Sh. Tetunashvili

ON THE SUMMABILITY METHODS DEPENDING ON A PARAMETER

(Reported on 12.11.2008)

Let \mathbb{R}^N be the Euclidean space of dimension N, (N = 1, 2, 3, ...). $x = (x_1, \ldots, x_N)$ is a point of the space \mathbb{R}^N ; n and k are natural numbers, and the number $R \in (0, +\infty)$. Z^N is the set of points in \mathbb{R}^N with integer coordinates; $m = (m_1, \ldots, m_N)$ is the vector from the set Z^N ; $|m| = \sqrt{\sum_{k=1}^N m_k^2}$ is length of the vector m; $\mu_N E$ is the Lebesgue measure of the set $E \subset \mathbb{R}^N$; $\phi = \{f(x), x \in E\}$ is a normed functional space, and $\|\cdot\|_{\phi}$ is the norm of that space. $M(\alpha)$ is the summability method depending on the parameter α . $\tau_R^{\alpha}(x; f)$ are the means corresponding to the method $M(\alpha)$ for the function f at the point x.

$$Q_N = \{ x : x \in \mathbb{R}^N, -\pi < x_k \le \pi, k = 1, \dots, N \}$$

is a cube in the space \mathbb{R}^N . $L_p(Q_N)$ $(1 \le p < \infty)$ is the space of functions f(x) such that $|f(x)|^p$ are Lebesgue integrable on Q_N . $\|\cdot\|_p$ is the norm in the space $L_p(Q_N)$. $C(Q_N)$ is the space of continuous on Q_N functions; $\|\cdot\|_C$ is the norm in the space $C(Q_N)$. $\widehat{f}(m)$ are the Fourier coefficients of the function $f \in L(Q_N)$, i.e.,

$$\widehat{f}(m) = (2\pi)^{-N} \cdot \int_{Q_N} f(x) \cdot e^{imx} dx \quad (m \in Z^N).$$

 $\sum_{m \in \mathbb{Z}^N} \widehat{f}(m) e^{imx}$ is the trigonometric Fourier series of the function f.

$$S_R^{\alpha}(x;f) = \sum_{|m| \le R} \left(1 - \frac{|m|^2}{R^2}\right)^{\alpha} \cdot \widehat{f}(m) e^{imx} dx$$

are the spherical Bochner-Riesz means of order $\alpha \geq 0$.

²⁰⁰⁰ Mathematics Subject Classification: 42B05, 42B08.

Key words and phrases. Fourier series, Bochner-Riesz summability method.

¹⁵⁰

Definition. We say that a number α_0 is an indicator of the method $M(\alpha)$ for the space ϕ if for every function $f \in \Phi$

$$\lim_{R \to \infty} \|f(x) - \tau_R^{\alpha}(x; f)\|_{\phi} = 0 \quad \text{for} \quad \alpha > \alpha_0$$

and a number α_0 is an exact indicator of the method $M(\alpha)$ for the space ϕ if α_0 is an indicator of the method $M(\alpha)$ for the space ϕ and there exists the function $f_0 \in \phi$ such that

$$\overline{\lim}_{R \to \infty} \| f_0(x) - \tau_R^{\alpha_0}(x; f_0) \|_{\phi} > 0.$$

The following theorems are valid.

Theorem 1. Let α_0 be the indicator of the method $M(\alpha)$ for the space ϕ . Then for every function $f \in \phi$ there exists $\{\alpha_R\}_{R>0}$ with $\lim_{R\to\infty} \alpha_R = \alpha_0$ such that

$$\lim_{R \to \infty} \|f(x) - \tau_R^{\alpha_R}(x; f)\|_{\phi} = 0.$$

Theorem 2. Let α_0 be the indicator of the method $M(\alpha)$ for the space ϕ . Then for every function $f \in \phi$, any sequence $\{\alpha_k\}$ with $\alpha_k > \alpha_0$ and any set $M \subset (0, +\infty)$ with $\sup M = +\infty$ there exists $R_k \uparrow \infty$, $R_k \in M$ such that

$$\sum_{k=1}^{\infty} \|f(x) - \tau_{R_k}^{\alpha_k}(x; f)\|_{\phi} \le 1.$$

The results obtained by Bochner ([1]) and Stein ([2], [3]) show that for the Bochner-Riesz method in the spaces $C(-\pi,\pi]^N$ and $L(-\pi,\pi]^N$ the number $\frac{N-1}{2}$ is the exact indicator, and for the spaces $L_p(-\pi,\pi]^N$ and (1 the number

$$\frac{N-1}{2} \cdot \left| \frac{2}{p} - 1 \right|$$

is the indicator. Thus from Theorems 1 and 2 for every N = 1, 2, 3, ... it follows that the statements below are valid.

Theorem 3. For every function $f \in C(-\pi,\pi]^N$ there exists $\{\alpha_R\}_{R>0}$ such that $\lim_{R\to\infty} \alpha_R = \frac{N-1}{2}$ and

$$\lim_{R \to \infty} \|f(x) - S_R^{\alpha_R}(x; f)\|_C = 0$$

Theorem 4. For every function $f \in L_p(-\pi,\pi]^N$ $(1 \le p < \infty)$ there exists $\{\alpha_R\}_{R>0}$ such that $\lim_{R\to\infty} \alpha_R = \frac{N-1}{2}|\frac{2}{p}-1|$ and

$$\lim_{R \to \infty} \|f(x) - S_R^{\alpha_R}(x; f)\|_p = 0.$$

For the pointwise convergence following theorems are valid

Theorem 5. For every function $f \in L(-\pi,\pi]^N$ there exists $\{\alpha_R(t)\}_{R>0}$ such that $\lim_{R\to\infty} \alpha_R(t) = \frac{N-1}{2}, t \in (-\pi,\pi]^N$ and at every Lebesgue point of the function f (i.e., almost everywhere on $(-\pi,\pi]^N$) we have

$$\lim_{R \to \infty} S_R^{\alpha_R(x)}(x)(x;f) = f(x)$$

Theorem 6. For every function $f \in L(-\pi,\pi]^N$ and any number $\varepsilon > 0$ there exist $\{\alpha_R\}_{R>0}$ with $\lim_{R\to\infty} \alpha_R = \frac{N-1}{2}$ and the set $F \subset (-\pi,\pi]^N$ with $\mu_N F > (2\pi)^N - \varepsilon$ such that

$$\lim_{R \to \infty} S_R^{\alpha_R}(x; f) = f(x)$$

uniformly on the set F.

Theorem 7. For every function $f \in L(-\pi,\pi]^N$ any sequence $\{\alpha_k\}$ with $\alpha_k > \frac{N-1}{2}$ and any set $M \subset (0, +\infty)$ with $\sup M = +\infty$ there exists $R_k \uparrow \infty, R_k \in M$ such that

$$\lim_{K \to \infty} S_{R_K}^{\alpha_K}(x; f) = f(x)$$

almost everywhere on $(-\pi,\pi]^N$.

The above theorems are valid for every N = 1, 2, 3, ... In the case when the space dimension N = 1 and the method $M(\alpha)$ is the Cesaro (C, α) one, some of the above theorems have been mentioned in [4] and [5].

Acknowledgement

This work was supported by the Grant GNSF/STO7/3-169.

References

- S. Bochner, Summation of multiple Fourier series by spherical means. Trans. Amer. Math. Soc. 40 (1936), No. 2, 175–207.
- E. M. Stein, Localization and summability of multiple Fourier series. Acta Math. 100 (1958), 93–147.
- E. M. Stein, On certain exponential sums arising in multiple Fourier series. Ann. of Math. (2) 73 (1961), 87–109.
- Sh. Tetunashvili, On the summability of Fourier trigonometric series of variable order. Proc. A. Razmadze Math. Inst. 145 (2007), 130–131.
- Sh. Tetunashvili, On the summability methods defined by matrix of functions. Proc. A. Razmadze Math. Inst. 148 (2008), 141–145.

Author's addresses:

A. Razmazde Mathematical Institute	Department of Mathematics
1, M. Aleksidze St., Tbilisi 0193	Georgian Technical University
Georgia	77, M. Kostava St., Tbilisi 0175
	Georgia

152