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LIMIT THEOREMS FOR WEIGHTED SUMS OF

INDEPENDENT IDENTICALLY DISTRIBUTED RANDOM

VECTORS

T. SHERVASHIDZE

Abstract. Criteria of weak convergence to the normal law of weigh-
ted sums of independent identically distributed random vectors are
presented. The conditions of density convergence are given. Various
methods of normalization of weighted growing sums are considered.

îâäæñéâ. éëùâéñèæ� âîåê�æî�á à�ê�ûæèâ�ñèæ á�éëñçæáâ�âèæ

öâéåýãâãæåæ ãâóðëîâ�æï �ûëêæèæ þ�éâ�æï êëîé�èñîæ à�ê�ûæèâ-

�æï�çâê ïñïðæ çîâ��áë�æï� á� ïæéçãîæãâå� çîâ��áë�æï ìæîë�â�æ.

à�êæýæèâ�� äîá�áæ þ�éâ�æï êëîéæîâ�æï ïýã�á�ïýã� ï�ýâ.

Weighted sums of independent, identically distributed random vectors
were studied by many authors; see, e.g., [5], [18], [7], [4], [8], [6], [19],
[14], [15]. Refereeing only to these papers devoted to weak convergence of
distributions of sums and density convergence, we intend to present some
convergence criteria for triangular arrays and growing sums in terms of char-
acteristics of weight matrices and try to compare different normalizations
of growing sums.

1. Arrays of random vectors and weight matrices. All random vec-
tors are assumed to be given on the probability space (Ω,F , P ).

Denote by PX the distribution of a random vectorX ∈ R
k, and let pX(x),

fX(t) and cov(X) be respectively its density (if it exists), characteristic
function (c.f.) and covariance matrix. If |fX(t)| ∈ Lr for an integer r ≥ 1,
we denote

A
(r)
X = (2π)−k

∫

Rk

|fX(t)|rdt.

Next, let ΦG be a normal distribution in R
k with zero mean and covari-

ance matrix G, ϕG(x) its density, Φ = ΦI , ϕ(x) = ϕI(x), where I is the
unit matrix.
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A triangular array of random vectors consisting of an infinite sequence
of finite collections of independent random vectors from R

k

Xnj , j = 1,mn, n = 1, 2, . . .

(mn → ∞ as n→ ∞), for which

EXnj = 0, E|Xnj|
2 = σ2

nj <∞, j = 1,mn, n = 1, 2, . . . ,

is said to be an A(r)-array (r ≥ 0), if:
(a) for r = 0, the set

N (0)
n =

{

j : 1 ≤ j ≤ mn, pXnj
(x) ≤ A

(0)
nj <∞, (A

(0)
nj )

2
k σ2

nj ≤M (0) <∞
}

is non-empty starting from some n;
(b) for r ≥ 1, the set

N (r)
n =

{

j : 1 ≤ j ≤ mn, (A
(r)
nj )

2
k σ2

nj ≤M (r) <∞
}

is non-empty starting from some n, A
(r)
nj = A

(r)
Xnj

.

According to the Plancherel identity
∫

p2
X(x)dx = A

(2)
X , we have an in-

clusion N
(0)
n ⊂ N

(2)
n , where A

(2)
X ≤ A

(0)
X = supx∈Rk pX(x).

Denote

γ2
n = max

j∈N
(r)
n

σ2
nj , Σ2

n =
∑

j∈N
(r)
n

σ2
nj

and introduce the following conditions:
(q) Σ2

n ≥ q > 0 starting from some n;
(γ) γn → 0 (n→ ∞).
We denote by Sn the sum of all random vectors contained in the n-th

row of the given triangular array,

Sn = Xn1 + · · · +Xnmn
,

and by
w
→ weak convergence as n→ ∞.

First, we formulate the theorem on the density convergence for the in-
troduced triangular array of random vectors [15] which we will need in the
sequel for consideration of weighted sums.

Theorem 1. If for an A(r)-array PSn

w
→ ΦG, |G| > 0, and the conditions

(q) and (γ) are fulfilled, then

sup
x∈Rk

∣

∣pSn
(x) − ϕG(x)

∣

∣ → 0 (n → ∞).

Remark 1. Obviously, if the sum of a part of the n-th row of the triangular
array has in the limit normal density and the distribution of the sum of
the remaining part in the limit is normal, then the density of the total
sum converges to that of the composition. This circumstance is taken into
consideration in the conditions of Theorem 1.
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The proof of the above theorem can be carried out by the method of
c.f. by using the estimates of c.f. moduli inside and outside of some balls

in terms of A
(r)
nj and σ2

nj and following the scheme described in [17]. The
latter paper was written under the influence of Yu.V. Prokhorov’s article
[13], where he proved the equivalence of asymptotic normality of normalized
sums of random variables uniformly distributed in different intervals and the
convergence of the corresponding densities; both types of convergence are
equivalent to condition (γ) of uniform limiting negligibility in the form due
to Feller. (Earlier, the equivalence between the condition (γ) and asymptotic
normality of the same sums was observed by Olds [11].)

Let us consider a class of triangular arrays of random vectors which is
connected with the sequence

(X) X1, X2, . . . , EX1 = 0, EX1X
T
1 = I,

of independent, identically distributed k-dimensional random vectors:

(B) Xnj = BnjXj , j = 1, n,

n
∑

j=1

BnjB
T
nj = I, n = 1, 2, . . . .

Here, Bnj are non-degenerate k × k-matrices. For some supplementary
condition of “uniform” non-degeneration we can, analogously to [13] and
[14], prove that the following statement is valid.

Theorem 2. If a triangular array (B) of independent random vectors is

such that PX1 6= Φ and

(Q) ∀n, j : sp(BnjB
T
nj) ≤ Q|BnjB

T
nj |

1
k , 0 < Q <∞,

then for the distribution of the sum Sn of random vectors contained in the

n-th row to converge weakly PSn

w
→ Φ, it is necessary and sufficient that

(γ) γ2
n = max

1≤j≤n
sp(BnjB

T
nj) → 0 (n → ∞).

Proof. According to Kandelaki and Sazonov’s theorem [9] for PSn

w
→ Φ it

is sufficient to show that

Ln(ε) =

n
∑

j=1

E{|BnjXj |
211(|BnjXj)≥ε)} → 0 (n→ ∞)

for each ε > 0, where 11A is the indicator of an event A. But

|BnjXj |
2 = XT

j B
T
njBnjXj ≤ sp(BnjB

T
nj)|Xj |

2

and since

11(|BnjXj |≥ε) ≤ 11(sp(BnjBT
nj

)|Xj |2≥ε2) ≤ 11(|Xj |≥ε/γn)
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and
∑n

j=1 sp(BnjB
T
nj) = sp(I) = k, we have

Ln(ε) ≤

n
∑

j=1

E{sp(BT
njBnj)|Xj |

211(|Xj |≥ε/γn)} =

= kE{|Xj|
211(|X1|≥ε/γn)} → 0 (n→ ∞)

and the weak convergence PSn

w
→ Φ is proved.

Let now PX1 6= Φ, and the convergence PSn

w
→ Φ hold true. Assume the

contrary, i.e. that γn does not tend to zero. Then there exist sequences nm,
jm, m = 1, 2, . . . , such that 1 ≤ jm ≤ nm and

γnm
= sp(Bnmjm

BT
nmjm

) → Λ > 0 (m→ ∞).

When considering the sequence Bnmjm
BT

nmjm
we find that the matrices

Bnmjm
have a non-degenerate limit B, |B| > 0, because by the condition

(Q),

|Bnmjm
|2/k = |Bnmjm

BT
nmjm

|1/k ≥
1

Q
sp(Bnmjm

BT
nmjm

) →

→
1

Q
sp(BBT ) = Λ/Q (m→ ∞).

This leads to the relation

fX1(Bt)g(t) = ψ(t)

between three characteristic functions, where ψ(t) = e−|t|2/2, and fX1(Bt)
is not normal. But this is impossible by Cramér’s theorem on the decom-
position of c.f. of the normal law [3, Ch.X]. �

Remark 2. As is seen from the proof of the theorem, the condition (Q)
is important only for proving that the condition (γ) is necessary.

Applying Theorem 1, from Theorem 2 we find that the following theorem
is valid.

Theorem 3. If for (B) the condition (Q) is fulfilled, and pX1(x) ≤
A(0) <∞ or |fX1(t)| ∈ Lr for some integer r ≥ 1, then

PSn

w
→ Φ

(or (γ) for PX1 6= Φ) and the convergence

sup
x∈Rk

|pSn
(x) − ϕ(x)| → 0 (n → ∞)

are equivalent.
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Proof. In the case of bounded density |fX1(t)| ∈ L2. Thus we consider the
case r ≥ 1,

A
(r)
Xnj

= (2π)−k

∫

|fxnj
(t)|rdt = |BnjB

T
nj |

−1/2A
(r)
X1
,

(A
(r)
Xnj

)2/kσr
nj = (A

(r)
Xnj

)2/k sp(BnjB
T
nj)|BnjB

T
nj |

−1/k ≤

≤ (A
(r)
Xnj

)2/kQ = M (r) <∞. �

Remark 3. Some Bnj may not obey the condition (Q); they can even
degenerate. By Remark 1, we can easily formulate slightly modified condi-
tions for the convergence of PSn

and pSn
(x) in Theorems 2 and 3 and in

Corollaries 1 and 2.

2. Growing sums. In this section we formulate the corollaries of Theo-
rems 2 and 3 for growing sums of members of a sequence

(Y ) Yj = CjXj , j = 1, 2, . . . ,

of independent random vectors generated by the sequence (X) and non-
degenerate matrices Cj , j = 1, 2, . . . (cf. [14]).

Corollary 1. If the matrices Cj, j = 1, 2, . . . , are such that

(Qg) λ1(CjC
T
j )/λk(CjC

T
j ) ≤ Qg <∞, j = 1, 2, . . . ,

where λ1(·) and λk(·) are respectively maximal and minimal eigenvalues of

the matrix, and PX1 6= Φ, then for the relation PSn

w
→ Φ for the distribution

of the normalized sum

Sn = D−1/2
n

(

Y1 + · · · + Yn

)

, where Dn =

n
∑

j=1

CjC
T
j ,

to be fulfilled, it is necessary and sufficient that

(γg) lim
n→∞

max
1≤j≤n

λ1(CjC
T
j )

λkDn
= 0.

Corollary 2. If in the conditions of Corollary 1 PSn

w
→ Φ and |fX1(t)| ∈

Lr for an integer r ≥ 1, then

lim
n→∞

sup
x∈Rk

|pSn
(x) − ϕ(x)| = 0.

To prove the corollaries we apply the variational properties of eigenvalues
of matrices (see, e.g., [1, Ch. X]). Note that if cov(X1) = T 6= I, |T | > 0,
then the conditions (Q) and (γ) as well as (Qg) and (γg) remain unchanged.
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Consider now the version of the central limit theorem in R
k from Cramér’s

book [3, Ch. X] for the sequence (Y ): If for n→ ∞

(D0)
1

n

n
∑

j=1

CjC
T
j =

1

n
Dn → D0, sp(D0) > 0,

and

(L) ∀ε > 0
1

n

n
∑

j=1

E{|CjXj |
211|CjXj |≥ε

√
n} → 0,

then for the distribution of the normalized sum Un = 1√
n
Dn we have

PUn

w
→ ΦD0 .

It is easy to see that under the condition (D0), where |D0| > 0, the
implications

PSn

w
→ Φ ⇒ sup

x∈Rk

|pSn
(x) − ϕ(x)| → 0

and

PUn

w
→ ΦD0 ⇒ sup

x∈Rk

|pUn
(x) − ϕD0(x)| → 0

are equivalent.
This means that under the conditions (Qg) and (γg) the sums can be

normalized by using both methods.

Example. Let among the matrices Cj be only a finite number s of
different ones; then the condition (L) from the Cramér’s theorem is fulfilled,
and when the condition (D0) is fulfilled, too, we are, in the situation of
the so-called s-sequences of independent random variables (with s different
distributions of the members of (Y ) [12, Ch. 7, §2]). The statement

|fX1(t)| ∈ Lr for an integer r ≥ 1 ⇒

⇒ sup
x∈Rk

|pUn
(x) − ϕD0(x)| → 0 (n→ ∞)

is valid due to Corollaries 1 and 2 and the above equivalence of implications.
A different way to prove the latter statement if to use, just as in [2], [10]

and [16], the decomposition

P√
nUn

= P
νn(1)∗
M1X1

∗ · · · ∗ P
νn(s)∗
MsX1

,

where M1, . . . ,Ms are different matrices among Cj , j = 1, 2, . . . , and νn(i)

is the frequency of Mi among C1, . . . , Cn, i = 1, . . . , s, νn(1) + · · ·+νn(s) = n
(for the sake of simplicity, one can assume that all νn(i) tend to infinity as
n→ ∞).
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Corollaries 1 and 2, the version of the central limit theorem from Cramér’s
book and the above-mentioned decomposition provide us with natural means
allowing one to study weak convergence and density convergence in consid-
ering an ergodic random choice from a finite number of weight matrices.
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