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ON THE SUMS OF CONVERGENT TRIGONOMETRIC

SERIES

SH. TETUNASHVILI

Abstract. It is proved in the present paper that the sum of every-
where convergent trigonometric series fails to have removable points
of discontinuity. This statement is valid both for the multiple and for
single trigonometric series.

îâäæñéâ. ê�öîëéöæ á�éðçæùâ�ñèæ�, îëé õãâèà�ê çîâ��áæ ðîæ-

àëêëéâðîæñèæ éûçîæãæï þ�éï �î öâæúèâ�� ÿóëêáâï ûõãâðæï �ùæ-

èâ��áæ ûâîðæèæ. ��êæöêñèæ áâ�ñèâ�� ï�é�îåèæ�êæ� îëàëîù

þâî�áæ, �ïâãâ âîåé�àæ ðîæàëêëéâðîæñèæ éûçîæãâ�æï�åãæï.

1. Introduction

In 1915, H. Steinhaus has proved ([1], see also [2], Ch. IX) the following
Theorem A. Let a trigonometric series

a0

2
+

∞
∑

k=1

ak cos 2πkτ + bk sin 2πkτ

converge everywhere to a finite function f(τ).
If f(τ0) > α, then a set of points τ , where f(τ) > α, has positive measure

in any neighborhood of the point τ0.
In the present work, using the results obtained in [3], we prove that

Theorem A is valid for a multi-dimensional case, as well. Note that the
fact dealing with the validity of Theorem A for multiple series has been
announced by us in [4].

2. The Notation and Statements of the Results

Let d ≥ 2 be some natural number, Rd the Euclidean space of dimension
d, Zd

0 a set of all points from Rd with integer nonnegative coordinates.
By n = (n1, . . . , nd) we denote the points from the set Zd

0 , and by n′ =

(n1, . . . , nd−1) those of the set Zd−1
0 . x = (x1, . . . , xd−1, xd) denote the
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points from the unit cube Id = [0, 1]d, and x′ = (x1, . . . , xd−1) those from
Id−1 = [0, 1]d−1. Let µd be the Lebesgue measute corresponding to the
space Rd. If the set E ⊂ Id, then E(xd) and E(x′) denote a cross-section of
the set E at the points xd and x′, respectively, i.e., E(xd) = {(x1, . . . , xd−1) :
(x1, . . . , xd−1, xd) ∈ E} and E(x′) = {(xd : (x1, . . . , xd−1, xd) ∈ E}.

The trigonimetric system given on [0, 1] we denote by T 1 = {ti(τ)}∞i=0,

where τ ∈ [0, 1] and t0(τ) ≡ 1, t2i−1(τ) =
√

2 sin 2πiτ , t2i(τ) =
√

2 cos 2πiτ ,

i = 1, 2, 3, . . .. For every n ∈ Zd
0 , Tn(x) =

∏d

j=1 tnj
(xj), x ∈ Id.

Consider the d-multiple trigonometric series

∑

n=0

anTn(x) =

∞
∑

n1=0

· · ·
∞
∑

nd=0

an1,...,nd

d
∏

j=1

tnj
(xj). (1)

Under the convergence of multiple series we mean the Pringsheim conver-
gence.

Let the point x0 = (x1, . . . , x
0
d) ∈ Id and the number r > 0. By K(x0, r)

we denote the cube in Rd:

K(x0; r) = {(x1, . . . , xd) ∈ Rd : |xj − x0
j | <

r

2
, 1 ≤ j ≤ d}.

The following statements are valid.

Theorem 1. Let the series (1) converge everywhere to a finite function

f(x). If f(x0) > α, then the set of points x, where f(x) > α, has the

positive measure in any neighborhood of the point x0, i.e., for an arbitrary

r > 0,

µd{x ∈ [0, 1]d : f(x) > α} ∩ K(x0; r) > 0.

Theorem 2. If the series (1) converges everywhere to the finite function

f(x), then f(x) fails to have removable points of discontinuity.

3. Proofs of Theorems

In the sequel, the use will made of the following notation:

f(x) = f(x1, . . . , xd−1, xd) = f(x′, xd)

an = an1,...,nd−1,nd
= an′,nd

.

Here we present two statements which we will need for the proof of the
theorems. These statements are the particular cases of a more general result
proven by us earlier (see [3], Corollary 7).

Statement 1. Let the series (1) converge on Id to a finite function f(x).

Then for every n′ = (n1, . . . , nd−1) ∈ Zd−1
0 and xd ∈ I we have

∞
∑

nd=0

an′,nd
tnα

(xd) = bn′(xd), |bn′(xd)| < ∞,
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and for any x′ ∈ Id−1,

∞
∑

n′=0

bn′(xd)

d−1
∏

j=1

tnj
(xj) = f(x′, xd).

Statement 2. Let the series (1) converge on Id to a finite function f(x).
Then for every nd and x′ = (x1, . . . , xd−1) ∈ Id−1 we have

∞
∑

n′=0

an1,...nd−1,nd

d−1
∏

j=1

tnj
(xj) = and

(x′) < ∞,

and for any xd ∈ I the single series

∞
∑

nd=0

and
(x′)tnd

(xd) = f(x′, xd).

Proof of Theorem 1. This theorem we prove by using the method of induc-
tion with respect to d.

Since Theorem A is valid for single series, we assume that Theorem 1 is
valid for d = N − 1 and prove it for d = N , where N ≥ 2. In this case,
x = (x1, . . . , xN

) and x′ = (x1, . . . , xN−1
). Denote

E(α) = {x ∈ [0, 1]N : f(x) > α}
and

E = E(α) ∩ K(x0, r).

Obviously, Theorem 1 will be proved if we show that for an arbitrary r > 0

µ
N

E > 0.

According to Statement 2, for any x
N
∈ I we have

∞
∑

n
N

=0

an
N

(x0
1, . . . , x

0
N−1

)tn
N

(x
N

) = f(x0
1, . . . , x

0
N−1

, x
N

).

As far as f(x0
1, . . . , x

0
N−1

, x0
N

) > α, by virtue of Theorem A we have

µ1{xN
: f(x0

1, . . . , x
0
N−1

, x
N

) > α} ∩
{

x
N

: |x
N
− x0

N
| <

r

2

}

> 0. (2)

Since

E(x0

1
,...,x0

N−1
) ={x

N
: f(x0

1, . . . , x
0
N−1

, x
N

)>α} ∩
{

x
N

: |x
N
− x0

N
|< r

2

}

(3)

the relation (2) implies that

µ1E(x0

1
,...,x0

N−1
) > 0. (4)

Let x
N

be the point from E(x0

1
,...,x0

N−1
). Owing to (3), we have

x
N
∈ {x

N
: f(x0

1, . . . , x
0
N−1

, x
N

) > α} ∩
{

x
N

: |x
N
− x0

N
| <

r

2

}

.
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This relation, in particular, means that

f(x0
1, . . . x

0
N−1

, x
N

) > α. (5)

By Statement 1, for every (x1, . . . , xN−1
) ∈ Id−1 we have

∞
∑

n′=0

bn′(x
N

)
N−1
∏

j=1

tnj
(xj) = f(x1, . . . , xN−1

, x
N

). (6)

From (5) and (6) by the induction we obtain

µ
N−1

{x′ : f(x′, x
N

) > α} ∩ {x′ : |xj − x0
j | <

r

2
; 1 ≤ j ≤ N − 1} > 0. (7)

Since

E(x
N

) = {x′ : f(x′, x
N

) > α} ∩ {x′ : |xj − x0
j | <

r

2
; 1 ≤ j ≤ N − 1},

for every x
N
∈ E(x0

1
,...,x0

N−1
), by the relation (7), we find that

µ
N−1

E(x
N

) > 0. (8)

Obviously, if H = E(x0

1
,...x0

N−1
), then

µ
N

E =

1
∫

0

µ
N−1

E(xN)dx
N
≥

∫

H

µ
N−1

E(xN)dx
N

. (9)

It follows from the relations (4), (8) and (9) that

µ
N

E > 0.

Thus Theorem 1 is proved. �

Proof of Theorem 2. For every x ∈ Id, let
∞
∑

n=0

anTn(x) = f(x), |f(x)| < ∞.

Suppose that at some point x0 ∈ Id there exists

lim
x→x0

f(x) = A, (10)

and
f(x0) = B.

Assume A 6= B. Without loss of generality, we assume that A < B.
Let a fixed number ε be such that

0 < ε <
B − A

2
.

It follows from (10) that for an arbitrary r > 0,

|f(x) − A| < ε for x ∈ K(x0, r) and x 6= x0, that is

f(x) < A + ε for x ∈ K(x0, r) and x 6= x0.
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Since A + ε < B − ε, therefore

f(x) < B − ε for x ∈ K(x0; r) and x 6= x0,

whence
{x : f(x) > B − ε} ∩ K(x0, r) = x0. (11)

As far as f(x0) = B > B − ε, by Theorem 1 we have

µd{x : f(x) > B − ε} ∩ K(x0, r) > 0,

but this contradicts (11).
The obtained contradiction shows that A = B.
Thus Theorem 2 is proved. �

Remark . The above proof shows that Theorem 2 is likewise valid for
single series.
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