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Let R
N be the Euclidean space of dimension N , (N = 1, 2, 3, . . . ). x =

(x1, . . . , xN ) is a point of the space R
N ; n and k are natural numbers, and

the number R ∈ (0, +∞). ZN is the set of points in R
N with integer coordi-

nates; m = (m1, . . . , mN ) is the vector from the set ZN ; |m| =
√∑N

k=1 m2
k

is length of the vector m; µNE is the Lebesgue measure of the set E ⊂ R
N ;

φ = {f(x), x ∈ E} is a normed functional space, and ‖ · ‖φ is the norm of
that space. M(α) is the summability method depending on the parame-
ter α. τα

R(x; f) are the means corresponding to the method M(α) for the
function f at the point x.

QN = {x : x ∈ R
N , −π < xk ≤ π, k = 1, . . . , N}

is a cube in the space R
N . Lp(QN ) (1 ≤ p < ∞) is the space of functions

f(x) such that |f(x)|p are Lebesgue integrable on QN . ‖ · ‖p is the norm
in the space Lp(QN ). C(QN ) is the space of continuous on QN functions;

‖ · ‖C is the norm in the space C(QN ). f̂(m) are the Fourier coefficients of
the function f ∈ L(QN), i.e.,

f̂(m) = (2π)−N ·

∫

QN

f(x) · eimxdx (m ∈ ZN ).

∑
m∈ZN f̂(m)eimx is the trigonometric Fourier series of the function f .

Sα
R(x; f) =

∑

|m|≤R

(
1 −

|m|2

R2

)α

· f̂(m)eimxdx

are the spherical Bochner-Riesz means of order α ≥ 0.
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Definition. We say that a number α0 is an indicator of the method
M(α) for the space φ if for every function f ∈ Φ

lim
R→∞

‖f(x) − τα
R(x; f)‖φ = 0 for α > α0

and a number α0 is an exact indicator of the method M(α) for the space φ

if α0 is an indicator of the method M(α) for the space φ and there exists
the function f0 ∈ φ such that

limR→∞‖f0(x) − τα0

R (x; f0)‖φ > 0.

The following theorems are valid.

Theorem 1. Let α0 be the indicator of the method M(α) for the space

φ. Then for every function f ∈ φ there exists {α
R
}R>0 with lim

R→∞
α

R
= α0

such that

lim
R→∞

‖f(x) − τ
α

R

R (x; f)‖φ = 0.

Theorem 2. Let α0 be the indicator of the method M(α) for the space

φ. Then for every function f ∈ φ, any sequence {αk} with αk > α0 and any

set M ⊂ (0, +∞) with sup M = +∞ there exists Rk ↑ ∞, Rk ∈ M such

that
∞∑

k=1

‖f(x) − ταk

Rk
(x; f)‖φ ≤ 1.

The results obtained by Bochner ([1]) and Stein ([2], [3]) show that for the
Bochner-Riesz method in the spaces C(−π, π]N and L(−π, π]N the number
N−1

2 is the exact indicator, and for the spaces Lp(−π, π]N and (1 < p < ∞)
the number

N − 1

2
·

∣∣∣∣
2

p
− 1

∣∣∣∣

is the indicator. Thus from Theorems 1 and 2 for every N = 1, 2, 3, . . . it
follows that the statements below are valid.

Theorem 3. For every function f ∈ C(−π, π]N there exists {α
R
}R>0

such that lim
R→∞

α
R

= N−1
2 and

lim
R→∞

‖f(x) − SαR

R (x; f)‖C = 0.

Theorem 4. For every function f ∈ Lp(−π, π]N (1 ≤ p < ∞) there

exists {αR}R>0 such that lim
R→∞

αR = N−1
2 | 2

p
− 1| and

lim
R→∞

‖f(x) − S
α

R

R (x; f)‖p = 0.

For the pointwise convergence following theorems are valid
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Theorem 5. For every function f ∈ L(−π, π]N there exists {α
R
(t)}R>0

such that lim
R→∞

α
R
(t) = N−1

2 , t ∈ (−π, π]N and at every Lebesgue point of

the function f (i.e., almost everywhere on (−π, π]N ) we have

lim
R→∞

S
α

R
(x)

R (x)(x; f) = f(x).

Theorem 6. For every function f ∈ L(−π, π]N and any number ε > 0
there exist {α

R
}R>0 with lim

R→∞
α

R
= N−1

2 and the set F ⊂ (−π, π]N with

µNF > (2π)N − ε such that

lim
R→∞

S
α

R

R (x; f) = f(x)

uniformly on the set F .

Theorem 7. For every function f ∈ L(−π, π]N any sequence {αk}
with αk > N−1

2 and any set M ⊂ (0, +∞) with sup M = +∞ there exists

Rk ↑ ∞, Rk ∈ M such that

lim
K→∞

SαK

RK
(x; f) = f(x)

almost everywhere on (−π, π]N .

The above theorems are valid for every N = 1, 2, 3, . . . . In the case when
the space dimension N = 1 and the method M(α) is the Cesaro (C, α) one,
some of the above theorems have been mentioned in [4] and [5].
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