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ON THE INNOVATION OF CONTINUOUS

MULTIDIMENSIONAL SEMIMARTINGALE.

III. INFORMATION MODELLING IN FINANCE

G. MELADZE AND T. TORONJADZE

Abstract. The paper is devoted to study of mean-variance hedging
problem under the partial information which in our context means
the following: the main model of risky asset contains an unobserv-
able random element. The agent remove this nuisance parameter by
filtering and as a result he get the process of “new information” so
called innovation process. The main goal of the paper consists in con-
struction of optimal hedging strategy under the partial information
generated by the innovation process.

îâäæñéâ. ê�öîëéæ âú�ãêâ�� ï�öñ�èë-çã�áî�ðñèæ �äîæå ÿâþæ-

îâ�æï ìîë�èâé�ï ê�ûæèë�îæã á�çãæîãâ�æï öâéåýãâã�öæ, î�ù éë-

ùâéñè çëêðâóïðöæ êæöê�ãï öâéáâàï: îæïçæ�êæ �óðæãæï éëáâèæ öâ-

æù�ãï á�ñçãæîãâ��á öâéåýãâãæå âèâéâêðï. �àâêðæ òæèðî�ùææï éâ-

öãâë�æå �ùæèâ�ï ïóâé�ï �é ýâèöâéöèâè ì�î�éâðîï, îæï öâáâà�á�ù

æ�â�ï \�ý�èæ æêòëîé�ùææï" ìîëùâïï { à�êé��ýèâ�âè ìîëùâïï.

ê�öîëéæï éå�ã�îæ �éëù�ê�� à�á�æüî�ï ï�öñ�èë-çã�áî�ðñèæ �ä-

îæå ÿâþæîâ�æï ìîë�èâé� �ý�èæ æêòëîé�ùææï ìæîë�â�öæ, â.æ. æé

æêòëîé�ùæ�äâ á�õîáêë�æå, îëéâèï�ù öâæù�ãï à�êé��ýèâ�âèæ

ìîëùâïæ.

1. Introduction

In the paper we continue to study the problem of construction of an inno-
vation process for continuous multidimensional semimartingale with further
application to the mean-variance hedging problem of mathematical finance,
namely, we consider the latter problem under so called partial informa-
tion. Many authors studied the mean-variance hedging problem in different
schemes: e.g., in cases when the stock prices are observed at discrete time
moments, [3], [4], when the restriction on information is more general, but
the stock price process is a martingale under the objective probability [5]
[6], when the drift coefficient is unobservable [8], etc.
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Our approach concerns slightly different situation. We consider the par-
tially observable financial market when the prices of risky assets of main
(observable) component influenced by the some random stochastic factor
which is modelled by random element which takes values in some measurable
space or by price process of risky assets which is traded on non-observable
component of “big” financial market.

In this situation unobservable factors play the role of nuisance parameter
and the first what the agent can do is to remove this parameter from the
scheme by filtering. After this filtration agent faces the new information
which is “free” from unobservable factors and hence more dependable for
trading decisions. Mathematically this means that the investor construct
the so-called innovation process and as a main information considered the
flow of σ-algebras generated by the values of innovation process. But in
such situation, generally, the following inclusions are true:

FM ⊂ FS ⊂ F,

where F is initial wide flow of σ-algebras and initially all objects are F -
adapted; FS is a flow generated by the values of stock S itself and finally

FM is the flow of information generated by the innovation process M .
The problem is to solve the mean-variance hedging problem under the

restriction that the optimal hedging strategy must be FM -predictable.
Our approach consist in following: we construct the object somewhat

less popular (and less investigated) so-called strong innovation process M
for the process S. The main feature of such process is that “it contains the

same information as S”, i.e., FM = FS . Based on last property we study
three schemes of markets: first two leads to the complete market (after
“strong filtering”, Section 2) and the last is a popular model of stochastic
volatility which gives an example of incomplete market (Section 3).

The paper is based on the results obtained in [1], [2].

2. General Preliminaries and Statement of Problem

Consider a financial market M that operates under uncertain conditions
describes by a probability space (Ω,F , P ) equipped with a filtration F =
(Ft)0≤t≤T , T > 0, satisfying the usual conditions and representing the flow
of total information on [0, T ]. For simplicity we assume that FT = F .

Market M consists of two interacting components M1 and M2.
There are d1 + 1 assets (d1 ≥ 1) in the market M1. The 0-th asset is

riskless, equal to 1 at any time. The last d assets could be risky (stocks)
and their price process is given by an Rd1-valued F -adapted process S =
(S1, . . . , Sd1

).
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Component M2 consists of some stochastic factors which influences the
stock price process S. The elements of market M2 may be some random ele-
ment Y which takes values in the measurable space (B,B), or d2-dimensional
(d2 ≥ 1) price process Y = (Y1, . . . , Yd2

) of some risky assets given by an
Rd2-valued F -adapted process Y , etc.

An investor (agent) functions only in the market M1: the stocks in the
market M1 only are available to agent for trading and price dynamics of
assets traded in the market M1 are observable. The stochastic factors of
market M2 are unobservable and will be considered as nuisance factors
(parameters).

This model of financial market M we call partially observable with ob-
servable component M1 and non-observable component M2.

Such model seems reasonable, e.g., in following situations:
1) Let Y be the exogenous variable of economics, described by the market

model M1. This variable actions on the price dynamics of assets traded in
the market M1, but itself it is not observable;

2) The marketM consists of the open market M1 and the shadow market
M2. The prices of assets in the open and shadow markets are interacting.
The agent functions in the open market M1;

3) The information about unobservable factors not dependable and will
be considered as nuisance parameter, and the investor, who invests in the
risky assets S in the marketM1 does not wish to use this distort information
to trading decisions. The investor’s decisions are based on the dependable
information available on the marked M1.

To be more concrete introduce the models of markets M1 and M2.
a) Suppose the price dynamics of risky assets S are governed by the

following system of stochastic differential equations (SDEs)

dS(t) = diagS(t) (µ(t, S, Y ) dAt + σ(t, S) dM(t)) ,

S(0) = S0 ∈ Rd1

+ ,
(2.1)

where S=(S1, . . . , Sd1
), the coefficients µ(t, x, y) : [0, T ]×Cd1

[0,T ] ×B → Rd1 ,

µ= (µ1, . . . , µd1
), σ(t,X) : [0, T ] × Cd1

[0,T ] → Rd1 × Rd, σ = (σij), 1 ≤ i ≤

d1, 1 ≤ j ≤ d, d1 ≤ d, are nonanticipative functionals and σ = (σ σ ′)
1
2

is nonsingular matrix, M = (M1, . . . ,Md) is a d-dimensional continuous
martingale, with 〈M〉 = Id×d · A, where A = (At)0≤t≤T is a continuous
increasing deterministic function, AT < ∞, Id×d is unit d × d-dimensional
matrix, Y is a random element taking values in some measurable space

(B,B) independent of M , diag S(t) is a matrix

(
S1(t) 0

.. .
0 Sd1

(t)

)
.

b) Suppose the price dynamics of stocks S are the same as in a), i.e.,
governed by the SDEs (2.1) and d2 stochastic factors Y = (Y1, . . . , Yd2

),
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d1 + d2 = d, follows the SDE

dYt = ã(t, S, Y ) dAt + b̃(t, S, Y ) dM(t), Y (0) = Y 0 ∈ Rd2 , (2.2)

where the coefficients ã(t, x, y) : [0, T ] × Cd1

[0,T ] × Cd2

[0,T ] → Rd2, b̃(t, x, y) :

[0, T ] × Cd1

[0,T ] × Cd2

[0,T ] → Rd2 × Rd, ã = (ã1, . . . , ãd2
), b̃ = (̃bij), 1 ≤ i ≤ d2,

1 ≤ j ≤ d, are nonanticipative functionals.
c) Suppose the stock price process S is given by the following stochastic

volatility model:

dS(t) = diag S(t) (µ(t, S, Z, Y ) dAt + σ1(t, S, Z)) dM(t),

S(0) = S0 ∈ Rn
+,

dZ(t) = K(t, S, Z, Y ) dAt + σ2(t, S, Z) dM(t),

Z(0) = Z0 ∈ Rm,

(2.3)

where the nuisance parameter Y are as in a) or b), i.e., Y is a random
element with values in the space (B,B) independent of the process M , or
Y = (Y1, . . . , Yd2

) is a stochastic process governed by the SDE (2.2). Here
the coefficients µ = (µ1, . . . , µn), σ1 = (σ1,ij), 1 ≤ i ≤ n, 1 ≤ j ≤ d,
K = (K1, . . . ,Km), σ2 = (σ2,ij), 1 ≤ i ≤ m, 1 ≤ j ≤ d, m + n = d1,
d1 + d2 = d, µ(t, x, z, y) and K(t, x, z, y) are nonanticipative functionals

defined on [0, T ] × Cn
[0,T ] × Cm

[0,T ] × B (or Cd2

[0,T ]) and σ1(t, x, z), σ2(t, x, z)

are nonanticipative functionals defined on [0, T ]×Cn
[0,T ]×Cm

[0,T ], the process

M = (M1, . . . ,Md) and the function A are as in a) and b). Suppose also

that ( σ1
σ2

) =
((

σ1

σ2

) (
σ1

σ2

)′) 1
2

is a nondegenerated d1 × d1 matrix.

In all schemes a), b) and c) suppose there exist unique strong solutions
of corresponding SDEs (2.1), (2.1)–(2.2), (2.3)–(2.2).

Let us remove the unobservable nuisance parameter Y from the equations
(2.2) and (2.3) by the filtration.

We get:

dS(t) = diagS(t)
(
m(t, S) dAt + σ(t, S) dM(t)

)
, S(0) = S0 ∈ Rd1

+ , (2.4)

where the innovation process M = (M1, . . . ,Md1
) is given by the formula

M(t)=

t∫

0

σ−1(u, S) )(diagS(u))
−1

(dS(u) − diag S(u)m(u, S) dAu) , (2.5)
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with m(t, S) = E
(
µ(t, S, Y ) | FS

t

)
and σ(t, S)=(σ σ ′)

1
2 (t, S) in the schemes

(2.1) or (2.1)–(2.2) and

dS(t) = diagS(t)
(
m1(t, S, Z) dAt + σ1(t, S, Z) dM(t)

)
,

S(0) = S0 ∈ Rn
+,

dZ(t) = m2(t, S, Z) dAt + σ2(t, S, Z) dM(t),

Z(0) = Z0 ∈ Rn,

(2.6)

where the innovation process M = (M1 . . . ,Md1
), is given by the relation

M(t) =

t∫

0

σ−1(u, S, Z)

(
d

(
S(u)
Z(u)

)
−

− diag

(
S(u)

1

)(
m1

m2

)
(u, S, Z) dAu

)
(2.7)

with (
m1

m2

)
(t, S, Z) = E

(
µ

K
(t, S, Z, Y ) | FS,Z

t

)

and

σ(t, S, Z) =

(
σ1

σ2

)
(t, S, Z) =

((
σ1

σ2

)(
σ1

σ2

)′
) 1

2

(t, S, Z)

in the scheme (2.3)–(2.2).
Note that in the schemes described by (2.4) and (2.5)

FM ⊆ FS , (2.8)

and in the scheme (2.6)–(2.7)

FM ⊆ FS,Z. (2.9)

Suppose now that in the scheme (2.6)–(2.7) σ1σ
′
1 in continuous in (t, s, z)

and for all (t, s) the functional σ1σ
′
1(t, s, ·) is one-to-one from Cm

[0,T ] into a

subset Σ of the set of n× n-dimensional positive definite matrices, and its
inverse functional denoted L(t, s, ·) is continuous in (t, s, σ) ∈ [0, T ]×Cd

[0,T ]×

Σ. See, also [10], [11].
Under these conditions

Z(t) = L(t, S, σ1σ
′
1(t, S, Z))

and

〈S〉t =

t∫

0

σ1σ
′
1(u, S, Z) dAu.
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From this easily follows that

FZ ⊆ FS ,

and, consequently,

FS,Z = FS . (2.10)

In both cases the investor removes the “junk” information and passes to
the new “clean” information containing in the innovation process M which
the agent wishes to use for investment decisions.

Hence we get the following information flows

FM ⊆ FS ⊆ F, (2.11)

where FM and FS are the P -augmented flows of σ-algebras generated by
the values of process M and S, respectively.

We consider the following investment problem: construct the mean-
variance optimal hedging strategies of general contingent claim, under the
partial information, i.e., when the investor used an information containing

only in FM .

3. The Mean-Variance Hedging Problem under Restricted

Information

Consider the models a) or b) described in the previous Section 2. As it
follows from Lemma 5.2 from [2], the model b) can be reduces to the model
a).

But to illustrate how the conditions can be verified, we consider the model
(2.1), (2.2)

dS(t)=diagS(t) (µ(t, S, Y ) dAt + σ(t, S) dM(t)) ,

S(0) = S0 ∈ Rd1

+ ,

dY (t)= ã(t, S, Y ) dAt + b̃(t, S, Y ) dM(t), η(0) = η0 ∈ Rd2 ,

(3.1)

with innovation

M(t) =

t∫

0

σ−1(u, S) (diagS(u))−1 (dS(u) − diagS(u)m(u, S) dAu) , (3.2)

where the coefficients and the other object are the same as in subsections
a) and b) of Section 2.

Let us formulate the mean-variance hedging problem under restricted
information. The space of admissible trading strategies Θ(F ) consists of
all Rd-valued F -predictable process θ, which are S-integrable, such that
T∫
0

θ(t) dS(t) ∈ L2(P,FT ) and the stochastic integral
∫
θ dS is aQ-martingale
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under any Q ∈ P(F ). Here P(F ) =
{
Q ∼ P on (Ω,Ft):

dQ
dP

∣∣
FT

∈

L2(P,FT ), and S is a Q local martingale
}
.

It is assumed that there is no arbitrage, i.e., P(F ) 6= 0. The process
θ = (θ(t)) for each t represents the number of shares of stocks held at time
t, based on information Ft. For a given initial investment x ∈ R1

+ and
trading strategy θ ∈ Θ(F ), the self-financed wealth process is defined as

V
x,θ
t = x+

∫ t

0
θsdS(s), 0 ≤ t ≤ T . The FT -measurable r.v. H ∈ L2(P,FT )

models the payoff from financial product at maturity time T . If a hedger
starts with the initial investment x and uses the trading strategy θ, the
mean-variance hedging problem means to find a trading strategy θ∗,F (x)
solution of

JF (x) = min
θ∈Θ(F )

E(H − V
x,θ
T )2.

In our situation, i.e., under the innovation information restriction we
have

FM ⊂ FS ⊂ F

and our decisions (trading strategy or portfolio) must be based on infor-

mation flow FM , i.e., θ must be FM -predictable process. Denoting by
g = (g(t,X, Y )) any of coefficients of SDE (3.1), suppose that

1) |g(t,X, Y )| ≤ const, ∀(t, x, y) ∈ [0, T ]× Cd2

[0,T ] × B,

2) Introduce the following stopping time (for each N = 1, 2, . . . )

τN (x1, x2) := inf

{
t : t > 0, sup

0≤s≤t

max
(
|x1(s)|2, |x2(s)|2

)
> N

}
,

where inf{∅} = +∞, | · | is a norm in Rd1, and the set DN , where

DN =
{
(t, x1, x2) ∈ [0, T ]× Cd1

[0,T ] × B : 0 < t < τN (x1, x2)
}
,

and suppose that on the set DN

∣∣g(t, x2, y2) − g(t, x2, y2)
∣∣2 ≤ constN

((
‖x1 − x2‖d1

t

)2

+
(
‖y1 − y2‖d2

t

)2
)
,

where ‖x‖l
t = sup

0≤s≤t

|x(s)|l, | · |l is a norm in Rl, where l = d1 or d2.

3) The matrix σ = (σ σ ′) is uniformly elliptic.
Under these conditions there exists unique strong solution (S, Y ) of the

system of SDEs (3.1). Indeed, introduce the process Xt = lnS(t) which is
well defined since under conditions 1)–3) inf

0≤t≤T
S(t) > 0, P -a.s. Then if we

use the Itô formula we easily arrive at the scheme (5.1) of [2] with

ϕ(t, x, y) = µ(t, ex, y) −
1

2
~dg(σ σ ′)(t, ex),

σ1(t, x) = σ(t, ex),

ψ(t, x, y) = ã(t, ex, y),
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σ2(t, x, y) = b̃(t, ex, y),

where ~dg r is the vector of diagonal elements (γ11, . . . , γd1d1
) of the matrix

Γ = ‖γij‖, i, j = 1, d1.
Note now that using elementary inequality

|ex − ey| ≤
ex + ey

2
|x− y|, x, y ∈ R1,

and the Lipschitz condition we easily get that the new coefficients ϕ, σ1, ψ,
σ2 satisfy the local Lipschitz condition in variable x and the global one in
variable y. All coefficients are bounded and σ1σ

′
1 is uniform elliptic. Thus

using Theorem 5.2 of [2] we arrive at the following

Theorem 3.1. Under conditions 1), 2) and 3) the SDE

dS(t) = diag S(t)
(
m(t, S) dAt + σ(t, S) dM(t)

)
, S(0) = S0 ∈ Rd1

+ , (3.3)

has a unique strong solution.

Remark 3.1. We start by the system of the SDEs (3.1) with a given

coefficients µ, σ, ã and b̃ and given driving process M = (M(t)). Under the
conditions mentioned above this system has strong solution (S, Y ). By the
formula (3.2), we then constructed the new process M = (M(t)). Hence
the right hand side of (3.2) is nothing more than the definition of the left
hand side process M .

By Theorem 3.1 we initially fixed the coefficients m(t, ·) and σ(t, ·) and
driving process M = M(t) with independent increments and uncorrelated
components and construct the process S(t) = F (t,M) as a substitution
into nonanticipative functional F of a given process M . Hence by (3.2)

FM ⊂ FS , but by (3.3) FS ⊂ FM . Thus FM = FS .
Now return to our L2-hedging problem.
In fact we are in the complete market framework.

Denote (P, FM )-projection of contingent claim H ∈ L2(P,FT ) by

HF M := E
(
H | FM

T

)
.

The problem of mean-variance hedging under FM -information, given an

initial wealth x ∈ R1, consists in finding a trading strategy θ∗,F M

(x) solution
of

JF M (x) = min
θ∈Θ(F M)

E
[
H − V

x,θ
T

]2
.

The solution xF M (H) of

JF M = min
x∈R1

+

JFM
(x)
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is called FM -approximating price of H . This problem for the case when full
information F is available for the agent is solved in [7], [9]; if information
FS containing only in the stock S is available for investment decisions the
solution of the problem is given in [8].

Note that

JF M (x) = min
θ∈Θ(F M)

E
(
H −HF M +HF M − V

x,θ
T

)2

=

= min
θ∈Θ(F M)

[
E(H −HF M )2 + E(HF M − V

x,θ
T )2+

+E
(
E
(
(H −HF M )(HF M − V

x,θ
T ) | FM

T

))]
.

But

E
(
(H −HF M )(HF M − V

x,θ
T ) | FM

T

)
=

=
(
HF M − V

x,θ
T

)
E
(
H −HF M | FM

T

)
= 0,

by the definition of HF M and FT -measurability of V x,θ
T for all θ ∈ Θ(FM ).

Hence

JF M (x) = E(H −HF M )2 + ĴF M (x),

with

J̃F M (x) = min
θ∈Θ(F M)

E
(
HF M − V

x,θ
T

)2

.

Denote P̃ the variance-optimal equivalent local martingale measure

(ELMM). It is unique element of P(FM ) 6= ∅ (the standing assumption)

which minimizes
∥∥∥dQ

dP

∥∥∥
L2(P )

over all Q ∈ P(FM ).

It is well-known that

Z̃t := Ẽ

[
dP̃

dP

∣∣∣Ft

]
= Z̃0 +

t∫

0

ζ̃u dS(u)

for some ζ̃ ∈ Θ(FM ).
The following statements give us the solution of mean-variance problem.
Let H ∈ L2(P ); calculate HF M and write the Galtchouk–Kivita–Wata-

nabe decomposition of HF M under measure P̃ with respect to S, i.e.

HF M = Ẽ[HF M ] +

T∫

0

ξ
H

F M ,P̃

u dS(u) + L
H

F M ,P̃

T = V
H

F M ,P̃

T ,

with

V
H

F M ,P̃

t = Ẽ
(
HFM

| FM
t

)
=
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= ẼHF M +

t∫

0

ξ
H

F M ,P̃

u dS(u) + L
H

F M ,P̃

t ,

0 ≤ t ≤ T.

Then optimal initial investment (approximating price) is given by the for-
mula

xF M (H) = ẼHF M (3.4)

and optimal trading strategy is given by the relation

θ
∗,F M

t = ξ
H

F M ,P̃

t −
ζ̃t

Z̃t


V H

F M ,P̃

t − ẼHF M −

t∫

0

θ∗,F M

u dS(u)


 . (3.5)

The minimal total risk of HF M is given by the formula

R∗ = E

(
HF M − V

x
F M (H),θ∗,F M

T

)2

= E




T∫

0

ZP̃
u

Z̃u

[LH
F M ,P̃ ]u


 ,

with ZP̃
t = E

(
dP̃
dP

∣∣FM
t

)
, 0 ≤ t ≤ T .

Denote

λ(t, S) = σ(t, S)−1m(t, S)

and introduce the measure P ∗ on the σ-algebra FM
T by the formula

dP ∗ = ET (−λ ·M) dP,

i.e.,

dP ∗ | FM
T

dP | FM
T

= exp


−

T∫

0

λ(t, S) dM(t) −
1

2

T∫

0

|λ(t, S)|2 dAt


 .

From the boundedness of λ follows that ET E(−λ ·M) = 1. Hence P ∗ ∼ P

and the set

P(FM ) =

{
Q ∼ P on FM

T ,
dQ

dP

∣∣∣
FM

T

∈ L2(P, FM ),

and S is a Q-local martingale

}
= {P ∗},

since P(FM ) is nonempty if and only if E(ET (−λ · M))2 < ∞ which is
satisfies in considered case.

Since H ∈ L2(P,FT ), HF M = E(H | FM
T ) ∈ L2(P,FM

T ).

Define (P ∗, FM ) martingale

V M
t = EP∗

(HF M | FM
t ), 0 ≤ t ≤ T.
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By the martingale representation property we deduce

V M
t = EP∗

(HF M ) +

t∫

0

η′t dM(t), 0 ≤ t ≤ T, (3.6)

with FM -adapted, Rd1-valued process η = (ηt),
T∫
0

|ηt|
2dAt <∞.

Introducing the process ζM = (σ(t, S))−1ηt we rewrite (3.6) in the form

V M
t = EP∗

HF M +

t∫

0

ζM
u dS(u), 0 ≤ t ≤ T. (3.7)

Note now that
∫
ζMdS is a (P ∗, FM ) martingale and ζM ∈ Θ(FM ) since

T∫
0

ζM
u dS(u) = HF M − EP∗

(HF M ) ∈ L2(P, FM ). Considering (3.7) at the

moment t = T we get the Galtchouk–Kunita–Watenabe decomposition.
This is the key point. From this decomposition by the usual way (using
(3.4) and (3.5)) we get that

JF M (x) =
(EP∗

HF M − x)2

E2ET (−λ ·M)
+ E(H −HF M )2 (3.8)

and
xF M (H) = EP∗

[HF M ]. (3.9)

Thus we prove the following

Theorem 3.2. In the schemes (2.2)–(2.3) under conditions 1), 2) and

3) the minimal risk and approximative price of general contingent claim H

under the restricted information, when the flow FM is available to hedger for

investment decisions is given by the formulas (3.8) and (3.9). The optimal

hedging strategy can be find by the formula (3.5).

Consider now the scheme described in subsection c) of Section 2.2. De-
noting g = (g(t, x, z, y)) any of coefficients of scheme (2.3)–(2.2) suppose g
satisfies the conditions 1), 2) and 3) (i.e., in 3) it is assumed that the matrix
σ2 = σ1σ

′
1 with σ1 =

(
σ1

σ2

)
is uniformly elliptic) of Section 3. Then there

exists a unique strong solution (S,Z, Y ) of system (2.2)–(2.3). Introduce
the process X = (X1, X2) = (lnS,Z). Then using the Itô formula we easily
see that the process (X,Y ) satisfies system (5.1) from [2] with

ϕ(t, x, y) =

(
µ(t, ex1

, z, y) −
1

2
~dg(σ1σ

′
1)(t, e

x1

, z),K(t, ex1

, z, y)

)
,

σ1(t, x) =
(
σ1(t, e

x1

, z), σ2(t, e
x1

, z)
)
,

ψ(t, x, y) = ã(t, ex1

, y), σ2(t, x, y) = b̃(t, ex1

, y),
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where x = (x1, z), x1 is an n-dimensional and z is an m-dimensional vectors.
It is easy to verify that all coefficients are bounded, the Lipschitz contin-

uous (locally in x and globally in y) and matrix σ1σ
′
1 is uniformly elliptic.

Hence using Theorem 5.2 we get the following

Theorem 3.3. Under the above-mentioned conditions 1)–3) the system

of SDE (2.6) has a unique strong solutions and hence there exists strong

information process (given by (2.7) with

FS,Z = FM .

Now rewriting this system in triangle form we finally get

dS(t) = diagS(t)
(
m1(t, S, Z) dAt + σ(t, S, Z) dN(t)

)
,

S(0) = S0,

dZ(t) = m2(t, S, Z) dAt + ρ(t, S, Z) dN(t) + γ(t, S, Z) dM(t),

Z(0) = Z0,

(3.10)

where N and M are mutually independent n and m-dimensional processes
with independent increments and independent components. Under the ad-
ditional technical assumption (see Section 2, formula (2.10)) FS,Z = FS

and, finally,

FN,M = FS .

We may now use the method described earlier in this section to get the full
solution of mean-variance hedging problem in the case of partial information

(i.e., when information FM is only available for agent for trading decisions)
for the scheme (3.10) as well.

4. The Markov Dilation of the Path Dependent Processes and

the “Explicit” Solution of the Mean-Variance Hedging

Problem under Partial Information

In this section we consider the scheme described by the systems of SDEs
(2.3)–(2.2).

As it is well-known, when the processes describing market prices dynam-
ics have the Markov property, then the “explicit” solution (describing in the
terms of solutions of appropriate differential equations) of the mean-variance
hedging problem may be constructed.

But the feature of our methods given in this paper is such that even if
the initial scheme (2.3)–(2.2) has a Markov property, after the construction
of the innovation process we necessarily arrived at the scheme (3.10) with
path dependent coefficients of equations.

Hence to overcome this problem we used the so-called Markov dilation
method, which is based on the following observation: ifX is some continuous
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stochastic process with the sample paths from Cd
[0,T ], d ≥ 1, then the process

Xt, 0 ≤ t ≤ T , defined for each t ∈ [0, T ] by the relation

Xt = (Xt∧s, s ∈ [0, T ])

has a Markov property, i.e., for any Borel set B ∈ B(Cd
[0,T ])

Prob
(
Xt ∈ B | Xt1 , Xt1 , . . . , Xtn

)
= Prob

(
Xt ∈ B | Xtn

)
,

0 < t1 < · · · < tn < T,

since the σ-algebra σ(Xt) = σ(Xs, s ≤ t) increases as t increases.
Now consider the scheme (3.10) and suppose that ρ(t, s, z) ≡ 0, and the

coefficients of system depend only on the second component Z of the process
(S,Z). For simplicity consider the case when the both processes S and Z

are one-dimensional, N and M are Wiener processes, hence dAt = dt. We
assume also that the coefficients of initial scheme (2.3)–(2.2) satisfy the

conditions 1)–3) introduced in Section 3, hence FS = FS,Z = FN,M .
Thus we consider the following scheme: the process (S,Z) is a strong

solution (thanks to Theorem 3.3) of the SDE

(1)
dS(t)

S(t)
= m1(t, Z) dt+ σ(t, Z) dN (t), S(0) = S0 ∈ R1

+,

(2) dZ(t) = m2(t, Z) dt+ γ(t, Z) dM(t), Z(0) = Z0 ∈ R1,

(4.1)

where the coefficients m1, σ, m2, γ : [0, T ] × C[0,T ] → R1 are bounded,
continuous, nonanticipative functionals and, in addition, the SDE (4.1) (2)

has a unique strong solution Z, and hence FZ = FM .
Remember two main steps of solution of mean-variance hedging problem

(in particular, under the restricted information):

1. determine the variance-optimal ELMM P̃ and find the dynamics of

(S,Z) under P̃ ;
2. find the Galtchouk–Kivita–Watanabe decomposition of contingent

claim HF N,M = E(H | FN,M
T ) w.r.t. S under P̃ (see Section 3).

We need the following auxiliary results.

Lemma 4.1. Let ξt,ϕ be the solution of the SDE

ξt,ϕ
s = ϕs +

s∫

t

m2(u, ξ
t,ϕ) du +

s∫

t

γ(u, ξt,ϕ) dM(u), s > t,

ξt,ϕ
s = ϕs, s < t.

(4.2)

Denote

ξ = ξ0,c and ξt = ξ(t ∧ ·),

where c is a constant.
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Suppose m2, γ : [0, T ]×C[0,T ] → R1 are nonanticipative functionals such

that (4.2) has a unique strong solution.

Then

ξt,ξt

= ξ P -a.s. for all t ∈ [0, T ].

Proof. If s < t, then ξt,ξt

s = ξs by definition. If s > t, then

ξt,ξt

s = ξ(t ∧ s) +

s∫

t

m2(u, ξ
t,ξt

) du+

s∫

t

γ(u, ξt,ξt

) dM(u) =

= c+

t∫

0

m2(u, ξ) du +

t∫

0

γ(u, ξ) dM(u) +

s∫

t

m2(u, ξ
t,ξt

) du+

+

s∫

t

γ(u, ξt,ξt

) dM(u).

Since ξ substituted instead of ξt,ξt

also satisfies the latter equation by unicity

of solution, we obtain that ξt,ξt

s = ξs, s > t. Lemma is proved. �

Proposition 4.1. Let C : [0, T ]×C[0,T ] → R1 be nonanticipative bounded

continuous functional and g : C[0,T ] → R be founded continuous function.

Then the martingale

M
ξ
t = E

[
g(ξ)e

∫
T

0
C(s,ξ) ds | Fξ

t

]

can be represented as

v(t, ξt)e
∫

t

0
C(s,ξ) ds,

where v(t, ϕ) = Eg(ξt,ϕ)e
∫

T

t
C(u,ξt,ϕ) du.

Proof. It is easy to see that

M
ξ
t = e

∫
t

0
C(u,ξ) duE

[
g(ξ)e

∫
T

t
C(u,ξ) du | Fξ

t

]
≡ e

∫
t

0
C(u,ξ) duVt.

Using the fact that Fξ = σ(ξt) and Lemma 4.1 we get

Vt = E
[
g(ξt,ξt

)e
∫

T

t
C(u,ξt,ξt

) du | σ(ξt)
]

=

= Eg(ξt,u)e
∫

T

t
C(u,ξt,ϕ) du

∣∣
ϕ=ξt = v(t, ξt).

Proposition is proved. �

It is well-known that the variance-optimal ELMM P̃ for the system (4.1)
has the density of the form

dP̃

dP
= ET

(
−

·∫

0

θ(s, Z) dN(s) −

·∫

0

vs dM(s)

)
,
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where θ = m1

σ
and Vt = gt

c+
∫

t

0
gs dM(s)

, with

c+

t∫

0

gs dM(s) = E
[
e−

∫
T

0
θ2(s,Z) ds | FZ

t

]
.

Prove now the following

Theorem 4.1. Let zt,ϕ be the solution of the following SDE

zt,ϕ
s = ϕs +

s∫

t

m2(u, z
t,ϕ) du+

s∫

t

γ(u, zt,ϕ) dM(u), s > t,

zt,ϕ
s = ϕs, s < t.

Then

E
[
e−

∫
T

0
θ2(s,Z) ds | FZ

t

]
= v(t, Z(t ∧ ·))e−

∫
T

0
θ2(s,Z) ds, (4.3)

where

v(t, ϕ) = Ee−
∫

T

0
θ2(s,zt,ϕ) ds, (t, ϕ) ∈ [0, T ]× C[0,T ].

Moreover, if θ(t, ϕ), m2(t, ϕ), γ(t, ϕ) are twice Frechet differentiable, then

v(t, Z(t ∧ ·)) admits the Itô decomposition with martingale part

t∫

0

γ(s, Z(s ∧ ·))
∂v(s, Z(s ∧ ·))

∂js
dM(s),

where js = 1[s,T ].

In this case v can be found by the relation

vt = γ(t, Z)
∂v(t, Z(t ∧ ·))

∂jt

/
v(t, Z(t ∧ ·)),

or equivalently

vt = γ(t, Z)
∂q

∂jt
(t, Z(t ∧ ·)),

where

q(t, ϕ) = ln v(t, ϕ).

Proof. The formula (4.3) is the simple consequence of Proposition 4.1.
Further, by the Itô formula we have

e−
∫

t

0
θ2(s,Z) dsv(t, Z(t ∧ ·)) =

= c+

t∫

0

e−
∫

s

0
θ2(u,Z) duγ(s, Z)

∂v(s, Z(s ∧ ·))

∂js
dM(s).
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Since, see [12], [13],

Z(t ∧ ·) = Z(0) +

t∫

0

m2(s, Z)jsds+

t∫

0

γ(s, Z)jsdM(s),

the Itô formula for v(t, Z(t ∧ ·)) is of the form

v(t, Z(t ∧ ·)) = v(0, c) +

t∫

0

γ(s, Z)
∂v

∂js
(s, Z(s ∧ ·)) dM(s)+

+

t∫

0

[
∂v

∂s
(s, Z(s ∧ ·)) +m2(s, Z)

∂v

∂js
(s, Z(s ∧ ·))+

+
1

2
γ(s, Z(s ∧ ·))

∂2v

∂j2s
(s, Z(s ∧ ·))

]
ds.

Therefore

vt =
gt

c+
∫ t

0 gs dM(s)
=
e−

∫
t

0
θ2(u,Z) duγ(t, Z) ∂v

∂jt
(t, Z(t ∧ ·))

e−
∫

t

0
θ2(u,Z) duv(t, Z(t ∧ ·))

=

= γ(t, Z)
∂q

∂jt
(t, Z(t ∧ ·)).

Theorem is proved. �

Now for the variance-optimal ELMM P̃ we can write

dP̃

dP
= ET

(
−

·∫

0

θ(s, Z) dN(s) −

·∫

0

vs dM(s)

)
,

with

vt = γ(t, Z)
∂q(t, Zt)

∂jt
,

q(t, ϕ) = lnEe−
∫

t

0
θ2(s,zt,ϕ)ds, Zt = Z(t ∧ ·).

Using the Girsanov theorem we can define the Wiener processes w.r.t

measure P̃

Ñt = N(t) +

t∫

0

θ(s, Z) ds and M̃t = M(t) +

t∫

0

vs ds.

Hence w.r.t. measure P̃ the price process dynamics of the process (S,Z) is
given by the SDE

dS(t)

S(t)
= σ(t, Z) dÑt,
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dZt = m̃(t, Z) dt+ γ(t, Z) dM̃t,

with

m̃(t, Z) = m2(t, Z) − γ2(t, Z)
∂q

∂jt
(t, Zt),

and thus we pass the first step of our program.
Let the contingent claim HF N,M which we get after the projection of

contingent claim H ∈ L2(P,FT ) on the σ-algebra FN,M
T = FS

T = FS,Z
T has

the following form

HF N,M = h
(
S(T ), ZT

0 ),

where h : (0,∞) × C[0,T ] → R be bounded continuous function. By results

of [12] (S(t), Zt) is a Markov process which satisfies the following SDE w.r.t

P̃

dS(t) = S(t)σ(t, Zt) dÑt,

dZt = m̃(t, Zt)jt dt+ γ(t, Zt)jt dM̃t.

Hence by the Markov property we get

V
H

F N,M ,P̃

t = EP̃
[
HF N,M | FS,Z

t

]
=

= EP̃
[
h(S(T ), ZT

0 ) | (St, Z
t)
]

= vh(t, S(t), Zt),

where vh(t, x, ϕ), (t, x, ϕ) ∈ [0, T ]× (0,∞)× C[0,T ] is some bounded contin-
uous function.

Theorem 4.2. Let the coefficients m̃, σ, γ have bounded continuous

Frechet differential up to the second order w.r.t. third variable ϕ ∈ C[0,T ].

Then vh satisfies the following “PDE”, see [12],

∂vh

∂t
+ m̃

∂vh

∂x
+

1

2
x2σ2 ∂

2vh

∂x2
+

1

2
γ2 ∂

2vh

∂j2t
= 0,

vh(T, x, ϕ) = h(x, ϕ).

Now by the Itô formula

vh(t, St, Z
t) = vh(0, S0, c) +

t∫

0

∂vh

∂x
(s, S(s), Zs) dS(s)+

+

t∫

0

∂vh

∂js
(s, S(s), Zs)γ(s, Z) dM̃(s)+

+

t∫

0

[
∂vh

∂s
(s, S(s), Zs) +

∂vh

∂js
(s, S(s), Zs)m2(s, Z)+
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+
1

2

∂2vh

∂j2s
(s, S(s), Zs)γ2(s, Z)

]
ds

one can easily obtain the Galtchouk–Kivita–Watanabe decomposition of the

martingale V H
F N,M ,P̃ :

V
H

F N,M ,P̃

t = ẼHF N,M +

t∫

0

ξ
H

F N,M ,P̃

s dS(s) + L
H

F N,M ,P̃

t , 0 ≤ t ≤ T,

where

ξ
H

F N,M ,P̃

t =
∂vh

∂x
(t, S(t), Zt),

L
H

F N,M ,P̃

t =

t∫

0

γ(s, Z)
∂vh

∂js
(s, S(s), Zs) dM̃(s).

Thus we finished the second step of our program. The mean-variance hedg-
ing problem is solved.
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