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It is well known that many deep researches are dedicated to the uniqueness problem of functional series
with respect to different systems of functions. These researches started from Cantor’s fundamental result [1],
according to which the empty set is a set of uniqueness (a U set) for trigonometric series. This theorem was
generalized by Young [2], who proved that any countable set is a U set for trigonometric series.

It should be noted [3: 193] that any subset of [0,1] with positive Lebesgue measure is not a U set. So, any
such set is an M set for trigonometric series. Especially important is an example of trigonometric null-series
constructed by Menshov [4]. The existence of such series directly implies the existence of an M set with zero
measure for trigonometric series.

Uniqueness problem for Walsh, Haar, Rademacher and trigonometric systems was investigated by Bari
[5], Rajchman [6], Marcinkiewich and Zygmund [7], Salem and Zygmund [8], Vilenkin [9], Schneider [10], Fine
[11], Stechkin and Ulyanov [12], Skvortsov [13], Arutunyan and Talalyan [14] and by other known mathema-
ticians.

In the present paper we formulate some of our theorems connected with some properties of uniqueness
sets of functional series.

Let    1n n
x




   be a system of finite functions defined on [0,1]. By m we denote the set of all number

sequences and by a and b we denote some elements of the set m. So,

 1 2, , , ,na a a a    and    1 2, , , ,nb b b b   .

We say that a=b if and only if na = nb  for every whole number 1n  . The sequence  0,0,0  we denote

by  . Let  0 :   m a m a    .
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Consider a series with respect to   system

 
1

n n
n

a x



 . (a)

Definition 1. A set  0,1A  is called a set of uniqueness, or a U set, if the equality

 
1

n n
n

a x



 =0     for all   0,1 \x A

implies that 0na   for every whole 1n  . Otherwise the set A is called an M set.

Definition 2. We say that a set  0,1E   belongs to a class  V   if the equality

 
1

n n
n

a x



 =0     for all  x E

implies that 0na   for every whole number 1n  .

It is obvious that if  E V  , then the set  0,1 \ E  is a U set and if  E V  , then the set  0,1 \ E  is

an M set. Also, if  V   , then    0,1 V  . Below everywhere  V   .

Let us formulate some of our theorems and some properties of uniqueness sets.

Theorem 1. A set  0,1E   belongs to  V   if and only if for any series (a), where 0a m , there exists a

point  x a E  , such that

  
1

0n n
n

a x a






 .

The set of all  x a  points for any series (a), where 0a m , we denote by  I a . So,

        
1

0,1 :      0n n
n

I a x a a x a


  



     
  

 .

Property 1.  E V   if and only if

  
0a m

x a E



 .

Property 2. A set A is a U set if and only if

    
0

0,1 \
a m

A x a



  .

Property 3. A set A is an M set if and only if there exists 0a m , such that  I a A  .

Property 4. If a system of functions   is such that for any whole number 1n   and any  0,1x  the

equality    1n nx x    holds, then  10,
2

V    
 and  1 ,1

2
V    

.
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Property 5. If a system of functions   is such that for any whole number 1n   and  0,1x  the equality

   1n nx x     holds, then  10,
2

V    
 and  1 ,1

2
V     

.

Theorem 2. Let  0,1 \E A , where     
1

0,1 :   0 .n
n

A x x




    If for any series (a) there exist a point

0x E  and a strictly increasing to infinity subsequence km    of whole numbers, such that for every

whole number 1k   the following inequality holds:

   
1

0 0
2 1

0
km j

i i j j
j i

a x a x 


 

 
  
 
 

  ,

then  E V  .
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