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FUBINI TYPE THEOREMS FOR ORDINARY AND STOCHASTIC

INTEGRALS

O. PURTUKHIA

Abstract. Stochastic Fubini type theorems on the change of the in-
tegration order of stochastic (in both Ito’s and Skorohod’s sense) and
ordinary (in Lebesgue’s sense) integrals are proved under natural con-
ditions on integrands. Moreover, the interchangeability of Sobolev’s
averaging operator and stochastic integrals is considered.

Introduction

As is well-known, the main result of Lebesgue’s multiple integral theory
is the Fubini theorem which reduces the double (or, in general, multiple)
integrals to iterated integrals. Theorems of this type play a significant
role in modern stochastic analysis as well (in particular, in the stochastic
differential equation theory). The aim of this paper is to study the change
of the integration order of Lebesgue and stochastic (Ito’s and Skorohod’s)
integrals, which cannot be considered in the framework of the ordinary
Fubini theorem.

In the ordinary integration theory the measurability requirement on the
integrand is essentially less restrictive than the integrability condition, which
imposes a certain bound on its absolute value. As for Ito’s stochastic in-

tegral
T
∫

0

ft(ω)dwt, the situation is in some sense the opposite one to the

abovesaid. On the one hand, the integrand ft(ω), besides being a measur-
able function of two variables, must also be an adapted (non-anticipative)
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process (for each t ∈ [0, T ] the function ft(·) must be measurable with re-
spect to the σ-algebra, Fw

t = σ{ws, s ≤ t} i.e., it must be independent of
an increment of the Wiener process). On the other hand, Ito’s stochastic

integral
T
∫

0

ft(ω)dwt must not be understood as the Lebesgue-Stieltjes inte-

gral since Wiener process trajectories have an infinite variation (here the
limit in integral sums is understood in the mean-square sense). Therefore
the stochastic integral obtained by a formal change of the integration order
may happen to be not well defined. It is true that in Skorohod’s stochastic

integral
T
∫

0

ft(ω)δwt there is no requirement for the integrand to be adapted,

but instead it becomes necessary to impose a condition of smoothness in
some weak sense (in particular, the so-called stochastic differentiability).
In the case of adaptive integrands Skorohod’s integral coincides with Ito’s
stochastic integral.

The Fubini theorem for Lebesgue’s and Ito’s stochastic integrals was ob-
tained by Kallianpur and Striebel in 1969 (see [1]) and was subsequently
generalized by Ershov in 1972 (see [2]). Using a different method (in partic-
ular, the so-called martingale representation theorem), a Fubuni theorem of
this type was proved by Liptser and Shiryaev in 1974 (see [3]). We consider,
on the one hand, the case, where the integrand depends on an additional
parameter (see Theorems 1.1 and 2.2), and, on the other hand, we present
the most natural (from the viewpoint of the theory of random processes)
form of the Fubini theorem for Lebesgue’s and Ito’s stochastic integrals
(see Theorem 1.2 and Corollary 1.1; also Theorem 2.1 in the anticipative
case). In the particular case, where the integrand is a conditional mathe-
matical expectation, the Fubini theorem of this type was obtained by Korn
in 1992 (see [4]), using financial mathematical methods. In this paper the
Fubini theorem is proved for Lebesgue’s and Skorohod’s stochastic integrals
as well. Also, the interchangeability of the so-called Sobolev’s averaging
operator and stochastic integrals is considered (see Theorems 1.3 and 2.3).
The same results are obtained in [6] and [7] for the particular cases.

1. Fubini Type Theorems for Lebesgue’s and Ito’s Integrals

Let us fix T ∈ R+. Assume that the measurable space (X,X , λ) (with
(X) < ∞) is given. Let (Ω,F , {Ft}t∈[0,T ], P ) be a standard probability
space with a given Wiener process (wt,Ft), t ∈ [0, T ]. For simplicity, we
consider only the one-dimensional case. Let a function f ∈ L2(B([0, T ]) ⊗
F ⊗ X ) be such that for each x ∈ X it is adapted. Consider a sequence of
partitions 0 = t0,n < t1,n < · · · < tn,n = T of the interval [0, T ] such that

sup
0≤k≤n−1

(

tk+1,n − tk,n

)

→ 0, as n → ∞.
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We introduce the following sequence of step functions:

fn(t, ω, x) :=

n−1
∑

k=0

fk,n(ω, x)I[tk,n,tk−1,n[(t),

where

f0,n(ω, x) := f(0, ω, x),

fk,n(ω, x) :=
1

tk,n − tk−1,n

tk,n
∫

tk−1,n

f(t, ω, x) dt, k ≥ 1.

It is obvious that fn ∈ L2(B([0, T ]) ⊗ F ⊗ X ) and for each x ∈ X the
random variable fk,n(·, x) is measurable with respect to the σ-algebra Ftk,n.
It is not difficult to verify that the following relations are valid:

T
∫

0

∣

∣fn(t, ω, x)
∣

∣

2
dt ≤

T
∫

0

∣

∣f(t, ω, x)
∣

∣

2
dt (P × λ − a.s.)

and

lim
n→∞

T
∫

0

∣

∣fn(t, ω, x) − f(t, ω, x)
∣

∣

2
dt = 0 (P × λ − a.s.). (1.1)

Hence, by virtue of the Lebesgue dominated convergence theorem (LDCT),
we have

lim
n→∞

E

T
∫

0

∣

∣fn(t, ω, x) − f(t, ω, x)
∣

∣

2
dt = 0 (λ − a.s.), (1.2)

lim
n→∞

E

∫

X

T
∫

0

∣

∣fn(t, ω, x) − f(t, ω, x)
∣

∣

2
dtλ(dx) = 0. (1.3)

Theorem 1.1. If f ∈ L2(B([0, T ]) ⊗ F ⊗ X ), then the integrals below are
well defined and the relation

∫

X

T
∫

0

f(t, ω, x)dwtλ(dx) =

T
∫

0

∫

X

f(t, ω, x)λ(dx) dwt (1.4)

is valid P -a.s.
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Proof. By the definition of Ito’s stochastic integral, it is easy to see that for
each n P -a.s., satisfies the equality

∫

X

T
∫

0

fn(t, ω, x)dwtλ(dx) =

T
∫

0

∫

X

fn(t, ω, x)λ(dx)dwt. (1.5)

By the isometricity property of a stochastic integral, relation (1.2) implies
that λ-a.s.,:

lim
n→∞

E

∣

∣

∣

∣

T
∫

0

(

fn(t, ω, x) − f(t, ω, x)
)

dwt

∣

∣

∣

∣

2

=

= lim
n→∞

E

T
∫

0

∣

∣fn(t, ω, x) − f(t, ω, x)
∣

∣

2
dt = 0.

Using the Cauchy-Bunyakovski inequality, ordinary Fubuni theorem, iso-
metricity property of a stochastic integral and LDCT, from relations (1.1)
and (1.3) we obtain

lim
n→∞

E

∣

∣

∣

∣

∫

X

T
∫

0

fn(t, ω, x)dwtλ(dx) −

∫

X

T
∫

0

f(t, ω, x)dwtλ(dx)

∣

∣

∣

∣

2

= 0.

Hence there exists a subsequence fnk
of the sequence fn such that the

relation

lim
n→∞

∫

X

T
∫

0

fn(t, ω, x) dwtλ(dx) =

∫

X

T
∫

0

f(t, ω, x) dwtλ(dx) (1.6)

holds P -a.s.

Analogously, using the Lyapunov inequality, isometricity property of a
stochastic integral, the Cauchy-Bunyakovski inequality and ordinary Fubuni
theorem, from (1.3) we conclude that

lim
n→∞

E

∣

∣

∣

∣

T
∫

0

∫

X

fn(t, ω, x)λ(dx)dwt −

T
∫

0

∫

X

f(t, ω, x)λ(dx)dwt

∣

∣

∣

∣

= 0. (1.7)

If we now pass to the limit in relation (1.5), written for the subsequence
fnk

, as k → ∞, then due to relations (1.6) and (1.7) we obtain equality
(1.4).
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Theorem 1.2. If a function f(s, ω, t) : [0, T ]2 × R1 is such that f ∈
L2(B([0, T ]2) ⊗ F) and, for each s ∈ [0, T ], f(s, ·, t) is measurable with
respect to the σ-algebra Ft, then the following equality is P -a.s. valid:

T
∫

0

T
∫

t

f(s, ω, t) ds dwt =

T
∫

0

t
∫

0

f(t, ω, s) dws dt. (1.8)

Proof. Let us introduce the notations:

f0,n(s, ω) : = f(s, ω, 0),

fk,n(s, ω) : =
1

tk+1,n − tk,n

tk+1,n
∫

tk,n

f(s, ω, t) dt, k = 0, 1, . . . , n − 1,

fn(s, ω, t) : =

n−1
∑

k=0

fk,n(s, ω)I[tk,n,tk+1,n[(t),

hn(ω, t) : =

T
∫

t

fn(s, ω, t) ds,

hk,n(ω, t) : =

k+1,n
∫

t

fk,n(s, ω) ds +

n−1
∑

j=k+1

tj+1,n
∫

tj,n

fk,n(s, ω) ds,

k = 0, 1, . . . , n − 1.

Then it is obvious that

hn(ω, t) =

n−1
∑

k=0

fk,n(ω, t)I[tk,n,tk+1,n[(t)

and

T
∫

0

hn(ω, t) =

n−1
∑

k=0

tk+1,n
∫

tk,n

hk,n(ω, t) dwt =

=

n−1
∑

k=0

tk+1,n
∫

tk,n

(

tk+1,n
∫

t

fk,n(s, ω) ds

)

dwt +

+

n−1
∑

k=0

tk+1,n
∫

tk,n

( n−1
∑

j=k+1

tj+1,n
∫

tj,n

fk,n(s, ω) ds

)

dwt :=

= HR
n (ω) +

n−1
∑

k=0

n−1
∑

j=k+1

tj+1,n
∫

tj,n

fk,n(s, ω) ds
(

wtk+1,n−wtk,n

)

:=
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= HR
n (ω) + H(ω).

Let us also introduce the notations:

gn(t, ω) : =

t
∫

0

fn(t, ω, s) dws,

gk,n(t, ω) : =

k−1
∑

j=0

fj,k(t, ω)
(

wtj+1,n
− wtj,n

)

+ fk,n(t, ω)
(

wt − wtk,n

)

.

Since in our case

fn(t, ω, s) =

n−1
∑

k=0

fk,n(t, ω)I[tk,n,tk+1,n[(s),

we obtain

gn(t, ω) =

n
∑

k=1

gk,n(t, ω)I[tk,n,tk+1,n[(t),

and

T
∫

0

gn(t, ω) dt =

n−1
∑

k=0

tk+1,n
∫

tk,n

gk,n(t, ω) dt =

=

n−1
∑

k=0

tk+1,n
∫

tk,n

k−1
∑

j=0

fj,n(t, ω)
(

wtj+1,n
− wtj,n

)

dt +

+

n−1
∑

k=0

tk+1,n
∫

tk,n

fk,n(t, ω) · (wt − wtk,n
)dt =

=
n−1
∑

k=0

k−1
∑

j=0

(

wtj+1,n
− wtj,n

)

tk+1,n
∫

tk,n

fj,n(t, ω) dt + GR
n (ω) =

:= Gn(ω) + G − nR(ω).

Using the properties of double sums, we conclude that Hn(ω) = Gn(ω)
P -a.s., for each n ≥ 1.

On the other hand, using Ito’s formula and the differentiation rule of the
Lebesgue integral with a variable lower boundary, we obtain

tk+1,n
∫

tk,n

(

tk+1,n
∫

t

fk,n(s, ω) ds

)

dwt =
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=

tk+1,n
∫

t

fk,n(s, ω) dswt

∣

∣

∣

tk+1,n

tk,n

−

tk+1,n
∫

tk,n

wtd

(

tk+1,n
∫

t

fk,n(s, ω)ds

)

=

= −

tk+1,n
∫

tk,n

fk,n(s, ω) dswtk,n
+

tk+1,n
∫

tk,n

wtfk,n(t, ω) dt =

=

tk+1,n
∫

tk,n

fk,n(t, ω)
(

wt − wtk,n

)

dt.

Hence it is obvious that for each n ≥ 1 P -a.s.: HR
n (ω) = GR

n (ω).

Finally, we ascertain that equality (1.8) is true for functions fn. Further,
using arguments similar to those presented above and following the scheme
of the proof of Theorem 1.1, it can be easily shown that relation (1.8) is
fulfilled.

Corollary 1.1. If f(t, ω) : [0, T ] × Ω → R1 is a non-anticipative process
adapted to the flow of σ-algebras Ft and belonging to the class L2(B([0, T ])⊗
F), then the equality

T
∫

0

T
∫

t

f(s, ω) ds dwt =

T
∫

0

t
∫

0

f(t, ω) dwsdt

takes place P -a.s.

Before formulating the next result, we will recall the definition of Sobolev’s
averaging operator Tε. Let

ζ(x) := exp
{

|x|2(|x|2 − 1)−1
}

, for |x| ≤ 1

and

ζ(x) := 0, for |x| > 1.

Then, by definition, for any locally integrable function ϕ : R1 → R1, we
have

Tεϕ(x) = κ

1
∫

−1

ϕ(x + εy)ζ(y) dy = κε−1

+∞
∫

−∞

ζ
(y − x

ε

)

ϕ(y)dy,

where

κ =

(

1
∫

−1

ζ(x)dx

)−1

.
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Theorem 1.3. Let f(·, ·, ·) : [0, T ] × Ω × X → R1 be a B[0, T ] ⊗ F ⊗ X–
measurable function adapted for each x ∈ R1 and belonging to L2(B[0, T ]⊗
F); for almost all (t, ω) it is locally integrable with respect to x. Then P -a.s.
we have the relation

Tε

[

T
∫

0

f(t, ω, x)dwt

]

=

T
∫

0

Tε

[

f(t, ω, x)
]

dwt. (1.9)

Proof. From the linearity of the stochastic entegral and Sobolev’s averaging
operator it readily follows that for any n ≥ 1 P -a.s.

Tε

[

T
∫

0

fn(t, ω, x)dwt

]

=

n−1
∑

k=0

Tε

[

tk+1,n
∫

tk,n

fk,n(ω, x) dwt

]

=

=

n−1
∑

k=0

Tε

[

fk,n(ω, x)
](

wtk+1,n
− wtk,n

)

=

=

n−1
∑

k=0

tk+1,n
∫

tk,n

Tε

[

fk,n(ω, x)
]

dwt =

T
∫

0

Tε

[

f(t, ω, x)
]

dwt. (1.10)

By arguments similar to those used in proving Theorem 1.1 and by the
well-known properties of Sobolev’s averaging operator (see, for example, [8]
and [9]), passing to the limit in (1.10) as n → ∞, we ascertain that relation
(1.9) is valid.

Remark 1.1. If instead of the requirement that all the above-discussed
processes belong to L2([0, T ] × Ω), we assume that for almost all ω they
belong to L2([0, T ]), then it is not difficult to see that all the results obtained
above can be easily extended to the latter case.

Remark 1.2. The results given above can be easily extended to the case,
where the stochastic integral with respect to the Wiener process is replaced
by the stochastic integral with respect to a square integrable continuous
martingale.

2. Fubini Type Theorems for Lebesgue ang Skorohod’s

Integrals

Let (Ω,F , P ) be a complete probability space with a given standard
Wiener process wt, t ∈ [0, T ]. Assume F := FT = σ{wt, t ∈ [0, T ]}. In
what follows we will use the same notation as in [5], in particular, Skorohod’s
stochastic integral is denoted by the same symbol as Ito’s stochastic integral.
Recall now the definition of a stochastic derivative operator and introduce
the associated Sobolev spaces.

Let C∞
b (Rk) be the set of C∞ functions f : Rk → R1 which are bounded

and have bounded derivatives of all orders. A smooth functional will be
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a random variable F : Ω → R1 of the form F = f(wt1 , . . . , wtm
), where

the function f(x1, . . . , xm) belongs to C∞
b (Rm) and t1, . . . , tm ∈ [0, T ]. The

class of smooth functionals is denoted by ϕ.

The derivative of a smooth functional F can be defined as the stochastic
process given by

(DF )t :=

m
∑

i=1

∂f

∂xi

(

wt1 , . . . , wtm

)

I[0,ti](t)

for t ∈ [0, T ].

The derivative DF can be regarded as a random variable taking values
in the Hilbert space H = L2([0, T ]; R1). We also write DtF for (DF )t. We
introduce the norm on vf

‖F‖2,1 := ‖F‖2 + ‖‖DF‖H‖2.

Then D2,1 denotes the Hilbert space which is the completion of varnothing

with respect to the norm ‖ · ‖2,1.

Let u ∈ L2([0, T ]×R1; R1). Then (see Proposition 3.1 in [5]) u is Skoro-
hod integrable if and only if there exists a constant c such that

∣

∣

∣

∣

E

(

T
∫

0

ut · DtFdt

)∣

∣

∣

∣

≤ c‖F‖2

for any F ∈ D2,1 and, in this case, we have

E

(

T
∫

0

ut · DtFdt

)

= E
(

Fδ(u)
)

.

Notice that the Skorohod integrable operator δ is a closed operator because
δ is the adjoint of D and D2,1 is dense in L2(Ω).

Let L
2,1 denote (see Definition 3.3 in [5]) the class of scalar processes

u ∈ L2([0, T ]×Ω) such that u ∈ D2,1 for a.a. t and there exists a measurable
version of Dsut verifying

E

T
∫

0

T
∫

0

∣

∣Dsut

∣

∣

2
ds dt < ∞.

Then L
2,1 ⊂ Dom δ and L

2,1 is a Hilbert space with the norm

‖u‖ :=

(

E

T
∫

0

∣

∣ut|
2dt

)1/2

+

(

E

T
∫

0

T
∫

0

∥

∥Dsut‖
2ds dt

)1/2

.
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Theorem 2.1. If f ∈ L
2,1, then the integrals below are well defined and

P -a.s. the following relation is valid:

T
∫

0

T
∫

t

f(s, ω) ds dwt =

T
∫

0

t
∫

0

f(t, ω) dws dt. (2.1)

The proof of Theorem 2.1 will be given in several stages.

Proposition 2.1. If f ∈ L2,1, then all integrals from relation (2.1) are well
defined.

Proof. At first, we verify that the process g(t, ω) :=
T
∫

t

f(s, ω)ds belongs to

L
2,1. By the definition of L

2,1 we have
(i) f ∈ L2([0, T ]× Ω);

(ii) f(t, ·) ∈ D2,1 for a.s. t;

(iii) there exists a measurable version of Dsft, such that

Df(·, ·) ∈ L2([0, T ]2 × Ω).

Hence, using the Cauchy-Bunyakovski inequality, it is easy to see that g

satisfies the conditions (i) and (ii).

On the other hand, using the requirement (iii), we conclude that there
exists a measurable version of the function

Dsg(t) =

T
∫

t

Dsf(ν) dν

such that
∥

∥Dsg(t)
∥

∥

L2([0,T ]2×Ω)
≤ T 2 ·

∥

∥Dsf(ν)
∥

∥

L2([0,T ]2×Ω)
< ∞,

hence g satisfies the condition (iii) as well. That is why g ∈ L
2,1 ⊂ Dom δ

and therefore the integrals from the left-hand side of relation (2.1) are well
defined.

Further, it is obvious that the process h(t, ω) :=
t
∫

0

f(t, ω)dws exists.

Using the ordinary Fubuni theorem and the estimation 3.7 from [5], we
ascertain that:

∥

∥h
∥

∥

L2([0,T ]×Ω)
≤ c2(T ) ·

∥

∥f
∥

∥

2,1
.

Hence, P -a.s. h(·, ω) ∈ L2([0, T ]) and therefore the integrals on the right-
hand side of (2.1) are well defined.

Proposition 2.2. If f(s, ω) ≡ ξ(ω) ∈ Dom δ, then relation (2.1) is valid.
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Proof. Using Theorem 3.2 from [5] and Ito’s formula, we can P -a.s. write

T
∫

0

T
∫

t

ξ ds dwt =

T
∫

0

ξ(T − t) dwt = ξ

T
∫

0

(T − t) dwt −

T
∫

0

(T − t)Dtξ dt =

= ξ · T · wT − ξ · T · wT + ξ

T
∫

0

wt dt −

T
∫

0

(T − t)Dtξ dt =

ξ

T
∫

0

wt dt −

T
∫

0

(T − t)dtξ dt.

On the other hand, again using Theorem 3.2 [5] and applying the formula
of integration by parts and differentiation rule of a Lebesgue integral with
the variable upper boundary, we obtain that P -a.s.

T
∫

0

t
∫

0

ξ dws dt =

T
∫

0

[

ξ

t
∫

0

dws −

t
∫

0

Dsξ ds

]

dt = ξ

T
∫

0

wt dt −

−

T
∫

0

(

t
∫

0

Dsξ ds

)

dt = ξ

T
∫

0

wt dt −

t
∫

0

Dsξ ds · t
∣

∣

T

0
+

T
∫

0

t

(

pa

∂t

t
∫

0

Dsξ ds

)

=

ξ

T
∫

0

wt dt − T

T
∫

0

Dsξ ds +

T
∫

0

t · Dtξ dt = ξ

T
∫

0

wt dt −

T
∫

0

(T − t)Dtξ dt.

Thus in our case relation (2.1) is true.

Proof of Theorem 2.1. Let {Πn, n ∈ N} be a sequence of partitions of [0, T ]
of the form: 0 = t0,n < t1,n < · · · < tn,n=T such that

|Πn| = sup
0≤k≤n−1

(tk+1,n − tk,n) → 0 as n → ∞.

Given u ∈ L2([0, T ] × Ω; R1), we define

uk,n :=
1

tk+1,n − tk,n

tk+1,n
∫

tk,n

us ds for 0 ≤ k ≤ n − 1

and

u−1,n = un,n := 0;

un : =

n−1
∑

k=0

uk,nI[tk,n,tk+1,n[.
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It is not difficult to see that fn ∈ L
2,1 and, by the linearity of Skorohod’s

and ordinary integrals, using Proposition 2.2, for each n ≥ 1 P -a.s. we have

T
∫

0

T
∫

t

fn(s, ω) ds dwt =

T
∫

0

t
∫

0

fn(t, ω) dws dt. (2.2)

By arguments similar to those used in the adaptive case to prove (1.2) and
(1.3) and taking into consideration the properties of a stochastic derivative
operator, we find that fn → f in L

2,1 as n → ∞.
Let us denote

gn(t, ω) :=

T
∫

t

fn(s, ω) ds

and

hn(t, ω) :=

t
∫

0

fn(t, ω) dws.

By the Cauchy-Bunyakovski inequality we conclude that gn → g in L
2,1

as n → ∞. Therefore the left-hand side of (2.2) tends to left-hand side of
(2.1) as n → ∞.

On the other hand, because fn → f in L
2,1 as n → ∞, by Proposition

3.5 [5] we ascertain that

δ(fn) → δ(f) in L2(Ω) as n → ∞.

Therefore

δ(fn · I[0,t]) → δ
(

f · I[0,t]

)

in L2(Ω) as n → ∞,

hence, hn(t) → h(t) in L2(Ω) as n → ∞. Further, using estimation 3.7 [5],
we see that:

∥

∥hn − h
∥

∥

2

L2([0,T ]×Ω)
≤ c2(T )

[∥

∥fn − f
∥

∥

2

L2([0,T ]×Ω)
+

+
∥

∥Dsf
n(ν) − Dsf(ν)

∥

∥

2

L2([0,T ]2×Ω)

]

→ 0,

as n → ∞. Thus there exists a subsequence hnk of the sequence fn such
that P -a.s.

lim
k→∞

T
∫

0

[

hnk(t, ω) − h(t, ω)
]2

dt = 0.

Hence the right-hand side of (2.2), written for the subsequence hnk , tends
to the right-hand side of (2.1) as k → ∞. Combining the above-obtained
limit expressions, we ascertain that relation (2.1) is valid.

As in the non-anticipative case, let us now consider the integrand which
depends an additional parameter. Assume that the measurable space (X,X ,

λ) (with λ(X) < ∞) is given.
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Theorem 2.2. Let ϕ(·, ·, ·) : [0, T ]× X × Ω → R1 be a B([0, T ]⊗X ⊗F)-
measurable function belonging, for each x ∈ X, to L

2,1 and for almost
all (t, ω) the Lebesgue integral

∫

X

ϕ(t, x, ω)λ(dx) be well defined. Then the

integrals below are well defined and the following relation is P -a.s. valid:

∫

X

T
∫

0

ϕ(t, x, ω) dwtλ(dx) =

T
∫

0

∫

X

ϕ(t, x, ω)λ(dx) dwt . (2.3)

Proof. Let the sequence of functions ϕn(t, x, ω) be defined for each x ∈ X

as in the proof of the theorem above. Then relation (2.3) is true for any
function ϕn(t, x, ω) and in that case the integrals are well defined. Further,
passing to the limit in (2.3), written for ϕn(t, x, ω), as n → ∞, and using
arguments like in the proof of Theorem 2.1, we conclude that the assertion
of the theorem is true.

Theorem 2.3. Let ϕ(·, ·, ·) : [0, T ]× X × Ω → R1 be a B([0, T ]⊗X ⊗F)-
measurable function belonging, for each x ∈ X, to L

2,1 and for almost all
(t, ω) the function ϕ(t, ·, ω) be locally integrable with respect to x. Then the
integrals below are well defined and the following relation is valid P -a.s.:

Tε

[

T
∫

0

ϕ(t, x, ω) dwt

]

=

T
∫

0

Tε

[

ϕ(t, x, ω)
]

dwt. (2.4)

Proof. The proof is analogous to that of the preceding theorems. First,
using the linearity of Skorohod’s stochastic integral and Sobolev’s averaging
operator, we verify that relation (2.4) is valid for each function ϕn(t, x, ω)
and then, using the above-mentioned properties of Skorohod’s integral and
the well-known properties of Sobolev’s averaging operator (see [8], [9]), we
finish the proof of the theorem.
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