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STABILITY ESTIMATE FOR THE MULTIDIMENSIONAL
ELLIPTIC OBSTACLE PROBLEM WITH RESPECT TO THE

OBSTACLE FUNCTION

NAVEED AHMAD1, MALKHAZ SHASHIASHVILI2

Abstract. The stability estimate of the energy integral established by
Danelia, Dochviri and Shashiashvili [1] for the solution of the multidimen-
sional obstacle problem in case of the Laplace operator is generalized to
the case of arbitrary linear second order self-adjoint elliptic operator.

This estimate asserts that if two obstacle functions are close in the
L∞-norm, then the gradients of the solutions of the corresponding obstacle
problem are close in the weighted L2-norm.
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1. Introduction

The classical obstacle problem, which is a particular example of the varia-
tional inequality, is stated as follows:
find the equilibrium position u = u(x), x ∈ D ⊂ R2 of an elastic membrane
constrained to lie above a given obstacle ψ(x) under the action of an external
force function f(x).

According to the famous French mathematician J. L. Lions, this problem is
simple, beautiful and deep. It has been the subject of investigation for several
decades and there are a few manuals dedicated to it, see e.g. Kinderlehrer and
Stampacchia [3], Rodrigues [4], Troianiello [5].
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The function u(x) turns out to be the unique solution of the following
unilateral elliptic obstacle problem





u(x) ≥ ψ(x) , ∆u(x) ≤ f(x),
a.e. in D,(

∆u(x)− f(x)
) · (u(x)− ψ(x)

)
= 0

(1)

where ∆u(x) denotes the Laplace operator.
The following intuitively expected stability estimate with respect to obstacle
function is the well-known classical result (see e.g; Rodrigues [4, chapter 4,
Theorem 7.4])

‖ũ(x)− u(x)‖L∞(D) ≤ ‖ψ̃(x)− ψ(x)‖L∞(D), (2)

where u(x)(respectively ũ(x)) is the solution of the obstacle problem for the
obstacle function ψ(x)(respectively ψ̃(x)).

It was found out by Danelia, Dochviri and Shashiashvili [1] that the follow-
ing energy integral

∫

D

∣∣grad ũ(x)− grad u(x)
∣∣2 h(x) dx (3)

can also be bounded through the L∞-norm ‖ψ̃(x)− ψ(x)‖L∞(D) , where h(x)
is a particular weight function.
The objective of the present paper is the generalization of the latter estimate
to the case of arbitrary linear second order self-adjoint elliptic operator Lu(x)
using only classical functional analytical methods.

The exact formulation of the multidimensional elliptic obstacle problem
reads as follows.
Consider an n-dimensional bounded domain D with a boundary ∂D of the
class C2+γ , 0 < γ ≤ 1. Denote byLu(x) the linear second order elliptic self-
adjoint differential operator acting on a function u(x) from the Sobolev space
H2(D) ∩H1

0 (D),

Lu(x) =
n∑

i,j=1

∂

∂xj

(
aij(x)

∂u(x)
∂xi

)
+ c(x) u(x) (4)

where we assume that

aij(x) = aji(x), aij(x) ∈ C1+γ(D) , c(x) ∈ Cγ(D) and c(x) ≤ 0 in D (5)

and the uniform ellipticity condition is satisfied:
n∑

i,j=1

aij(x)yiyj ≥ α|y|2, y = (y1, . . . , yn) ∈ Rn, α > 0. (6)
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An external force function f(x), f(x) ∈ L2(D) will be fixed throughout the
paper. Consider the obstacle function ψ(x), such that

ψ(x) ∈ H2(D), max(0, ψ(x)) ∈ H1
0 (D). (7)

Here H1
0 (D) is the closure of C∞

0 (D) in H1(D).
Find the function u(x), u(x) ∈ H2(D) ∩H1

0 (D), such that
{

u(x) ≥ ψ(x), Lu(x) ≤ f(x),(
f(x)− Lu(x)

) · (u(x)− ψ(x)
)

= 0
a.e. in D. (8)

By Troianiello [5, Theorem 5.2], there exists a unique solution u(x) of the
latter multidimensional unilateral elliptic obstacle problem.

The paper is organized as follows. In Section 2, we prove an auxiliary
inequality for the functions from the Sobolev space H2(D)∩H1

0 (D). In Section
3, we establish the basic result of this paper, which is the stability estimate of
the energy integral for the solution of the multidimensional unilateral elliptic
obstacle problem.

2. An Inequality for Functions from Sobolev Space

Let us define the weight function h(x) as the unique smooth solution of the
following Dirichlet problem

{
Lh(x) = −1 in D

h(x) = 0 on ∂D
(9)

By the global regularity theorem (6.14) in Gilbarg, Trudinger [2, chapter 6],
we know that the latter Dirichlet problem has a unique solution h(x) which is
smooth up to the boundary ∂D, i.e. h(x) ∈ C2+γ(D).

Now by the Hopf’s strong maximum principle we obtain

h(x) > 0 in D. (10)

The following proposition is an important step in proving the basic energy
inequality of this paper.

Theorem 1. Suppose v(x) ∈ H2(D) ∩H1
0 (D). Then the following inequality

is valid for the function v(x)

2α

∫

D

∣∣grad v(x)
∣∣2 h(x)dx +

∫

D
v2(x)dx ≤ −2

∫

D
v(x) Lv(x) h(x) dx (11)

Proof. We shall prove the latter inequality at first for smooth functions v(x),
such that v(x) ∈ C2(D), v(x) = 0 on ∂D and then we shall extend it to
functions v(x), v(x) ∈ H2(D) ∩H1

0 (D).
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We start from classical Green’s second formula for v(x), v(x) ∈ C2(D) with
v(x) = 0 on ∂D and h(x) ∈ C2(D) :∫

D
Lv(x) h(x) dx −

∫

D
v(x) Lh(x) dx

=
∫

∂D

n∑

i=1

[ n∑

j=1

(
h(x) aij(x)

∂v(x)
∂xj

− v(x) aij(x)
∂h(x)
∂xj

−

− v(x)h(x)
∂aij(x)

∂xj

)
· ni(x)

]
dσ, (12)

where the boundary integral is (n−1)-dimensional surface integral and (ni)i=1,...,n

is the outer normal vector.
Clearly this boundary integral vanishes as h(x) = 0, v(x) = 0 on boundary
∂D.
Hence we get the equality∫

D
Lv(x) h(x) dx = −

∫

D
v(x) dx (13)

Let us put v2(x) instead of v(x) in the latter formula, we have∫

D
Lv2(x) h(x) dx = −

∫

D
v2(x) dx (14)

It is easy to check that

Lv2(x) = 2
n∑

i,j=1

aij(x)
∂v(x)
∂xi

∂v(x)
∂xj

+ 2v(x) Lv(x)− c(x) v2(x) (15)

From the latter equalities (14)-(15) we get

2
∫

D

n∑

i,j=1

aij(x)
∂v(x)
∂xi

∂v(x)
∂xj

h(x) dx + 2
∫

D
v(x) Lv(x) h(x) dx−

∫

D
c(x) v2(x) h(x) dx = −

∫

D
v2(x)dx

from which we come to the inequality

2
∫

D

n∑

i,j=1

aij(x)
∂v(x)
∂xi

∂v(x)
∂xj

h(x) dx+
∫

D
v2(x) dx ≤ −2

∫

D
v(x) Lv(x) h(x) dx

(16)
For y = grad v(x), the uniform ellipticity condition (6) gives us that

n∑

i,j=1

aij(x)
∂v(x)
∂xi

∂v(x)
∂xj

≥ α
∣∣grad v(x)

∣∣2, x ∈ D (α > 0). (17)
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So from the inequality (16) we get the following estimate

2α

∫

D

∣∣grad v(x)
∣∣2 h(x) dx +

∫

D
v2(x) dx ≤ −2

∫

D
v(x) Lv(x) h(x) dx (18)

for arbitrary v(x), v(x) ∈ C2(D) with v(x) = 0 on ∂D.

Now we will extend the equality (13) and the inequality (18) for functions
v(x), v(x) ∈ H2(D) ∩H1

0 (D).
It is known from Gilbarg, Trudinger [2, chapter 9, problem 9.6] that the sub-
space

{v(x) ∈ C2(D)|v(x) = 0 on ∂D}

is dense in H2(D) ∩H1
0 (D).

Hence there exists a sequence vm(x) such that vm(x) ∈ C2(D) with
vm(x) = 0 on ∂D and

‖vm(x)− v(x)‖H2(D) → 0 , m →∞. (19)

Let us write the equality (13) for functions vm(x), m = 1, 2, ...∫

D
Lvm(x) h(x) dx = −

∫

D
vm(x) dx. (20)

Consider the difference

Lvm(x)− Lv(x) =
n∑

i,j=1

∂

∂xj

(
aij(x)

∂(vm(x)− v(x))
∂xi

)
+ c(x) (vm(x)− v(x))

=
n∑

i,j=1

aij(x)
∂2(vm(x)− v(x))

∂xi∂xj
+

+
n∑

i=1

( n∑

j=1

∂aij(x)
∂xj

)
∂(vm(x)− v(x))

∂xi
+ c(x) (vm(x)− v(x))

From the assumption (5), it is easy to see that the functions aij(x), ∂aij(x)
∂xj

,

i, j = 1, 2, ..., n and c(x) are bounded on the closure D by some constant C̃.

Therefore
∥∥Lvm(x)−Lv(x)

∥∥
L2(D)

≤ nC̃

( n∑

i,j=1

∥∥∂2(vm(x)− v(x))
∂xi∂xj

∥∥
L2(D)

+

+
n∑

i=1

∥∥∂(vm(x)− v(x))
∂xi

∥∥
L2(D)

+
∥∥vm(x)− v(x)

∥∥
L2(D)

)

(21)
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From here we get ∥∥Lvm(x)− Lv(x)
∥∥

L2(D)
−→

m→∞ 0. (22)

Passing to the limit as m −→ ∞ in the equality (20) we obtain for arbitrary
v(x), v(x) ∈ H2(D) ∩H1

0 (D) the equality∫

D
Lv(x) h(x) dx = −

∫

D
v(x) dx. (23)

Let us write the inequality (18) for the functions vm(x), m = 1, 2, ...

2α

∫

D

∣∣grad vm(x)
∣∣2 h(x) dx +

∫

D
v2
m(x) dx ≤ −2

∫

D
vm(x) Lvm(x) h(x) dx,

(24)
m = 1, 2, ... .
We have ∣∣∣∣

∫

D
vm(x) Lvm(x) h(x) dx −

∫

D
v(x) Lv(x) h(x) dx

∣∣∣∣

≤ sup
D

h(x)
[ ∫

D

∣∣vm(x) L(vm(x)− v(x))
∣∣ dx +

∫

D

∣∣(vm(x)− v(x))Lv(x)
∣∣ dx

]

(25)
As ‖vm(x)‖L2(D) , ‖Lv(x)‖L2(D) are bounded by some constant and

‖vm(x)− v(x)‖L2(D) −→ 0 ,
∥∥L(vm(x)− v(x))

∥∥
L2(D)

−→
m→∞ 0 by (22),

applying the Cauchy-Schwarz inequality to (25) we obtain∫

D
vm(x) Lvm(x) h(x) dx −→

∫

D
v(x) Lv(x) h(x) dx (26)

as m −→∞.

Consider the difference∣∣∣∣
∫

D
|grad vm(x)|2 h(x) dx−

∫

D
|grad v(x)|2 h(x) dx

∣∣∣∣

≤ sup
D

h(x)
∫

D

∣∣∣∣|grad vm(x)|2−|grad v(x)|2
∣∣∣∣ dx

≤ sup
D

h(x)
(∫

D
|grad (vm(x)− v(x))|2dx+

+2
∫

D

∣∣grad v(x)
∣∣ ∣∣grad (vm(x)− v(x))

∣∣ dx

)
, (27)

where we have used the following identity for n-dimensional vectors y1 and
y2

|y2|2 − |y1|2 = |y2 − y1|2 + 2y1 · (y2 − y1). (28)
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As ‖vm(x)− v(x)‖H2(D) −→
m→∞ 0 , we get

∥∥grad(vm(x)− v(x))
∥∥

L2(D)
−→

m→∞ 0
.
Hence∫

D
|grad vm(x)|2 h(x) dx −→

∫

D
|grad v(x)|2 h(x) dx , as m −→∞. (29)

Finally we pass to limit m −→ ∞ in the inequality (24) and get the desired
estimate (11). ¤

3. Main Results The Energy Inequality for the Difference of
Solutions of the Obstacle Problem

Let f(x), f(x) ∈ L2(D) be a fixed external force function. Consider the
obstacle functions ψ(x), ψ̃(x) such that

ψ(x), ψ̃(x) ∈ H2(D) and max(0, ψ(x)), max(0, ψ̃(x)) ∈ H1
0 (D). (30)

We recall the unilateral obstacle problem :
the function u(x) (respectively ũ(x)) belonging to the intersection H2(D) ∩
H1

0 (D) is called the solution of the obstacle problem for the operator L if



u(x) ≥ ψ(x), Lu(x) ≤ f(x),
a.e. in D,(

Lu(x)− f(x)
) · (u(x)− ψ(x)

)
= 0 ,

(31)

(respectively),




ũ(x) ≥ ψ̃(x), Lũ(x) ≤ f(x),
a.e. in D,(

Lũ(x)− f(x)
) · (ũ(x)− ψ̃(x)

)
= 0.

(32)

The following proposition is the basic result of this paper.

Theorem 2. Let the external force function f(x) belong to L2(D) and the
obstacle functions ψ(x), ˜ψ(x) satisfy condition (30). Suppose that the differ-
ence ψ̃(x)−ψ(x) belongs to L∞(D), i.e.‖ψ̃(x)−ψ(x)‖L∞(D)<∞.Then for the
difference ũ(x)− u(x) of solutions of the obstacle problems (31) and (32) we
have the following energy estimate

α

∫

D

∣∣grad ũ(x)− grad u(x)
∣∣2 h(x) dx +

1
2

∫

D
(ũ(x)− u(x))2dx ≤

‖ψ̃(x)−ψ(x)‖L∞(D)

[
2

∫

D
|f(x)|h(x)dx+

(
meas(D)

) 1
2
( ‖ũ(x)‖L2(D)+‖u(x)‖L2(D)

)]

(33)
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Proof. Denote v(x) = ũ(x) − u(x). Since v(x) ∈ H2(D) ∩ H1
0 (D), from the

inequality (11) of section-2 we get

α

∫

D

∣∣grad (ũ(x)− u(x))
∣∣2 h(x)dx +

1
2

∫

D
(ũ(x)− u(x))2 dx

≤ −
∫

D
(ũ(x)− u(x)) L(ũ(x)− u(x))h(x) dx (34)

Consider the right hand side of the inequality (34), we have

−
∫

D
(ũ(x)−u(x))L(ũ(x)−u(x))h(x) dx

= −
∫

D
[(ũ(x)− ψ̃(x))+(ψ̃(x)−ψ(x))+(ψ(x)−u(x))] L(ũ(x)−u(x))h(x) dx.

Let us rewrite this equality in the following manner

−
∫

D
(ũ(x)− u(x))L(ũ(x)− u(x))h(x) dx

= −
∫

D
(ũ(x)− ψ̃(x))

[
(Lũ(x)− f(x)) + (f(x)− Lu(x))

]
h(x) dx−

−
∫

D
(ψ̃(x)− ψ(x)) (Lũ(x)− Lu(x))h(x) dx−

−
∫

D
(ψ(x)−u(x))

[
(Lũ(x)−f(x))+(f(x)−Lu(x))

]
h(x) dx

(35)
Now using the formulation of obstacle problems (31) and (32), the latter equal-
ity takes the following form

−
∫

D
(ũ(x)− u(x)) L(ũ(x)− u(x))h(x) dx

= −
∫

D
(ũ(x)− ψ̃(x)) (f(x)− Lu(x))h(x) dx−

−
∫

D
(ψ̃(x)− ψ(x)) (Lũ(x)− Lu(x))h(x) dx−

−
∫

D
(u(x)− ψ(x))(f(x)− Lũ(x))h(x) dx

≤ −
∫

D
(ψ̃(x)− ψ(x))

(
Lũ(x)− Lu(x)

)
h(x) dx.

Thus we arrive to the following inequality

−
∫

D
(ũ(x)− u(x)) L(ũ(x)− u(x))h(x) dx

≤ −
∫

D
(ψ̃(x)− ψ(x))

[
(Lũ(x)− f(x)) + (f(x)− Lu(x))

]
h(x) dx (36)
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From the latter inequality we can write

−
∫

D
(ũ(x)− u(x)) L(ũ(x)− u(x))h(x) dx

≤
∫

D
(ψ̃(x)− ψ(x))

[|Lũ(x)− f(x)|+ |f(x)− Lu(x)|] h(x) dx

≤ ‖ψ̃(x)−ψ(x)‖L∞(D)

[
2

∫

D
f(x)h(x) dx−

∫

D
L(ũ(x)+u(x))h(x) dx

]

(37)
Applying the equality (23) for the function v(x) = ũ(x) + u(x)
we have

−
∫

D
L(ũ(x)+u(x))h(x) dx =

∫

D
(ũ(x)+u(x)) dx

≤ (
meas(D)

) 1
2

( ‖ũ(x)‖L2(D) + ‖u(x)‖L2(D)

)
(38)

Using the bounds (37) and (38) we get

−
∫

D
(ũ(x)−u(x))L(ũ(x)−u(x))h(x) dx

≤ ‖ψ̃(x)− ψ(x)‖L∞(D)

[
2

∫

D
|f(x)|h(x) dx +

+
(
meas(D)

) 1
2
( ‖ũ(x)‖L2(D)+‖u(x)‖L2(D)

)]
(39)

Now from the inequalities (34) and (39) we come to the desired estimate
(33). ¤
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