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ABSTRACT. We consider the American foreign exchange put option problem in one-dimensional diffusion  model
for exchange rate. The volatility is assumed to be an arbitrary strictly positive bounded function of  time.

We establish several continuity estimates for the American option value  process, the optimal hedging
portfolio and the corresponding consumption process with respect to volatility function. © 2008 Bull. Georg.
Natl. Acad. Sci.
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Introduction 
Let (Ω, F, P) be a probability space and (Wt) Tt ≤≤0  a one-dimensional standard Brownian motion on it. We

denote by (Ft) Tt ≤≤0 the P-completion of natural filtration of the Brownian motion. Throughout the paper we
shall assume that the time horizon T is finite. 

On the filtered probability space (Ω, F, Ft, P) Tt ≤≤0 we consider a financial market with two currencies:
domestic and foreign with their corresponding interest rates rd(t) and rf(t), being two bounded positive measurable
functions of time, i.e. 

  rtr d ≤≤ )(0 ,   rtr f ≤≤ )(0 ,   Tt ≤≤0 . (1.1.)

The exchange rate processes (Qt, Ft) Tt ≤≤0 and TtFQ tt ≤≤0),~(  (with different volatility functions σ(t),
Tt ≤≤0 and )(~ tσ , Tt ≤≤0 are strong solutions of the following linear stochastic differential equations 

 dQt=Qt·(rd(t) – rf(t))·dt + Qt·σ(t)·dWt, Q0 > 0, Tt ≤≤0 . (1.2) 

tt
fd

tt dWtQdttrtrQQd ⋅⋅+⋅−= )(~~))()((~~ σ , 00
~ QQ = , Tt ≤≤0  

where the volatility functions σ(t) and )(~ tσ , Tt ≤≤0  are two arbitrary measurable functions of time, such that 

  σσσ ≤≤< )(0 t , σσσ ≤≤< )(~0 t , Tt ≤≤0 . (1.3)

We note here that the probability measure P denotes the so-called domestic risk-neutral probability measure and
Qt (respectively tQ~ ) gives the units of domestic currency per unit of foreign currency at time t.  

In this article we study the American foreign exchange put option problem with payoff function 



34 Malkhaz  Shashiashvili,  Nasir  Rehman

Bull. Georg. Natl. Acad. Sci., vol. 2, no. 4, 2008

  g(x) = (K – x)+, 0≥x  (1.4)

and its dependence on volatility function σ(t), Tt ≤≤0 . 
It is well-known (see, for example, Karatzas, Shreve [1], chapter 2) that the value process of the American

foreign exchange put written on exchange rate process Qt  Tt ≤≤0  (with the volatility function σ(t), Tt ≤≤0 ) is
defined as follows 

 )/)((esssup
)(

tt

duur

Tt
t FQKeEV t

d

+
−

≤≤
−⋅

∫
=

τ

τ
,   Tt ≤≤0 , (1.5)

  
where the essential supremum is taken over all (Fu) Tu ≤≤0 -stopping times τ  such that Tt ≤≤τ . 

We remind here the fundamental connection between the value process (Vt, Ft) Tt ≤≤0  and the replicating
portfolio for the American put option. 

An (Ft) Tt ≤≤0  - progressively measurable process )( tΠ=Π  Tt ≤≤0  with ∞<∏∫ dt
T

t
0

2  (a.s.), is called

portfolio process and (Ft) Tt ≤≤0 -adapted process C=Ct Tt ≤≤0  with nondecreasing continuous paths and with
C0 =0, CT<8  (a. s.) is called consumption process. 

It was established by Bensoussan [2] and Karatzas [3] that the value process of the American option can be 
precisely replicated by a certain portfolio process )( tΠ=Π  Tt ≤≤0 and the related consumption process C=(Ct)

Tt ≤≤0 , that is  

 tttt
d

t dCdWtdtVtrdV −⋅⋅Π+⋅⋅= )()( σ , Tt ≤≤0 , (1.6)

with some initial condition V0, 00 ≥V . 
Such a pair of processes (Π, C) = (Πt, Ct) Tt ≤≤0 , is called the optimal portfolio and consumption processes

pair. The quantity Πt shows the amount of investment in foreign currency at time t. Thus the process (Vt) Tt ≤≤0 is
also the value process of the optimal hedging portfolio with consumption process (Ct) Tt ≤≤0 , until the time of 
exercise by the buyer of the option. 

The monotone dependence properties with respect to volatility function for the European as well as American
option values have been intensively investigated by several authors during the past decade, see for example, El
Karoui, Jeanblanc-Picque and Shreve [4], Hobson [5] and Ekstrom [6]. 

In this paper we derive continuity estimates with respect to the volatility function for the American foreign
exchange put value process, optimal hedging portfolio and the related consumption process. The derivation of the
latter estimates is essentially based on a new a priori inequalities for the difference of two Snell envelopes and its
components established in Danelia, Dochviri and Shashiashvili [7]. 

 
2. The Lipschitz property of the American put value process with respect to volatility  
The value process of the American put option written on exchange rate with volatility function )(~ tσ  is defined

as follows (see formula 1.5) 

 )/)
~

((esssup~ )(

t

duur

Tt
t FQKeEV t

d

+
⋅−

≤≤
−

∫
= τ

τ

τ
, (2.1)

where the essential supremum is taken over all (Fu) Tu ≤≤0 - stopping times τ , such that Tt ≤≤ τ . 
Introduce the American put’s discounted payoff processes 

 +∫ ⋅
−=

−
)(0

)(
t

duur
t QKeX

t
d

, +∫
−⋅=

−

)~(~
0

)(

t

duur

t QKeX
t d

, Tt ≤≤0 , (2.2)

and their corresponding Snell envelopes 

 ),/(esssup t
Tt

t FXEY τ
τ ≤≤

=  ),/~(esssup~
t

Tt
t FXEY τ

τ ≤≤
=  Tt ≤≤0   (2.3)

 The following relationships between Value processes and the corresponding Snell envelopes are now obvious 
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 ,0
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t

duur

t YeV
t d

⋅=
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 ,~~ 0
)(

t
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t YeV
t

d

⋅=
∫

 Tt ≤≤0 . (2.4)

Consider also the Doob-Meyer decomposition of the Snell envelopes 

  0, 0 =−= BBMY ttt , 0~,~~~
0 =−= BBMY ttt , Tt ≤≤0  (2.5)

where (Mt, Ft) Tt ≤≤0  and ),~( tt FM  Tt ≤≤0  are two uniformly integrable continuous martingales and (Bt, Ft)

and ),~( tt FB  Tt ≤≤0  - two nonnegative nondecreasing continuous intergrable stochastic processes. 
We shall need for further use one technical result. 
Lemma 1. The following estimate is valid for the uniform distance between the exchange rate processes 

  [ ]
2

,0
2
0

2

0 2

~)~sup( TLtt
T

QcQQE σσ
τ

−⋅⋅≤−
≤≤

 (2.6)

 where [ ] ,))(~)((~ 2

0

2
,2

dsss
T

TOL
σσσσ −=− ∫  and c is some constant dependent on r , σ  and T.  

Proof. We shall use the standard techniques of stochastic differential equations together with Gronwall
inequality to obtain the latter bound (see, for example Karatzas, Shreve [8], chapter 5). 

Denote by Q̂  the difference tt QQ ~
−   

  tQ̂ = tt QQ ~
− ,    Tt ≤≤0  (2.7)

where 0ˆ
0 =Q  

Then we have 

 uu

t t

u
fd

ut dWuQuuQduururQQ )](~ˆ))(~)(([))()((ˆˆ
0 0

σσσ ⋅+−⋅+⋅−⋅= ∫ ∫ , (2.8)

From here we can write 

2

0 00

2

0

22

0
))](~ˆ))(~)(([(sup2))()((ˆ2ˆsup uu

T t

u
ts

fd
t

us
ts

dWuQuuQduururduQQ ⋅⋅+−⋅+⋅−⋅⋅≤ ∫ ∫∫
≤≤≤≤

σσσ  

Taking the mathematical expectation on both sides of the latter inequality together with the use of Doob’s
classical maximal inequality we get 

 duuQuuQEduururduQEQE uu

t
f

t T
d

us
ts

2

0
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22

0
)](~ˆ)(~)(([8))()((ˆ2ˆsup σσσ ⋅+−⋅⋅+⋅−⋅⋅≤ ∫∫ ∫

≤≤
. (2.9)

Denote 2

0

ˆsup)( s
ts
QEt

≤≤
=ϕ  , Tt ≤≤0  

 then from the latter inequality and assumptions (1.1) – (1.3) we obtain 

∫ ∫ ∫ −⋅⋅+⋅⋅⋅+⋅⋅⋅≤
t t t

u duuuEQduuduuTrt
0 0 0

2222 ))(~)((16)(16)(2)( σσφσφφ , Tt ≤≤0 . 

Now we use the standard bound (see, for example, Karatzas, Shreve [8], chapter 5, theorem 2.9) 
2
0

2 QbEQu ⋅≤ , Tu ≤≤0  , 
where constant b depends on r , σ  and T. 

Therefore the previous inequality becomes 

 ∫∫ ⋅−⋅⋅⋅+⋅⋅+⋅⋅≤
tt

duuuQbduuTrt
0

2

0

2
0

22 ))(~)((16)()162()( σσφσφ , Tt ≤≤0 . (2.10)

Finally applying the classical Gronwall inequality we get    
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  duuuQcQQE
T

tt
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2

0

2
0

2

0
))(~)(()~(sup( σσ  (2.11)

where the constant c depends on r , σ  and T. 
Now we formulate and prove the Lipschitz continuity property of the American put value process with respect to

volatility function. 
Theorem 1. The following estimate holds for the American foreign exchange put value process 

 ],0[01
0 2

~~sup TLtt
Tt

QcVVE σσ −⋅⋅≤−
≤≤

 (2.12)

 where the constant c1 depends on r , σ  and T. 
Proof. One can write from equalities (1.5) and (2.1) 

EFQKQKEVV t
Tt

tt ≤−−−≤− ++

≤≤
)/)

~
()((esssup~

ττ
τ

 (
Tut ≤≤

sup )/~
tuu FQQ − . 

After taking the supremum on both sides of the latter bound we get 

 
Tt ≤≤0

sup  ≤− tt VV ~  E
Tt≤≤0

sup  )/
~

sup(
0

tuu
Tu

FQQ −
≤≤

. (2.13)

Introduce the notation 
mt = E(η (w)/Ft), where uu

Tu
QQw
~

sup)(
0

−=
≤≤

η  . 

Then we may apply the classical Doob’s maximal inequality and obtain  
E(

Tt ≤≤0
sup  mt)2 ≤ 4Eη 2(w) . 

 Hence from the inequality (2.13) we come to the estimate 

  E 2

0

2

0
)~sup(4)~sup( tt

Tt
tt

Tt
QQEVV −≤−

≤≤≤≤
 (2.14)

From the latter inequality using Lemma 1 we get the desired estimate (2.12). 
 

3. Continuity estimates for the optimal hedging portfolio process and the related consumption with respect
to volatility 
 
We are in a complete financial market model defined by conditions (1.1)-(1.3) and we consider the optimal

hedging portfolio processes )( tΠ=Π  Tt ≤≤0  and )~(~
tΠ=Π  Tt ≤≤0  for the American put option problem

corresponding to volatility functions σ(t), Tt ≤≤0  and )(~ tσ , Tt ≤≤0 . 
Theorem 2. For the optimal hedging portfolio processes Π  and Π~  the following continuity estimate does hold

 ],0[02
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0
2

~))(~~)((
TLss

T

QKcdsssE σσσσ −⋅⋅⋅≤⋅Π−⋅Π∫  , (3.1)

where c2 is some constant dependent on r , σ  and T.  
Proof. We apply the Ito product differentiation rule to the equality 

t

duur
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d
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0  , Tt ≤≤0 , 
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⋅−⋅+⋅=
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On the other, hand by the relation (1.6) we have 

  tttt
d

t dCdWtdtVtrdV −⋅⋅Π+⋅= )()( σ , Tt ≤≤0  . (3.3)
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By the uniqueness of the canonical decomposition of continuous semimartingale (Vt,Ft) Tt ≤≤0  we obtain 
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Similarly for the optimal hedging portfolio process Π
~  with the consumption component C~  we have 
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Therefore we can write 
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  )~(~

0
sss

t

tt BBdCC −⋅=− ∫ γ , Tt ≤≤0  (3.8)

We obtain from the equality (3.7) 

T
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~~))(~~)(( 22

0

2

0

γσσ  . 

Now we apply the crucial estimates from the paper by Danelia, Dochviri and Shashiashvili [7], in particular
theorem 2.4 therein, from which we obtain 
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From equalities (2.2) we write 
,KXt ≤  ,~ KXt ≤  

while from Lemma 1 we have 

 ],0[02
*

2

~)~( TLT QcXX σσ −⋅⋅≤−  (3.10)

Therefore ultimately we get 

],[02
2

0
2

~))(~~)(( ToLss

T

QKcdsssE σσσσ −⋅⋅⋅≤⋅Π−⋅Π∫  . 

Theorem 3. For the consumption processes Ct , Tt ≤≤0  and tC~ , Tt ≤≤0  corresponding to the volatility
functions σ(t), Tt ≤≤0  and )(~ tσ , Tt ≤≤0 , the following continuity estimate is valid 
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where the constant c3 depends only on r , σ  and T. 
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Proof. we get from the equality (3.8) 
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Therefore the following inequality holds 

trBBBBCC tss
ts
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γγ ~sup~~
0

 , Tt ≤≤0  . 

Let us take the supremum with respect to time argument on both sides of the latter inequality, we shall get 
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From the estimate 2.22 in Danelia, Dochviri and Shashiashvili [7] we have 
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and from the inequality (3.10) we get 
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Finally we come to the estimate 
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