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ON INTEGRAL EQUATIONS WITH FIXED SINGULARITIES

A. SAGINASHVILI

Abstract. Boundedness conditions and the norm of integral opera-

tors with fixed singularities in the kernel are established in weighted

Lebesgue spaces. Second kind integral equations containing the above-

mentioned operators are investigated. This equations have important

applications in the theory of automatized design of complex systems.

1◦. Boundedness. Let Vα and Wα be the integral operators defined by
the equalities

(Vαϕ)(x) =

1∫

x

xα−1

yα
ϕ(y) dy, x ∈ (0, 1), α ∈ R, (1)

(Wαϕ)(x) =

1∫

x

(y − x)α−1

yα
ϕ(y) dy, x ∈ (0, 1), α > 0. (2)

Let us denote by Lp,β, p ≥ 1, β ∈ R the Banach space of functions
measurable on the interval (0, 1) and having a finite norm

‖ϕ‖p,β :=
( 1∫

0

|xβϕ(x)|p dx
)1/p

< +∞.

Lemma 1. The operator Vα is bounded in the space Lp,β if and only if

α+ β + 1
p > 1. In this case

‖Vα‖p,β =
1

α+ β + 1
p − 1

. (3)
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Proof. Necessity: let χ be a characteristic function of the interval (1
2 , 1). It

is obvious that χ ∈ Lp,β for all p ≥ 1, β ∈ R. However, if α+ β + 1
p ≤ 1, it

is easy to see that the function Vαχ does not belong to the space Lp,β.
Sufficiency: let us introduce the operators

(Zϕ)(t) : = e−(β+ 1

p
)tϕ(e−t),

(Z−1ψ)(x) : = x−(β+ 1

p
)ψ(− lnx), t > 0, 0 < x < 1.

These are isometric mutually inverse operators acting from the space
Lp,β into the space Lp(R

+), R+ = (0,+∞), and from Lp(R
+) into Lp,β,

respectively.
Let α+ β + 1

p > 1 and

Ṽα = ZVαZ
−1. (4)

After easy transformations we obtain

(Ṽαψ)(t) =

t∫

0

e(1−α−β− 1

p
)(t−τ)ψ(τ) dτ =

1√
2π

+∞∫

−∞

vα(t− τ)ψ+(τ) dτ, (5)

where

vα(t) =

{√
2πe(1−α−β− 1

p
)t for t > 0,

0 for t ≤ 0,

ψ+(t) =

{
ψ(t) for t > 0,

0 for t < 0.

(6)

Hence Ṽα is a convolution one with the kernel vα ∈ L1(R). Therefore it
is bounded in the space Lp(R

+) and

‖Fvα‖∞ ≤ ‖Ṽα‖p ≤ 1√
2π

‖vα‖1, (7)

where F is the Fourier transform

(Fvα)(t) =
1√
2π

+∞∫

−∞

eitτvα(τ) dτ =
i

t− i(1 − α− β − 1
p )
, t ∈ R. (8)

On the other hand, we have vα(t) ≥ 0, t ∈ R and therefore

1√
2π

‖vα‖1 = (Fvα)(0) ≤ ‖Fvα‖∞. (9)

Inequalities (7) and (9) imply

‖Ṽα‖p = (Fv)(0),

which together with (4) and (8) gives (3).
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Lemma 2. The operator Wα is bounded in Lp,β if and only if β > − 1
p .

Then

‖Wα‖p,β = B
(1

p
+ β, α

)
, (10)

where B(a, b) is the Beta-function.

Remark 0.1. If b = n is a natural number, then (see 12.4,[6])

B(a, n) =
(n− 1)!

a(a+ 1) · · · (a+ n− 1)
.

Thus if α is natural, from we obtain (10)

‖Wα‖p,β =
(α − 1)!

( 1
p + β)(1 + 1

p + β) · · · (α− 1 + 1
p + β)

.

The proof is similar to that we used for the operator Vα. We only to note
that now

W̃α = ZWαZ
−1, (11)

(W̃αψ)(t) =

t∫

0

e(1−
1

p
−α−β)(t−τ)(et−τ − 1)α−1ψ(τ) dτ

=
1√
2π

+∞∫

−∞

wα(t− τ)ψ+(τ) dτ,

where

wα(t) =

{√
2πe(1−

1

p
−α−β)t(et − 1)α−1 for t > 0,

0 for t ≤ 0.

It is obvious that wα(t) ≥ 0, and the conditions α > 0, β > − 1
p imply

wα ∈ L1(R). Therefore

(Fwα)(0) ≤ ‖Fwα‖∞ ≤ ‖W̃α‖p ≤ 1√
2π

‖wα‖1 = (Fw)(0),

i.e.,

‖W̃α‖p = (Fw)(0), (12)

but (see 12.4, [6])

(Fwα)(t) =

∞∫

0

e(1−
1

p
−α−β+it)τ (eτ

−1)
α−1 dτ =

1∫

0

y
1

p
+β−it−1(1 − y)α−1 dy

= B
(1

p
+ β − it, α

)
, t ∈ R. (13)

Equality (10) follows from (11), (12), (13).
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2◦. Equations.

Theorem 1. Let p ≥ 1, α+ β + 1
p > 1. Then the integral equation

ϕ− αVαϕ = f (14)

a) has a unique solution ϕ ∈ Lp,β for any right-hand side f ∈ Lp,β when

β + 1
p > 1, and

ϕ(x) = f(x) +
α

x

1∫

x

f(y) dy, 0 < x < 1; (15)

b) is solvable if and only if

1∫

0

f(x) dx = 0 (16)

when β + 1
p < 1. In that case a solution is given by

ϕ(x) = f(x) − α

x

x∫

0

f(y) dy; (17)

c) is not normally solvable in the space Lp,β when β + 1
p = 1 .

Proof. By applying the operator Z to both sides of equation (14) we obtain
an equivalent equation in the space Lp(R

+)

ψ(t) − α(Ṽαψ)(t) = g(t), t > 0, (18)

where the operator Ṽα is defined by equality (4),

ψ = Zϕ, g = Zf.

Equation (18) is a Winner–Hopf one. If we extend it to a convolution
equation on the whole axis R, then we have

ψ+(t) − α(Ṽαψ+)(t) = g+(t), t ∈ R, (19)

where ψ+ and g+ are the unknown and the given function, respectively, on
R, which are defined by (6). (Note that we have used the obvious equality

(Ṽαψ+)(t) = 0, at t < 0; (see (5)).) On rewriting equation (19) as

(F−1σF)ψ+ = g+,

where F−1 is the inverse Fourier transform and σ is the symbol of (19) (see
(8)),

σ(t) = 1 − α(Fv)(t) =
t− i(1 − 1

p − β)

t− i(1 − 1
p − α− β)

,
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we conclude that a unique solution in the class Lp(R) has the form

ψ(t) = F−1σ−1Fg+, (20)

To have ψ = ψ+, i.e.,ψ(t) = 0 a. e. for t < 0, it is necessary and sufficient
that the function σ−1Fg+ be analytic in the upper half-plane. The latter
condition is automatically fulfilled for β + 1

p > 1 and, for β + 1
p < 1, is

equivalent to the condition (Fg+)(i(1 − 1
p − β)) = 0 which is the same as

condition (16).

Representing σ−1 = 1 + σ0, where

σ0(t) =
iα

t− i(1 − 1
p − β)

,

we obtain from (20)

ψ+(t) = g+(t) +
1√
2π

+∞∫

−∞

(F−1σ0)(t− τ)g+(τ) dτ.

On the other hand, when β + 1
p > 1 we have

(F−1σ0)(t) =
iα√
2π

+∞∫

−∞

e−itτ

τ − i(1 − 1
p − β)

dτ =

{√
2παe(1−

1

p
−β)t for t > 0,

0 for t < 0.

Therefore

ψ+(t) = g+(t) + α

t∫

0

e(1−
1

p
−β)(t−τ)g+(τ) dτ.

Finally,

ϕ(x) = (Z−1ψ+)(x)

= f(x) + αx−(β+ 1

p
)

− ln x∫

0

e(β+ 1

p
−1)(ln x+τ) · e−(β+ 1

p
)τf(e−τ ) dτ

= f(x) +
α

x

1∫

x

f(y) dy.

When β + 1
p < 1 we have

(F−1σ0)(t) =

{
0 for t > 0,

−
√

2παe(1−
1

p
−β)t for t < 0,
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which gives

ψ+(t) = g+(t) − α

+∞∫

t

e(1−β− 1

p
)(t−τ)g+(τ) dτ.

By restoring the solution ϕ = Z
−1ψ+ we obtain (17).

For β + 1
p = 1 we have σ(0) = 0. Hence equation (18) is not normally

solvable (see, e.g. §3.2, [5]) and therefore neither is (14).

Let p ≥ 1, β + 1
p > 0. In the space Lp,β consider the equation

ϕ− αWαϕ = f, (21)

where Wα is the operator defined by (2).
Using the same arguments as in the previous case, equation (21) can be

reduced to a convolution equation on the whole axis

(F−1sF)ψ+ = g+, (22)

where the symbol s = 1 − αFW̃α is a function from the Winner algebra
W (R), which can be analytically continued into the upper half-plane (see
(13)). Thus for s(t) 6= 0, t ∈ R, we obtain s−1 ∈ W (R) and (22) has a
unique solution ψ ∈ Lp(R),

ψ = F−1s−1Fg+. (23)

To have ψ(t) = ψ+(t) = 0 for t < 0, it is necessary and sufficient that the

function s−1F̃g+ be analytic in the upper half-plane.
Like for equation (14), we consider three cases:
a) 1

p + β > 1; by (10)

‖Wα‖p,β =

1∫

0

xβ+ 1

p
−1(1 − x)α−1 dx <

1∫

0

(1 − x)α−1dx =
1

α
. (24)

Therefore the operator I−αWα is invertible in the space Lp,β, i. e., for any
f ∈ Lp,β equation (21) has a unique solution ϕ ∈ Lp,β which by virtue of
(23) is calculated by the formula

ϕ = Z
−1F−1s−1FZf. (25)

b) β + 1
p < 0; s(i(1 − β − 1

p )) = 0 by virtue of (13) and, since the

point i(1 − 1
p − β) is in the upper half-plane, for the function s−1Fg+ to

be analytical, it is necessary that the condition (Fg+)(i(1− β − 1
p )) = 0 be

fulfilled. The latter condition is equivalent to condition (16). In this case,
too, the solution ϕ is calculated by formula (25).

c) β + 1
p = 1; then s(0) = 0 (see (13)), i. e., the symbol of the equation

has a real zero and (21) is not normally solvable.
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As an example let us consider equation (21) for α = 2. Then

s(t) =
(t− i(1 − β − 1

p ))(t + i(β + 1
p + 2))

(t+ i(β + 1
p ))(t+ i(β + 1

p + 1))
,

s−1(t) = 1 + s0(t),

(26)

where

s0(t) = − 2

(t− i(1 − β − 1
p ))(t+ i(β + 1

p + 2))
.

Therefore for β + 1
p > 1 we have

(F−1s0)(t) =

{
2
√

2π
3

(
e(1−β− 1

p
)t − e−(β+ 1

p
+2)t

)
if t > 0,

0 if t < 0

and from (25) we obtain

ϕ(x) = f(x) +
2

3x

1∫

x

f(y) dy − 2x2

3

1∫

x

f(y)

y3
dy. (27)

For β+ 1
p < 0 the function s(z) has a unique zero in the upper half-plane at

z = i(1−β− 1
p ), which means that condition (16) is necessary and sufficient

for the solvability. Taking into account that

(F−1s0)(t) =

{
− 2

√
2π

3 e−(β+ 1

p
+2)t if t > 0

− 2
√

2π
3 e(1−β− 1

p
)t if t < 0,

we obtain from (25)

ϕ(x) = f(x) − 2

3x

x∫

0

f(y) dy − 2x2

3

1∫

x

f(y)

y3
dy. (28)

As a result of the above, we obtain

Theorem 2. Let p ≥ 1, β + 1
p > 0. Then:

a) if β+ 1
p > 1, the integral equation (21) has a unique solution calculated

by the formula (25) (by the formula (27) if α = 2);

b) if β + 1
p < 1, for (21) to be solvable it is necessary (and for α = 2

it is also sufficient) that condition (16) be fulfilled. In this case a unique

solution, is calculated by (25) (by (28) if α = 2).

c) if β + 1
p = 1, equation (21) is not normally solvable.



122 A. SAGINASHVILI

Remark 0.2. When β+ 1
p < 1, condition (16) is not sufficient for arbitrary

α. For example, if α is a natural number, the equation s(z) = 0 is equivalent
to the equation (see Remark 1)

Pα(ζ) = ζ(ζ + 1)(ζ + 2) · · · (ζ + α− 1) = α! , (29)

where ζ = β + 1
p − iz.

Let γα be an arc lying in the strip 0 ≤ Re ζ ≤ 1, satisfying the equation

|Pα(ζ)| = α!

and having the end points ζ = 1 and ζ = iyα, yα > 1. When ζ runs
along the arc from 1 to iyα, argPα(ζ) continuously changes from 0 to ∆α =

π
2 +

α−1∑
k=1

arctg y0

k . Since

∆α ≥ π

2
+
π

4

α−1∑

k=1

1

k
>
π

2
+
π

4
logα,

we have ∆α > 2π for logα ≥ 6, and argPα(ζ0) = 2π takes place at least at
one point ζ0 ∈ γα. Hence equation (29) has a root in the strip 0 < Re ζ < 1
(computer calculations performed by Mathematica 4.0 software show that
such roots already appear for α ≥ 12).

Let ζ1, ζ2, . . . ζm be the roots of equation (29) and

1 = Re ζ1 > Re ζ2 ≥ · · · ≥ Re ζm > 0 = ζm+1.

Then if Re ζk+1 < β + 1
p < Re ζk, for some k = 1, . . . ,m, the equation

s(z) = 0 has roots at the points zj = − Im ζj + i(Re ζj − β − 1
p ) and, since

Re ζj − β − 1
p > 0, j = 1, k, for (21) to be solvable in the space Lp,β it is

necessary and sufficient that (Fg+)(zj) = 0, j = 1, k, which is equivalent to
the equalities

1∫

0

xζj−1f(x) dx = 0, j = 1, k,

i.e., in this case equation (21) has an index −k.
If β + 1

p = Re ζk for some k = 1, . . . ,m, then s(− Im ζk) = 0 so that

equation (21) is not normally solvable.

Remark 0.3. Though the considered equations are second kind Volterra
integral equations, because of the fact that their kernels have first order
fixed singularities they have a nonzero (negative) index in the space Lp,β

when β + 1
p < 1, and the method of successive approximations converges

only if β+ 1
p > 1 (the latter statement follows from equalities (3) and (10)).
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The considered equations are model equations in the theory of design and
control of automatized design of cycles (of crushing and grinding processes).
In the general linear case the equation has the form (see [1], Chapter 3, §1)

ϕ(x) −
1∫

x

K(x, y)ϕ(y) dy = f(x), 0 < x < 1,

where the functions ϕ and f are defined by the densities of mass distribution
according to sizes of the input and output of the system, while the kernel
K(x, y) depends on the physical and technical parameters of the crushing
equipment and has properties

K(x, y) ≥ 0,

y∫

0

K(x, y) dx = 1, 0 < x ≤ y < 1;

moreover, condition (16) is always fulfilled.
Integral convolution equations and reducible to them equations with fixed

singularities were investigated by many authors (see [2], [3]) and the refer-
enses therein). The boundedness and compactness criteria for a wide class
of integral operators (including the operators investigated above) are given
in [4].
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