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AN EXTENSION OF THE OCONE–HAUSSMANN–CLARK

FORMULA FOR A CLASS OF NORMAL MARTINGALES

O. PURTUKHIA

Abstract. The space Dp,1 (1 < p < 2) is proposed for normal
martingales and the integral representation formula of Clark (1970),
Haussmann (1979) and Ocone (1984) is established for functionals in
the space Dp,1 (1 < p < 2).

îâäæñéâ. ê�öîëéöæ à�êé�îðâ�ñèæ� Dp,1 (1 < p < 2) ïæãîùâ

êëîé�èñîæ é�îðæêà�èæï öâéåýãâã�öæ á� à�éëõã�êæèæ� çè�îçæï

(1970), ÿ�ñïé�êæï� (1979) á� ëçëêâï (1984) æêðâàî�èñîæ û�îéë-

áàâêæï òëîéñè�Dp,1 (1 < p < 2) ïæãîùæï òñêóùæëê�èâ�æï�åãæï.

Introduction

The past two decades have seen considerable interest in the application of
stochastic calculus to problems of financial economics. Harrison and Pliska
[4–5] were the first authors to show that the martingale representation the-
orem and Girsanov change of probability measure were the “keys” to under-
standing the option pricing in terms of the well-known Black–Sholes model.
Subsequently, this method was successfully used in studying problems of
valuation of American options (Bensoussan [6]), consumption/investment
optimization (Karatzas, Lehoczky and Shreve [7]), term structure of inter-
est rates (Artzner and Delbaen [8]), and equilibrium (Karatzas, Lehoczky
and Shreve [9]).

For most stochastic optimization problems posed in general financial mar-
ket models the above-mentioned method is highly successful in identifying
closed-form expressions for quantities like optimal consumption and ter-
minal wealth levels. However it is able to ascertain only the existence of
associated portfolio strategies. In Ocone and Karatzas [10] a general repre-
sentation formula is derived for the optimal portfolios associated with option
pricing, maximizing utility from terminal wealth and consumption. Instru-
mental in obtaining these representations is an extension of the familiar
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Clark formula (Clark [1], Haussmann [2], Ocone [3])

F = E(F ) +

T
∫

0

E
[

Dw
t F |Jt

]

dwt, (0.1)

where w is the Wiener process on [0, T ], Jt := σ{ws : 0 ≤ s ≤ t}, Dw is
the Malliavin derivative on the Wiener space, and F is an JT -measurable
Wiener functional in the Sobolev space D

w
2,1.

It was proved by Karatzas, Ocone and Li in [11] that (0.1) is also valid
for functionals F from the Sobolev space D

w
1,1. Ocone and Karatzas [10]

found this extension useful for application to an optimal portfolio represen-
tation because it simplifies the technical hypotheses one needs to impose.
In particular, this extension is therefore useful for avoiding unnecessarily re-
strictive moment bounds on F and DF . For example, if F ∈ L2(P ) (where
dP = ζdP ), it does not follow that Fζ ∈ L2(P ). However,

E|Fζ|p = E(|F |pζp−1) ≤ (EF 2)p/2(Eζ2(p−1)/(2−p))(2−p)/2 < ∞,

if 1 ≤ p < 2.
Ma, Protter and Martin have proposeding [12], an anticipating integral

for the class of so-called normal martingales (a martingale M is called nor-
mal if 〈M, M〉t = t) which have the chaos representation property. It is
analogous to the Skorohod integral as developed by Nualart and Pardoux
[13]. When M is Brownian motion, it is exactly the Skorohod integral.

There are many similarities between the above-mentioned martingale an-
ticipating integral and the Skorohod integral, but there are also some impor-
tant defferences. Many of these differences stem from one key fact: in the
Brownian case [B, B]t = 〈B, B〉t = t, while in the normal martingale case
only 〈M, M〉t = t, and [M, M ]t is random. For example, there are two ways
to describe the variational derivative (also known as the Malliavin derivative
in the Brownian case), and they are equivalent in the Brownian case but
not in the martingale case. In [12] an example is given, which shows that in
the martingale case one cannot define the derivative operator in the usual
way to obtain the Sobolev space structure for the space D2,1. Indeed, this
example somehow shows that the two definitions (Sobolev space and chaos
expansion) are compatible if and only if [M, M ] is deterministic. Therefore
in the martingale case the space Dp,1 (1 < p < 2) cannot be defined in the
usual way (i. e., by closing the class of smooth functionals with respect to
the corresponding norm).

The aim of this paper is to define the space Dp,1 (1 < p < 2) for the
normal martingale and generalize the Ocone–Haussmann– Clark formula
for functionals from the class Dp,1 (1 < p < 2) which was proved in [12] for
functionals from the space D2,1. This extension is supposed to be useful for
an optimal portfolio representation when the equation, which describes the
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evolution of assets, is driven by a normal martingale. We hope to address
these issues in the future work.

Note that for proving the main result in [11] essential use was made of
the so-called “good λ inequality” (cf. Lemma 42.3 [14]) for continuous mar-
tingales. The above-mentioned inequality makes, in the case of a continuous
martingale, it possible to overestimate the probability of a predictable qua-
dratic variation deviation by the probability of deviation of maximum of a

martingale. In particular, sup
0≤t≤T

|Mn(t)|
P
→ 0 implies 〈Mn, Mn〉T

P
→ 0. This

fact has given the authors of [11] a chance to generalize representation (0.1)
to case of functionals from D

w
1,1 for Brownian motion.

For martingales whose trajectories are not continuous (i.e., belong to the
Skorohod space), the above-mentioned fact in general is not true. In partic-
ular, we have no chance, because of the convergence to zero in probability
sup

0≤t≤T
|Mn(t)|, to state that the sequence of quadratic variations converges

to zero in probability. In the general case we have estimates only for mean
values (in particular, the inequalities of Burkholder–Davis–Gundy’s type),
and these esimates allow us to generalize the representations obtained in
[12] to the cases of functionals of the class Dp,1 (1 < p < 2). However,
this extension could not cover the case p = 1, which is well-known in the
Brownian case.

This paper is organized as follows. In Section 1 we recall the definitions
and some elementary properties of a variational derivative operator and
an anticipating integral with respect to a normal martingale and give the
Ocone–Haussmann–Clark formula from [12]. In Section 2 the space Dp,1

(1 < p < 2) is defined for the class of normal martingales and the main
result of this paper is proved.

1. Auxiliary Notation and Results

Let Σn be an increasing simplex of Rn
+:

Σn

{

(t1, . . . , tn) ∈ Rn
+ : 0 < t1 < · · · < tn

}

,

and extend a function f defined on Σn by making f symmetric on Rn
+. We

can then define the multiple integral as

In(f) = n!

∫

Σn

f(t1, . . . , tn)dMt1 · · · dMtn
. (1.1)

Let us define the class of functions for n ∈ N and T = [0, 1] by L2
s(T

n) =
{f ∈ L2(T n) : f is symmetric in all variables}.

The multiple integral with respect to M defined in (1.1) is assumed to
be defined for every f ∈ L2

s(T
n) (or L2(Σn)). It is known (see, for example,
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Meyer [15]) that for each f ∈ L2
s(T

n):
∥

∥In(f)
∥

∥

2

L2(Ω)
= (n!)2

∥

∥f
∥

∥

L2(Σ)
= n!

∥

∥f
∥

∥

2

L2
s(T n)

.

.

Definition 1.1. (cf. Definition 3.2 [12]). Let G = σ{Mt; t ≥ 0} be
the σ-field generated by a (normal) martingale M . Let Hn be the n-th
homogeneous chaos, Hn = In(f), where f ranges over all f ∈ L2(Σn). If

L2(G, dP ) =
∞

⊕
n=0

Hn (the direct sum), then we say M possesses the chaos

representation property (CRP).

Let (Ω,J , {Jt}, P ) be a filtered probability space satisfying the usual
conditions. In what follows we shall always assume that a normal martingale
M with the CRP is given on the probability space (Ω,J , {Jt}, P ), and that
J is generated by M . Thus, for any random variable F ∈ L2(J , dP ) =
L2(L2(Ω)) we have by the CRP that there exists a sequence of functions

fn ∈ L2
s(T

n), n = 1, 2, . . . , such that F =
∞

Σ
n=0

In(fn).

Consider the following subset D2,1 ⊂ L2(Ω):

D2,1 :=
{

F =
∞

Σ
n=0

In(fn) :
∞

Σ
n=0

nn!
∥

∥fn

∥

∥

2

n
< ∞

}

,

where ‖ · ‖n := ‖ · ‖L2(T n). It is easily seen that D2,1 is dense in L2(Ω) since
every element in the finite Hilbert sum of chaoses belongs to D2,1.

The derivative operator is analogous to what is often called the Maliavin
derivative in the Brownian case, and it is defined as a linear operator D :
D2,1 ⊂ L2(Ω) → L2(T × Ω) by

DtF :=
∞

Σ
n=1

nIn−1

(

fn(·, t)
)

, t ∈ [0, 1],

whenever F has the chaos expansion F =
∞

Σ
n=0

In(fn). It is easy to see that

∥

∥DtF
∥

∥

2

L2(T×Ω)
=

∞

Σ
n=1

nn!
∥

∥fn

∥

∥

2

n
< ∞,

for all F ∈ D2,1.
Note that since D is a densely defined operator, one can define its adjoint

operator, denoted by δ, in the usual way. Let

R :=

{

u ∈ L2(T × Ω) : ∃c > 0,

∣

∣

∣

∣

E

1
∫

0

u(t, ·)DtF dt

∣

∣

∣

∣

≤ c‖F‖, ∀F ∈ D2,1

}

,

and the adjoint operator δ : L2(T ×Ω) → L2(Ω) is defined by the equation:

E
(

δ(u)F
)

= E

1
∫

0

u(t, ·)DtF dt, ∀F ∈ D2,1, u ∈ R.
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As the adjoint operator of D, δ is a densely defined, closed operator,
which in turn shows that the operator D is closable. The operator δ is called
the anticipating integral of the element in R = Dom(δ). If u ∈ L2(T × Ω)

is predictable, then u ∈ Dom(δ) and δ(u) =
1
∫

0

utdMt, where the right-hand

side is in the semimartingale (or Ito) sense (see Proposition 4.4 [12]).
Let M be a normal martingale with the CRP. For any F ∈ L2(Ω), we

can write

F =
∞

Σ
n=0

In(fn) = E(F ) +
∞

Σ
n=1

In(fn) = E(F ) +

1
∫

0

ut dMt,

where u is a predictable process given by

ut =
∞

Σ
n=1

n!

∫

t1<t2<···<tn−1<t

fn(t1, . . . , tn−1, t) dM1 · · · dMtn−1
.

In the Brownian case, the predictable process can be further described using
the Malliavin derivative operator known as the Ocone–Haussmann–Clark
formula (see (0.1)). In [12] an analogue of that formula is derived for the
class of normal martingales with the CRP.

Theorem 1.1. (cf. Theorem 4.5[12]). Let M be a normal martingale

with the CRP, and let F ∈ L2(Ω). If F ∈ D2,1, then

F = E(F ) +

1
∫

0

p(DtF ) dMt,

where p(DtF ) denotes the predictable projection of the process DtF .

2. An Ocone–Haussmann–Clark Type Formula

Consider a filtered probability space (Ω,J , {Jt}, P ) satisfying the usual
conditions. Assume that the normal martingale M with the CRP is given
on the probability space (Ω,J , {Jt}, P ), and that J is generated by M ,
J = J1.

Definition 2.1. Fix 1 < p < 2 and introduce the norm
∥

∥F
∥

∥

p,1
:= E

(

|F |Lp + ‖DF‖L2([0,1])

)

on D2,1, and denote by Dp,1 (1 < p < 2) the Banach space which is the
closure of D2,1 under the norm ‖ · ‖p,1.

Note that DF is well-defined on Dp,1 (1 < p < 2) by the closure. Given
F ∈ Dp,1 (1 < p < 2) we can find a measurable process (t, ω) 7−→ DtF (ω)
such that for a.e., ω ∈ Ω, DtF (ω) = DF (ω)(t) holds for almost all t ∈ [0, 1]
(more precisely, t 7−→ DtF (ω) is in the equivalence class in L2([0, 1]) defined
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by DF (ω)). DtF (ω) is defined uniquely up to sets of measure zero on
[0, 1] × Ω. (In general, if X : Ω → L2([0, 1]) is measurable, there exists a
B([0, 1]) ⊗ J -measurable random variable, {X(t, ω); (t, ω) ∈ T × Ω}, such
that X(·, ω) = X(ω) holds almost surely. We shall identify X(ω)(t) with
X(t, ω).

Remark 2.1. Obviously, the norm ‖ · ‖p,1 and the space Dp,1 can be
defined for p = 1 as well.

Theorem 2.1. Let M be a normal martingale with the CRP, and let

F ∈ Lp(Ω) (1 < p < 2). If F ∈ Dp,1, then

F = E(F ) +

1
∫

0

p(DtF ) dMt,

where p(DtF ) denotes the predictable projection of the process DtF .

Proof. Consider a sequence {Fn}
∞
n=1 ⊂ D2,1 such that

lim
n→∞

∥

∥Fn − F
∥

∥

p,1
= 0. (2.1)

Let us introduce the following martingales:

N(t) := E
(

F |Jt

)

and Nn(t) := E
(

Fn|Jt

)

, n = 1, 2, . . . .

Then, by the well-known martingale representation theorem for normal
martingales with the CRP, they admit respectively the representations

N(t) = E(F ) +

t
∫

0

u(s) dMs

and

Nn(t) = E(F ) +

t
∫

0

un(s) dMs,

where u is a predictable process.
By Theorem 1.1, un(t) = p(DtFn).
By the Doob maximal submartingale inequality, using relation (2.1), we

have
{

E
[

sup
0≤t≤1

∣

∣Nn(t) − N(t)
∣

∣

]p}1/p
≤

p

p − 1
sup

0≤t≤1

[

E
∣

∣Nn(t) − N(t)
∣

∣

p]1/p
=

=
p

p − 1

[

E
∣

∣Nn(1) − N(1)
∣

∣

p]1/p
=

p

p − 1

∣

∣Fn−F
∣

∣

Lp ≤
p

p − 1

∥

∥Fn−F
∥

∥

p,1
→0,

as n → ∞.
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Therefore, by virtue the Burkholder–Davis–Gundy’s inequality, we can
write

E
[

Nn − N, Nn − N
]p/2

1
= E

{

1
∫

0

∣

∣un(t) − u(t)
∣

∣

2
d[M, M ]t

}p/2

≤

≤ cE
{

sup
0≤t≤1

|Nn(t) − N(t)|
}p

→ 0,

as n → ∞.
Then according to Lyapunov inequality we have

lim
n→∞

E

{

1
∫

0

|un(t) − u(t)|2d[M, M ]t

}1/2

≤

≤ lim
n→∞

(

E

{

1
∫

0

∣

∣un(t) − u(t)
∣

∣

2
d[M, M ]t

}p/2)1/p

= 0.

Hence,

P− lim
n→∞

1
∫

0

∣

∣un(t) − u(t)
∣

∣

2
d[M, M ]t = 0,

where P− lim
n→∞

denotes the limit in probability.

Furthermore, using the Kunita–Watanabe inequality, we conclude that

P− lim
n→∞

1
∫

0

∣

∣un(t) − u(t)
∣

∣ d[M, M ]t ≤

≤ P− lim
n→∞

{(

1
∫

0

∣

∣un(t)−u(t)
∣

∣

2
d[M, M ]t

)1/2

·
(

[M, M ]1
)1/2

}

=0. (2.2)

On the other hand, the linearity of the predictable projection operator
and Malliavin derivative operator imply that (2.3)

E

1
∫

0

∣

∣un(t) − p(DtF )
∣

∣ dt = E

1
∫

0

∣

∣

p(DtFn) − p(DtF )
∣

∣ dt =

= E

1
∫

0

∣

∣

p[Dt(Fn − F )]
∣

∣ dt. (2.3)

Furthermore, by the proof of Theorem 14 from [17] one can see that if
Xt ≤ Yt, then p(Xt) ≤ p(Yt). Hence since Xt ≤ |Xt| and −Xt ≤ |Xt|, we
have p(Xt) ≤ p(|Xt|) and −p(Xt) = p(−Xt) ≤ p(|Xt|). Thus we conclude
that |p(Xt)| ≤ p(|Xt|). Moreover, it is obvious that E[p(Xt)] = E(Xt)
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(provided that we take T = t < ∞ in the above-mentioned theorem from
[17]).

Therefore, using the Cauchy-Bunyakovski inequality, from relation (2.3)
we obtain

E

1
∫

0

∣

∣un(t) − p(DtF )
∣

∣ dt ≤ E

1
∫

0

p
[

|Dt(Fn − F )|
]

dt =

= E

1
∫

0

∣

∣Dt(Fn − F )
∣

∣ dt ≤ E

[(

1
∫

0

∣

∣Dt(Fn − F )
∣

∣

2
dt

)1/2]

≤

≤
∥

∥Fn − F
∥

∥

p,1
→ 0. (2.4)

as n → ∞.
From here, because for every predictable process v:

E

1
∫

0

∣

∣v(t)
∣

∣ dt = E

1
∫

0

∣

∣v(t)
∣

∣ d〈M, M〉t = E

1
∫

0

∣

∣v(t)
∣

∣ d[M, M ]t,

we ascertain that

lim
n→∞

E

1
∫

0

∣

∣un(t) − p(DtF )
∣

∣ d[M, M ]t = 0 (2.5)

and, moreover,

E

1
∫

0

∣

∣

p(DtF )
∣

∣ d[M, M ]t = E

1
∫

0

∣

∣

p(DtF )
∣

∣ dt < ∞.

According to relations (2.2) and (2.5) we can choose a sequence {nk}k≥1

such that for almost all ω:

lim
k→∞

1
∫

0

∣

∣unk
(t)−u(t)

∣

∣d[M, M ]t =0 and lim
n→∞

1
∫

0

∣

∣unk
(t)−p(DtF )

∣

∣[M, M ]t =0.

Therefore we conclude that for almost all ω:

u(·, ω) = p(D·F )(ω) d[M, M ]t − almost surely.

Hence, for almost all ω, we have

1
∫

0

∣

∣u(t) − p(DtF )
∣

∣ d[M, M ]t = 0.
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Thus, we obtain

E

1
∫

0

∣

∣u(t) − p(DtF )
∣

∣ d[M, M ]t = 0.

From here, we ascertain that

u(t, ω) = p(DtF )(ω) dP ⊗ d[M, M ]t − almost surely,

and, hence, dP -almost surely:

1
∫

0

u(t) dMt =

1
∫

0

p(DtF ) dMt.

�

Remark 2.2. From the proof of the Theorem 2.1 we see that

1
∫

0

∣

∣

p(DtF )
∣

∣

2
d[M, M ]t < ∞− almost surely,

for every F ∈ Dp,1 (1 < p < 2). It does not seem possible to argue this fact
using only that

E
∥

∥DF
∥

∥

L2([0,1])
= E

{(

1
∫

0

∣

∣DtF
∣

∣

2
dt

)1/2}

< ∞.
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