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ABSTRACT. We consider the simplest theoretical model of scalar fields in one spatial dimension with
an internal symmetry. We apply the Schrödinger picture to describe the quantum properties of localized
solutions. The use of the method of collective coordinates allows to develop a perturbation theory, which
exactly describes the symmetry properties of the theory. As an example, we consider the theory of three
scalar fields with a broken SU(2) symmetry, for which we derive the dependence of the energy spectrum
on a quantum number corresponding to a charge symmetry. The energy of quantum bound states is the
classical energy plus the energy of quantum excitations. The result does not depend on the specific form
of the interaction potential. © 2012 Bull. Georg. Natl. Acad. Sci.
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Quantization of localized in space solutions has a long history. There are several approaches to this
problem, mainly within the framework of a functional integration[1-8]. The method of collective coordinates,
which indeed uses the parameters of a symmetry group as dynamical variables, is one of them. We apply in
the present investigation the operator approach of this method for solving the Schrödinger equation. The
advantage of this approach is the absence of an ambiguity related with the operator ordering. Besides, a
perturbation theory can be constructed which is manifestly invariant with respect to the group of the symme-
try of a theory under consideration in every order of the perturbation series.
We consider below the simplest model with internal symmetry, which is of interest even today, although many
articles were devoted to this issue [3, 10-12]. The point is that it is possible in theories with internal symmetry
to obtain stable field configurations in more than one space dimension. In papers [3, 10-12] the charge
symmetry has been studied and contribution of the charge depending terms to the energy of the system has
been evaluated. We want to focus our attention on [10]. In this article the charge symmetry is investigated in
detail. It has been shown that there exist charged classical field configurations that are stable owing to the
existence of a charge. The centrifugal term and its contribution to the energy have been calculated in the
framework of the functional integration. The charge is assumed to take on integer values.



38 Vakhtang Gogokhia and Avtandil Shurgaia

Bull. Georg. Natl. Acad. Sci., vol. 6, no. 3, 2012

The approach used in the present article starts from the quantum theory and suggests the construction of
a perturbation theory around the classical neutral field configuration (around charged configurations is also
possible). The charge is quantized such that the exact dependence of the energy on the charge is repre-
sented. Besides, the operator ordering problem, which requires special treatment in the frame of a functional
integration, does not arise in this approach.

The Model with the U(1) Symmetry

We consider the model of scalar triplet in one space dimension with a broken  SU(2) symmetry. The
Hamiltonian of the model is
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with the following commutation relations between the field operators:

( ), ( ) ( )x y i x y          . (2)

The Greek indices   take on values 1, 2, 3 and Latin indices – 1, 2. The fields  ( )x    form the charged

and neutral fields. The potential 3( ( ), ( ), ( ), )i iU x x x g    is suggested to be breaking the SU(2) symmetry

and obeys the condition:

2
3 3( ( ), ( ), ( ), ) ( ( ), ( ),1)i i iU x x x g g U g x g x     . (3)

Thus the model is U (1)  invariant and, as a result, the charge of the system

1 2 2 1{ ( ) ( ) ( ) ( )}Q dx x x x x     (4)

is conserved. We apply the method of collective coordinates to the Schrödinger equation

3 3( ( ), ( )) ( ( ), ( ))i iH x x E x x      (5)

Mention that the operator ( )x  is considered as - / ( )i x  .

Let us introduce the transformations

1 3 3( ) ( ) ( ) ( ) , ( ) ( ) ( )i ij j jx D g u x x x g x x           (6)

in which the function u(x) is a c-number and the parameter   together  with the fields ( )x  compose a new

set of operators. The matrix Dij() is a two-dimensional matrix of rotation:

cos sin
( )

sin cosijD
 


 

 
  
 

. (7)

In order to retain the total number of independent variables a subsidiary condition has to be imposed, namely

2( ) ( ) 0dxN x x  . (8)

The c-number N (x ) is normalized as follows:
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( ) ( ) 1dxN x u x  . (9)

We must now express the momenta ( )x  in terms of the new variables , ( )x .

This is done according to the ordinary rules of differentiation provided that the subsidiary condition (8) is
taken into account. In addition to (8) we need to introduce the following projection operator

2 2( , ) ( ) ( ) ( )ik ik i jA x y x y N x u y       with the properties:

2 2( , ) ( ) ( ) ( , ) 0, ( , ) ( , ) ( , )i j ij jk ikdyA x y N y dxu x A x y dyA x y A y z A x z      , (10)

The fields ( )x  can be expressed as

1( ) ( , ) ( )( ( ) ( ))jik kj i ix dzA y z D u z z    (11)

in which 1( ) ( )D D  . Taking the functional derivative of (8) and (11) with respect to ( )x , we obtain:
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In this expression the following notations are used: ( ) ( )ik k iQ J dx x x    is the charge of mesons (de-

scribed by the fields ( )j x ), the antisymmetric matrix
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is the element of the algebra of the group  U(1), ( ) ( , )
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 , 1( ) ( )F dxN x x  . The

new set of the variables of the system obey the following nonzero commutation relations:

     , , ( ), ( ) ( , ), ( ), ( ) ( )i k ik i kp i x y iA x y x y i x y           . (14)

We can now write down the kinetic energy in the new representation:
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As we can see the kinetic energy does not contain the variable  . It is easy to verify that in the new

representation the charge operator Q is reduced to p , so Q = p . Now, the equality (3) and the transforma-

tions (6) make it possible to expand the potential U in a series by inverse powers of g, namely
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Thus the variable   is cyclic and the operator p  can be replaced with the c-number. Before doing this, we

introduce the transformations, which eliminate the linear and cross terms in the operators ( )j x  and j(x)

from the kinetic energy. First of all we assume ( ) ( )N x u x  such that owing to (9) 2 ( ) 1dxu x  . The

quantity F can now be rewritten as h with 1( ) ( )h dxu x x  . Secondly, we change the wave functional

( , ( ))x   as follows:

1( , ( )) ( , ( ))x x
g h  


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
.

Making use of this substitution we finally obtain for the Hamiltonian
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which acts on  ( , ( ))x  . We can now factor out the  -dependence in the wave functional since   is

cyclic:
( , ( )) exp( ) '( ( ))x im x      

with 0, 1, 2, 3...m      We now replace the operator p  by m. All calculations are so far accurate and we did

not make any approximation. We have eliminated p -dependence from the Hamiltonian and it is now the

function of the quantum number m, thereby the charge has been quantized. One can now construct a
perturbation theory (which will be manifestly  U(1) -invariant in every order) by means of expanding the
Hamiltonian, the energy and the '( ( ))x   in terms of inverse powers of g as follows:
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0 1 0 3 4
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We next solve the system of equations:

0 0 0

0 0 1 1 1 0

0 0 2 1 1 1 2 2 0

( ) 0,
( ) ( ) 0,
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............................................................................

H E
H E H E
H E H E H E
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     
         (19)



Quantum Properties of Scalar Fields with Broken SU(2) – Symmetry 41

Bull. Georg. Natl. Acad. Sci., vol. 6, no. 3, 2012

We do not specify the potential U since we aim to quantize the charge and to obtain the exact dependence
of the Hamiltonian on the charge. We shall only make some remarks regarding the equations (19). It is evident,
that the leading equations of order g2 and g reproduce the classical equations of motion with the zero charge
solutions u(x) and  and classical energy of neutral field configurations. The equation of order g0 is bilinear

in field operators ( )x  and ( )x , which formally can be diagonalized. The result is infinite sum of

oscillators and must be regularized. The charge dependence of the energy arises in the approximation of the
order g-2 and is of the form:

22
4 0 0

1( 2 ).
2 4

E m m Q Q
       

The symbol <>0  denotes  the average over the ground  states of oscillators. One can show that 0 0Q   .

We see that the charge is quantized in a natural way and takes on integer values  as a consequence of the
periodicity of the wave functional in   (and this is an exact result, which does not depend on any further
approximation) as opposed to the article [10], in which the charge is assumed to be an integer.

In this article we were interested in the simplest case of internal symmetry. The realistic  theories  with
higher symmetry  in more than 2-dimensions are of more interest which is the subject of further investigation.
Besides, application of our method to QCD at finite temperature [13, 14] is of great interest. We suggest
studying the topological properties of the QCD ground state and phasing transitions due to the objects like
periodic instantons.
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naSromSi ganxilulia skalaruli  Sinagani simetriis mqone velebis umartivesi modeli
erTganzomilebian sivrceSi. sivrculad lokalizebuli klasikuri amoxsnebis kvanturi
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yofaqcevis Sesaswavlad arCeulia Sredingeris suraTi. koleqtiuri koordinatebis
gamoyeneba SesaZlebels xdis agebul iqnas SeSfoTebis Teoria, romelic zustad aRwers
Teoriis simetriis Tvisebebs. magaliTis saxiT ganxilulia sami urTierTmoqmedi skalaruli
velis Teoria darRveuli SU(2) simetriiT. miRebulia energetikuli speqtris damoki-
debuleba dakvantul muxtze, rac Seesabameba sistemis muxtur simetrias. bmuli mdgo-
mareobebis energia aris klasikuri energiisa da kvanturi agznebebis energiebis jami.
Sedegi ar aris damokidebuli urTierTqmedebis potencialis konkretul saxeze.
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