ON THE SUMS OF CONVERGENT TRIGONOMETRIC SERIES

SH. TETUNASHVILI

Abstract

It is proved in the present paper that the sum of everywhere convergent trigonometric series fails to have removable points of discontinuity. This statement is valid both for the multiple and for single trigonometric series.

1. Introduction

In $1915, \mathrm{H}$. Steinhaus has proved ([1], see also [2], Ch. IX) the following Theorem A. Let a trigonometric series

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos 2 \pi k \tau+b_{k} \sin 2 \pi k \tau
$$

converge everywhere to a finite function $f(\tau)$.
If $f\left(\tau_{0}\right)>\alpha$, then a set of points τ, where $f(\tau)>\alpha$, has positive measure in any neighborhood of the point τ_{0}.

In the present work, using the results obtained in [3], we prove that Theorem A is valid for a multi-dimensional case, as well. Note that the fact dealing with the validity of Theorem A for multiple series has been announced by us in [4].

2. The Notation and Statements of the Results

Let $d \geq 2$ be some natural number, R^{d} the Euclidean space of dimension d, Z_{0}^{d} a set of all points from R^{d} with integer nonnegative coordinates.

By $n=\left(n_{1}, \ldots, n_{d}\right)$ we denote the points from the set Z_{0}^{d}, and by $n^{\prime}=$ $\left(n_{1}, \ldots, n_{d-1}\right)$ those of the set $Z_{0}^{d-1} . x=\left(x_{1}, \ldots, x_{d-1}, x_{d}\right)$ denote the

[^0]points from the unit cube $I^{d}=[0,1]^{d}$, and $x^{\prime}=\left(x_{1}, \ldots, x_{d-1}\right)$ those from $I^{d-1}=[0,1]^{d-1}$. Let μ_{d} be the Lebesgue measute corresponding to the space R^{d}. If the set $E \subset I^{d}$, then $E_{\left(x_{d}\right)}$ and $E_{\left(x^{\prime}\right)}$ denote a cross-section of the set E at the points x_{d} and x^{\prime}, respectively, i.e., $E_{\left(x_{d}\right)}=\left\{\left(x_{1}, \ldots, x_{d-1}\right)\right.$: $\left.\left(x_{1}, \ldots, x_{d-1}, x_{d}\right) \in E\right\}$ and $E_{\left(x^{\prime}\right)}=\left\{\left(x_{d}:\left(x_{1}, \ldots, x_{d-1}, x_{d}\right) \in E\right\}\right.$.

The trigonimetric system given on $[0,1]$ we denote by $T^{1}=\left\{t_{i}(\tau)\right\}_{i=0}^{\infty}$, where $\tau \in[0,1]$ and $t_{0}(\tau) \equiv 1, t_{2 i-1}(\tau)=\sqrt{2} \sin 2 \pi i \tau, t_{2 i}(\tau)=\sqrt{2} \cos 2 \pi i \tau$, $i=1,2,3, \ldots$. For every $n \in Z_{0}^{d}, T_{n}(x)=\prod_{j=1}^{d} t_{n_{j}}\left(x_{j}\right), x \in I^{d}$.

Consider the d-multiple trigonometric series

$$
\begin{equation*}
\sum_{n=0} a_{n} T_{n}(x)=\sum_{n_{1}=0}^{\infty} \cdots \sum_{n_{d}=0}^{\infty} a_{n_{1}, \ldots, n_{d}} \prod_{j=1}^{d} t_{n_{j}}\left(x_{j}\right) . \tag{1}
\end{equation*}
$$

Under the convergence of multiple series we mean the Pringsheim convergence.

Let the point $x^{0}=\left(x_{1}, \ldots, x_{d}^{0}\right) \in I^{d}$ and the number $r>0$. By $K\left(x^{0}, r\right)$ we denote the cube in R^{d} :

$$
K\left(x^{0} ; r\right)=\left\{\left(x_{1}, \ldots, x_{d}\right) \in R^{d}:\left|x_{j}-x_{j}^{0}\right|<\frac{r}{2}, \quad 1 \leq j \leq d\right\}
$$

The following statements are valid.
Theorem 1. Let the series (1) converge everywhere to a finite function $f(x)$. If $f\left(x^{0}\right)>\alpha$, then the set of points x, where $f(x)>\alpha$, has the positive measure in any neighborhood of the point x^{0}, i.e., for an arbitrary $r>0$,

$$
\mu_{d}\left\{x \in[0,1]^{d}: f(x)>\alpha\right\} \cap K\left(x^{0} ; r\right)>0
$$

Theorem 2. If the series (1) converges everywhere to the finite function $f(x)$, then $f(x)$ fails to have removable points of discontinuity.

3. Proofs of Theorems

In the sequel, the use will made of the following notation:

$$
\begin{gathered}
f(x)=f\left(x_{1}, \ldots, x_{d-1}, x_{d}\right)=f\left(x^{\prime}, x_{d}\right) \\
a_{n}=a_{n_{1}, \ldots, n_{d-1, n_{d}}}=a_{n^{\prime}, n_{d}}
\end{gathered}
$$

Here we present two statements which we will need for the proof of the theorems. These statements are the particular cases of a more general result proven by us earlier (see [3], Corollary 7).
Statement 1. Let the series (1) converge on I^{d} to a finite function $f(x)$. Then for every $n^{\prime}=\left(n_{1}, \ldots, n_{d-1}\right) \in Z_{0}^{d-1}$ and $x_{d} \in I$ we have

$$
\sum_{n_{d}=0}^{\infty} a_{n^{\prime}, n_{d}} t_{n_{\alpha}}\left(x_{d}\right)=b_{n^{\prime}}\left(x_{d}\right), \quad\left|b_{n^{\prime}}\left(x_{d}\right)\right|<\infty
$$

and for any $x^{\prime} \in I^{d-1}$,

$$
\sum_{n^{\prime}=0}^{\infty} b_{n^{\prime}}\left(x_{d}\right) \prod_{j=1}^{d-1} t_{n_{j}}\left(x_{j}\right)=f\left(x^{\prime}, x_{d}\right)
$$

Statement 2. Let the series (1) converge on I^{d} to a finite function $f(x)$. Then for every n_{d} and $x^{\prime}=\left(x_{1}, \ldots, x_{d-1}\right) \in I^{d-1}$ we have

$$
\sum_{n^{\prime}=0}^{\infty} a_{n_{1}, \ldots n_{d-1}, n_{d}} \prod_{j=1}^{d-1} t_{n_{j}}\left(x_{j}\right)=a_{n_{d}}\left(x^{\prime}\right)<\infty
$$

and for any $x_{d} \in I$ the single series

$$
\sum_{n_{d}=0}^{\infty} a_{n_{d}}\left(x^{\prime}\right) t_{n_{d}}\left(x_{d}\right)=f\left(x^{\prime}, x_{d}\right)
$$

Proof of Theorem 1. This theorem we prove by using the method of induction with respect to d.

Since Theorem A is valid for single series, we assume that Theorem 1 is valid for $d=N-1$ and prove it for $d=N$, where $N \geq 2$. In this case, $x=\left(x_{1}, \ldots, x_{N}\right)$ and $x^{\prime}=\left(x_{1}, \ldots, x_{N-1}\right)$. Denote

$$
E(\alpha)=\left\{x \in[0,1]^{N}: f(x)>\alpha\right\}
$$

and

$$
E=E(\alpha) \cap K\left(x^{0}, r\right)
$$

Obviously, Theorem 1 will be proved if we show that for an arbitrary $r>0$

$$
\mu_{N} E>0 .
$$

According to Statement 2, for any $x_{N} \in I$ we have

$$
\sum_{n_{N}=0}^{\infty} a_{n_{N}}\left(x_{1}^{0}, \ldots, x_{N-1}^{0}\right) t_{n_{N}}\left(x_{N}\right)=f\left(x_{1}^{0}, \ldots, x_{N-1}^{0}, x_{N}\right)
$$

As far as $f\left(x_{1}^{0}, \ldots, x_{N-1}^{0}, x_{N}^{0}\right)>\alpha$, by virtue of Theorem A we have

$$
\begin{equation*}
\mu_{1}\left\{x_{N}: f\left(x_{1}^{0}, \ldots, x_{N-1}^{0}, x_{N}\right)>\alpha\right\} \cap\left\{x_{N}:\left|x_{N}-x_{N}^{0}\right|<\frac{r}{2}\right\}>0 . \tag{2}
\end{equation*}
$$

Since

$$
\begin{equation*}
E_{\left(x_{1}^{0}, \ldots, x_{N-1}^{0}\right)}=\left\{x_{N}: f\left(x_{1}^{0}, \ldots, x_{N-1}^{0}, x_{N}\right)>\alpha\right\} \cap\left\{x_{N}:\left|x_{N}-x_{N}^{0}\right|<\frac{r}{2}\right\} \tag{3}
\end{equation*}
$$

the relation (2) implies that

$$
\begin{equation*}
\mu_{1} E_{\left(x_{1}^{0}, \ldots, x_{N-1}^{0}\right)}>0 \tag{4}
\end{equation*}
$$

Let \bar{x}_{N} be the point from $E_{\left(x_{1}^{0}, \ldots, x_{N-1}^{0}\right)}$. Owing to (3), we have

$$
\bar{x}_{N} \in\left\{x_{N}: f\left(x_{1}^{0}, \ldots, x_{N-1}^{0}, x_{N}\right)>\alpha\right\} \cap\left\{x_{N}:\left|x_{N}-x_{N}^{0}\right|<\frac{r}{2}\right\} .
$$

This relation, in particular, means that

$$
\begin{equation*}
f\left(x_{1}^{0}, \ldots x_{N-1}^{0}, \bar{x}_{N}\right)>\alpha . \tag{5}
\end{equation*}
$$

By Statement 1, for every $\left(x_{1}, \ldots, x_{N-1}\right) \in I^{d-1}$ we have

$$
\begin{equation*}
\sum_{n^{\prime}=0}^{\infty} b_{n^{\prime}}\left(\bar{x}_{N}\right) \prod_{j=1}^{N-1} t_{n_{j}}\left(x_{j}\right)=f\left(x_{1}, \ldots, x_{N-1}, \bar{x}_{N}\right) \tag{6}
\end{equation*}
$$

From (5) and (6) by the induction we obtain

$$
\begin{equation*}
\mu_{N-1}\left\{x^{\prime}: f\left(x^{\prime}, \bar{x}_{N}\right)>\alpha\right\} \cap\left\{x^{\prime}:\left|x_{j}-x_{j}^{0}\right|<\frac{r}{2} ; 1 \leq j \leq N-1\right\}>0 . \tag{7}
\end{equation*}
$$

Since

$$
E_{\left(\bar{x}_{N}\right)}=\left\{x^{\prime}: f\left(x^{\prime}, \bar{x}_{N}\right)>\alpha\right\} \cap\left\{x^{\prime}:\left|x_{j}-x_{j}^{0}\right|<\frac{r}{2} ; 1 \leq j \leq N-1\right\}
$$

for every $\bar{x}_{N} \in E_{\left(x_{1}^{0}, \ldots, x_{N-1}^{0}\right)}$, by the relation (7), we find that

$$
\begin{equation*}
\mu_{N-1} E_{\left(\bar{x}_{N}\right)}>0 . \tag{8}
\end{equation*}
$$

Obviously, if $H=E_{\left(x_{1}^{0}, \ldots x_{N-1}^{0}\right)}$, then

$$
\begin{equation*}
\mu_{N} E=\int_{0}^{1} \mu_{N-1} E_{(x N)} d x_{N} \geq \int_{H} \mu_{N-1} E_{(x N)} d x_{N} \tag{9}
\end{equation*}
$$

It follows from the relations (4), (8) and (9) that

$$
\mu_{N} E>0
$$

Thus Theorem 1 is proved.
Proof of Theorem 2. For every $x \in I^{d}$, let

$$
\sum_{n=0}^{\infty} a_{n} T_{n}(x)=f(x), \quad|f(x)|<\infty
$$

Suppose that at some point $x_{0} \in I^{d}$ there exists

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} f(x)=A, \tag{10}
\end{equation*}
$$

and

$$
f\left(x_{0}\right)=B
$$

Assume $A \neq B$. Without loss of generality, we assume that $A<B$.
Let a fixed number ε be such that

$$
0<\varepsilon<\frac{B-A}{2}
$$

It follows from (10) that for an arbitrary $r>0$,

$$
\begin{aligned}
& |f(x)-A|<\varepsilon \text { for } x \in K\left(x^{0}, r\right) \text { and } x \neq x^{0} \text {, that is } \\
& f(x)<A+\varepsilon \text { for } x \in K\left(x^{0}, r\right) \text { and } x \neq x^{0} .
\end{aligned}
$$

Since $A+\varepsilon<B-\varepsilon$, therefore

$$
f(x)<B-\varepsilon \text { for } x \in K\left(x^{0} ; r\right) \text { and } x \neq x^{0}
$$

whence

$$
\begin{equation*}
\{x: f(x)>B-\varepsilon\} \cap K\left(x^{0}, r\right)=x^{0} . \tag{11}
\end{equation*}
$$

As far as $f\left(x_{0}\right)=B>B-\varepsilon$, by Theorem 1 we have

$$
\mu_{d}\{x: f(x)>B-\varepsilon\} \cap K\left(x^{0}, r\right)>0
$$

but this contradicts (11).
The obtained contradiction shows that $A=B$.
Thus Theorem 2 is proved.
Remark. The above proof shows that Theorem 2 is likewise valid for single series.

References

1. H. Steinhous, Some properties of trigonometric and power series. (Polish) Rozprawy Akademji Umiejenoschi, Cracow, 1915, 175-225.
2. A. Zygmund, Trigonometric series. I. (Translated into Russian) Mir, Moscow, 1965.
3. Sh. Tetunashvili, Some multiple series of functions and the solution of a problem on the uniqueness of multiple trigonometric series for Pringsheim convergence. (Russian) Mat. Sb. 182(1991), No. 8, 1158-1176; English transl.: Math. USSR-Sb. 73(1992), No. 2, 517-534.
4. Sh. Tetunashvili, On multiple trigonometric series. Bull. Georgian Acad. Sci. 161(2000), No. 2, 191.

Acknowledgement

This work was supported by the Grant GNSF/ST06/3-010 and Grant INTAS Nr 06-1000017-8792.
(Received 11.03.2006)
Author's Addresses:
A. Razmadze Mathematical Institute, Georgian Academy of Sciences,
1, M. Aleksidze St, 0193 Tbilisi
Georgia
Georgian Technical University
Department of Mathematics
77, M. Kostava St. Tbilisi 0175
Georgia

[^0]: 2000 Mathematics Subject Classification. 42B05, 42B08.
 Key words and phrases. Multiple trigonometric series, convergence in Pringsheim sense, removable point of discontinuity.

