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ABSTRACT. We consider the American foreign exchange put option problem in one-dimensional diffusion model
for exchange rate. The volatility is assumed to be an arbitrary strictly positive bounded function of time.

We establish several continuity estimates for the American option value process, the optimal hedging
portfolio and the corresponding consumption process with respect to volatility function. © 2008 Bull. Georg.
Natl. Acad. Sci.
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Introduction

Let (Q, F, P) be a probability space and (W,) 0 <t<T a one-dimensional standard Brownian motion on it. We
denote by (F;) 0<¢<T the P-completion of natural filtration of the Brownian motion. Throughout the paper we
shall assume that the time horizon 7 is finite.

On the filtered probability space (Q, F, F, P) 0<¢<T we consider a financial market with two currencies:

domestic and foreign with their corresponding interest rates rd( ¢) and A1), being two bounded positive measurable
functions of time, i.e.

0<ri()<rF, 0<r/(1)<F, 0<t<T. (1.1)
The exchange rate processes (Q, F;) 0<¢<T and (Q,F}) 0<¢<T (with different volatility functions o(z),
0<t<Tand 65(t), 0<t<T are strong solutions of the following linear stochastic differential equations
dO=0;(r(t) — P(0)ydt + O, o(tydW,, Qg >0, 01 <T . (1.2)
d0, =0,(r" ) =r' (0)-dt+0,-&(1)-dW,, 0y=0y. 0<1<T
where the volatility functions o(¢?) and &'(f), 0<¢<T are two arbitrary measurable functions of time, such that
0<o<o(t)<o,0<0<6(t)<T,0<t<T. (1.3)

We note here that the probability measure P denotes the so-called domestic risk-neutral probability measure and
O, (respectively Q ) gives the units of domestic currency per unit of foreign currency at time ¢.
In this article we study the American foreign exchange put option problem with payoff function
© 2008 Bull. Georg, Natl. Acad. Sci.
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g(x):(K—xY, x>0 (1.4)

and its dependence on volatility functiona(?), 0 <¢<T .

It is well-known (see, for example, Karatzas, Shreve [1], chapter 2) that the value process of the American
foreign exchange put written on exchange rate process Q, 0 <¢<7 (with the volatility function a(¢), 0 <t <T ) is
defined as follows

T

—j-rd(u)du
V, =esssupE(e * (K-0)"'/F), 0<t<T, (1.5)

t<t<T

where the essential supremum is taken over all (F,) 0<u <T -stopping times 7 such that 1t <7 <T .
We remind here the fundamental connection between the value process (V, F,) 0<t<T and the replicating
portfolio for the American put option.

T
An (F) 0<t<T - progressively measurable process I = (I1,) 0<7<T with J.thdt <w (as.), is called
0

portfolio process and (F;) 0 <t < T -adapted process C=C, 0<¢<T with nondecreasing continuous paths and with
C, =0, C;<8 (a.s.) is called consumption process.

It was established by Bensoussan [2] and Karatzas [3] that the value process of the American option can be
precisely replicated by a certain portfolio process I1=(I1,) 0 <t <T and the related consumption process C=(C,)
0<t<T,thatis

AV, = (t)-V,-dit +11, -o(t)-dW, —dC, , 0<t<T, (1.6)

with some initial condition ¥, ¥, 2 0.

Such a pair of processes (I1, C) = (I1,, C;) 0<¢< T, is called the optimal portfolio and consumption processes
pair. The quantity IT, shows the amount of investment in foreign currency at time ¢ Thus the process (V;) 0<¢<T is
also the value process of the optimal hedging portfolio with consumption process (C)) 0<¢ <T , until the time of
exercise by the buyer of the option.

The monotone dependence properties with respect to volatility function for the European as well as American
option values have been intensively investigated by several authors during the past decade, see for example, El
Karoui, Jeanblanc-Picque and Shreve [4], Hobson [5] and Ekstrom [6].

In this paper we derive continuity estimates with respect to the volatility function for the American foreign
exchange put value process, optimal hedging portfolio and the related consumption process. The derivation of the
latter estimates is essentially based on a new a priori inequalities for the difference of two Snell envelopes and its
components established in Danelia, Dochviri and Shashiashvili [7].

2. The Lipschitz property of the American put value process with respect to volatility
The value process of the American put option written on exchange rate with volatility function o (1) is defined
as follows (see formula 1.5)

- 7Trd(u)du- ~
V., =esssupE(e (K-Q1)"/F), 2.1)

t<r<T

where the essential supremum is taken over all (F,) 0 <u <T - stopping times 7 , such that t <7 <T .
Introduce the American put’s discounted payoff processes

1 () de Lo Ireom -
X, =eo (K-0)", X,=e 0 (K-0,)", 0<t<T, (2.2)

and their corresponding Snell envelopes

Y, =esssupE(X,/F), IZzesssupE()?,/F,), 0<t<T (2.3)

t<r<T t<r<T

The following relationships between Value processes and the corresponding Snell envelopes are now obvious
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1 (i o [rwde
V,=e Y, Vo =e Y, 0<t<T. (2.4)

t°

Consider also the Doob-Meyer decomposition of the Snell envelopes

Y,=M,-B,, B,=0,Y,=M,-B,, B,=0,0<t<T (2.5)

where (M, F) 0<¢<T and (M »F;) 0<¢t<T are two uniformly integrable continuous martingales and (B, F))

and (B,,F;) 0<¢<T -two nonnegative nondecreasing continuous intergrable stochastic processes.

We shall need for further use one technical result.
Lemma 1. The following estimate is valid for the uniform distance between the exchange rate processes
~ ~2
E(sup |0, -0 <c- 05 [l =5, 51 (2.6)
lo.

0<7<T

~12 ~
where ”O' - (7||L2 [o.1] = J.(O'(S) - o-(s))zds, and c is some constant dependent on v, ¢ and T.
0
Proof. We shall use the standard techniques of stochastic differential equations together with Gronwall
inequality to obtain the latter bound (see, for example Karatzas, Shreve [8], chapter 5).

Denote by O the difference Q,—Q

0,=0,-0,, 0<i<T 2.7)
where Qo =0
Then we have
0,= [0, )~ )-du+[[Q, (o) ~Fw) +0, -5, 28)
0 0

From here we can write

t T t
sup 07 <2[ 0} -du- [+ @)~/ ) -du+2 sup ([[Q, -(0 () ~Fw) + O, -&w)]- dW,)’
0 0 0

0<s<t 0<s<t

Taking the mathematical expectation on both sides of the latter inequality together with the use of Doob’s
classical maximal inequality we get

0<s<t

t T t
Esup O <2-[ EQ}du-[ (' w)~+ @)’ -du+8-[ E[Q, (o)~ &(u)+0, -G du- (2.9)
0 0 0

Denote ¢(f)=E sup Qf , 0<t<T

0<s<t

then from the latter inequality and assumptions (1.1) — (1.3) we obtain
t t t
()< 2-7* -T-j¢(u)du+16-52 -I¢(u)-du+16-jEQj (o) -6W)) du, 0<t<T.
0 0 0

Now we use the standard bound (see, for example, Karatzas, Shreve [8], chapter 5, theorem 2.9)
EQ?<b-Q}, 0<u<T ,

where constant b depends on 7, o and T.
Therefore the previous inequality becomes

HO <27 -T+16-57)- [p)du+16-b-07 - [(0)=6@) -du 0<e<7.  (210)
0 0

Finally applying the classical Gronwall inequality we get
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T
E(sup (0, -0 <e- 0 -[ (ow)-5(w)’ -du .11
0<t<T 0

where the constant ¢ depends on 7, & and 7.

Now we formulate and prove the Lipschitz continuity property of the American put value process with respect to
volatility function.

Theorem 1. The following estimate holds for the American foreign exchange put value process

E sup |V, =V,|<¢- Oy o8], 1, (2.12)

0<t<T

where the constant ¢; depends on v , o and T.
Proof. One can write from equalities (1.5) and (2.1)

V-V <esssup E((K -0,)" = (K- Q)| F)<E (sw |0, -0,|/F).
t<r<T t<u<T
After taking the supremum on both sides of the latter bound we get
sup |V, —V,|< sup E (supJQu—éu IF). (2.13)
0<t<T 0<t<T 0<u<
Introduce the notation
m,= E(n (w)/F), where n(w) = sup |0, -0,
0<u<T
Then we may apply the classical Doob’s maximal inequality and obtain
E( sup m)’ <YE ,72(w) )
0<t<T
Hence from the inequality (2.13) we come to the estimate
E (sup|V,~V, | <4E(sup|0, - Q) (2.14)
0<t<T 0<t<T

From the latter inequality using Lemma 1 we get the desired estimate (2.12).

3. Continuity estimates for the optimal hedging portfolio process and the related consumption with respect
to volatility

We are in a complete financial market model defined by conditions (1.1)-(1.3) and we consider the optimal
hedging portfolio processes IT=(I1,) 0<¢<7T and I :(ﬁt) 0<¢t<T for the American put option problem

corresponding to volatility functions o), 0<t<T and 0(f), 0<t<T.

Theorem 2. For the optimal hedging portfolio processes T1 and T1 the following continuity estimate does hold

T
EJ. (I, -o(s)~ 1, - 5())2ds < ¢y - K - O -|Jlo ~ 5]
0

L[0.1] 3.1
where c, is some constant dependenton v , o and T.
Proof. We apply the Ito product differentiation rule to the equality
I )
V,=e° Y, 0<t<T,
then we get
d } e (u)du } rd(u)du
dV,=r"(t)-V,dt +e° -dM, — e’ dB,, 0<t<T . (3.2)
On the other, hand by the relation (1.6) we have
AV, =r'(t)-V,dt+11, -o(t)-dW, —dC, , 0<(<T . (3.3)
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By the uniqueness of the canonical decomposition of continuous semimartingale (V,F;) 0 <¢ < T we obtain

t t t
[0, -otyaws= | y,-am,, ¢,=[ y,-aB, 0<t<T (3.4)
0 0 0
where
j rd(u)du
y=e 0<i<T (3.5)

Similarly for the optimal hedging portfolio process T with the consumption component C we have

t - t - ~ ¢ _
j I, -&(s)dw, :j 7o-dM, C,=[ y,-dB,, 0<t<T (3.6)
0 0 0
Therefore we can write

t - t -

[ (@1, 0(5)=M1,-&)-aW, = | y,-dM,~M,), (3.7)

0 0

~ t ~
¢ -C =I Vs d(B,=B,),0<t<T (3.8)
0

We obtain from the equality (3.7)
T T
~ 2, 2 ~ 27T ~
E[ (I, -0(s)-T1,-6(s)ds = E[ y}-d<M-M >s<&™ E<M-M>; .
0 0

Now we apply the crucial estimates from the paper by Danelia, Dochviri and Shashiashvili [7], in particular
theorem 2.4 therein, from which we obtain

etz o i, o, . =

1/2
where “U;H = {E( sup |Ut|)2}
2 0<t<T

From equalities (2.2) we write
X,

|X,|< K, |X,|<K,

while from Lemma 1 we have
~ % ~
H(X—X)TH2 < 0, flo =31, 0. (3.10)
Therefore ultimately we get

T
EJ (I, - o(s) -1, - 5(s)) ds < c; K - Oy '”O'_ EHLZ[O,T] -
0

~

Theorem 3. For the consumption processes C,, 0<t<T and C,, 0<t<T corresponding to the volatility
functions o(t), 0<t <T and &(t), 0t <T, the following continuity estimate is valid

1/2

E sup |C, - G| <e;K'"2-05 o =53], 1 (3.11)

0<t<T

where the constant c; depends only on v, ¢ and T.
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Proof. we get from the equality (3.8)
t t
¢-C =_[ Vs d(By =B)=y,-(B,~B,) —j (B, = By)-7, -7 (s)ds, 0<i<T.
0 0

Therefore the following inequality holds

‘Cl —Ct‘ <y,\B, —Bt‘+ sup |By —B|- 7yt 0<¢<T .
0<s<t
Let us take the supremum with respect to time argument on both sides of the latter inequality, we shall get
sup |C,—C,|<yr - sup Bt—E‘t +7r-T-yr- sup|B, —Et ,
0<t<T 0<t<T 0<<T
hence
E sup Ct—a‘é;/T-(lnLr'-T)-E sup Bt—l?t‘ ) (3.12)
0<t<T 0<t<T

From the estimate 2.22 in Danelia, Dochviri and Shashiashvili [7] we have

E sup|B -3, s9-H(X—)?)’; 12/2 2K

0<i<T
and from the inequality (3.10) we get

1/2

1/2
2 LI0TT

ox -] <0 -4

Finally we come to the estimate
~ 1/2 1/2 ~|1/2
Esup|C,-C)|<c3- K70 -||0'—0'||L 0] 0<<T.
2LY,

0<¢<T
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