
(z − θxi−1).

Obviously, this form of contamination is not full for score functions of the form ψ(xi − θxi−1, xi−1),
to which the maximum likelihood function

l(z, θ | xi−1) = Λ(z − θxi−1)xi−1, Λ := ġ/g

belongs.
(b) Let

x0 = 0, P{dni = 1} = λ(xi−1)n
−1/2,

wni (xi−1, ..., y, θ) := θxi−1 + w(xi−1, y).

In this case,

Y ni = θY ni−1 + ρ̃ni , Y0 = 0,

where ρ̃ni = (1− dni )ρi + dni wi.
Here

H(z, θ | xi−1) = λ(xi−1)
h(z − θxi−1 | xi−1)− g(z − θxi−1

g(z − θxi−1)

and h(· | xi−1) is the density of the r.v. w(xi−1, τi). This form of contamination is full for the score
function of type ψ(xi − θxi−1, xi−1).

(c) Let

x0 = 0, P{dni = 1} = λ(xi−1, ..., x(i−q)∧0)n
−1/2,

wni = θxi−1 + w(xi−1, ..., x(i−q)∧0, y), q ≥ 1.

In this case, we again obtain the full contamination for score functions of the type ψ(xi −
θxi−1, xi−1, ..., x(i−q)∧0).

(d) If dni and w
n
i are of the general form, then we obtain the full contamination with respect to the

general form of score functions.
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2. ARMA(p, q) model. For 1 ≤ i ≤ n, let

uni (xi−1, ..., x0, y, θ) := −
p∑
k=1

i−1∑
j=1

βk(θ)γi(θ)x̃i−j−k −
q−1∑
r=0

χri(θ)x−r + y,

where
x0 = (x0, x−1, ...), x̃m = xm, m ≥ 1,

and

x̃m =
∞∑
l=0

q∑
k=0

δl(θ)αk(θ)xm−l−k, m ≤ 0,

where

β0(θ) = α0(θ) = 1, χri(θ) =
r∑
k=0

γi+r−k(θ)αk(θ).

The sequences (γi(θ))i≥0 and (δi(θ))i≥0 are uniquely defined in a standard way by the vectors (αi(θ),
1 ≤ i ≤ q) and (βi(θ), 1 ≤ i ≤ p), respectively (see [92], p. 1.5, (2.8), p. 1.6 (2.10)). Then with arbitrary
dni and w

n
i and with ρi = vi, i ≥ 1, Y0 = (v0, v−1, ...), Eq. (3.60) corresponds to the full contamination of

the innovation (vj , j ≥ 1) for the ARMA(p, q) process defined by the relation
p∑
j=0

βj(θ)Xi−j =

q∑
j=0

αi(θ)vi−j, i ≥ 1,

or an equivalent relation

Xi = −
p∑
k=1

i−1∑
j=1

βk(θ)γi(θ)Xi−j−k −
q−1∑
r=0

χri(θ)v−r + vi, i ≥ 1,

where

Xm =
∞∑
l=0

q∑
k=0

δl(θ)αk(θ)vm−l−k, m ≤ 0.

Indeed, in this case for i ≥ 1 we have

Y ni = −
p∑
k=1

i−1∑
j=1

I{i−j−k≥1}βk(θ)γi(θ)Y
n
i−j−k

−
p∑
k=1

i−1∑
j=1

I{i−j−k≤0}βk(θ)γi(θ)Xi−j−k −
q−1∑
r=0

χri(θ)v−r + ṽni = ũni + ṽni ,

where ṽni = (1− dni )vi + dni (wi − ũ
n
i ).

For the AR(1) case, we illustrate the scope of application of the theory developed in this work.

Suppose that H(z, θ | xi−1) are such that they define contiguous alternatives, i.e., (Pn,Yθ ) ✁ (Pnθ ).
Then in case (a), the asymptotic bias is

βψ,H =

∫ ∫
ψ(z, y)H(z)g(z) dzπ(dy),

where π(·) is the invariant measure corresponding to the process X, which leads to a minimax problem
whose solution, obviously, cannot be the Huber function. But in case (b),

βψ,H =

∫ ∫
ψ(z, y)H(z | y)g(z) dzπ(dy);

therefore, this case provides the full contamination and hence the Huber function is optimal in the given
class Ψ.
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Since in cases (c) and (d) we have full contamination for the given classes of score functions, the
general theory allows one to conclude that in these cases the Huber function is also optimal.

It should be noted that while in cases (a), (b), and (c) the risk functional can be written in an explicit
form involving the inner products and norm in an appropriately chosen L2-space, in case (d) the nominal
conditional distribution defines the stationary ergodic AR(1) process, D(ψ,H; θ) cannot be written in an
explicit form, and the developed theory should be applied in its full capacity.

3.2.5. A method of constructing the optimal CLAN estimators. Let ψ = {ψn}n≥1 ∈ Ψ be a
sequence of score functions. Let {Tn}n≥1 be some

√
n-consistent estimator of the unknown parameter θ,

i.e.,

n1/2(Tn − θ) = OPnθ (1). (3.62)

Consider the one-step approximation procedure

Tψn = Tn +
n−1Ln(Tn)

γψ(Tn)
, (3.63)

where Ln(θ) =
n∑
i=1

ψni (xi, θ | x) and γ
ψ(θ) is defined in (c.3) of the definition of the CLAN estimator.

Assume that for each n ≥ 1 the function θ *→ ψni (z, θ | x) is θ-continuously differentiable

µn(dz, di, dx)-a.s. with the derivatives ψ̇ni (z, θ | x) and ψ̇ = {ψ̇n}n≥1 ∈ Ψ.

Everywhere below, for any function ϕ(x, θ) we denote ϕ̇(x, θ) =
∂

∂θ
ϕ(x, θ).

Further, denote L̇n(θ) =
n∑
i=1

ψ̇ni (xi, θ | x), B(n, u, θ) := {y: |y − θ| ≤ n
−1/2u} and suppose that the

following conditions are satisfied: for each θ ∈ Θ, ρ > 0, 0 < u ≤ K, K > 0,

lim
n→∞

Pnθ

{
sup
B(n,u,θ)

|n−1L̇n(y) + γψ(θ)| > ρ
}
= 0, (3.64)

sup
B(n,u,θ)

|γψ(y)− γψ(θ)| → 0 as n→∞. (3.65)

Proposition 3.2. If the above conditions are satisfied, then the estimator {Tψn }n≥1 constructed in (3.63)
is CLAN.

Proof. It is sufficient to show that

Tψn = θ +

n−1
n∑
i=1

ψni (xi, θ | x)

γψ(θ)
+ oPnθ (n

−1/2). (3.66)

Now we rewrite Eq. (3.63) as follows:

n1/2(Tψn − θ) =
n1/2(Tn − θ)(γψ(Tn)− γψ(θ))

γψ(Tn)

+
n1/2(Tn − θ)[n−1(Ln(Tn)− Ln(θ))(Tn − θ)−1 + γψ(θ)]

γψ(Tn)
+
n−1Ln(θ)

γψ(Tn)
. (3.67)

The first term on the right-hand side of Eq. (3.67) tends to zero by (3.62) and (3.65) while the last
term – by the ergodicity condition. Further, if Ln(θ) is asymptotically continuously differentiable with a
derivative γψ(θ) (this means that ∀θ ∈ Θ, ∀ρ > 0, ∀u, 0 < u ≤ K, K > 0,

lim
n→∞

Pnθ

{
sup
B(n,u,θ)

∣∣∣∣ 1n Ln(y)− Ln(θ)y − θ
+ γψ(θ)

∣∣∣∣ > ρ
}
= 0), (3.68)
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then the second term in Eq. (3.67) tends to zero and (3.63) is satisfied. It remains to note that (3.64) is
a simple sufficient condition for (3.68).

Now we give another sufficient condition for Tψ
∗
= {Tψ

∗

n }n≥1 to be a CLAN estimator, where
ψ∗ = {ψ∗,n}n≥1 is the optimal score sequence.

Suppose that ∀θ ∈ Θ, ∀ρ > 0, 0 < u ≤ K, K > 0,

lim
n→∞

Pnθ

{
sup
B(n,u,θ)

n−1|L̇∗n(y)− L̇
∗
n(θ)| > ρ

}
= 0, (3.69)

where L̇∗n(u) =
n∑
i=1

ψ̇∗,ni (xi, u | x), ∀u ∈ Θ.

Proposition 3.3. If conditions (3.64), (3.65), and (3.69) are satisfied, then the estimator Tψ
∗

=

{Tψ
∗

n }n≥1 constructed in (3.63) with L∗n(θ) instead of Ln(θ) and γ
ψ∗ instead of γψ is CLAN.

Proof. We have

L̇∗n(θ) =
n∑
i=1

[
ψ̇∗,ni (xi, θ | x)−

∫
ψ̇∗,ni (z, θ | x)fni (z, θ | x)P

n
i (dz | x)

]

+
n∑
i=1

∫
ψ̇
∗,n
i (z, θ | x)fni (z, θ | x)P

n
i (dz | x) :=

n∑
i=1

mni +
n∑
i=1

ani

:=Mn1 (θ) +An1 (θ), (3.70)

where for each t, 0 ≤ t ≤ 1,

Mnt (θ) =

[nt]∑
i=1

mni , Ant (θ) =

[nt]∑
i=1

ani , Mn1 (θ) =Mnt (θ)|t=1, An1 = An1 (θ)|t=1.

Introduce the abbreviation∫
ϕni (z, θ | x)f

n
i (z, θ | x)P

n
i (dz | x) =

∫
ϕnfn

for any function ϕn = ϕni (z, θ | x).
Now we observe that

∫
ψ∗,nfn = −

∫
ψ∗,nlnfn and

An1 (θ) = −
n∑
i=1

∫
ψ∗,ni lni f

n
i . (3.71)

Further, note that (Mnt (θ))0≤t≤1 is a P
n
θ -martingale with the square characteristic

〈Mn(θ)〉1 =
n∑
i=1

[∫
(ψ̇∗,ni )2fni −

(∫
ψ∗,ni lni f

n
i

)2]
.

But n−1
n∑
i=1

∫
(ψ̇∗,ni )2fni converges, since ψ̇∗ ∈ Ψ and

n−1
n∑
i=1

(∫
ψ∗,ni lni f

n
i

)2
≤ const ·n−1

n∑
i=1

∫
(lni )

2fni →,

since |ψ∗,n| ≤ m∗n → m∗ <∞ by the construction. Hence

lim
N→∞

lim
n→∞

Pnθ {n
−1〈Mn(θ)〉1 ≥ N} = 0,

and we conclude that n−1Mn1 (θ)
Pnθ→ 0.
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Now (3.70) and (3.71) imply that for each θ ∈ Θ and ρ > 0,

lim
n→∞

Pnθ

{
|n−1L̇∗n(θ) + γψ

∗
(θ)| > ρ

}
= 0, (3.72)

which leads to the relation ∀θ ∈ Θ, ∀ρ > 0, ∀u, 0 < u ≤ K, K > 0,

Pnθ

{
sup
B(n,u,θ)

|n−1L̇∗n(y) + γψ
∗
(θ)| > ρ

}
≤ Pnθ

{
sup
B(n,u,θ)

n−1|L̇∗n(y)− L̇
∗
n(θ)| >

ρ

2

}
+Pnθ

{
|n−1L̇∗n(θ) + γψ

∗
(θ)| >

ρ

2

}
→ 0 as n→∞,

and the desirable follows from Proposition 3.2.

As we have seen above, it is necessary to study the question on the θ-differentiability of the function
ψ∗,n(z, θ | x). Let us investigate this question based on the implicit function theorem and Eqs. (3.26) and
(3.28).

Denote Φ(i, x, β,m, θ) :=
∫
[y−β]m−mQi(dy, θ | x) (index n is fixed and omitted here) and let βi(x,m, θ)

be a solution of the equation

Φ(i, x, β,m, θ) = 0. (3.73)

Using the implicit function theorem, we find that there exist β′m and β̇(= β′θ), and

β′m(i, x,m, θ) = −
Φ′m(i, x, β,m, θ)

Φ′β(i, x, β,m, θ)

∣∣∣∣
β=βi(x,m,θ)

,

β̇(i, x, θ) = −
Φ′θ(i, x, β,m, θ)

Φ′β(i, x, β,m, θ)

∣∣∣∣
β=βi(x,m,θ)

(3.74)

(note that Φ′β(i, x, β,m, θ) = −
∫
I{|y−β|≤m}Qi(dy; θ | x) < 0 in a neighborhood of the solution of Eq.

(3.73), see (3.32) and the subsequent text).
Now we denote

F (θ,m) = ϕ(θ,m)−R2

(see (3.40) and (3.41)).
Then again by the implicit function theorem, we have that there exists ṁ(θ), wherem(θ) is a solution

of the equation F (θ,m) = 0, and

ṁ = −
F ′θ(θ,m)

F ′m(θ,m)

∣∣∣∣
m=m(θ)

(3.75)

(F ′m(θ,m) = ϕ′m(θ,m) < 0, see (3.42)).

Of course, one can obtain explicit formulas for β̇ in terms of the basic system of conditional densities
{(fni (z, θ | x))i≤n}n≥1 and their derivatives by means of the calculation of Φ′θ, Φ

′
β, F

′
θ, and F

′
m based on

the above formulas.
It is now obvious that if the basic model is sufficiently smooth, then ψ∗,n is also smooth, and, e.g.,

ψ̇∗,ni (z, θ | x) = (l̇ni (z, θ | x)− β̇
∗,n
i (x, θ))I{|lni (z,θ|x)−β

∗,n
i (x,θ)|≤m∗n(θ)}

+ṁ∗n(θ)(I{lni (z,θ|x)−β
∗,n
i (x,θ)≥m∗n}

− I{lni (z,θ|x)−β
∗,n
i (x,θ)≤−m∗n}

),

where β̇∗,n and ṁ∗n are given by relations (3.74) and (3.75).
The high-order derivatives are calculated analogously.
Finally, assume that (3.65) holds with γψ

∗
instead of γψ and there exists a sequence of functions

ck = {c
n,k}n≥1 = {(c

n,k
i (z, θ | x))i≤n}n≥1
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such that ∀θ ∈ Θ, ∀u, 0 < u ≤ K, K > 0,

sup
B(n,u,θ)

max(|l̈ni (z, y | x)|, |β̈
∗,n
i (x, y)|, |m̈∗n(y)|) ≤ c

n,k
i (z, θ | x)

and

n−3/2
n∑
i=1

cn,ki (xi, θ | x)
Pnθ→ 0 as n→∞.

Proposition 3.4. If the above conditions are satisfied, then the assertion of Proposition 3.3 holds.

Proof. Indeed, for 0 < u ≤ K, K > 0,

sup
B(n,u,θ)

n−1|L̇∗n(y)− L̇
∗
n(θ)| ≤ n

−1
n∑
i=1

sup
B(n,u,θ)

|ψ̇∗,ni (xi, y | x)− ψ̇
∗,n
i (xi, θ | x)|

≤ n−1
n∑
i=1

sup
B(n,u,θ)

|ψ̈∗,n(xi, y | x)||y − θ|

≤ const ·n−3/2
n∑
i=1

cn,ki (xi, θ | x)
Pnθ→ 0 as n→∞.

3.3. Robust Estimators in General Statistical Models with Filtration

3.3.1. Specification of the model. Regularity. Ergodicity. (a) Let

E = (Ω,F , F = (Ft)t≥0, {Pθ, θ ∈ Θ}, P ) (3.76)

be a general statistical model with filtration. This means that (Ω,F , F, P ) is a stochastic basis, i.e., a
complete probability space with filtration F = (Ft)t≥0 satisfying the usual conditions, Pθ is a probability
measure depending on the parameter θ to be estimated, and Θ is an open subset of R1. It is assumed

that Pθ
loc
∼ P ∀θ ∈ Θ.

Remark 3.16. Consider a statistical model

(Ω,F , F, {Pθ , θ ∈ Θ})

and assume that the set of measures

{Pθ, θ ∈ Θ}

is such that Pθ′
loc
∼ Pθ for each θ

′ �= θ.
Fix some value of the parameter θ, say, θ0, and denote P = Pθ0 . Then Pθ ∼ P ∀θ ∈ Θ. Now we

assume that (Ω,F , F, P ) is a stochastic basis. Thus we obtain the previous model with reference measure
P .

Remark 3.17. All the notation concerning the martingale theory that is used below can be found in
[45,67].

Let P (t) = P | Ft, Pθ(t) = Pθ | Ft be the restrictions of the measures P and Pθ to the σ-algebra Ft,
and let ρθ = (ρθ(t))t≥0 be the likelihood ratio process with cadlag trajectories. For simplicity we assume
that ρθ(0) = 1. As is well known (see [48]),

ρθ :=
dPθ
dP

= E(Mθ) := exp
{
Mθ −

1

2
〈M cθ 〉

}∏
(1 + ∆Mθ)e

−∆Mθ ,

where M ∈Mloc(P ) is a local P -martingale.
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(b) Let Q be some other probability measure on (Ω,F , F ) such that Q
loc
� P and

dQ

dP
= E(M), M

being a local P -martingale.
If m is a local P -martingale, then the process (Girsanov transform)

L(m,M) := m−
1

1 +∆M
· [m,M ] = m− 〈M c,mc〉 −

∑ ∆m∆M

1 + ∆M
(3.77)

is a local Q-martingale.
(c) An experiment E is said to be regular (see also [82]) if:

1. for each t ≥ 0 (P -a.s.), the function θ → Mθ(t, ω) is continuously differentiable and the derivative

Ṁθ :=
∂

∂θ
Mθ is a local P -martingale ∀θ;

2. for all t ≥ 0 (P -a.s.), there exists
∂

∂θ
ln ρθ = L(Ṁθ,Mθ) ∈ M

2(Pθ), the class of square-integrable

Pθ-martingales;
3. the Fisher information I(θ) = Eθ〈L(Ṁθ,Mθ)〉 is finite and positive.

(d) Consider the sequence of regular statistical models

E = {En}n≥1 = {(Ω
n,Fn, Fn = (Fnt )0≤t≤T , {P

n
θ , θ ∈ Θ ⊂ R1}, P

n)}n≥1,

where T > 0 is a number.
Denote cn(θ) = (InT (θ))

−1/2 = (Enθ 〈L(Ṁ
n
θ ,M

n
θ )〉T )

−1/2. Then, if

(1) lim
n→∞

cn(θ) = 0,

(2) c2n(θ)Î
n(θ)

Pnθ→ 1 as n→∞,

where Înθ = 〈L(Ṁ
n
θ ,M

n
θ )〉T , then we call the sequence E = {En}n≥1 ergodic.

3.3.2. CLAN estimators. Denote by M = M({Pnθ }n≥1) the class of sequences of processes Lθ =
{Lnθ }n≥1, L

n
θ = (Lnθ (t), 0 ≤ t ≤ T ) with the following properties:

(1) for each n ≥ 1, Lnθ ∈M
2(Pnθ );

(2) the sequence {Lnθ }n≥1 satisfies the Lindeberg condition∫ T
0

∫
|x|>ε

x2νn(dt, dx)
Pnθ→ 0 as n→∞ ∀ε ∈ (0, 1], (3.78)

where νn is the compensator (with respect to the measure P
n
θ ) of the jump measure of the process cn(θ)L

n
θ ;

(3)

c2n(θ)〈L
n
θ 〉T

Pnθ→ ΓL(θ) as n→∞, 0 < ΓL(θ) <∞; (3.79)

(4)

c2n(θ)〈L
n
θ , L(Ṁ

n
θ ,M

n
θ )〉T

Pnθ→ γL(θ) as n→∞, 0 < γL(θ) <∞, (3.80)

ΓL(θ) and γL(θ) are deterministic functions.

We assume that {L(Ṁnθ ,M
n
θ )}n≥1 ∈M({Pnθ }n≥1). Note that if Lθ ∈M({Pnθ }n≥1), then

L(cn(θ)L
n
θ (T ) | P

n
θ )

ω
→N (0,ΓL(θ)) (3.81)

as simply follows from the central limit theorem (CLT) for martingales (see, e.g., [45]).
The sequence TL = {TLn }n≥1 of F

n
T -measurable random variables with values in Θ is called a CLAN

estimator if for each θ ∈ Θ there exists Lθ ∈M({Pnθ }n≥1) such that

TLn = θ +
Lnθ (T )

〈Lnθ , L(Ṁ
n
θ ,M

n
θ )〉T

+Rn(θ), (3.82)
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where c−1n (θ)Rn(θ)
Pnθ→ 0 as n→∞.

It is obvious that

L(c−1n (θ)(TLn − θ | P
n
θ )

ω
→N

(
0,
ΓL(θ)

γ2L(θ)

)
.

3.3.3. Shrinking neighborhoods. For each n ≥ 1, denote by Pnθ := {P̃nθ : P̃
n
θ ∼ Pnθ } some neigh-

borhood of the basic (core) probability measure Pnθ . We know that for each P̃nθ ∈ P
n
θ , there exists

Ñnθ ∈Mloc(P
n
θ ) such that

dP̃nθ
dPnθ

= E(Ñnθ ). (3.83)

If the martingale Ñnθ has the form

Ñnθ = cn(θ)N
n
θ (3.84)

and

{P̃nθ }✁ {Pnθ }, (3.85)

then we say that the sequence {P̃nθ }n≥1 belongs to the set of shrinking neighborhoods of the core sequence
{Pnθ }n≥1.

For definiteness, denote such a set by Pθ and each element of Pθ by {P̃
n
θ }n≥1 or by {P

n,N
θ }n≥1.

Proposition 3.5. Let {Pn,Nθ }n≥1 ∈ Pθ and TL = {TLn }n≥1 be the CLAN estimator with asymptotic
expansion (3.82). Then

L

(
c−1n (θ)(TLn − θ)−

B̃nT
c2n(θ)〈L

n
θ , L(Ṁ

n
θ ,M

n
θ )〉T
| Pn,Nθ

)
ω
→N

(
0,
ΓL(θ)

γ2L(θ)

)
, (3.86)

where B̃n = (B̃nt , 0 ≤ t ≤ T ) is the first characteristic of the process cn(θ)L
n
θ with respect to the measure

Pn,Nθ .

Proof. LetW = (Wt), 0 ≤ t ≤ T , be a standard Wiener process defined on a stochastic basis (Ω,F , F, P ).

Denote M :=

√
ΓL(θ)

T
W . Then CT = EP (M2T ) = ΓL(θ). Further, denote X

n = cn(θ)L
n
θ , and let

C1,nT = CT +

∫ T
0

∫
|x|≤1

x2νn(dt, dx) −
∑
0<t≤T

(∫
|x|≤1

xνn({t}, dx)

)2
be the second modified characteristic of the semimartingale Xn with respect to the truncation function
h(x) = xI{|x|≤1}.

Then by conditions (3.78) and (3.79), I{|x|≥ε} ·ν
n
T

Pnθ→ 0 as n→∞ ∀ε ∈ (0, 1] and C1,nT
Pnθ→ CT = ΓL(θ).

Hence (see [45])

XnT − B̃
n
T

L(T |Pn,Nθ )
−→ MT ,

where B̃nT = −
∫ T
0

∫
|x|≥1 xν̃

n(dt, dx) is a first characteristic of the process Xn with respect to the measure

Pn,Nθ .
Now the desirable follows from conditions (3.82) and (3.83).
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Proposition 3.6. Let the sequence {P̃nθ } be such that for each n ≥ 1, P̃nθ ∈ P
n
θ , (3.83)–(3.84) are

satisfied, Nnθ ∈M
2(Pnθ ), and

lim
d→∞

lim
n→∞

P̃nθ {c
2
n(θ)〈N

n
θ 〉T > d} = 0. (3.87)

Let TL = {TLn }n≥1 be a CLAN estimator with asymptotic expansion (3.82). Then:

(1) {P̃nθ }✁ {P
n
θ }, and, therefore, {P̃

n
θ } ∈ Pθ;

(2) relation (3.86) remains true with c2n(θ)〈L
n
θ ,N

n
θ 〉T instead of B̃

n
T ;

(3) if, in addition, there exists a deterministic limit

βL,N (θ) = P̃nθ - limn→∞
c2n(θ)〈L

n
θ ,N

n
θ 〉T , (3.88)

(P̃nθ - limn→∞
denotes the limit in probability), then

L
(
c−1n (θ)(TLn − θ) | P̃

n
θ

)
ω
→ N

(
βL,N (θ)

γL(θ)
,
ΓL(θ)

γ2L(θ)

)
. (3.89)

Proof. Denote Xn = cn(θ)L
n
θ . For each n ≥ 1, the process Xn is a semimartingale with a triplet of

predictable characteristics (−xI{|x|≥1} · ν
n, c2n〈L

n,c
θ 〉, ν

n) (with respect to the measure Pnθ ).

(1) The following necessary and sufficient condition for {P̃nθ }✁ {P
n
θ } is well known (see, e.g., [45]):

lim
η→∞

lim
n→∞

P̃nθ

(
hT

(
1

2
; P̃nθ , P

n
θ

)
≥ η

)
= 0, (3.90)

lim
η→∞

lim
n→∞

P̃nθ

(
sup
t≤T

αn(t) ≥ η

)
= 0, (3.91)

where

(
ht

(
1

2
; P̃nθ , P

n
θ

))
, 0 ≤ t ≤ T , is the Hellinger process of order

1

2
, and αn(t) = ρ̃nθ (t)/ρ

n
θ (t−),

where

ρ̃nθ =
dP̃nθ
dPnθ

= E(cn(θ)N
n
θ ).

It can be easily seen that

h

(
1

2
; P̃nθ , P

n
θ

)
≤

1

2
c2n(θ)〈N

n
θ 〉. (3.92)

Indeed,

h

(
1

2
; P̃nθ , P

n
θ

)
=

1

8
c2n(θ)〈N

n,c
θ 〉+

1

2

(∑(
1−
√
1 + cn(θ)∆N

n
θ

)2)p,Pnθ
.

But, since (1−
√
1 + x)2 ≤

x2

(1 +
√
1 + x)2

≤ x2 for x ≥ −1, we have

h

(
1

2
; P̃nθ , P

n
θ

)
≤

1

8
c2n(θ)〈N

n,c
θ 〉+

1

2

(∑
c2n(θ)(∆N

n
θ )
2

)p,Pnθ
≤

1

2
c2n(θ)〈N

n
θ 〉. (3.93)

Further,

P̃nθ

(
sup
t≤T

αn(t) ≥ η
)
= P̃nθ

(
sup
t≤T

(1 + cn(θ)∆N
n
θ (t)) ≥ η

)
≤ P̃nθ

(
sup
t≤T

c2n(θ)(∆N
n
θ (t))

2 ≥ η − 1
)
≤ P̃nθ

(∑
t≤T

c2n(θ)(∆N
n
θ (t))

2 ≥ η − 1

)
. (3.94)
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By virtue of the Lenglart inequality, for any δ > 0 we have

P̃nθ

(∑
t≤T

c2n(θ)(∆N
n
θ (t))

2 ≥ η

)
≤
d

η
+ P̃nθ

((∑
t≤T

c2n(θ)(∆N
n
θ (t))

2

)p,Pnθ
≥ d

)
. (3.95)

Now assertion (1) follows from (3.90)–(3.95) and (3.87).
(2) Now we show that ∣∣∣B̃nT − c2n(θ)〈Lnθ ,Nnθ 〉T ∣∣∣ P̃nθ→ 0 as n→∞. (3.96)

Denote X
n
= Xn −

∑
∆XnI{|∆Xn|≥1}. Since X

n
is a special semimartingale, the unique decompo-

sition
X
n
=M

n
+A

n

takes place with a predictable A
n
.

Rewrite X
n
as follows:

X
n
= Xn − xI{|x|≥1} ∗ (µ

n − νn)− xI{|x|≥1} ∗ ν
n.

We have
M
n
= Xn − xI{|x|≥1} ∗ (µ

n − νn).

Further, applying the triplet transformation formulas under an absolutely continuous change of mea-
sure, we obtain

B̃n = Bn + cn(θ)〈M
n
,Nnθ 〉.

Hence
B̃n − c2n(θ)〈L

n
θ ,N

n
θ 〉 = Bn − cn(θ)〈X

n −M
n
,Nnθ 〉.

By the Lindeberg condition and the contiguity {P̃nθ }✁ {P
n
θ }, we have

BnT
P̃nθ→ 0.

Further,

〈Xn −M
n
〉 = x2I{|x|≥1} ∗ ν

n −
∑
t≤·

(∫
xI{|x|≥1} · ν

n({t}, dx)

)2
.

Again, the Lindeberg condition and the contiguity yield

〈Xn −M
n
〉T
P̃nθ→ 0. (3.97)

But by the Kunita–Watanabe inequality, (3.97), and (3.87), we obtain

c2n(θ)〈X
n −M

n
,Nnθ 〉

2
T ≤ 〈X

n −M
n
〉T c
2
n(θ)〈N

n
θ 〉T

P̃nθ→ 0 as n→∞.

Assertion (2) is proved.
Assertion (3) is an easy consequence of assertion (2).

Denote the measure P̃nθ := Pn,Nθ . For the validity of (3.88), the existence of the deterministic limit
with respect to {Pnθ }n≥1 is sufficient.

Now (3.89) implies simply that

lim
a→∞

lim
n→∞

En,Nθ

{
(c−1n (θ)(TLn − θ))

2 ∧ a
}
= D(L,N, θ), (3.98)

where En,Nθ is the expectation with respect to the measure Pn,Nθ and

D(L,N, θ) =
β2L,N (θ) + ΓL(θ)

γ2L(θ)
. (3.99)
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3.3.4. Optimization criteria. Denote N = N ({Pnθ }n≥1) the class of sequences of processes Ñθ =

{Ñnθ }n≥1 satisfying conditions (3.84), (3.85), and (3.88), and, moreover, such that the process E(Ñnθ )

from (3.83) is a uniformly integrable martingale with inf
t
Et(Ñnθ ) > 0.

Further, suppose that for each n ≥ 1, Ñnθ ∈ N
n
R, R > 0, is some domain inM2(Pnθ ). Consideration

of such a set N nR is needed if we want to obtain a nontrivial optimization problem.

Remark 3.18. Under the above-mentioned conditions we obtain that: (1) P̃nθ defined by (3.83) is a

probability measure, equivalent to Pnθ ; (2) {P̃
n
θ }✁ {Pnθ } and, therefore, D(L,N, θ), given by (3.99), has

the statistical meaning of a risk functional (see (3.98)).

The CLAN estimator T ∗ = {T ∗n}n≥1 is called (M,N )-optimal in the minimax sense over the class of
CLAN estimators {TL, L ∈M({Pnθ }n≥1)} for each θ ∈ Θ,

∀ε > 0, ∀L ∈M, ∃Nε,L ∈ N , ∀N ∈ N

lim
a→∞

lim
n→∞

En,Nθ ((c−1n (θ)(T ∗n − θ))
2 ∧ a)

En,N
ε,L

θ ((c−1n (θ)(T ∗n − θ))
2 ∧ a)

≤ 1 + ε.
(3.100)

The score sequence L∗θ = {L
∗,n
θ }n≥1 ∈ M({Pnθ }n≥1) is said to be (M,N )-optimal in the minimax

sense if for each θ ∈ Θ

sup
N∈N

D(L∗,N, θ) = inf
L∈M

sup
N∈N

D(L,N, θ). (3.101)

It is obvious that if a score sequence L∗θ is optimal and the corresponding CLAN estimator exists,

then T ∗ = TL
∗
is also optimal.

Introduce the strong ergodicity condition: let for ∀Knθ and Rnθ ∈M
2(Pnθ )

Pnθ - limn→∞
c2n(θ)〈K

n
θ , R

n
θ 〉T = C ⇔ lim

n→∞
Enθ c

2
n(θ)〈K

n
θ , R

n
θ 〉T = C (3.102)

(C ≥ 0 is some constant).
Denote

Dn(L
n,Nn, θ) =

(Enθ 〈L
n
θ ,N

n
θ 〉T )

2 +Enθ 〈L
n
θ 〉T

(Enθ 〈L
n
θ , L(Ṁ

n
θ ,M

n
θ )〉T )

2
. (3.103)

Obviously, under condition (3.102),

D(L,N, θ) = lim
n→∞

Dn(L
n,Nn, θ). (3.104)

3.3.5. Calculation of the explicit form of the risk functional Dn(L
n,Nn, θ). At the beginning of

this section the index n is fixed and omitted.
Consider the statistical model (3.76) (see also Remark 3.16) associated with the one-dimensional

F -adapted cadlag process X = (Xt), 0 ≤ t ≤ T , in the following way: for each θ ∈ Θ, Pθ is the unique
measure on (Ω,F) such that the process X is a (Pθ, F )-semimartingale with predictable characteristics
(B(θ), C(θ), νθ) (with respect to the truncation function h(x) = xI{|x|≤1}). Assume for convenience that
all measures Pθ coincide on F0. Also, we assume that under the measure P , X is a semimartingale with
triplet B = B(0), C = C(0), ν = ν0.

We know ([45], Ch. III) that in this situation there exist a P̃-measurable positive function

Yθ = {Yθ(ω, t, x), (ω, t, x) ∈ Ω× R+ × R1}

and a predictable process (βθ(t)), 0 ≤ t ≤ T , with

|h(Yθ − 1)| ∗ ν ∈ Aloc(P ),

β2θ · C ∈ A
+
loc(P ),
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such that the following is true:

(1) B(θ) = B + βθ · C + h(Yθ − 1) ∗ ν,

(2) C(θ) = C,

(3) νθ = Yθ ∗ ν, Yθ > 0.

(3.105)

In addition, the function Yθ can be chosen in such a way that

a(t) := ν({t},R1) = 1⇔ aθ(t) := νθ({t},R1) = Ŷθ(t) =

∫
Yθ(t, x)ν({t}, dx) = 1.

If the measure P is such that any (P,F )-local martingale admits the integral representation property
with respect to X, then the likelihood-ratio process can be given by the explicit formula

ρθ =
dPθ
dP

= E(Mθ),

where

Mθ = βθ ·X
c +

(
Yθ − 1 +

Ŷθ − a

1− a

)
∗ (µ− ν) ∈Mloc(P ) (3.106)

(with the usual convention
0

0
= 0).

Assume that our statistical model is regular. Thus we assume that for almost all (ω, t, x) (with
respect to the corresponding Dolean’s measure), the functions βθ: θ ❀ βθ(ω, t) and Yθ: θ ❀ Yθ(ω, t, x)

are continuously differentiable (we denote β̇θ =
∂

∂θ
βθ and Ẏθ =

∂

∂θ
Yθ) and the differentiation under the

integral sign is possible.
Let us calculate

∂

∂θ
ln ρθ = Ṁθ − 〈Ṁ

c
θ ,M

c
θ 〉 −

∑ ∆Ṁθ∆Mθ
1 + ∆Mθ

= L(Ṁθ,Mθ).

Below we use the following proposition.

Proposition 3.7. Let P -martingales m and M admit integral representations

m = β · n+ ψ ∗ (µ− ν),

M = γ · n+ χ ∗ (µ− ν),
(3.107)

where n is a continuous P -martingale, µ is an integer-valued measure on [0, T ]×E, E = R1 \ {0}, and ν
is its P -compensator.

Let P̃ be a measure, P̃ ∼ P with

dP̃

dP
= E(M).

Then for the Girsanov transform L(m,M) (∈Mloc(P̃ ), see (3.77)) we have

L(m,M) = β · (n− γ · 〈n〉) + Φ ∗ (µ− ν̃), (3.108)

where ν̃ is the P̃ -compensator of the measure µ and

Φ =
ψ − ψ̂

1 + χ− χ̂
+

ψ̂

1− χ̂
· I{χ̂<1} (3.109)

with

ψ̂(t) =

∫
E

ψ(t, x)ν({t}, dx), χ̂(t) =

∫
E

χ(t, x)ν({t}, dx).
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Proof. First, we note that

1 + χ− χ̂ > 0,

since M is a density-determining martingale and P̃ ∼ P . Further, from the definition of the Girsanov
transform (3.77) we easily obtain

∆tL
d(m,M) =

ψ(t, βt)ID − ψ̂(t)

1 + χ(t, βt)ID − χ̂(t)
, (3.110)

where D = {(ω, t) : µ({t}, E) = 1} with the Dirac measure µ({t}, dx) = δβt(dx).
On the other hand,

∆tΦ ∗ (µ− ν̃) = Φ(t, βt)ID −
̂̃
Φ(t), (3.111)

where ̂̃
Φ(t) =

∫
E

Φ(t, x)ν̃({t}, dx) =
ψ̂(t)

1− χ̂(t)
· I{χ̂(t)<1}. (3.112)

Now, substituting (3.109) and (3.112) into (3.111), we obtain

∆tL
d(m,M) = ∆tΦ ∗ (µ− ν)

and, hence, the purely discontinuous part of the P̃ -martingale L(m,M) is equal to Φ ∗ (µ − ν̃). The
continuous part

Lc(m,M) = mc − 〈mc,M c〉 = β · n− βγ · 〈n〉.

From (3.106) we have

Ṁθ = β̇θ ·X
c +

(
Ẏθ +

˙̂
Y θ
1− a

)
∗ (µ− ν). (3.113)

Note that Ŷθ(t) =
∫
Yθ(t, x)ν({t}, dx) (:= aθ(t)). Hence

˙̂
Y θ(t) =

̂̇Y θ(t) = ȧθ(t).

Now from (3.106), (3.113), and (3.108) we obtain

L(Ṁθ,Mθ) = β̇θ(X
c − βθ · C) + Φθ ∗ (µ− νθ), (3.114)

where

Φθ =
Ẏθ
Yθ

+
ȧθ

1− aθ
· I{aθ<1}

with I{aθ=1}ȧθ = 0.
We give a more detailed description of the function Φθ.
For this purpose, recall (see [45]) that one can choose a version of characteristics C(θ) and νθ such

that

Ct(θ) = (cθ · Aθ,c)t,

νθ(ω, dt, dx) = dAθt (ω)B
θ
ω,t(dx) (= νcθ(ω, dt, dx) + νdθ (ω, dt, dx))

= νcθ(ω, dt, dx) + dAθ,dt (ω)Bθω,t(dx),

where νcθ = I{aθ=0}νθ is a continuous part of νθ, the process A
θ = (Aθt )0≤t≤T ∈ A

+
loc, c

θ = (cθt ), 0 ≤ t ≤ T ,

is a nonnegative predictable process, and Bθω,t(dx) is a transition kernel from (Ω×R1,P) into (R1,B(R1))

with Bθω,t({0}) = 0 and ∆AθtB
θ
ω,t(R1) ≤ 1.
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Now for each integrable (with respect to νθ) function ψ = (ψ(ω, t, x)) we have

(ψ ∗ νθ)t = (ψ ∗ νcθ)t +

∫ t
0

∫
R1

ψ(ω, s, x)Bθω,s(dx)dA
θ,d
s

= (ψ ∗ νcθ)t +
∑
s≤t

Bθω,s(R1)

(∫
R1

ψ(ω, s, x)qθω,s(dx)

)
∆Aθs

= (ψ ∗ νcθ)t +
∑
s≤t

aθ(s)

∫
R1

ψ(ω, s, x)qθω,s(dx), (3.115)

where

aθ(t) = ∆AθtB
θ
ω,t(R1) (3.116)

and

qθω,t(dx)I{aθ(t)>0} =
Bθω,t(dx)

Bθω,t(R1)
I{aθ(t)>0}. (3.117)

Thus, qθω,t(dx) is a probability measure:

I{aθ(t)>0}

∫
R1

qθω,t(dx) = I{aθ(t)>0}.

Denote
dνcθ
dνc

:= Fθ,
qθω,t(dx)

qω,t(dx)
= fθ(ω, t, x) (simply fθ).

Then we have

Yθ = FθI{a=0} +
aθ
a
fθI{a>0},

Ẏθ = ḞθI{a=0} +

(
ȧθ
a
fθ +

aθ
a
ḟθ

)
I{a>0}.

Therefore (recall that Yθ > 0),

Φθ =
Ḟθ
Fθ
I{aθ=0} +

(
ḟθ
fθ

++
ȧθ

aθ(1− aθ)
· I{aθ<1}

)
I{aθ>0}. (3.118)

Denote

lθc = β̇θ, lθπ =
Ḟθ
Fθ
, lθδ =

ḟθ
fθ
, lθb =

ȧθ
aθ(1− aθ)

.

Then

L(Ṁθ,Mθ) = lθc(X
c − βθ · C) + (lθπI{aθ=0} + lθδI{aθ>0} + lθbI{0<aθ<1}) ∗ (µ− νθ). (3.119)

Further, let P̃θ ∼ P and

dP̃θ
dP

= E(M̃θ)

with

M̃θ = β̃θ ·X
c +

Ỹθ − 1 +
̂̃
Y θ − a

1− a

 (µ− ν)

(cf. (3.106)).
Then it is easy to see that

dP̃θ
dPθ

= E(L(M̃θ −Mθ,Mθ)) = E(Ñθ)
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with Ñθ ∈Mloc(Pθ), and, therefore,

Ñθ = (β̃θ − βθ)(X
c − βθ · C) +

[(
F̃θ
Fθ
− 1

)
I{aθ=1}

+

(
ãθf̃θ
aθfθ
− 1

)
I{aθ>0} +

ãθ − aθ
1− aθ

I{0<aθ<1}

]
∗ (µ− νθ). (3.120)

Starting from Eqs. (3.119) and (3.120), it is natural to represent the core martingale Lθ and mar-
tingale Nθ (for definitions see previous Subsections 3.3.2 and 3.3.3) as follows:

Lθ = ψθc (X
c − βθ · C) + (ψθπI{aθ=0} + ψθδI{aθ>0} + ψθbI{0<aθ<1}) ∗ (µ− νθ), (3.121)

where ψθα = ψθα(ω, t) if α = c, b; ψθα = ψθα(ω, t, x) if α = π, δ, and ψ̂θδ = 0;

Nθ = Hθc (X
c − βθ · C) + (HθπI{aθ=0} +Hθδ I{aθ>0} +Hθb I{0<aθ<1}) ∗ (µ− νθ), (3.122)

where Hθα = Hθα(ω, t) if α = c, b; Hθα = Hθα(ω, t, x) if α = π, δ, and Ĥθδ = 0.
Let us again endow all the objects with the index n and introduce the Dolean measures

µθ,nc (dt, dω) = c2n(θ) dC
n
t P
n
θ (dω),

µθ,nπ (dt, dx, dω) = c2n(θ)I{anθ=0}ν
n
θ (dt, dx)P

n
θ (dω),

µθ,nδ (dt, dx, dω) = c2n(θ)I{anθ=0}ν
n
θ (dt, dx)P

n
θ (dω),

µθ,nb (dt, dω) = c2n(θ)p
n
θ (ω, dt)P

n
θ (dω),

(3.123)

where the measure pnθ (ω, dt) is defined by the relation

pnθ (ω,B) =
∑
t∈B

I{0<anθ (ω,t)<1}a
n
θ (ω, t)(1− a

n
θ (ω, t)) ∀B ∈ B(R+).

Assume that for each α = c, π, δ, b and n ≥ 1, lθ,nα , ψθ,nα , Hθ,nα ∈ L2(µ
θ,n
α ).

Denote

ln = (lθ,nα , α = c, π, δ, b),

ψn = (ψθ,nα , α = c, π, δ, b),

Hn = (Hθ,nα , α = c, π, δ, b),

µn = (µθ,nα , α = c, π, δ, b).

(3.124)

Then a simple calculation results in

Dn(L
n,Nn; θ) := Dn(ψ

n,Hn; θ) =

(∑
α

ψθ,nα Hθ,nα ∗ µ
θ,n
α

)2
+
∑
α

(ψθ,nα )2 ∗ µθ,nα(∑
α

ψθ,nα lθ,nα ∗ µ
θ,n
α

)2 , (3.125)

where the sign “∗” denotes the integral, α = c, π, δ, b.
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3.3.6. Fixed-step optimization problem for statistical models associated with semimartin-
gales. Fix the index n ≥ 1, the real number R > 0, and consider the following sets of functions:

Ψ0n =
{
ψn = (ψθ,nα , α = c, π, δ, b) : ψθ,nα ∈ L2(µ

θ,n
α ), α = c, π, δ, b, ψ̂θ,nδ = 0

}
. (3.126)

HnR =
{
Hn = (Hθ,nα , α = c, π, δ, b) : Hθ,nα ∈ L2(µ

θ,n
α ), α = c, π, δ, b,

Ĥθ,nδ = 0,Hθ,nδ (ω, t, x) ≥ −λθ,n(ω, t), λθ,n(ω, t) ≥ 0,∑
α�=δ

|Hθ,nα | ∗ µ
θ,n
α + λθ,n ∗ µθ,nδ ≤ R

}
. (3.127)

The score function ψ∗,n = (ψ∗,nα , α = c, π, δ, b) ∈ Ψ0n is said to be (Ψ0n,H
n
R)-optimal in the minimax

sense if for each θ ∈ Θ,

sup
Hn∈HnR

Dn(ψ
∗,n,Hn; θ) = inf

ψ∈Ψ0n
sup
Hn∈HnR

Dn(ψ
n,Hn; θ), (3.128)

where Dn(ψ
n,Hn; θ) is given by (3.125).

Remark 3.19. Consider the following simple construction. Let the Hilbert spaces

L2α(Ωα,Fα, µα), α = 1, ..., 4; Ωα ∩ Ωj = ∅, α �= j,

be given.
We denote

Ω = ∪Ωα, F = ∪Fα = {∪
α
Aα : Aα ∈ Fα, α = 1, ..., 4},

µ(A) =
∑
α

µα(A ∩ Ωα) ∀A ∈ F

and consider a new Hilbert space L2(Ω,F , µ) with the inner product 〈·, ·〉. If X,Y ∈ L2(Ω,F , µ), then,
obviously,

〈X,Y 〉 =
∑
α

〈Xα, Yα〉α,

where Xα = XI{Ωα}, Yα = Y I{Ωα}, and 〈·, ·〉α is the inner product in L2α.
Now for each n ≥ 1 and θ let

Ω1 = Ωn × [0, T ];

Ω2 = {Ω
n × [0, T ]} ∩ {(ω, t) : anθ = 0} × R1,

Ω3 = {Ω
n × [0, T ]} ∩ {(ω, t) : anθ > 0} × R1,

Ω4 = {Ω
n × [0, T ]} ∩ {(ω, t) : 0 < anθ < 1} × {χ}, χ /∈ R1,

with the corresponding σ-algebras and let

µ = (µα, α = 1, ..., 4) = (µθ,nα , α = c, π, δ; µθ,nb × δ{χ});

δ(·) is the corresponding Dirac measure.
Further, let

X = (Xα, α = 1, ..., 4) = (lθ,nα , α = c, π, δ, b),

Y = (Yα, α = 1, ..., 4) = (ψθ,nα , α = c, π, δ, b),

Z = (Zα, α = 1, ..., 4) = (Hθ,nα , α = c, π, δ, b).
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Then the right-hand side of (3.128) can be written as follows:

A = inf
Y ∈Y

sup
|Z|∗µ≤R

(Y Z ∗ µ)2 + Y 2 ∗ µ

(Y X ∗ µ)2
, (3.129)

where

Y = {Y : V Y ∗ µ = 0 for all V = V (ω, t)I{Ω3}(ω, t, x) with |V Y | ∗ µ <∞}.

But

A = inf
Y ∈Y

R2(ess sup
µ
|Y |)2 + Y 2 ∗ µ

(Y X ∗ µ)2
. (3.130)

Indeed,

|Y Z ∗ µ| ≤ |Y ||Z| ∗ µ ≤ ess sup
µ
|Y |(|Z| ∗ µ) ≤ R ess sup

µ
|Y |.

For each ε > 0 consider the sets

A1ε =
{
Y > 0, Y ≥ ess sup

µ
|Y | − ε

}
,

A2ε =
{
Y < 0, −Y ≥ ess sup

µ
|Y | − ε

}
.

From the definition of ess sup it follows that

µ(A1ε ∪A
2
ε) > 0.

Suppose, e.g., that µ(A1ε) > 0. Then we have

µ(A1ε) =
∑
α

µα(A
1
ε ∩ Ωα) > 0.

Hence µα(A
1
ε ∩ Ωα) > 0 for some α = 1, 2, 3, 4. Let, for definiteness,

µ1(A
1
ε ∩Ω1) > 0.

Consider the function Zε = (Zε1 , 0, 0, 0) with

Zε1 =
RI{A1ε∩Ω1}

µ1(A1ε ∩ Ω1)
.

Now we obtain

|Zε| ∗ µ = Zε ∗ µ = Zε1I{Ω1} ∗ µ = Zε1 ∗ µ1 = R

and

|Y Zε ∗ µ| = |Y ZεI{Ω1} ∗ µ| = |Y Z
ε
1 ∗ µ1| = |Y Z

ε
1 · I{A1ε} ∗ µ1 + Y Zε1 · I{(A1ε)c} ∗ µ1|

= Y Zε1I{A1ε} ∗ µ1 ≥
(
ess sup
µ
|Y | − ε

)
R

for each ε > 0, where Ac is a complement of the set A.
Now from (3.130) we obtain that the optimal Y has the form

Y ∗ = const[X − β]m−m, m > 0,

β = β(ω, t)I{Ω3}(ω, t, x).

Our problem is to find equations for the pair (β,m) (compare with Sec. 3.2).

Remark 3.20. The above-mentioned optimization problem is an analytic problem and does not have a
statistical meaning. More exact specification of sets of score functions and alternatives are needed.
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As in the case of discrete time, denote

Qδ,nω,t(·, θ) =

∫
I
{x:lθ,nδ ∈·}

qθ,nω,t (dx), (3.131)

where the probability qδ,nω,t is given by (3.117) (see also (3.116)), and consider the equation with respect

to β (m > 0 is a number, [x]ba = (x ∧ b) ∨ a, a < b),∫
[y − β]m−mQ

δ,n
ω,t(dy, θ) = 0. (3.132)

Denote by

βδ,n = βδ,n(m, θ) = β(Qδ,nω,t(·, θ),m) (3.133)

the solution of Eq. (3.132).

Assume that the distribution Qδ,nω,t(·, θ) satisfies conditions (a) and (b) after Remark 3.7 and

Q
n,l
α ([−a, a] \ {0}, θ) > 0 for each a > 0, α = c, π, b. The distribution Q

n,l
α (·, θ) is defined below, be-

fore Eq. (3.152).

Theorem 3.5. (i) There exists optimal ψ∗,n equal to

ψ∗,n =

 [lθ,nα ]
m∗n(θ)
−m∗n(θ)

if α �= δ,

[lθ,nδ − β
δ,n(m∗n(θ), θ)]

m∗n(θ)
−m∗n(θ)

if α = δ,
(3.134)

where m∗n(θ) is the unique solution of the equation

R2m2 =
∑
α�=δ

{
[lθ,nα ]m−ml

θ,n
α ∗ µ

θ,n
α − ([l

θ,n
α ]m−m)

2 ∗ µθ,nα

}
+
{
[lθ,nδ − β

δ,n(m, θ)]m−ml
θ,n
δ ∗ µ

θ,n
δ − ([lθ,nδ − β

δ,n(m, θ)]m−m)
2 ∗ µθ,nδ

}
. (3.135)

(ii) This ψ∗,n is unique (up to a constant factor).

The proof is quite similar to that of Theorem 3.3 and we omit it here.

3.3.7. Comments and special models.

1. To make clear the notion of optimal (with respect to the risk functional D(L,N ; θ)) estimators in the
spirit of robust statistics, let us recall the asymptotic behavior of the estimational equation.

Consider the estimational stochastic equation

Ln(θ) = Ln(θ, ω) = 0, θ ∈ Θ, n ≥ 1,

where for each θ and n the random variable Ln(θ, ω) is defined on the stochastic basis (Ωn,Fn, Pn).
Further, we consider a family Q = {Qnθ }n≥1 of measures, where for each θ and n the measure Qnθ is
defined on the σ-algebra Fn.

We know that if the conditions of Corollary 3.1 are satisfied, then there exists the CLAN estimator

TLn = bQ(θ)−
Ln(b

Q(θ))

L̇n(bQ(θ))
+Rn(θ) (3.136)

with Qnθ -lim c−1n (θ)Rn(θ) = 0, where bQ(θ) is the unique solution of the equation

∆Q(θ, y) = 0

with

∆Q(θ, y) = Qnθ - limn→∞
c2n(θ)Ln(y)
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and {cn(θ)}n≥1 is some normalizing sequence. Thus we have

TLn
Qnθ→ bQ(θ).

The quantity bQ(θ) is called an asymptotic version of the estimator TL = {TLn }n≥1.
Moreover, if the measure Qnθ depends on the parameter γ in such a way that

Qγ,nθ → Q0,nθ as γ → 0,

in certain sense, then one can define the so-called influence functional

IF ({Q0,nθ }, {T
L
n }, {Q

γ,n
θ }) = lim

γ→0

bQ
γ
(θ)− bQ

0
(θ)

γ
(3.137)

(see [70]).
It should be mentioned that if for each n ≥ 1, Ln(θ) = Lnt (θ)|t=T , where {L

n
t (θ), 0 ≤ t ≤ T}n≥1 ∈

M({Pnθ }) and Q
0,n
θ = Pnθ , then expansions (3.136) and (3.82) are equivalent and bQ

0
(θ) = θ.

Now let γ = γ(n) = cn(θ) (recall that θ is fixed) and P̃
n
θ = Qγn,nθ be such as in Proposition 3.6. In

this case expansion (3.136) also remains true with respect to {P̃nθ }n≥1, since {P̃
n
θ }✁ {P

n
θ }, i.e.,

TLn
P̃nθ→ θ as n→∞.

Hence bP̃ (θ) = θ and the asymptotic versions of TL = {TLn }n≥1 for Pθ = {P
n
θ }n≥1 and P̃θ = {P̃

n
θ }n≥1

coincide (and are equal to θ).
Therefore, the direct transference of the notion of the influence functional is impossible.
Nevertheless, relations (3.86) and (3.88) allow us to define an analogous characteristic.
In view of these relations, the expression

cn(θ)〈Lnθ ,N
n
θ 〉T

〈Lnθ , L(Ṁ
n
θ ,M

n
θ )〉T

can be regarded as a bias at a fixed “nth step” and the expression

P̃nθ - limn→∞
c−1n (θ)

(
θ +

cn(θ)〈Lnθ ,N
n
θ 〉T

〈Lnθ , L(Ṁ
n
θ ,M

n
θ )〉T
− θ

)
=
βL,N (θ)

γL(θ)

can be regarded as a “bias variation rate” (cf. (3.137)).

Hence,
βL,N (θ)

γL(θ)
can be interpreted as an influence functional. At the same time,

ΓL(θ)

γ2L(θ)
is an as-

ymptotic variance of the estimator TL under the basic (core) sequence of measures Pθ = {P
n
θ }n≥1 and,

therefore, the solution of the optimization problem based on the risk functional D(L,N ; θ) is equivalent
to the construction of the optimal B-robust estimator (see [32]).

2. It is obvious from decomposition (3.119) that the score martingale L(Ṁnθ ,M
n
θ ) is fully specified by the

function l = (lc, lπ, lδ , lb), where the subscripts c, π, δ, and b have the following sense: c corresponds to the
continuous part, π to the Poisson-type part, δ to the jumps at predictable moments (including the basic
special case, the discrete-time case), and b to the binomial-type part of the score martingale.

3. Consider the case where

νc(dt, dx) = νc(dt)Pt(dx),

νcθ(dt, dx) = νcθ(dt)P
θ
t (dx),

(3.138)

where
∫
Pt(dx) =

∫
P θt (dx) = 1 (here the index n is omitted).
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In this case,

Ḟθ
Fθ

=
ḟ cθ
f cθ

+
ȧcθ
acθ
,

where

f cθ =
dP θ

dP
, acθ =

dνcθ
dνc

.

Obviously, ∫
ḟ cθ
f cθ
P θt (dx) = 0 ∀t.

Further, if we denote

ψπ1 = ψπ −

∫
ψπP

θ
t (dx)

and

ψπ2 =

∫
ψπP

θ
t (dx),

then ∫
ψπ1P

θ
t (dx) = 0.

In this case it is convenient to represent

Hπ = (Hπ1,Hπ2)

with ∫
Hπ1P

θ
t (dx) = 0.

Correspondingly, if we again endow the objects under consideration with the index n and introduce
the measures

µθ,nπ1 (ds, dx, dω) = c2n(θ)ν
c,n
θ (ds, dx)Pnθ (dω)

and

µθ,nπ2 (ds, dω) = c2n(θ)ν
c,n
θ (ds)Pnθ (dω),

then everywhere there arise new objects with indices π1 and π2 instead of the objects with index π, for
example,

ln = (lθ,nc , lθ,nπ1 , l
θ,n
π2 , l

θ,n
δ , lθ,nb ),

ψn = (ψθ,nc , ψθ,nπ1 , ψ
θ,n
π2 , ψ

θ,n
δ , ψθ,nb ),

etc.

4. To make the sense of contamination models clear, let us consider some special cases.

(i) Diffusion-type process. We consider this case in detail.
Let, for each n ≥ 1, ξn = (ξn(t)), 0 ≤ t ≤ T , be a diffusion-type process with the differential

dξn(t) = βn(t, ξn; θ)dt+ dWn(t), ξn(0) = 0, (3.139)

defined on the stochastic basis (Ω,F , F = (Ft), 0 ≤ t ≤ T,P ) with a Wiener process Wn = (Wn(t),Ft),
0 ≤ t ≤ T , given on it, θ ∈ Θ ⊂ R1 be an unknown parameter, βn(t, x, θ) be a nonanticipating functional
for each n ≥ 1, θ ∈ Θ.

This case is covered by the general scheme of statistical models E = {En}n≥1 in the following way.
We set Ωn = C[0,T ], the space of continuous functions (xt), 0 ≤ t ≤ T , where x0 = 0, Fn = BT = σ(x:

xt, t ≤ T ), Fn = (Fnt = σ(x: xs, s ≤ t)), 0 ≤ t ≤ T , Pn is a Wiener measure, and Pnθ is the
distribution of the process ξn (with given θ). In other words, the coordinate process x = {xt(ω), ω ∈ C[0,T ],
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0 ≤ t ≤ T}, with xt(ω) = ωt, is a (P
n, F )-semimartingale with a triplet (0, t, 0), 0 ≤ t ≤ T , and a (Pnθ , F )-

semimartingale with a triplet (∫
βn(s, x, θ) ds, t, 0

)
, 0 ≤ t ≤ T.

Assume that for each n ≥ 1,

Pn
(∫ T
0
β2n(t, x, θ) dt <∞

)
= Pnθ

(∫ T
0
β2n(t, x, θ) dt <∞

)
= 1.

Under these conditions there exists a unique weak solution of Eq. (3.139), Pnθ ∼ P
n, and the likelihood-

ratio process has the form

ρnθ = exp

(∫ t
0
βn(s, x, θ) dxs −

1

2

∫ t
0
β2n(s, x, θ) ds

)
= Et(M

n
θ ),

where

Mnθ (t) =

∫ t
0
βn(s, x, θ) dxs, 0 ≤ t ≤ T,

is a local (Pn, F )-martingale.
Further, let for each n ≥ 1, x ∈ C[0,T ], and t ∈ [0, T ], the mapping θ ❀ βn(t, x, θ) be continuously

differentiable

(
∂

∂θ
β := β̇

)
, and

∂

∂θ

∫ t
0
βn(s, x, θ) dxs =

∫ t
0
β̇n(s, x, θ) dxs,

∂

∂θ

∫ t
0
βn(s, x, θ) ds =

∫ t
0
β̇n(s, x, θ) ds,

0 < InT (θ) := Eθ

∫ T
0
(β̇n(t, x, θ))

2dt <∞.

Then the regularity conditions are satisfied, and

Lt(Ṁ
n
θ ,M

n
θ ) =

∂

∂θ
ln ρnθ (t) =

∫ t
0
β̇n(s, x, θ)(dxs − βn(s, x, θ)ds) ∈M

2(Pnθ ),

InT (θ) = Enθ 〈L(Ṁ
n
θ ,M

n
θ )〉T .

Thus,

lθ,nc (t, x) = β̇n(t, x, θ),

c−2n (θ) = Enθ

∫ T
0
(lθ,nc (t, x))2dt.

The ergodicity means that cn(θ)→ 0 and∫ T
0
(β̇n(t, x, θ))

2dt ·

(
Enθ

∫ T
0
(β̇n(t, x, θ))

2dt

)−1
Pnθ→ 1 as n→∞.

The score martingale Lnθ ∈M
2(Pnθ ) is given by the formula

Lnθ (t) =

∫ t
0
ψθ,nc (s, x)(dxs − βn(s, x, θ)ds), 0 ≤ t ≤ T.

The “contamination model” means that P̃nθ is the distribution of the process ξ̃n = (ξ̃n(t)), 0 ≤ t ≤ T ,
with the differential

dξ̃n(t) = (βn(t, ξ̃n, θ) + cn(θ)H
θ,n
c (t, ξ̃n))dt+ dWn(t), ξ̃n(0) = 0.
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Hence the main objects are given by the following equalities:

Nnθ (t) =

∫ t
0
Hθ,nc (s, x)(dxs − βn(s, x, θ)ds), 0 ≤ t ≤ T,

µθ,nc (dt, dx) := c2n(θ)dtP
n
θ (dx), x ∈ C[0,T ],

Dn(ψ
n,Hn; θ) =

(∫
C[0,T ]

∫ T
0
ψθ,nc (t, x)Hθ,nc (t, x)dtPnθ (dx)

)2
+

∫
C[0,T ]

∫ T
0
(ψθ,nc (t, x))2dtPnθ (dx)(∫

C[0,T ]

∫ T
0
ψθ,nc (t, x)lθ,nc (t, x)dtPnθ (dx)

)2 ,

HnR =

{
Hθ,nc :

∫
C[0,T ]

∫ T
0
|Hθ,nc (t, x)|dtPnθ (dx) ≤ R

}
.

Finally, the optimal score martingale is

L∗,nθ (t) =

∫ t
0
[β̇n(s, x, θ)]

m∗n(θ)
−m∗n(θ)

(dxs − βn(s, x, θ)ds), 0 ≤ t ≤ T,

where m∗n(θ) is the unique solution of the equation

R2m2 =

∫
C[0,T ]

∫ T
0
[β̇n(t, x, θ)]

m
−mβn(t, x, θ)dtP

n
θ (dx)

−

∫
C[0,T ]

∫ T
0

(
[β̇n(t, x, θ)]

m
−m

)2
dtPnθ (dx).

In the following special cases, we briefly describe only main objects.

(ii) Poisson-type point process. For each n ≥ 1, let Pnθ be the distribution of the point process

ξn = (ξn(t)), 0 ≤ t ≤ T , with compensator νnθ (t) =
∫ t
0 a
n
θ (s) dα

n
s , and let Pn be the distribution of the

point process with compensator αn.
Then

Lt(Ṁ
n
θ ,M

n
θ ) =

∫ t
0

ȧnθ (s)

anθ (s)
(dxs − a

n
θ (s)dα

n
s ),

Lnθ (t) =

∫ t
0
ψθ,nπ2 (dxs − a

n
θ (s)dα

n
s ),

InT (θ) = Enθ

∫ T
0

(
ȧnθ (t)

anθ (t)

)2
anθ (t)dα

n
t , c−2n (θ) = InT (θ).

The “contaminated” measure P̃nθ in this case is the distribution of the point process with the com-
pensator

ν̃nθ (t) =

∫ t
0
(anθ (s) + cn(θ)H

θ,n
π2 (s))dα

n
s .

Thus,

Nnθ (t) =

∫ t
0
Hθ,nπ2 (s)(dxs − a

n
θ (s)dα

n
s ).
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(iii) Processes with jumps at predictable moments. Consider the case where Xc = 0, νc = 0.
Then from Eqs. (3.120) and (3.122) we find that(

ãnθ f̃
n
θ

anθ f
n
θ

− 1

)
I{anθ>0} +

ãnθ − a
n
θ

1− anθ
I{0<anθ<1} = cn(θ)(H

θ,n
δ I{anθ>0} +Hθ,nb I{0<anθ<1}). (3.140)

To illustrate the role of terms with indices δ and b, let us consider two special cases. Let for each
n ≥ 1:

(1) an(t) = anθ (t) = ãnθ (t) =

 1 if t =
i

n
· T, 1 ≤ i ≤ n,

0, otherwise.

Then from (3.140) we obtain

f̃nθ
fnθ
− 1 = cn(θ)H

θ,n
δ ,

i.e., a discrete-time model.
(2) Pnθ is the distribution of the point process ξn = (ξn(t)), 0 ≤ t ≤ T , with the compensator

νnθ (dt, dx) = δ{1}(dx)ν
n
θ (dt), where ν

c,θ
θ (dt) = 0. Then anθ = ∆νnθ (t).

Further, let P̃nθ be the distribution of the point process ξ̃n with the compensator ν̃nθ possessing the
same properties.

Then (3.140) has the form

ãnθ − a
n
θ

anθ (1− a
n
θ )
I{0<anθ<1} = cn(θ)H

θ,n
b I{0<anθ<1}.

Hence,

Nnθ (t) =

∫ t
0
Hθ,nb I{0<anθ<1}(dxs − ν

n
θ (ds)), 0 ≤ t ≤ T.

The simplest case of such a model is the binomial model with a random probability of success, i.e.,
when the observation is a sequence of indicators In1 , ..., I

n
n , a

n
θ = Pnθ {I

n
i = 1 | Fni−1}, 1 ≤ i ≤ n, F

n
i = σ(Inj ,

j ≤ i).
The latter fact explains the meaning of the index b.

3.3.8. Construction of the sequence of optimal score functions. We need some auxiliary notions
concerning the weak convergence of σ-finite distributions.

1. Let Q
n
(·), n ≥ 1, and Q(·) be σ-finite distributions on (Rd,B(Rd)), d = 1, 2, satisfying the

conditions ∫
|x|2Q

n
(dx) <∞, n ≥ 1,∫

|x|2Q(dx) <∞,
(3.141)

where x ∈ Rd, | · | is the usual norm in Rd, d = 1, 2.
Suppose that ∫

|x|2Q
n
(dx)→

∫
|x|2Q(dx) as n→∞. (3.142)

Define the sets

Cd :=
{
f : f is a continuous function on Rd,

f(0) = 0 and
f(x)

|x|2
is bounded

}
, d = 1, 2.
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We say that the sequence of distributions {Q
n
(·)}n≥1 weakly converges to the distribution Q(·) and

write

Q
n W
→ Q as n→∞ (3.143)

if relations (3.141) and (3.142) are satisfied, and∫
f(x)Q

n
(dx)→

∫
f(x)Q(dx) as n→∞ ∀f ∈ Cd, d = 1, 2.

2. Let Qn = Qnω,t(·), n ≥ 1, and Q = Qω,t(·) be regular conditional probability measures on
(Rd,B(Rd)), d = 1, 2. For each B ∈ B(Md), d = 1, 2, let

Ln,Q(B) =

∫
I{Qnω,t(·)∈B}ν

n(dω, dt)

and

LQ(B) =

∫
I{Qω,t(·)∈B}ν(dω, dt)

be σ-finite distributions on (Md,B(Md)) induced by some σ-finite measures νn(dω, dt) and ν(dω, dt)
defined on (Ω× [0, T ], F ×B([0, T ])).

Here (Md,B(Md)), d = 1, 2, are measure spaces of the probability measures on (Rd,B(Rd)), d = 1, 2,
and B(Md) is a Borel σ-algebra generated by open (with respect to the Prokhorov metric ρ) sets.

Introduce on (Rd,B(Rd)), d = 1, 2, the measures

Q
n
(·) =

∫
ν(·)Ln,Q(dν), n ≥ 1, (3.144)

and

Q(·) =

∫
ν(·)LQ(dν), (3.145)

where ν(·) ∈Md, and suppose that these measures satisfy conditions (3.141) and (3.142).
Introduce the functional

F (ν) =

∫
|x|2ν(dx)

defined on the space (Md, ρ), d = 1, 2.
Then by conditions (3.141) and (3.142) we have∫

F (ν)Ln,Q(dν) =

∫
|x|2ν(dx)Ln,Q(dν) =

∫
|x|2Q

n
(dx) <∞, (3.146)∫

F (ν)LQ(dν) =

∫
|x|2Q(dx) <∞, (3.147)

and ∫
F (ν)Ln,Q(dν)→

∫
F (ν)LQ(dν) as n→∞. (3.148)

Denote

Cd :=
{
F : F is a continuous functional on (Md, ρ), d = 1, 2;

if ν(·) is a distribution degenerated at 0, then F (ν) = 0;

F (ν)

F (ν)
is bounded

}
, d = 1, 2.

We say that the sequence of random measures {Qn}n≥1 generalized weakly converges to the random
measure Q and write

Qn ⇒ Q as n→∞
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if

Ln,Q
W
→ LQ as n→∞.

The latter convergence means that conditions (3.146), (3.147), and (3.148) are satisfied, and∫
F (ν)Ln,Q(dν)→

∫
F (ν)LQ(dν) as n→∞, ∀F ∈ Cd, d = 1, 2.

From definitions, it easily follows that

(Qn ⇒ Q)⇒ (Q
n W
→ Q).

Indeed, it is sufficient to take

F (ν) =

∫
f(x)ν(dx), f ∈ Cd, x ∈ Rd. (3.149)

We consider the case described in Subsection 3.3.5. As follows from (3.125), for each n ≥ 1,

Dn(L
n,Nn; θ) = Dn(ψ

n,Hn; θ).

Now we define the classes of sequences of functions Ψ and HΨ such that if

ψ = {ψn}n≥1 ∈ Ψ and H = {Hn}n≥1 ∈ HΨ,

then
D(ψ,H; θ) (= D(L,N ; θ)) = lim

n→∞
Dn(ψ

n,Hn; θ)

(see (3.98), (3.99), (3.103), and (3.104)).
Then we construct the sequence ψ∗ = {ψ∗,n}n≥1 of score functions (Ψ,HΨ)-optimal in the minimax

sense, i.e., the sequence ψ∗ ∈ Ψ such that

sup
H∈HΨ

D(ψ∗,H; θ) = inf
ψ∈Ψ

sup
H∈HΨ

D(ψ,H; θ)

for each θ ∈ Θ.
Below the parameter θ is fixed and omitted.

(i) Definition of the class Ψ. Denote by Ψ0α, α = c, π, δ, b, the class of sequences ψα = {ψnα}n≥1 such
that

(a)

ψnα ∈ L2(µ
n
α) (3.150)

for each n ≥ 1;
(b) for each n ≥ 1 and η > 0 there exists a constant rnα = rnα(η) > 0 such that

Pnθ

(∫
I{|u|>η}Q̃

n,ψ
α (ω, du) ≤ rnα

)
= 1, (3.151)

and the sequence {rnα}n≥1 is bounded (for each fixed η).
Here

Q̃n,ψα (ω, ·) =

∫
I{ψnα∈·}dµ̃

n
α,ω,

where

µ̃nc,ω(dt) = c2n(θ)dC
n
t ,

µ̃nπ,ω(dt, dx) = c2n(θ)I{anθ=0}ν
n
θ (dt, dx),

µ̃nδ,ω(dt, dx) = c2n(θ)I{anθ>0}ν
n
θ (dt, dx),

µ̃nb,ω(dt) = c2n(θ)p
n
θ (ω, dt).

First we define the classes Ψα for α = c, π, b.
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For each n ≥ 1, we denote

Q
n,ψ
α (·) =

∫
I{ψnα∈·}dµ

n
α, Q

n,ψ1,ψ2

α (·) =

∫
I{(ψ1,nα ,ψ

2,n
α )∈·}dµ

n
α,

where the measures µnα are defined by (3.123).
Fix the sequence ψ0α ∈ Ψ

0
α and introduce the set

Φψ
0
α =

{
ψ ∈ Ψ0α : Q

n,ψ,ψ0

α
W
→ Q

ψ,ψ0

α

}
. (3.152)

Let Ψα ⊂ Ψ0α be a set of sequences with the following properties:
(1)

lα ∈ Ψα; (3.153)

(2)

((ψ1α, ψ
2
α) ∈ Ψα)⇒ (ψ1α ∈ Φ

ψ2α); (3.154)

(3) (
ψ̃α ∈ ∩

ψα∈Ψα
Φψα

)
⇒ (ψ̃α ∈ Ψα); (3.155)

(4) the sequence {(ψnα)
2}n≥1 is uniformly integrable with respect to the sequence of measures {µnα}n≥1.

Assume, at last, that Q
l
α([−a, a] \ {0}) > 0 for each a > 0.

Let α = δ.
For each n ≥ 1, we denote

Q
n,ψ
δ (· | ω, t) =

∫
I{ψnδ ∈·}q

n
ω,t(dx),

Qn,ψ
1,ψ2

δ (· | ω, t) =

∫
I{ψ1,nδ ,ψ

2,n
δ ∈·}q

n
ω,t(dx)

(the measure qnω,t(dx) is defined by (3.117)).

Fix the sequence ψ0δ ∈ Ψ
0
δ and introduce the set

Φψ
0
δ =

{
ψ ∈ Ψ0δ : Q

n,ψ,ψ0

δ ⇒ Qψ,ψ
0

δ

}
. (3.156)

Let Ψδ ⊂ Ψ0δ be the set of sequences ψδ = {ψ
n
δ }n≥1 with properties (1), (2), (3), and (4) with α = δ

and, in addition,
(5)

ψ̂nδ = 0 for each n ≥ 1, (3.157)

(6)

(Qn,ψδ ⇒ Q
ψ
δ )⇒ L

Q
ψ
δ

(
{ν : ν does not have a unique median}

∪{ν : ν is degenerated in 0} ∪
{
ν :

∫
y ν(dy) �= 0

})
= 0.

(3.158)

Remark 3.21. Note that from (2) it follows that ψα ∈ Φψα (take ψ1α = ψ2α = ψα) and, therefore,

Q
n,ψα W→ Q

ψα
, α = c, π, b,

Qn,ψδ ⇒ Qψδ .

Now Ψ = (Ψα, α = c, π, δ, b).
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(ii) Definition of the class HΨ. Let Aα ⊂ Ψ0α, α = c, π, δ, b.
Define for each α = c, π, δ, b

H(Aα) =

{Hnα}n≥1 :
(1) sup

n

∫
(Hnα)

2dµnα <∞

(2)

∫
ψnαH

n
αdµ

n
α →, ∀ψα ∈ Aα

 . (3.159)

The symbol “an →” means that the sequence {an}n≥1 has a finite limit.
Let H(A) = (H(Aα), α = c, π, δ, b), where A = (Aα, α = c, π, δ, b).
We say that the sequence

H = {Hn}n≥1 = {H
n
α , α = c, π, δ, b}n≥1 ∈ B

if for each sequence of martingales {Nnθ }n≥1 defined by relation (3.122) with Hnα ∈ L2(µ
n
α), n ≥ 1,

α = c, π, δ, b, condition (3.87) of Proposition 3.6 is satisfied.
Denote for each n ≥ 1

Kn = {Hn : Nnθ ∈M
2(Pnθ ); 〈N

n
θ 〉T ≤ Kn (P

n
θ -a.s.), cn(θ)∆N

n
θ ≥ Rn > −1}, (3.160)

where the martingale Nnθ (= Nnθ (H
n)) is defined by relation (3.122) and Kn and Rn are real numbers.

Recall that in (3.122) the index n is omitted.
Define

HΨ = {H = {Hn}n≥1 : H
n ∈ HnR ∩ K

n, n ≥ 1; H ∈ H(Ψ) ∩B}, (3.161)

where HnR is defined by (3.127).
Finally, suppose that

LQ
l
δ({ν : ν is degenerate} ∪ {ν : ν(med ν) > 0}) = 0. (3.162)

Remark 3.22. Note that in the case of the discrete time, the property Hn ∈ Kn is reduced to the
property sup

n,ω,t
λn(ω, t) <∞. See also Remark 3.4.

Remark 3.23. Consider, at the qualitative level, the assumptions used in the definition of classes Ψ and
HΨ. We begin with the class Ψ. Assumption (3.150) reflects the fact that in this work we do not come
out of the framework of the L2-theory. Assumption (3.151) strengthens the admissibility property (see
Lemma 3.6), which statistically means that the “unbounded” score functions cannot be optimal, and they
a priori are excluded from our consideration. Next, we see that for α = c, π, b and for α = δ the conditions
differ from each other and, therefore, they are given separately.

An additional assumption in the case of α = δ is

ψ̂δ = 0,

which corresponds to the conditionally centering property of the score function ψni (z, θ | x) in discrete
time models (see Subsec. 3.2.1, the definition of CLAN estimators, (3)). This results in a necessity of

considering the parameter βn−β(Qn,lδ ), which is a nonlinear functional defined on the space of probability
distributions. Note that technical condition (3.158) and the similar condition (3.162) ensure the continuity
of the functional βn with respect to the topology of a weak convergence of distributions (see Lemma 3.4).

The presence of the parameter βn in relation (3.134) for the optimal score function ψ∗,n complicates
the verifying of the ergodic properties and results in a necessity of considering a generalized weak con-
vergence of distributions. This convergence reduces to a weak convergence of distributions on the metric
space of probability measures or, roughly speaking, to a weak convergence of distributions of distributions,
see (3.156) and (3.158) (cf. (3.152) and (3.154)).

Also, we note that conditions (3.141), (3.142), (3.146), (3.147), and (3.148) are based on condition
(3.150) and on property (4) of the definition of the class Ψα and, therefore, they appear to be natural.
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The necessity of condition (3.153) is obvious. Condition (3.154), which is based on relation (3.152)
strengthens, on one hand, the ergodicity properties (3.79) and (3.80) and, on the other hand, ensures
asymptotic “homogeneity” of score functions in the class Ψ.

This implies the necessity of the requirement of convergence of joint distributions both in (3.152)
and (3.156).

Condition (3.155) (“completeness” of the class Ψ) makes the class of score functions richer.
Proceed to the class HΨ, namely, to relation (3.161). Begin with the end of the formula. Belonging

of the sequence H to the set H(Ψ) ∩ B guarantees, on one hand, ergodic coordination of the classes Ψ
and HΨ (see (3.159), (2)) and, on the other hand, imposes boundedness type conditions on this sequence
(see conditions (3.159), (1), and (3.87)). In particular, belonging to the set B implies the contiguity

of the sequence of alternative measures {P̃nθ } with respect to the sequence of basic measures {Pnθ }.
Further, belonging of each term Hn of the sequence H to the set Kn implies a uniform integrability of
the exponential martingale E(cn(θ)Nnθ ) and also the fact that inf

t
Et(cn(θ)Nnθ ) > 0. These facts imply the

property P̃nθ ∼ P
n
θ .

The nontriviality of the optimization problem (3.101) follows from the relation Hn ∈ HnR.
Finally, we note that the above definitions of the classes Ψ and HΨ give statistical sense to the

risk functional D(ψ,H, θ), to the optimization problem, and, as a result, to the whole problem of robust
estimation considered in this chapter.

Let ψ∗ = {ψ∗,n}n≥1 be the sequence of score functions constructed in Theorem 3.5 by relation (3.134).

Theorem 3.6. The sequence ψ∗ is (Ψ,HΨ)-optimal.

Proof. The method of proving Theorem 3.4 developed in Subsection 3.2.3, is general and can be used
with small changes in the considered case.

We illustrate this fact, taking as an example the proof of Lemma 3.9.
Introduce the functions

Hn,εα =
RI{ψnα>ηα(1−ε)}∫
I{ψnα>ηα(1−ε)}dµ

n
α

, α = c, π, b;

Hn,εδ =

R

(
I{ψnδ >ηδ(1−ε)} −

∫
I{ψnδ >ηδ(1−ε)}q

n
ω,t(dx)

)
∫
I{ψnδ >ηδ(1−ε)}dµ

n
δ

,

where ηα := ess sup
Q
ψ
α

|x|.

Obviously, Ĥn,εδ = 0 and for each n ≥ 1

c2n(θ)〈N
n,ε
θ 〉T =

∑
α

∫
(Hn,εα )2dµ̃nα ≤

∑
α

R2
∫
I{u>ηα(1−ε)}Q̃

n,ψ
α (ω, du)(∫

I{ψnα>ηα(1−ε)}dµ
n
α

)2 ≤ Kn Pnθ -a.s., (3.163)

for some constant Kn, 0 < Kn <∞, thanks to (3.151).
Thus, the process E(cn(θ)N

n,ε
θ ) is square integrable and hence a uniformly integrable martingale. In

particular, Enθ E(cn(θ)N
n,ε
θ ) = 1.

Moreover, obviously, cn(θ)∆N
n,ε
θ ≥ Rn > −1 for some constant Rn.
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Indeed, Hn,εα ≥ 0, α = c, π, b, and

H
n,ε
δ ≥

−R

∫
I{ψnδ >ηδ(1−ε)}q

n
ω,t(dx)∫

I{ψnδ >ηδ(1−ε)}dµ
n
δ

.

Hence if we denote by λn(ω, t) the last expression without the sign “−,” we obtain that cn(θ)λ
n(ω, t) < 1

for some n ≥ 1, by virtue of condition (3.151) and the fact that

inf
n

∫
I{ψnδ >ηδ(1−ε)}dµ

n
δ > 0.

The latter follows from the definition of ηδ.
Without loss of generality, we assume that cn(θ)λ

n(ω, t) < 1 for any n ≥ 1 (see also Remark 3.4).

Therefore, P̃nθ := E(cn(θ)N
n,ε
θ ) ·Pnθ is a probability measure, equivalent for each n ≥ 1 to the measure

Pnθ , P̃
n
θ ∼ P

n
θ .

We prove now that the sequence {c2n(θ)〈N
n,ε
θ 〉T }n≥1 is stochastically bounded with respect to the

sequence of measures {P̃nθ }n≥1.
Denote

bnα =

∫
I{ψnα>ηα(1−ε)}dµ

n
α, α = c, π, δ, b.

From (3.163) we obtain that for all n ≥ 1,

Pnθ {ω : c2n(θ)〈N
n,ε
θ 〉T ≤ Kn} = 1.

But, as we have proved above, P̃nθ ∼ P
n
θ . Hence

P̃nθ {ω : c2n(θ)〈N
n,ε
θ 〉T ≤ Kn} = 1.

Thus,

lim
n→∞

P̃nθ {c
2
n(θ)〈N

n,ε
θ 〉T > d} ≤ lim

n→∞
P̃nθ {Kn > d} → 0 as d→∞,

since the sequence of numbers {Kn}n≥1 is bounded. Indeed, inf
n
bnα > 0 by the definition of ηα and the

sequence {rnα}n≥1 from (3.151) is bounded for each α = c, π, δ, b.

Now, according to Remark 3.19, if ηj = max
α
{ηα}, we take as H

n,ε
the function

H
n,ε

= (0,H
n,ε
j , 0, 0),

where

H
n,ε
j =

RI{ψnj >ηj(1−ε)}∫
I{ψnj >ηj(1−ε)}dµ

n
j

.

Note that condition (3.127) is trivially satisfied.
Hence, we obtain

H
n,ε
∈ HΨ.

The assertion follows.

Remark 3.24. The assertions of Corollaries 3.3 and 3.4 with obvious notational changes are also true.
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Chapter 4

THE ROBBINS–MONRO-TYPE STOCHASTIC DIFFERENTIAL EQUATIONS.
CONVERGENCE OF SOLUTIONS AND STRONG CONSISTENCY

The Robbins–Monro-type (RM-type) SDEs are introduced. This type of SDEs naturally includes
both generalized RM stochastic approximation algorithms with martingale noises and recursive estimation
procedures for general statistical models. The approach of the investigation of the a.s. convergence as
t→∞ of the strong solution Z = (Zt)t≥0 of such type of equations is proposed. This approach is based
on the new description of the convergence sets of semimartingales and nonstandard representation of the
process of bounded variation (in the decomposition of the special semimartingale (Z2t )t≥0) in the form of
the difference of two increasing predictable processes.

4.1. Specification of the Model. Standard and Nonstandard Representations

1. Let the following objects be given on the stochastic basis (Ω,F , F = (Ft)t≥0, P ):
(a) a random field H = {Ht(u), t ≥ 0, u ∈ R1} = {Ht(ω, u), t ≥ 0, ω ∈ Ω, u ∈ R1} with properties
(i) for each u ∈ R1, the process H(u) = (Ht(u))t≥0 ∈ P (i.e., is predictable);
(ii) for each t ≥ 0,

(A)
Ht(u) = 0 if u = 0,

Ht(u)u < 0 for all u �= 0

P -a.s.;
(b) a random field M = {M(t, u), t ≥ 0, u ∈ R1} = {M(ω, t, u), ω ∈ Ω, t ≥ 0, u ∈ R1} such that for

each u ∈ R1 the process M(u) = (M(t, u))t≥0 ∈M2loc;
(c) a predictable increasing process K = (Kt)t≥0 (i.e., K ∈ V+ ∩ P).
We restrict the consideration to the following particular cases: for each u ∈ R1,
1◦. M(u) ≡ m ∈M2loc.

2◦. M(u) = f(u) · m + g(u) · n, where m ∈ Mcloc, n ∈ M
d,2
loc, the predictable processes f(u) =

f(t, u))t≥0 and g(u) = (g(t, u))t≥0 are such that the corresponding stochastic integrals are well defined,
and M(u) ∈M2loc.

3◦. M(u) = ϕ(u) ·m+W (u)∗(µ−ν), wherem ∈Mcloc, the process ϕ(u) = (ϕ(t, u))t≥0 is predictable,
µ is an integer-valued random measure on (Ω×R+ ×E,F ⊗B(R+)× E), ν is its P -compensator, (E, E)
is the Blackwell space, and W (u) = (W (t, x, u), t ≥ 0, x ∈ E) ∈ P ⊗ E (here all stochastic integrals are
assumed to be well defined, and M(u) ∈M2loc).

Later on, by the symbol
∫ t
0 M(ds, us), where u = (ut)t≥0 is a predictable process, we denote the

following stochastic integrals:∫ t
0
f(s, us) dms +

∫ t
0
g(s, us) dns (in case 2◦)

or ∫ t
0
ϕ(s, us) dms +

∫ t
0

∫
E

W (s, x, us)(µ− ν)(ds, dx) (in case 3◦),

provided the latter are well defined.
Consider the stochastic equation (RM procedure)

Zt = Z0 +

∫ t
0
Hs(Zs−) dKs +

∫ t
0
M(ds, Zs−), t ≥ 0, Z0 ∈ F0, (4.1)

or the differential form

dZt = Ht(Zt−)dKt +M(dt, Zt−), Z0 ∈ F0. (4.2)
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We say that SDE (4.1) is of the Robbins–Monro type, since the drift coefficient satisfies the specific
condition (A).

Assume that there exists a unique strong solution Z = (Zt)t≥0 of Eq. (4.1) on the whole time interval

[0,∞), M̃ ∈M2loc, where

M̃t :=

∫ t
0
M(ds, Zs−).

Certain sufficient conditions for this can be found in [23,25,44].
We study the problem of P -a.s. convergence Zt → 0 as t→∞.

2. We need some facts concerning semimartingale convergence sets [118].
For completeness we formulate them.
Let X∞ = lim

t→∞
Xt, and let {X →} denote a set where X∞ exists and is a finite random variable.

Denote by V+(V) a set of processes A = (At)t≥0, A0 = 0, A ∈ F ∩D (i.e., the process A is F -adapted
with cadlag trajectories) with nondecreasing (bounded variation on each interval [0, t]) trajectories. We
write X ∈ P if X is a predictable process. Denote by SP a class of special semimartingales, i.e., X ∈ SP
if X ∈ F ∩D and

X = X0 +A+M,

where A ∈ V ∩ P, M ∈Mloc.
If Γ1,Γ2 ∈ F , then Γ1 = Γ2 (P -a.s.) or Γ1 ⊆ Γ2 (P -a.s.) which means that P (Γ1∆Γ2) = 0 or

P (Γ1 ∩ (Ω \ Γ2)) = 0, respectively, where ∆ denotes the symmetric difference of sets.
Let X ∈ SP . We set A = A1 −A2, where A1, A2 ∈ V+ ∩ P. Denote

Â = (1 +X− +A2−)
−1 ◦A1

(
:=

∫ ·
0
(1 +Xs− +A2s−)

−1dA1s

)
.

Theorem 4.1. Let X ∈ SP , X ≥ 0. Then

{Â∞ <∞} ⊆ {X →} ∩ {A2∞ <∞} (P -a.s.).

Corollary 4.1.

{A1∞ <∞} = {(1 +X−)
−1 ◦A1∞ <∞} = {Â∞ <∞} (P -a.s.).

Remark 4.1. The theorems below have been proved in [67].

Introduce the following assumptions:
(1) EX0 <∞;
(2) one of the conditions (α) and (β) below is satisfied:

(α) there exists ε > 0 such that A1t+ε ∈ Ft for all t > 0,
(β) for any predictable Markov moment σ,

E∆A1σI{σ<∞} <∞.

Theorem (A). Let X ∈ Sp, X ≥ 0, X = X0 + A1 − A2 +M , A1, A2 ∈ V+ ∩ P, M ∈ Mloc, and let
assumptions (1) and (2) be satisfied. Then

{A1∞ <∞} ⊆ {X →} ∩ {A2∞ <∞} (P -a.s.).

Theorem (B). Let X ∈ Sp, X ≥ 0, X = X0 +X− ◦B +A1 −A2 +M , B,A1, A2 ∈ V+ ∩P, M ∈Mloc,
and let assumptions (1) and (2) (only for A1) be satisfied. Then

{A1∞ <∞}∩ {B∞ <∞} ⊆ {X →} ∩ {A2∞ <∞} (P -a.s.).
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Theorem (B) follows from Theorem (A) if we apply the latter to the process X · E−1(B), where E(B)
is the Dolean exponential, i.e., the solution of the equation Y = 1 + Y− ◦B.

Now we reject assumptions (1) and (2) in both theorems based only on these theorems. Indeed,
consider the process Y = 1+X. Obviously, {X →} = {Y →} (P -a.s.). Introduce the process

Ã =
1

Y−
◦A1 ∈ V+ ∩ P.

We have
X = X0 +A1 −A2 +M ⇒ Y = Y0 +A1 −A2 +M ≡ Y0 + Y− ◦ Ã−A

2 +M,

i.e., we obtain the decomposition of the process Y with A1 = 0 and B = Ã (see Theorem (B)).
Now Theorem (B) yields that only under assumption (1),

{Ã∞ <∞} ⊆ {Y →} ∩ {A2∞ <∞} = {X →} ∩ {A2∞ <∞} (P -a.s.).

But {Ã∞ <∞} = {A1∞ <∞} (P -a.s.), since {A1∞ <∞} ⊆ {Ã∞ <∞} (P -a.s.) and

{A1∞ <∞} ∩ {X →}∩ {A2∞ <∞} = {Ã∞ <∞}∩ {X →} ∩ {A2∞ <∞} (P -a.s.).

Thus, we obtain that the assertion of Theorem (A) is true without assumption (2). Applying the just-
proved fact to X · E−1(B), we obtain that the assertion of Theorem (B) is also true without assumption
(2).

Further, we denote

X l = X0 ∧ l +A1 −A2 +M,

for each constant l > 0. Obviously, EX l0 = F (X0 ∧ l) ≤ l.
Then, by Theorem (A),

{A1∞ <∞} ⊆ {X l →} ∩ {A2∞ <∞} (P -a.s.).

Hence {A1∞ <∞} ⊆ {A2∞ <∞} and

{A1∞ <∞} ⊆ {X l →} = {X l →} ∩ ({X = X l}+ {X �= X l})

= {X →} ∩ {X = X l}+ {X l →} ∩ {X �= X l}

⊆ {X →} ∩ {X0 ≤ l}+ {X0 > l} (P -a.s.)

for each l > 0. Now we note that {X0 ≤ l} ↑ Ω (P -a.s.) and {X0 > l} ↓ ∅ (P -a.s.) as l→∞.
Thus,

{A1∞ <∞} ⊆ {X →}∩ lim
l→∞
{X0 ≤ l}+ lim

l→∞
{X0 > l}

= {X →}∩ Ω+∅ = {X →} (P -a.s.).

Hence, we conclude that the assertion of Theorem (A) is true without condition (1) as well.

Corollary. The assertions of Theorems (A) and (B) are true without assumptions (1) and (2).

Remark 4.2. In [91], Theorem (A) was proved without assumptions (1) and (2). But the proof is not
correct.

Apply Theorem 4.1 to the semimartingale Xt = Z2t , t ≥ 0. Using the Itô formula, we obtain the
following for the process (Z2t )t≥0:

dZ2t = dAt + dNt, (4.3)

where

dAt = αt(Zt−)dKt + βt(Zt−)dK
d
t + d〈M̃〉t,

dNt = 2Zt−dM̃t +Ht(Zt−)∆KtdM̃
d
t + d([M̃ ]t − 〈M̃〉T ),
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with

αt(u) := 2Ht(u)u,

βt(u) := H2t (u)∆Kt.

Note that A = (At)t≥0 ∈ V ∩ P, N ∈Mloc.
Represent the process A in the form

At = A1t −A
2
t (4.4)

with

(1)

{
dA1t = βt(Zt−)dK

d
t + d〈M̃〉t,

−dA2t = αt(Zt−)dKt,

or

(2)

{
dA1t = [αt(Zt−)I{∆Kt �=0} + βt(Zt−)]

+dKdt + d〈M̃〉t,

−dA2t = {αt(Zt−)I{∆Kt=0} − [αt(Zt−)I{∆Kt �=0} + βt(Zt−)]
−}dKt,

where [a]+ = max(0, a) and [a]− = −min(0, a).
As follows from (A), αt(Zt−) ≤ 0 for all t ≥ 0 and, therefore, representation (4.3) (1) directly

corresponds to the usual standard form of the process A (in (4.3), A = A1 − A2, with A1 and A2 from
(4.4) (1)). Therefore, representation (4.4) (1) of the process A is said to be standard, while representation
(4.4) (2) is said to be nonstandard.

4.2. The Convergence Theorem

Introduce the following group of conditions: for all u ∈ R1 and t ∈ [0,∞),

(B) (i) 〈M(u)〉 � K,

(ii) ht(u) ≤ Bt(1 + u2), Bt ≥ 0, B = (Bt)t≥0 ∈ P, B ◦K∞ <∞, where ht(u) =
d〈M(u)〉t
dKt

;

(I) (i)
(i1) I{∆Kt �=0}|Ht(u)| ≤ Ct(1 + |u|), Ct ≥ 0, C = (Ct)t≥0 ∈ P, C ◦Kt <∞,

(i2) C2∆K ◦Kd∞ <∞,
(ii) for each ε > 0,

inf
ε≤|u|≤1/ε

|α(u)| ◦K∞ =∞;

(II) (i) [αt(u)I{∆Kt �=0} + βt(u)]
+ ≤ Dt(1 + u2), Dt ≥ 0, D = (Dt)t≥0 ∈ P, D ◦Kd∞ <∞,

(ii) for each ε > 0,

inf
ε≤|u|≤1/ε

{|α(u)|I{∆K=0} + [α(u)I{∆K �=0} + β(u)]−} ◦K∞ =∞.

Remark 4.3. In the above-mentioned case 1◦ for M(u) ≡ m ∈ M2loc, we do not require the condition
〈m〉 � K and replace condition (B) by

(B′) 〈m〉∞ <∞.

Remark 4.4. Everywhere we assume that all conditions are satisfied P -a.s.

Remark 4.5. It is obvious that (I) (ii) ⇒ C ◦K∞ =∞.

Theorem 4.2. Let conditions (A), (B), (I) or (A), (B), (II) be satisfied. Then

Zt → 0 P -a.s. as t→∞.
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Proof. Assume, for example, that conditions (A), (B), and (I) are satisfied. Then by virtue of Corol-
lary 4.1 and (4.3) with standard representation (4.4) (1) of the process A, we obtain

{(1 + Z2−)
−1 ◦A1∞ <∞} ⊆ {Z2 →} ∩ {A2∞ <∞}. (4.5)

But from conditions (B) and (I) (i) we find that

{(1 + Z2−)
−1 ◦A1∞ <∞} = Ω (P -a.s.)

and, therefore,

{Z2 →}∩ {A2∞ <∞} = Ω (P -a.s.). (4.6)

Denote Z2∞ = lim
t→∞

Z2t , N = {Z2∞ > 0}, and assume that P (N) > 0. In this case, from (I) (ii), by simple

arguments, we obtain
P (|α(Z−)| ◦K∞ =∞) > 0,

which contradicts Eq. (4.6). Hence P (N) = 0.
The proof of the second case is similar.

In the following propositions the relationship between conditions (I) and (II) is given.

Proposition 4.1. (I)⇒ (II).

Proof. From (I) (i1) we find

[αt(u)I{∆Kt �=0} + βt(u)]
+ ≤ βt(u) ≤ C

2
t∆Kt(1 + u2),

and if we take Dt = C2t∆Kt, then (II) (i) follows from (I) (i2).
Further, from (I) (i1) we obtain

|αt(u)|I{∆Kt=0} + [αt(u) + βt(u)]
−I{∆Kt �=0} ≥ |αt(u)| − βt(u) ≥ |αt(u)| − C

2
t∆Kt

(
1 +

1

ε2

)
for each ε > 0 and u with ε ≤ |u| ≤

1

ε
.

Now (II) (ii) follows from (I) (i2) and (I) (ii).

Proposition 4.2. Under (I) (i) we have (I) (ii)⇔ (II) (ii).

The proof immediately follows from the previous proposition and the trivial implication (II) (ii) ⇒
(I) (ii).

4.3. Simple Sufficient Conditions for (I) and (II)

Introduce the following group of conditions: for each u ∈ R1 and t ∈ [0,∞),
(S.1)

(i)
(i1) Gt|u| ≤ |Ht(u)| ≤ G̃t|u|, Gt ≥ 0, G = (Gt)t≥0, G̃ = (G̃t)t≥0 ∈ P, G̃ ◦Kt <∞,

(i2) G̃2∆K ◦Kd∞ <∞;

(ii) G ◦K∞ =∞; (4.7)

(S.2)

(i) G̃[−2 + G̃∆K]+ ◦Kd∞ <∞; (4.8)

(ii) G{2I{∆K=0} + [−2 + G̃∆K]−I{∆K �=0}} ◦K∞ =∞. (4.9)

Proposition 4.3.

(S.1)⇒ (I),

(S.1) (i1), (S.2)⇒ (II).
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Proof. The first implication is obvious. As for the second one, we note that

αt(u)I{∆Kt �=0} + βt(u) = −2|Ht(u)||u|I{∆Kt �=0} +H2t (u)∆Kt

≤ |Ht(u)||u|[−2I{∆Kt �=0} + G̃t∆Kt]. (4.10)

Thus,

[αt(u)I{∆Kt �=0} + βt(u)]
+ ≤ |Ht(u)||u|[−2I{∆Kt �=0} + G̃t∆Kt]

+

≤ G̃t[−2I{∆Kt �=0} + G̃t∆Kt]
+|u2|

and (II) (i) follows from inequality (4.8) if we take

Dt = G̃t[−2 + G̃t∆Kt]
+I{∆Kt �=0}.

Further, from inequality (4.10) we find that

|αt(u)|I{∆Kt=0} + [αt(u)I{∆Kt �=0} + βt(u)]
− ≥ u2Gt{2I{∆Kt=0} + [−2I{∆Kt �=0} + G̃t∆Kt]

−}

and (II) (ii) follows from (4.9).

Remark 4.6. (a) (S.1) ⇒ (S.2);
(b) under (S.1) (i) we have (S.1) (ii) ⇔ (S.2) (ii);
(c) (S.2) (ii) ⇒ (S.1) (ii).
Summarizing the above results, we come to the following conclusions: (a) if condition (S.1) (ii) is not

satisfied, neither is condition (S.2) (ii); (b) if conditions (S.1) (i1) and (S.1) (ii) are satisfied but condition
(S.1) (i2) is violated, then conditions (S.2) (i) and (S.2) (ii) can nevertheless be satisfied.

In this case, the nonstandard representation (4.4) (2) is useful.

Remark 4.7. Denote

G̃t∆Kt = 2+ δt, δt ≥ −2 for all t ∈ [0,∞).

It is obvious that if δt ≤ 0 for all t ∈ [0,∞), then [−2 + G̃t∆Kt]
+ = 0. Therefore, condition (S.2) (i) is

trivially satisfied and (S.2) (ii) takes the form

G{2I{∆K=0} + |δ|I{∆K �=0}} ◦K∞ =∞. (4.11)

Note that if Gmin(2, |δ|)◦K∞ =∞, then (4.11) holds, and the simplest sufficient condition for (4.11)
is

G ◦K∞ =∞, |δt| ≥ const > 0

for all t ≥ 0.

Remark 4.8. Let conditions (A), (B), and (I) be satisfied. Since we apply Theorem 4.1 and its corol-
lary on the semimartingale convergence sets, we get rid of many “usual” restrictions such as “moment”
restrictions, boundedness of the regression function, etc.

Remark 4.9. As an example of a nonstandard representation we tried to show to what extent one of
numerous possible representations of the process A from (3.2) can be useful. Obviously, starting from the
purposes of statistical problems, some other useful representations are possible.
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4.4. Special Models

1. Discrete time.

(a) Recursive MLE in parametric statistical models. Let X0,X1, ...,Xn, ... be observations taking
values in a measure space (X ,B(X )) such that there exist regular conditional densities of distributions
(w.r.t. a measure µ) fi(xi, θ | xi−1, ..., x0), i ≤ n, n ≥ 1, and θ ∈ R1 is the parameter to be estimated.
Denote by Pθ the corresponding distribution on (Ω,F) := (X∞,B(X∞)). Identify the processX = (Xi)i≥0
with the coordinate process and denote Fn = σ(Xi, i ≤ n). If ψ = ψ(Xi,Xi−1, ...,X0) is a r.v., then by
Eθ(ψ | Fi−1) we mean the following version of the conditional expectation:

Eθ(ψ | Fi−1) :=

∫
ψ(z,Xi−1, ...,X0)fi(z, θ | Xi−1, ...,X0)µ(dz)

if the last integral exists.
Assume that the usual regularity conditions are satisfied and denote

ḟi(xi, θ | xi−1, ..., x0) :=
∂

∂θ
fi(xi, θ | xi−1, ..., x0),

the maximum likelihood scores by

li(θ) =
ḟi
fi
(Xi, θ | Xi−1, ...,X0),

and the empirical Fisher information by

In(θ) :=
n∑
i=1

Eθ(l
2
i (θ) | Fi−1).

Also, we denote

bn(θ, u) := Eθ(ln(θ + u) | Fn−1)

and show that for each θ ∈ R1, n ≥ 1,

bn(θ, 0) = 0 (P -a.s.). (4.12)

Consider the following recursive procedure:

θn = θn−1 + I−1n (θn−1)ln(θn−1), θ0 ∈ F0.

Fixing θ and denoting Zn = θn − θ, we rewrite the last equation in the form

Zn = Zn−1 + I−1n (θ + Zn−1)bn(θ, Zn−1) + I−1n (θ + Zn−1)∆mn, Z0 = θ0 − θ, (4.13)

where ∆mn = ∆m(n,Zn−1) with ∆m(n, u) = ln(θ + u)−Eθ(ln(θ + u) | Fn−1).
Note that algorithm (4.13) is embedded into the stochastic approximation scheme (4.1) with

Hn(u) = I−1n (θ + u)bn(θ, u) ∈ Fn−1,

∆Kn = 1,

∆M(n, u) = I−1n (θ + u)∆m(n, u).

This example clearly shows the necessity of considering random fields Hn(u) and M(n, u).

Remark 4.10. Let θ ∈ Θ ⊂ R1, where Θ is an open proper subset of R1. It can be possible to define
the objects ln(θ) and In(θ) only on the set Θ, but for each fixed θ ∈ Θ the objects Hn(u) and M(n, u)
are well-defined functions of the variable u on the whole R1. Then under the conditions of Theorem 4.2,
θn → θ Pθ-a.s. as n → ∞, starting from an arbitrary θ0. The example given below illustrates this
situation. The same example also shows the efficiency of representation (4.3) (2).
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(b) The Calton–Watson branching process with immigration. Let the process

Xi =

Xi−1∑
j=1

Yi,j + 1, i = 1, 2, ..., n, X0 = 1,

be observed, where Yi,j are i.i.d. random variables having the Poisson distribution with the parameter θ,
θ > 0, to be estimated. If Fi = σ(Xj , j ≤ i), then

Pθ(Xi = m | Fi−1) =
(θXi−1)

m−1

(m− 1)!
e−θXi−1 , i = 1, 2, ...; m ≥ 1,

whence we have

li(θ) =
Xi − 1− θXi−1

θ
, In(θ) = θ−1

n∑
i=1

Xi−1.

The recursive procedure has the form

θn = θn−1 +
Xn − 1− θn−1Xn−1

n∑
i=1

Xi−1

, θ0 ∈ F0, (4.14)

and if, as usual, Zn = θn − θ, then

Zn = Zn−1 −
Zn−1Xn−1
n∑
i=1

Xi−1

+
εn

n∑
i=1

Xi−1

, (4.15)

where εn = Xn − 1 − θXn−1 is a Pθ-square integrable martingale-difference. In fact, Eθ(εn | Fn−1) = 0,

Eθ(ε
2
n | Fn−1) = θXn−1. In this case, Hn(u) = −uXn−1

/ n∑
i=1

Xi−1, ∆M(n, u) = εn

/ n∑
i=1

Xi−1, ∆K = 1,

and, therefore, they are well defined on the whole R1.
Now we show that the solution of Eq. (4.14) coincides with the MLE

θ̂n =

n∑
i=1

(Xi − 1)

n∑
i=1

Xi−1

.

It is easy to see that (θ̂n)n≥1 is strongly consistent for all θ > 0. Indeed,

θ̂n − θ =

n∑
i=1

εi

n∑
i=1

Xi−1

and the desirable follows from the strong law of large numbers for martingales and from the well-known
fact (see, e.g., [31]) that for all θ > 0,

∞∑
i=1

Xi−1 =∞ (Pθ-a.s.). (4.16)

Derive this result as a corollary of Theorem 4.2.
First, we note that for each θ > 0, conditions (A) and (B′) below are satisfied. Indeed,

(A) Hn(u)u =
−u2Xn−1
n∑
i=1

Xi−1

< 0
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for all u �= 0 (Xi > 0, i ≥ 0);

(B′) 〈m〉∞ = θ

∞∑
n=1

Xn−1( n∑
i=1

Xi−1

)2 <∞,
thanks to (4.16).

Now, to illustrate the efficiency of condition (II), let us consider two cases:
(1) 0 < θ ≤ 1 and (2) θ is arbitrary, i.e., θ > 0.
In case (1), condition (I) is satisfied. In fact,

|Hn(u)| =

(
Xn−1

/ n∑
i=1

Xi−1

)
|u|

and
∞∑
n=1

X2n−1

/( n∑
i=1

Xi−1

)2
<∞

Pθ-a.s. But if θ > 1, then the last series diverges and condition (I) (i) is not satisfied.
On the other hand, the proof of the desirable convergence by verifying condition (II) is almost trivial.

Indeed, using Remark 4.7 and taking

G̃n = Gn = Xn−1

/ n∑
i=1

Xi−1,

we obtain
∞∑
n=1

Gn =∞ Pθ-a.s., for all θ > 0. Moreover, δn = −2 + G̃n < 0, |δn| ≥ 1.

2. RM algorithm with a deterministic regression function. Consider a particular case of algorithm
(4.1) withHt(ω, u) = γt(ω)R(u), where the process γ = (γt)t≥0 ∈ P, γt ≥ 0 for all t ≥ 0, dM(t, u) = γtdmt,
m ∈M2loc, i.e.,

dZt = γtR(Zt−)dKt + γtdmt, Z0 ∈ F0.

(a). Let the following conditions be satisfied:

(A) R(0) = 0, R(u)u < 0 for all u �= 0,

(B′) γ2 ◦ 〈m〉∞ <∞,

(1) |R(u)| ≤ C(1 + |u|), C > 0 is constant,

(2) for each ε > 0, inf
ε≤u≤1/ε

|R(u)| > 0,

(3) γ ◦Kt <∞, ∀t ≥ 0, γ ◦K∞ =∞,

(4) γ2∆K ◦Kd∞ <∞.

Then Zt → 0 P -a.s. as t→∞.
Indeed, it is easy to see that (A), (B′), (1)–(4) ⇒ (A), (B), and (I) of Theorem 4.2.
In [72], this result has been proved on the basis of the theorem on the semimartingale convergence

sets mentioned in Remark 4.1. In the case where Kd �= 0, this automatically leads to the “moment”
restrictions and also the additional assumption |R(u)| ≤ const.
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(b). Let, as in case (a), conditions (A) and (B′) be satisfied. Moreover, assume that for each u ∈ R1 and
t ∈ [0,∞):

(1) αt(u) + βt(u) ≤ 0,

(2) for all ε > 0, Iε := inf
ε≤u≤1/ε

{−(α(u) + β(u))} ◦K∞ =∞.

Then Zt → 0 P -a.s. as t→∞.
Indeed, it is not hard to verify that (1), (2) ⇒ (II).
The question arises whether is it possible for (1) and (2) to be satisfied.
Suppose, in addition, that

C1|u| ≤ |R(u)| ≤ C2|u|, C1, C2 are constants, (4.17)

(3) 2− C2γt∆Kt ≥ 0,

(4) γ(2− C2γ∆K) ◦K∞ =∞.

Then (3)⇒ (1) and (4)⇒ (2).
Indeed,

αt(u) + βt(u) ≤ C1γt|u|
2[−2 + C2γt∆Kt] ≤ 0,

Iε ≥ C1ε
2{γ(2− C2γ∆K) ◦K∞} =∞.

Remark 4.11. (4)⇒ γ ◦K∞ =∞.

In [74], the convergence Zt → 0 P -a.s. as t→∞ was proved under the following conditions:
(A) R(0) = 0, R(u)u < 0 for all u �= 0;
(M) there exists a nonnegative predictable process r = (rt)t≥0 integrable with respect to the process

K = (Kt)t≥0 on any finite interval [0, t] with the following properties:

(a) r ◦K∞ =∞;

(b) A1∞ = γ2E−1(−r ◦K) ◦ 〈m〉∞ <∞;

(c) all jumps of the process A1 are bounded;

(d) rtu
2 + γ2t∆KtR

2(u) ≤ −2γtR(u)u, for all u ∈ R1 and t ∈ [0,∞).

Show that (M) ⇒ (B′), (1), and (2).
It is obvious that (b)⇒ (B′). Further, (d)⇒ (1). Finally, (2) follows from (a) and (d) thanks to the

relation

Iε = inf
ε≤|u|≤1/ε

−(α(u) + β(u)) ◦K∞ ≥ ε
2r ◦K∞ =∞.

The implication is proved.
In the particular case where (4.7) holds and for all t ≥ 0, γt∆Kt ≤ q, q > 0 is a constant, and C1

and C2 in (4.17) are chosen so that 2C1− qC22 > 0 if we take rt = bγt, b > 0 with b < 2C1− qC22 , then (a)
and (d) are satisfied if γ ◦K∞ =∞.

But these conditions imply (3) and (4). In fact, on one hand, 0 < 2C1 − qC22 ≤ C1(2 − qC2) and,
therefore, item (3) follows, since 2 − C2γt∆Kt ≥ 2 − qC2 > 0. On the other hand, item (4) follows from
γ(2− C2γ∆K) ◦K∞ ≥ (2− qC2)γ ◦K∞ =∞.

From what was said above, we can conclude that if conditions (A), (B′), (4.17), γt∆Kt ≤ q, q > 0,
2− qC2 > 0, and γ ◦K∞ =∞ are satisfied, then the desirable convergence Zt → 0 P -a.s. takes place and,
therefore, there is no need for choosing the process r = (rt)t≥0 with properties (M) (cf. [74], Remark 3.3
and Sec. 4).

2834



(c) Linear model (see, e.g., [72]). Consider the linear RM procedure

dZt = bγtZt−dKt + γtdmt, Z0 ∈ F ,

where b ∈ B ⊆ (−∞, 0) and m ∈M2loc.
Assume that

γ2 ◦ 〈m〉∞ <∞, (4.18)

γ ◦K∞ =∞, (4.19)

γ2∆K ◦Kd <∞.

Then for each b ∈ B, conditions (A), (B′), and (I) are satisfied. Hence,

Zt → 0 P -a.s. as t→∞. (4.20)

Now let (4.18) and (4.19) be satisfied, but P (γ2∆K ◦Kd =∞) > 0.
At the same time, assume that B = [b1, b2], −∞ < b1 ≤ b2 < 0 and for all t ≥ 0, γt∆Kt < |b1|−1.
Then for each b ∈ B, (4.20) holds.
Indeed,

[αt(u)I{∆K �=0} + βt(u)]
+ = |b|γtu

2[−2 + |b|γt∆KtI{∆K �=0}]
+

≤ I{∆K �=0}|b|γtu
2[−2 + |b1|γt∆Kt]

+ = 0

and, therefore, (II) (i) is satisfied.
On the other hand,

inf
ε≤|u|≤1/ε

u2{2γ|b|I{∆K �=0} + bγ[2− |b|γ∆K]I{∆K �=0}} ◦K∞

≥ ε2|b|γ[2− |b|γ∆K] ◦K∞ ≥ ε
2|b|γ ◦K∞ =∞.

Thus, (II) (ii) is also satisfied.
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