SH. TETUNASHVILI

ON THE FUBINI'S SETS OF MULTIPLE FUNCTION SERIES

(Reported on 14.03.2006)

Let $d \geq 2$ be some natural number, R^d the Euclidean space of dimension d, Z_0^d a set of points from R^d with integer nonnegative coordinates. By $x = (x_1, \ldots, x_d)$ we denote the points from the unit cube $I^d = [0,1]^d$ and by $m = (m_1, \ldots, m_d)$ and $n = (n, \ldots, n_d)$ those from the set z^d . $n \geq 0$ means that $n_j \geq 0$, $j = 1, 2, \ldots d$. The symbol $m \to \infty$ implies that $m_j \to \infty$ for every $j, 1 \leq j \leq d$ independently of each other. μ is the linear Lebesgue measure. $E_1 \times E_2$ is the Cartesian product of the sets E_1 and E_2 .

Let on [0,1] be given a system of measurable functions $\phi = \{\varphi_i(t)\}_{i=0}^{\infty}$,

$$|\varphi_i(t)| < \infty, \quad t \in [0, 1], \quad i = 0, 1, 2, \dots$$

For every $n \in \mathbb{Z}_0^d$ we denote

$$\phi_n(x) = \prod_{j=1}^d \varphi_{n_j}(x_j), \quad x \in [0, 1]^d.$$

Consider the d-multiple series with respect to the system $\phi^d = {\{\phi_n(x)\}_{n \geq 0}}$,

$$\sum_{n=0}^{\infty} a_n \phi_n(x) = \sum_{n_1=0}^{\infty} \cdots \sum_{n_d}^{\infty} a_{n_1,\dots,n_d} \prod_{j=1}^d \varphi_{n_j}(x_j).$$
 (1)

By $S_m(x)$ we denote rectangular partial sums of the series (1), i.e.

$$S_m(x) = \sum_{n_1=0}^{m_1} \cdots \sum_{n_d=0}^{m_d} a_{n_1,\dots,n_d} \prod_{j=1}^d \varphi_{n_j}(x_j).$$

The convergence of the series (1) at the point x implies that there exists a finite Pringsheim limit, i.e.,

$$\lim_{m \to \infty} S_m(x). \tag{2}$$

Let σ be any one-to-one mapping of the set $\{1,2,\ldots,d\}$ onto itself. All possible repeated limits of partial sums $S_m(x)$ we denote by

$$\lim_{\substack{m \to \infty \\ \sigma(1)}} \left(\lim_{\substack{m \to \infty \\ \sigma(2)}} \left(\dots \left(\lim_{\substack{m \to \infty \\ \sigma(d)}} S_m(x) \right) \dots \right) \right)$$
 (3)

Definition 1. We say that $E \subset [0,1]^d$ is the Fubini's set for the multiple series (1), if the existence of the limit (2) on the set E implyis existence of all possible limits (3) on the set E, and the equalities

$$\lim_{m \to \infty} S_m(x) = \lim_{\substack{m \to \infty \\ \sigma(1)}} \left(\lim_{\substack{m \to \infty \\ \sigma(2)}} \left(\dots \left(\lim_{\substack{m \to \infty \\ \sigma(d)}} S_m(x) \right) \dots \right) \right), \quad x \in E$$
 (4)

²⁰⁰⁰ Mathematics Subject Classification: 42B05, 42B08.

Key words and phrases. Fubini's set, multiple function series, Pringsheim convergence.

are fulfilled.

In particular, it is shown in [1] that for any countable set D the set $[0,1]^d \setminus D$ is Fubini's one for multiple trigonometric series.

Definition 2. They say that $\phi = \{\varphi_i(t)\}_{i=0}^{\infty}$ is the system of ε -uniqueness, if there exists a number $\varepsilon \in]0,1]$, such that the convergence of the series

$$\sum_{i=0}^{\infty} a_i \varphi_i(t)$$

to zero on the set $A \subset [0,1]$, $\mu A > 1 - \varepsilon$ results in the relation $a_i = 0$ (i = 0, 1, 2, ...).

The following theorem is valid.

Theorem. Let $\phi = \{\varphi_i(t)\}_{i=0}^{\infty}$ be the system of ε -uniqueness and for any j, $1 \leq j \leq d$ the sets $E_j \subset [0,1]$ are such that $\mu E_j > 1 - \varepsilon$. Then

$$E = E_1 \times E_2 \times \cdots E_d$$

is the Fubini's set for the multiple series (1).

References

 Sh. Tetunashvili, Some multiple series of functions and the solution of a problem on the uniqueness of multiple trigonometric series for Pringsheim convergence. (Russian) Mat. Sb. 182(1991), No. 8, 1158–1176;

Acknowledgement

This work was supported by the Grant INTAS Nr 051000008-8157 and Grant GNSF/ $\rm ST06/3\text{-}010.$

Author's Addresses:

A. Razmadze Mathematical Institute, Georgian Academy of Sciences, 1, M. Aleksidze St, 0193 Tbilisi Georgia

Georgian Technical University Department of Mathematics 77, M. Kostava St. Tbilisi 0175 Georgia