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Stability estimates for the multidimensional
elliptic obstacle problem
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Abstract. A Holder type stability estimate in the second order Sobolev space of functions
is established for the solution of the elliptic obstacle problem with respect to variations of
the coefficients of the corresponding differential operator. In modern finance, this estimate
provides results on the sensitivity of a perpetual American option price with respect to
variations of the volatilities in the underlying assets prices. To meet the objective of this
paper, the stability result with respect to external force functions, which was proved by
J.-F. Rodrigues under the nondegeneracy condition, is generalized to the case of arbitrary
functions belonging to the space L?(D), p > 2.
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1 Introduction

The classical obstacle problem describing the equilibrium position of a stretched
membrane under the action of an external force function f is the best-studied one.
There are a few manuals dedicated to it, see, e.g., Kinderlehrer and Stampacchia
[5], Rodrigues [6], Troianiello [7]. The problem has been the subject of investiga-
tion for several decades. As a result, today quite a complete theory is available for
this obstacle problem.

In finance, an American option price is derived from the underlying assets prices
by solving the multidimensional unilateral obstacle problem (see Jaillet, Lamber-
ton and Lapeyre [4]).

An important problem that has arisen in modern finance is to study the sensi-
tivity of an American option price with respect to variations of the volatilities in
several underlying assets (see Achdou [1]). In terms of the mathematical theory of
variational inequalities this amounts to studying the question whether a solution
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of the multidimensional unilateral obstacle problem is stable with respect to varia-
tions of the main coefficients of the corresponding differential operator. Rodrigues
[6, Section 5.4, Theorem 4.8] proved a stability estimate with respect to an exter-
nal force function f only in the case of strictly nondegenerate forces satisfying
the conditions

f € L=(D),

(1.1)
| f(x)] > A, ae.in D for some A > 0.

He assumes that the obstacle function 1 (x) is equal to zero and his estimate has
the following form:

luz —u1llw2.r(p)
1
< c(A Il fillLeoy: Il 22llLeepy) - Il f2 — f1||L/pp(D) for p > 2. (1.2)

where n is the dimension of the Euclidean space, D is a bounded domain in it,
W?2:P(D) denotes the second order Sobolev space of functions defined in D and
integrable together with their first and second order partial derivatives to the p-th
power, and u;(x), i = 1,2, are the solutions of the multidimensional elliptic
obstacle problem corresponding to the external forces f;(x),i = 1,2.

This paper pursues the double aim of, first, deriving a stability result analogous
to (1.2) but without restrictions (1.1), and, second, applying it to obtain a stabil-
ity estimate for a solution of the multidimensional elliptic obstacle problem with
respect to variations of the coefficients of the corresponding elliptic differential
operator.

The exact formulation of the elliptic obstacle problem reads as follows.

Consider an n-dimensional bounded domain D with a boundary 0D of the class
C U1, Denote by Lu(x) the linear second order elliptic differential operator acting
on a function u from the Sobolev space W27 (D), p > 2,

Luw = 3 5= () ) + Zb,(
J

i,j=1

(1.3)

with its adjoint operator

L*u(x) = Xn: %( aij(x )8M(X))

i,j=1

—Zb,(x) (c(x)—Z%)u(x). (1.4)

i=1 i=1
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Assume that
aij(x) = aji(x), a;j € C*Y(D), b; € C*Y(D),

(1.5)
ce€L®(D), c¢(x)<0 ae.inD,

and that the following uniform ellipticity condition holds:

n

Y ai)yiyi = aly’. y=01....y) €R", a>0. (16
i,j=1

Denote by C§°(D) the space of the infinitely differentiable functions with com-
pact support in D.

Let us consider an obstacle function ¥, ¥ € W2P(D), p > 2, such that
max(0, ¥ (x)) € Wol’p(D), p > 2. Here Wol’p(D) is the closure of C§°(D)
in W1-P(D). Throughout the paper the obstacle function v (x) is assumed to be
fixed.

An external force function is denoted by f, f € LP(D), p > 2.

By [7, Theorem 5.2], there exists a unique solution u(x) of the following uni-
lateral elliptic obstacle problem:

Find u € W22 (D) N W, P (D), p > 2, such that

u(x) = ¥(x), Lu(x) < f(x),
(f(x) = Lu(x)) (u(x) — ¥(x)) =0,

The same theorem establishes the following Lewy—Stampacchia inequality:

ae.in D. (1.7)

min(Ly, f) < Lu(x) ae.in D. (1.8)

The paper is organized as follows. In Section 2, we prove some inequalities
which are of independent interest. The proof is based on the relationship between
Lv(x) and L¢(v(x)), where ¢(y) is a smooth univariate convex function and
v(x) an arbitrary function belonging to the second order Sobolev space H?(D) =
W?22(D). In Section 3, Rodrigues’ stability result with respect to external force
functions [6] is generalized to the case without restrictions (1.1). In Section 4, we
establish the basic result of this paper, which is the stability estimate with respect
to the coefficients of the corresponding differential operator for a solution of the
unilateral elliptic obstacle problem.
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2 Some auxiliary inequalities

We begin this section with the assertion which is the key to all the estimates derived
in this paper.

Theorem 2.1. Suppose ¢ (u), —0o < u < 00, is a twice continuously differentiable
univariate convex function with ¢ (0) = 0. Then the inequality

¢'(v(x)) - Lv(x) < L (v(x)) 2.1)
holds for any function v € C?(D).
Proof. One can easily check that the following identity is valid:

dv(x) dv(x)
ox;  Ox;

Le(v(x) = ¢"(v(x)) Y aij(x)

ij=1
+ ¢'(w(x)Lv(x) — c(x) (v(x)¢' (v(x)) — p(v(x))). (2.2)

By the Taylor formula we have

H) = $0) + (e — V) ©) + 5 (e~ )9 (€)
= 60) + (-0 0), a5 9"€) 2 0.
Putting % = 0 in this inequality, we get
vg' (V) — () >0 forany v € R
and hence, by assumption (1.5),
)P () ~ () = 0

From the latter inequality and the ellipticity condition (1.6) we obtain the esti-
mate (2.1). O

Lemma 2.2. Let u;(x), i = 1,2, be a solution of the obstacle problem (1.7) cor-
responding to the external force functions fi(x), i = 1,2. Take an arbitrary
measurable real-valued function ¢(u) such that

o) = 0ifu>0, @) <0ifu<0, ¢0O)=0. 2.3)
Then the following function is nonnegative:

@(uz —u1)[(Luz — f2) — (Luy — f1)] =0 ae. in D. 2.4
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Proof. By the definition of the obstacle problem (1.7) we have

I(u2>u1)(f2 - LMZ) =0,

ae.in D, (2.5)
Ly <uy)(f1 — Luy) =0,

where the symbols /(,>,) and /(, <y,) denote the characteristic function of the
sets {x 1 ua(x) > uy(x)}and {x : uz(x) < uji(x)}, respectively.
Therefore we can write
oz —up)[(Luz — f2) — (Luy — f1)]
= I(u2>u1)(p(u2 —u1)(f1 — Luy)
+ Ty =u)9(O)[(Luz — f2) — (Luy — f1)]
+ I(u2<ul)(—(p(u2 — u1))(f2 — Lup) >0 ae.in D. O

Lemma 2.2 leads to our next important assertion.

Theorem 2.3. The following inequality is fulfilled for a difference of two solutions
ui(x), i = 1,2, of the obstacle problem (1.7) which correspond to the external
force functions fi(x),1 = 1,2,

|L(u2 - u1)| <sgn(uz —uy)-L(uz —u1) +2|f2— fil aeinD, (2.6)

where
1 ifu >0,
sgnu = 10 ifu =0,
-1 ifu<O.

Proof. Put p(u) = sgnu in Lemma 2.2, then the expression (2.4) is nonnegative
and therefore coincides with its absolute value, i.e.,

sgn(uz —u1)[(Luz — f2) — (Luy — f1)]
= (1 = Iuo=uy))|(Luz — f2) = (Luy — f1)| ae.inD.

Thus, we get

|(Luz — f2) = (Luy — f1)| = sgn(uz —uy) - L(uz — u1)
+sgn(ua —u1) (i = f2) + Luy=up) | (Lua — f2) = (Luy — f1)|. 27
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The function u(x) — ui(x) belongs to the second order Sobolev space
W?2P(D), p > 2, and therefore all of its first and second order partial deriva-
tives vanish on the set

{x €D : uy(x)—ui(x) = 0}. (2.8)

The latter fact implies that the function L(u — u1)(x) also vanishes on the set
(2.8),1.e.,

Lay=up)|(Luz — fo) = (Luy — )| = Iwy=up| f2— fil ae.in D.

Now from equality (2.7) we easily derive inequality (2.6). o

Let us introduce in a standard manner a bounded continuous bilinear form
a(u, v) on the product H'(D) x H'(D), where H' (D) = W12(D):

- 9 9
a(u,v) = — Z /];aij(x) gij) ;)(:;) dx

ij=1

- o du(x)
+Z/Dbl(x) T v(x)dx—l—/l.)c(x)u(x)v(x)dx. 2.9)

i=1

Let us recall Green’s classical first formula
a(u,w) = / Lu(x)-w(x)dx (2.10)
D

foru € C2(D), w € H,y (D), where Hg (D) is the closure of the linear space
Cy°(D) in the norm of HY(D).

Theorem 2.4. Consider the univariate convex function ¢ (x) such that
$(x) € C2(R), ¢’ <k, $(0) =0, (2.11)

where k > 0 is some positive constant. Then the following inequality holds for
anyv € H*(D) and w € HOI(D) with w(x) > 0 a.e. in D:

/ ¢ (V) Lvwdx < a(p(v), w). (2.12)
D
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Proof. Since the boundary dD belongs to the class C 11, the linear space C2(D)
is dense in the second order Sobolev space H 2(D_). Fix a function v € H?(D)
and choose an approximating sequence v,, € C2(D) such that

lom = vlla2p)y — 0 (2.13)

Since the sequence of functions v, (x) converges to a function v(x) in the space
L?(D), we can choose such a subsequence (also denoted by v, (x)) that converges
to v(x) a.e.in D.

We write the inequality (2.1) for the functions vy, (x), multiply it by a function
w € HO1 (D) with w(x) > 0 a.e. in D, and then integrate it over the domain D.
We get

/ @' (vm) Lvm w dx S/ Lo (vy) wdx,
D D

which, after applying Green’s first formula (2.10), reduces to the inequality

[ @mLomwdx < a@m). v 2.14)
D
Now we aim to pass to the limit as m — oo in the latter inequality. We have
[p(0(x)) = $(0)| <k |v(x)], (2.15)
hence ¢ (v(x)) € L?(D). By [7, Lemma 1.57] we can write
ad i
¢;(;v(.X)) — $ () ;().C)’
Xi Xi
from which it follows that
‘3¢(U(X)) ‘ | 016
0x; ox;
and thus ¢ (v(x)) € H(D). Moreover, we have
|6 (vm) — ()| <k [vm —v 2.17)
and
¢ (vm)  9¢(v)\2
/D< ox; B ox; ) dx

< 2(k2/];)<38v77—;—;)zdx+/D(¢’(v)—¢’(vm))2<;—;>2dx). (2.18)
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The right-hand side of the inequality (2.18) tends to zero by the Lebesgue dom-
inated convergence theorem if m tends to infinity. We come to a conclusion that
the sequence ¢ (v,,) converges to ¢ (v) in the first order Sobolev space H (D).

Let us estimate the difference

/D‘(qb’(vm)Lvm — ¢’(v)Lv)w‘ dx

= “d’%vm)lﬂ)m - ¢/(U)LU||L2(D)||w”L2(D)~
We have
¢/(Um)LUm - ¢/(U)LU = ¢/(Um)L(Um —v)+ (‘pl(vm) - (,ZV(U))LU, (2.19)

hence we get the estimate
[ @ @mm — ¢/ 0)10)" ax
D

< 2(k2 / (L(m —v))*dx + / (¢ (vm) —¢/(v))2(Lv)2dx). (2.20)
D D

By the convergence ||vm — v g2(py — 0 and the Lebesgue dominated conver-
m—00

gence theorem, the right-hand side of estimate (2.20) tends to zero.
Finally, passing to the limit as m — oo in inequality (2.14), we obtain the
estimate (2.12). O

3 Stability results with respect to external force functions

Let us first prove the stability of a solution of the obstacle problem (1.7) in the
Lebesgue space L(D).

Theorem 3.1. Consider the solutions u; (x), i = 1,2, of the obstacle problem
(1.7) with an obstacle function V¥, ¥ € WP (D), ¥+ ¢ Wol’p(D), p > 2, and
external force functions fi(x), i = 1,2, such that f; € L?(D), p > 2. Then the
following estimate is valid:

luz —uillLepy < cllf2 = fillLrpy. P =2, 3.1
where q is defined by
nzgp l'f2 = p < %’

g =qanyq<oo ifp=75, (3.2)
n
5.

%) if p>
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Proof. Consider the approximation ¢g (1) to |u| written in the form

os(u) = Vu2 +82-8, —oo<u<oo, §>0. (3.3)
We have that for § > 0, ¢5 (1) is a smooth function with ¢5(0) = 0, ¢(§ 0) =0,
and
B 20 B = = s0 G4
5 Z Y, 5 m’ 8 (u2 +52)3/2 - ’

Thus, ¢ (1) is a convex function such that
lps )| <1, ¢s(u) <0ifu <0, ¢5u)>0ifu>0
and ¢ (0) = 0, whereas
¢s (1) tends uniformly to |u| if § — 0
(indeed, |¢s(u) — [u|| < §)) and
qﬁg (u) tends pointwise to sgnu if § — 0.
If we apply Lemma 2.2 to the function ¢(u) = ¢>(’3 (1), § > 0, then we have
¢5(uz —up)[(Luz — f2) — (Luy — f1)] =0 ae.in D,

ie.,

¢s(uz —ur)L(ua —u1) = —|f2— fil ae.in D. (3.5)

Now from inequality (2.12) we obtain

/D (12— Alwdx < a(gsuz — ). w) (3.6)

for any w € HO1 (D) with w(x) > 0 a.e.in D.
Let us consider a solution %(x) of the linear second order elliptic partial differ-
ential equation

Li(x) = —!fz(x) - fl(x)‘ a.e.in D, 3.7
such thatw € W22 (D)N Wol’p(D), p > 2. Then inequality (3.6) can be rewritten
as

a(ps(uz —uy) =, w) >0 (3.8)

for arbitrary w € HO1 (D) with w(x) > 0 a.e.in D.
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‘We observe that
¢s(uz —uy) —U € Hy (D) as ¢s(0) = 0.

If we apply the weak maximum principle (see, e.g., Troianiello [7, Theorem 2.4])
to inequality (3.8), then we get

0<¢s(ur—u1) <u ae.inD. (3.9)
Making § tend to zero we have
0<|uz—ui|<u ae.inD. (3.10)
From this inequality we derive
luz —uillpapy < Mllapy. q = 1. (3.11)

Since the function %(x) is a solution of (3.7), we can apply to %(x) standard
LP-estimates (see, e.g., Gilbarg and Trudinger [3, Lemma 9.17]) to get

[@llw2.rpy < cill fo— filLe). p=2. (3.12)

We can also use Sobolev’s imbedding theorems (Troianiello [7, Theorems 1.33
and 1.41]) and thus obtain the inequality

[WllLepy < c2lullw2.0(Dy. P =2. (3.13)

where ¢ is defined by (3.2).
Applying successively the inequalities (3.11), (3.13) and (3.12) we come to the
estimate (3.1) with the constant ¢ = cyc¢». O

Theorem 3.2. Let ¢ (x) be a nonnegative univariate convex function satisfying the
conditions (2.11). Then for arbitrary v € H*(D) N H(} (D) and h € C?(D) with
h(x) > 0 the following estimate holds:

/¢’(v)Lvhdx§/ d()L*hdx, (3.14)
D D

where L* is the adjoint operator to L defined in (1.4).

Proof. To prove this theorem we use the same approximation technique as in the
proof of Theorem 2.4.
Consider the sequence of functions v,, € C2(D) such that

lvm — vilg2(p) 2.0 (3.15)

where v € H?(D) N HO1 (D).
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Applying Green'’s classical second formula to the functions ¢ (v, (x)) and h(x),
both belonging to the space C2(D), we have

/DL(p(vm)hdx:/ ¢ (V)L hdx

oV, oh 0a;
/ Z (ha,]q& (vm) L = ¢(vm)aij 7— — ¢(vm)h ? j) nj
o (Lo dx;

i=1 Y
+ bi¢(vm)hni:| do, (3.16)

where the boundary integral is an (n — 1)-dimensional surface integral and
(n;)i=1,...,n is the outer normal vector.
Taking into account the key inequality (2.1), from (3.16) we obtain the estimate

/ ¢ (V) Lvy hdx 5/ ¢(vm)L*hdx + I,(dD), (3.17)
D D

where 1,,(dD) is the boundary integral in (3.16). We have to pass to the limit in
inequality (3.17). For the first and second terms this is done in the same manner as
in the proof of Theorem 2.4, but for the boundary integral /,,(dD) the procedure
of passing to the limit is the delicate one, since it requires to consider the trace
operator

T :HY(D)— L*@D)

and the important trace inequality

ITull 2Dy <€ llullai(p) (3.18)

(see, e.g., Evans [2, Chapter 5, Sectlon 5.5, Theorem 1]).
For the functions vy, (x) and ”’" (x) ,i = 1,...,n, the notation of the traces
remains the same. We have that the funct1ons

vy (x)  dv(x)
0x; 0x;

vm(x) —v(x) and

belong to the Sobolev space H (D) and therefore the trace inequality implies

lvm — T2y <€ llvm — vllg1 (D) (3.19)

0V, v vy, ov

0x; E

(3.20)

<c .
L2(9D) ’3%' Oxi || 1)



Page 12 of 18

12 N. Ahmad and M. Shashiashvili

Since v € Hol(D), we have that
Tv=0 inL?@D). (3.21)

Consider the functions ¢ (v, (x)) and ¢’ (v, (x)). By the assumption of Theo-
rem 3.2, ¢(x) is a nonnegative twice continuously differentiable convex function
with ¢(0) = 0. Hence, u = 0 is the point of minimum of the function ¢ (x), and
by the classical theorem of Ferma we have

¢'(0) = 0. (3.22)
By the same assumption (2.11),
9" ()| < k. (3.23)
Therefore
M’(Um) - ¢(TU)| <k|vm—Tv| onaD,
ie.,

|¢@m) = (T V)| L25py <k llvm = TllL2@ap)- (3.24)
Taking into account that 7v = 0, from (3.19) and (3.24) we obtain

lvmlz2@py —2 0. and ll¢@m)lL2@p) — O (3.25)

Let us choose a subsequence of the sequence v, (x) (it is also denoted by
Uy (X)) such that
Um(x) — 0 a.e.inadD (3.26)
m—0o00

(with respect to an (n — 1)-dimensional Lebesgue measure).
Further, we consider the terms

0V

¢ (vm) Wj,

j=1...,n,

of the boundary integral /,,(dD). We have

v v
‘ ¢ (vm) 5.2 = ¢’ om)l2op) | 5 (3.27)
Xj L1 (D) Xj lL2@3D)
From the trace inequality (3.20) we get that the sequence of norms || %”T’;’ “ L2(9D)

is bounded. By the continuity of the function ¢’(u), where ¢’(0) = 0, and the
limit relation (3.26) it is obvious that

¢ (U (x)) — 0 ae. in 0D, (3.28)
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and since the functions ¢’(vy,(x)) are bounded by the constant k, the Lebesgue
dominated convergence theorem tells us that

¢’ (wm)llL2ap) o0

Therefore we can write

.

hm ”(j) (vm) — =0. (3.29)

dx;j L1(3D)

Finally, we conclude that the boundary integral I,,(0D) vanishes in the limit,

1.€.,
lim 1,,(0D) = 0.
m—00

Thus, if in inequality (3.17) we pass to the limit as m — oo, we will obtain the
desired estimate (3.14). O

Let us take the convex functions ¢g (1) defined by (3.3) in inequality (3.14) and
make § tend to zero, then we come to the following assertion.

Corollary 3.3. Consider an arbitrary function v(x) such that v(x) € H*(D) N
HO1 (D). Then the following estimate is valid:

/ sgnv(x)Lv(x)h(x)dxf/|v(x)|L*h(x)dx, (3.30)
D D

where h(x) € C2(D) with h(x) > 0.

For the particular case h(x) = 1, we get the assertion of [6, Section 5.4,
Lemma 4.1]. Our next theorem asserts that a solution of the obstacle problem in
the second order Sobolev space is stable with respect to external force functions.

Theorem 3.4. Let the obstacle function ¥ (x) belong to WP (D) with YT €
Wol’p (D), p = 2. Consider two solutions u;(x), i = 1,2, of the obstacle problem
(1.7) corresponding to external force functions fi(x), i = 1,2, with f; € LP(D),
p > 2,0 = 1,2. Then the following stability estimate is valid:

||u2 — u1||W2.p/(D) =< C||f2 - fl”éf’(D)

1-4
X (1 llw2.rpy + | fillLeoy + 1 2lLey) . (3.31)

where , (o — 1)
p—p p\p —
l<p <p A=—"_ 1-a="2F2_" (3.32)
(p—Dp’ (p—Dp’

and the constant c is independent of ¥ (x), f1(x), fa(x).
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Proof. We start with the interpolation inequality (see Gilbarg and Trudinger [3,
Chapter 7, inequality (7.9)]), which is applied to the function L(u; —u)(x). We
get

| L2 —un)| 0 (D) = <[ LGz - ul)“Ll(D) | L2 — ul)”Ll’(D)’ (3.33)
where p > 2,1 < p’ < p and A is defined in (3.32).

From Theorem 2.3 we have

”L(”2 _”1)”L1(D)
=< /j;) sgn(uz —u1) - L(uz —u1) dx + 2| f2 = fillpipy. (3.34)

and from Corollary 3.3 we obtain
/D sgn(uz —uy) - L(uz —uy)dx < |(L*1)7F ||Loo(D) luz —uillLrpy. (3.35)

where (L*1)™ = max(0, L*1).
Applying inequality (3.1) from Theorem 3.1, we have

luz —urllpvpy < a1ll f2 = fillLe(py-

Hence, we obtain

||L(M2—u1)||L1(D) <l f2— fillLr (- (3.36)

From the Lewy—Stampacchia inequality (1.8) and the formulation of the unilat-
eral obstacle problem (1.7) we have

|L(uz —u1)| < |Lua| + |Lus| < 2|LY| + | fil + | /2| ae.inD. (3.37)

Therefore

1Lz —un)| Lo py = 201LY Loy + I fillLr) + I f2llLr D)
< cs(IVllwzrpy + I fillLeoy + I f2lLry).  (3.38)

The well-known L7 -estimates used for solutions of linear second order elliptic
partial differential equations (see, e.g., Gilbarg and Trudinger [3, Chapter 9]) have
the form

luz —uy ||W2vp’(D) =4 HL(uz - UI)HL,D’(D)
from which and the inequalities (3.33)—(3.38) we eventually obtain the estimate
(3.31). |
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4 The stability estimate with respect to the differential operator

Consider an n-dimensional bounded domain D with a boundary dD of the class
C ! and introduce two linear second order elliptic differential operators L and L,
which act on functions u from the Sobolev space W27 (D), p > 2:

L) = 3 g (a0 ) + 30000 2 )

17./_1 i=1
4.1)
~ "9 du(x)
Lu(x) = Z P (a,j(x) ) Zb (x ) +c(x)u(x)
ij=1""
Assume that the following conditions are satisfied:
aij(x)zaj,-(x), Zz‘,-j(x)ziijl-(x), i,j = 1,...,n; (4.2)
all functions a;;, @;;, b; and Zi belong to the space C 0,1 (5), 43)
¢ and ¢ belong to L*°(D) and ¢(x) < 0,¢(x) < 0a.e.in D; '
and that the uniform ellipticity condition
n n
Do apyiyy z ey Y @@)yiy; = alyl? (4.4)
i,j=1 i,j=1
is fulfilled for some @ > O and any y = (y1,...,Vn) € R".
Denote
d = max|[dij || co.r py + maxllaijllcor py + maxl||bi || coa py
tj 1 i
o+ max|1bill o @) + Iellzos(py + llelzos o). 4.5)

Fix obstacle and external force functions ¥ (x) and f(x) such that
Y e WP (D), yteWyP(D), felLP(D), p=2.  (46)

Recall that 7 (respectively u) belonging to W2?(D) N Wol’p(D), p = 2,is
called a solution of the obstacle problem for the operators L and L if
u(x) = y(x), Lu(x) = f(x),

~ a.e.in D, 4.7)
(f(x) = Lu(x)) (#(x) =¥ (x)) =0
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respectively,
u(x) =z ¥(x),  Lu(x) < f(x),
(f(x) = Lu(®)) (u(x) = ¥ (x)) = 0

We rewrite the obstacle problem (4.7) for the operator L as the obstacle problem
for the operator L as follows:

i(x) = y(x). Li(x) < f(x).
(F () = L)) [@(x) — ¥ (x)) = 0

where ?(x) = f(x)— (Z — L)u(x) is the transformed external force function.
According to Troianiello [7, Theorem 5.2], the problem (4.9) has a unique so-
lution if only £ € L?(D), p > 2.
Let us now formulate and prove the basic result of this paper.

ae.in D. 4.8)

ae.in D, 4.9)

Theorem 4.1. Let the conditions (4.1)—(4.6) be satisfied. Then the following
Holder type stability estimate is valid for the solutions of the obstacle problem
4.7), (4.8):

[l — ul| w2.r' (D)

. ~ . A
< C(n}j}xllaij —aijllcorpy + ml_aX”bi —billcopy + 1€ = cllLos(m))

X (1 lw2.emy + 1f lLrp))- (4.10)
where ,
p—r
(p—Dp"
the constant ¢ is independent of ¥ (x), f(x), but depends on the coefficients of the
differential operators L and L through the quantity d in (4.5) and the ellipticity
constant «.

p>2, 1<p <p, A= 4.11)

Proof. We have

f @) = f(x) = (L - (). (4.12)
Consider the expression
~ =~ 9
(L — L)u(x) = Z (aij — aij) M

i,j=1

/\

+Z(Z—a(“” 0+ (b)) g+ @R

i=1"j
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We get
| =1Ly
<ci(n, P)(H}?X”Ziij —aijllcoapy + miax||5,- —billcoy + €= cliL=(D))
X |[ullw2.0(py- (4.13)

Applying now the Lewy—Stampacchia inequality (1.8) to the obstacle problem
(4.7), we have
|Lu(x)| < |Ly(x)| +|f(x)|] ae.in D 4.14)

and hence
IZallze(py < c2(n. p)d (1V w20y + 1L f L2 (D))- (4.15)

Again using the well-known L?-estimates, we get

[@llw2.rpy < c3(n, p.o.d, DY(IIV lw2.rpy + I f |l Lr(D))- (4.16)

Taking into account the inequalities (4.13) and (4.16), we obtain the bound

17 = Flieewy = [T = L)) pp,

<c4(n,p,a.d, D)(n}?-x”aij —aijllcoapy + ml_aXIIbi —billcop)

+ 1€ = cllzee ) IV lw2.00) + 1./ L2 (D)) (4.17)

Now, if we take in inequality (3.31) of Theorem 3.4 (applied to the obstacle prob-
lem (4.8), (4.9))

-~

filx) = f(x) and  fo(x) = f(x). (4.18)
then by the bound (4.17) we obtain the desired stability estimate (4.10). o
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