SH. TETUNASHVILI

ON CANTOR'S FUNCTIONALS

Let $A \subset [0,1]$ and $B \subset [0,1]$. The set $A \times B$ is Cartesian product of the sets A and B. Let μA be Lebesgue measure of A, i, j and k are non-negative integer numbers. The symbol $(i,j) \geq (k,k)$ means that $i \geq k$ and $j \geq k$.

Suppose that systems $\Phi = \{\varphi_i(\tau)\}_{i=0}^{\infty}$ and $\Psi = \{\psi_i(\tau)\}_{i=0}^{\infty}$ are systems of measurable and finite functions defined on [0,1].

Consider a series in the system Φ :

$$\sum_{i=0}^{\infty} a_i \varphi_i(\tau) \tag{1}$$

Definition 1. We say that the system Φ has Cantor's property if there exists a set $A \subset [0,1]$, such that the only series (1) that converges to zero on A is the series all of whose coefficients are zero.

Definition 2. A measurable set A belongs to the class $U(\Phi)$ if the only series (1) that converges to zero on A is the series all of whose coefficients are zero.

Definition 3. We say that a finite function $f(\tau)$ belongs to the class $J(A; \Phi)$ if $A \in U(\Phi)$ and there exists a series (1) such that equality

$$\sum_{i=0}^{\infty} a_i \varphi_i(\tau) = f(\tau) \tag{2}$$

holds true for any $\tau \in A$.

Definition 4. We say that a sequence of functionals $\{G_i^{A,\Phi}(\cdot)\}_{i=0}^{\infty}$, defined on $J(A,\Phi)$, is Cantor's functionals sequence if for any function $f \in J(A,\Phi)$ and any coefficient a_i of the series (2) an equality

$$a_i = G_i^{A,\Phi}(f(\tau))$$

holds.

Definition 5. Let $\delta \in (0,1]$ be a number. We say that the system Φ is a system of δ linearly independent system, if every finite part of the system Φ is linearly independent on each set A, with $\mu A > 1 - \delta$.

²⁰¹⁰ Mathematics Subject Classification. 42B25, 47B38.

 $Key\ words\ and\ phrases.$ Cantor's functionals, uniqueness of functional series, Pringsheim convergence.

The following propositions hold.

Proposition 1. If $A \in U(\Phi)$, then $J(A, \Phi)$ is linear space.

Proposition 2. If $\{G_i^{A,\Phi}(\cdot)\}_{i=0}^{\infty}$ is a sequence of Cantor's functionals, defined on linear space $J(A,\Phi)$, then $G_i^{A,\Phi}(\cdot)$ is linear functional, for any $i=0,1,2,\ldots$.

Proposition 3. If $A \in U(\Phi)$, $\varphi_0(\tau) \equiv 1$ and $f(\tau) \equiv c$, $\tau \in A$, then $G_0^{A,\Phi}(c) = 1$ and $G_i^{A,\Phi}(c) = 0$ for any $i = 1, 2, 3, \ldots$.

We consider a double series in the system $\Phi \times \Psi = \{\varphi_i(x) \cdot \Psi_j(y)\}_{(i,j)>(0,0)}$

$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} \varphi_i(x) \psi_j(y). \tag{3}$$

The convergence of the series (3) will be understood as Pringsheim convergence.

Let as consider a finite function F(x,y), where $(x,y) \in A \times B$. The symbol $G_i^{B,\Psi}(F(x,y))$ means that $G_i^{B,\Psi}$ acts on a function F(x,y), where only $y \in B$ is an independent variable and x is a fixed point of the set A. Also, $F(x,y) \in J(B,\Psi)$ for any $x \in A$.

In the future we shall assume that Φ is δ linearly independence system, the set $A \in U(\Phi)$, $\mu A > 1 - \delta$ and the set $B \in U(\Psi)$.

We established that it is possible to calculate coefficients of convergent series (3) by iterated using of Cantor's functionals. Namely, the following holds true

Theorem. Let

$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} \varphi_i(x) \cdot \psi_j(y) = F(x,y), \text{ when } (x,y) \in A \times B.$$

Then for every $(i, j) \ge (0, 0)$ an equality

$$a_{ij} = G_i^{A,\Phi} \left(G_j^{B,\Psi}(F(x,y)) \right)$$

holds.

It follows from this theorem and propositions 1-3, the following corollaries:

Corollary 1. Let f(x) and g(y) are finite functions and

$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} \varphi_i(x) \psi_j(y) = f(x) \cdot g(y), \text{ when } (x,y) \in A \times B.$$

Then for every $(i, j) \ge (0, 0)$ an equality

$$a_{ij} = G_i^{A,\Phi}(f(x)) \cdot G_j^{B,\Psi}(g(y))$$

holds.

Corollary 2. Let $\varphi_0(x) \equiv \psi_0(y) \equiv 1$, f(x) and g(y) are finite functions and

$$\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} \varphi_i(x) \psi_j(y) = f(x) + g(y), \text{ when } (x,y) \in A \times B.$$

Then for every $(i, j) \ge (1, 1)$ an equality

$$a_{ij} = 0$$

holds.

Remark. As it is well known, the trigonometric system $T = \{1, \sqrt{2}\cos 2\pi i\tau, \sqrt{2}\sin 2\pi i\tau\}_{i=1}^{\infty}$ has Cantor's property (see [1]). At the same time the trigonometric system T is $\delta = 1$ linearly independence system. So the system T satisfies all conditions of above presented theorem and this theorem and corollaries are valid for double trigonometric series. Analogous propositions are valid also for d-multiple ($d \geq 3$) functional series.

ACKNOWLEDGEMENTS

This work was supported by the grant GNSF/ST09_23_3-100.

References

 A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II. Cambridge University Press, New York, 1959, Vol. I.

Author's addresses:

A. Razmadze Mathemetical Institute I. Javakhishvili Tbilisi State University 2, University Str., Tbilisi 0186 Georgia

Georgian Technical University 77, M. Kostava, Tbilisi 0175 Georgia