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It is well known that many deep researches are dedicated to the uniqueness problem of functional series
with respect to different systems of functions. These researches started from Cantor’s fundamental result [1],
according to which the empty set is a set of uniqueness (a U set) for trigonometric series. This theorem was
generalized by Young [2], who proved that any countable set is a U set for trigonometric series.

It should be noted [3: 193] that any subset of [0,1] with positive Lebesgue measure is not a U set. So, any
such set is an M set for trigonometric series. Especially important is an example of trigonometric null-series
constructed by Menshov [4]. The existence of such series directly implies the existence of an M set with zero
measure for trigonometric series.

Uniqueness problem for Walsh, Haar, Rademacher and trigonometric systems was investigated by Bari
[5], Rajchman [6], Marcinkiewich and Zygmund [7], Salem and Zygmund [8], Vilenkin [9], Schneider [ 10], Fine
[11], Stechkin and Ulyanov [12], Skvortsov [13], Arutunyan and Talalyan [14] and by other known mathema-
ticians.

In the present paper we formulate some of our theorems connected with some properties of uniqueness
sets of functional series.

Let ® = {gon (x)}:o:] be a system of finite functions defined on [0,1]. By m we denote the set of all number
sequences and by a and b we denote some elements of the set m. So,
a :(al,az,...,an,...) and b :(bl,bz,...,bn,...) .
We say that a=b ifand only if a, =b, for every whole number n >1. The sequence (O, 0,0.. ) we denote

by 0.Let my={aem: a=0}.
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Consider a series with respect to @ system

zangon (x) (@)

n=

Definition 1. 4 set A [O,l] is called a set of uniqueness, or a U set, if the equality

> a,0,(x)=0 forall xe[0,1]\4

n=1

implies that a, =0 for every whole n=1. Otherwise the set A is called an M set.
Definition 2. We say that a set E [O,l] belongs to a class V(CD) if the equality

zan% (x):() forall xeE
n=l

implies that a, =0 for every whole number n>1.

Itis obvious that if £ € V' (®), then the set [0,1]\E isa Usetand if E ¢ V'(®), then the set [0,1]\ E is

an M set. Also, if V(®) # @ , then [0,1] eV (D). Below everywhere V(o)2D.
Let us formulate some of our theorems and some properties of uniqueness sets.

Theorem 1. 4 set E [O,l] belongs to V(CD) if and only if for any series (a), where a € my, there exists a
point x* (a) e E, such that

Zangon (x* (a)) #0.

n=1
The set of all x™(a) points for any series (), where a € m,, , we denote by I”(a). So,

I'(a)= {x* (a)e[0,1]: iangon (x* (a)) # O}.

n=1

Property 1. E € V((D) if and only if

Property 2. A set A is a U set if and only if

aclo | {x (o))

asmy
Property 3. A set A is an M set if and only if there exists a € my, such that I (a) cA.

Property 4. If a system of functions © is such that for any whole number n>1 and any x € [O,l] the

equality @, (l—x) =0, (x) holds, then {O,%} € V((D) and {%,1} € V((D) .
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Property 5. If a system of functions @ is such that for any whole number n>1 and x € [0, 1] the equality

00 (1=x) =g, (x) holds, then {oﬂ e (@) and {%1} e ().

Theorem 2. Let E [0,1] \A,where A= U{x € [O,l] Lo, (x) = O}. Iffor any series (a) there exist a point

n=1

xy € E and a strictly increasing to infinity subsequence m;, T oo of whole numbers, such that for every

whole number k >1 the following inequality holds:

my [ j-1
Z( “i%(xo)]“j%' (%)20,
=2 \i=l

then E €V (®).
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