
Proceedings of A. Razmadze
Mathematical Institute
Vol. 143 (2007), 37–60

STOCHASTIC INTEGRAL REPRESENTATION OF

FUNCTIONALS OF POISSON PROCESSES

V. JAOSHVILI AND O. PURTUKHIA

Abstract. In this paper we suggest the method which allows to con-
struct explicit expressions for integrands taking part in the stochas-
tic integral representation of functionals of Poisson processes and for
these functionals the formulas for calculation of the predictable pro-
jection of their stochastic derivatives are given.
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ð�áæ ìîëâóùæâ�æï à�éëï�åãèâèæ òëéñèâ�æ.

0. Introduction

As is known, in the theory of standard integration, the requirement for
the integrand to be measurable is a very small restriction as compared to
the condition of integrability which implies the boundedness in a certain
sense of an absolute integrand value. As for the stochastic Ito’s integral∫ T

0
f(s, ω)dw(s), the situation here is opposite. Besides the fact that the

integrand f(s, ω) is the measurable function of two variables, it should be the
adapted (nonanticipated) process, i.e. for any s ∈ [0, T ] the random variable
f(s, ·) should be measurable with respect to the Fw

s := σ{w(t), t ∈ [0, s]} –
σ-algebra (in other words, it should be independent of the future increments
of the Wiener process). On the one hand, this requirement is natural for
many situations, when filtration (the flow of σ-algebras Fw

s ) shows possible
evolution of information. On the other hand, over a long period of time
this requirement restricted both the development of the theory and the
application of stochastic calculus.

Starting from the 70th of the past century, many attempts were made
to weaken the requirement to be adapted for the integrand of the stochas-
tic Ito’s integral as well as in the theory of ”the extension of filtration”.
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Skorokhod (1975) suggested absolutely different method, symmetric with
respect to the time inversion, i.e., it generalized the direct and inverse Ito’s
integrals and did not require for the integrand to be independent of the
future Wiener process. Towards this end, he required for the integrand to
be smooth in a certain sense, i.e., its stochastic differentiability. This idea
was later on developed in the works of Protter, Malliavin (1979), Gaveau-
Trauber (1982), Pardoux (1982), Nualart, Zakai (1986), etc. In particular,
Gaveau-Trauber have proved that the Skorokhod operator of stochastic in-
tegration coincides with the conjugate operator of a stochastic derivative
(with the so-called Malliavin’s) operator.

On the other hand, in the theory of random processes special place take
the so-called martingale representation theorems which, for example, implies
the representation of the Wiener and Poisson functionals in the form of
stochastic integrals. In the 80th of the past century, it turned out (see
Harison and Pliska (1981)) that the martingale representation theorems
(along with the Girsanov’s measure change theorem) play an important
role in the modern financial mathematics. In particular, using the integrand
of the stochastic integral appearing in the integral representation, one can
construct hedging strategies in the European options of different type.

According to the well-known result obtained by Clark (1970), if ξ is
a Fw

T -measurable random variable with Eξ2 < ∞, then there exists the
adapted process ϕ(t, ω) ∈ L2([0, T ]× Ω), such that the integral representa-

tion: ξ = Eξ +
∫ T

0
ϕ(t, ω)dw(t) (P -a.s.) holds. However, this result says

nothing on finding the process ϕ(t, ω) explicitly. In this direction we are
familiar with one sufficiently general result, the so-called Ocone-Clark’s for-
mula by which for the Wiener functionals: ϕ(t, ω) = E[Dw

t ξ|Fw
t ](ω), where

Dw
t ξ is the stochastic derivative of the functional ξ. Application of the

above expression needs as a rule, on the one hand, essential efforts, and,
on the other hand, in the cases if the functional ξ has no stochastic deriv-
ative, its application is impossible. Another distinct method of finding an
integrand ϕ(t, ω) belongs to Shyryaev, Yor (2003), when the functional ξ is
of ”maximal” type. With the above-mentioned functional they linked the
associated Lewy’s martingale and used the generalized Ito’s formula. Our
approach within the classical Ito’s calucus allows one to construct ϕ(t, ω)
explicitly by using both the standard L2 theory and the theory of weighted
Sobolev spaces, if the functional ξ has no stochastic derivative (see Jaoshvili,
Purtukhia [13]). It is known that the events indicator has, in general, no
stochastic derivative: ∃IA ⇐⇒ P (A) = 0. Consequently, one cannot apply
the Ocone-Clark formula for the indicator I{w(T )>0}, whereas our approach
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allows one to write the following representation:

I{w(T )>0} = 1/2 +

T∫

0

Φ0,T−t(w(t))dw(t),

where Φ0,r−t(·) is the function of a normal distribution with parameters: 0
and T − t.

The subsequent generalization of the Ocone-Clark formula to the so-
called normal martingales (the martingale is said to be normal, if 〈M, M〉t =
t) is due to Ma, Protter, Martin (1998). According to this formula, if
F ∈ DM

2,1, then the Ocone-Haussmann-Clark’s representation

F = E(F ) +

T∫

0

p(DM
t F )dM(t)

is valid; here DM
2,1 denotes the space of square integrable functionals having

the first order stochastic derivative, and p(DM
t F ) is the predictable projec-

tion of the stochastic derivative DM
t F of the functional F . It is obvious,

that in the Wiener process case this formula is coincide with Ocone-Clark’s
formula, because the flow of σ-algebras Fw

s is continuous and therefore the
predictable projection is equal to the corresponding conditional mathemat-
ical expectation. As is seen, this representation likewise needs the exis-
tence of a stochastic derivative. On the other hand, in this case, unlike
the Wiener’s one, it is impossible to define in a generally adopted manner
an operator of stochastic differentiation to obtain the structure of Sobolev
space DM

2,1. Here, the determination of the stochastic derivative is based
on the expansion in series of multiple stochastic integrals of the functional,
whereas the Wiener case involves, besides the above-mentioned approach,
the structure of Sobolev spaces, which allows one to construct explicitly the
stochastic derivative operator in many cases.

For a class of normal martingales one fails to define the space DM
p,1 (1 <

p < 2) in a commonly adopted manner (i.e., by closing a class of smooth
functionals with respect to the corresponding norm). In his work, Purtukhia
(2003) defined the space DM

p,1 (1 < p < 2) for the normal martingales and
generalized the Ocone-Hausmann-Clark formula to the functionals of that
space.

Ma, Protter, Martin gave an example showing that two possible ways of
determination of a stochastic derivative coincide if and only if the quadratic
martingale characteristic [M, M ] is the deterministic function (as, for exam-
ple, in the Wiener’s case [w, w]t = t). Consequently, the Ocone-Haussmann-
Clark’s formula makes it impossible to construct explicitly the operator of
the stochastic derivative of the functionals of the Compensated Poisson pro-
cess (which, obviously, belongs to a class of normal martingales 〈M, M〉t = t,
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but its quadratic variation is not deterministic, [M, M ]t = N(t) = M(t)+t),
saying nothing on the construction of its predictable projection.

Our approach within the framework of nonanticipative stochastic cal-
culus of semimartingales allows one to construct explicitly the expression
for the integrand of the stochastic integral in the theorem of martingale
representation for power functionals of the Compensated Poisson process,
and to derive the formu la allowing one to construct explicitly predictable
projections of their stochastic derivatives (see Jaoshvili, Purtukhia [14]).
In this work we will extend the aforementioned results for polynomial and
square integrable Poisson functionals, in particular, we will generalize the
Ocone-Haussmann-Clark’s formula for Poisson functionals.

1. Auxiliary Notations and Results

Below we present (without proof) some properties of Poisson and com-
pensated Poisson processes which (aside of the fact that moments occur
in the representation theorem) are not directly used in obtaining the main
results (except for Proposition 1.5), but, in our opinion, are of independent
interest. Therfore we will reproduce proofs of these results in appendix. As
for Proposition 1.5 - its proof with the aid of stochastic calculus is given in
Remark 2.1, whereas in the appendix will be given a proof in the framework
of classical differential calculus.

Let Ω,F , P, (Ft)0≤t≤∞ be a filtered probability space satisfying the usual
conditions. Assume that the standard Poisson process Nt is given on it
(P (Nt = n) = tn

n! e
−t, n = 0, 1, 2, . . .) and that Ft is generated by N (Ft =

FN
t ), F = FT . Denote by µn(t) the n-th order moment of the Poisson

process (µn(t) := E(Nn
t )).

Proposition 1.1. The n-th order moment (n ≥ 1) of the Poisson process

satisfies the following recurrence representation:

µn(t) = t

n−1∑

i=0

Ci
n−1µi(t). (1.1)

Corollary 1.1. The n-th order moment (n ≥ 1) of the Poisson process

Nt is a polynomial of degree n with respect to t.

Proposition 1.2. For any n ≥ 1 : µn(t) =
∑n

k=0 aktk, where a0 = 0,
a1 = 1, and for any k ≥ 2 the coefficients are calculated from the recurrence

relations:

ak =
kn

k!
−

k−1∑

i=0

ai

(k − i)!
(1.2)
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Proposition 1.3. The n-th order moment (n ≥ 1) of the Compensated

Poisson process satisfies the following recurrence equations:

νn(t) = t

n−2∑

i=1

Ci
n−1νi(t), n ≥ 2; ν0(t) = 1; ν1(t) = 0.

Proposition 1.4. The n-th order moment (n ≥ 1) of the Compensated

Poisson process is a polynomial of degree [n/2] with respect to t:

νn(t) =

[n/2]∑

k=0

an
k tk, (1.3)

where the coefficients satisfy the following recurrence equalities:

an
k =

∑

i+j=k

(−1)iCi
n

jn−i

j!
−

k−1∑

i=0

an
i

(k − i)!
, 2 ≤ k ≤ [n/2]; (1.4)

an
0 = 1, an

1 = 0,

(here [s] - denotes the integer part of s).

Corollary 1.2. For n/2 < k ≤ n the solutions of recurrence equations:

an
k =

∑

i+j=k

(−1)iCi
n

jn−i

j!
−

n−1∑

i=0

an
i

(k − i)!

are an
k = 0.

Proposition 1.5. The n-th order moment νn(t) of the Compensated

Poisson process satisfies the following differential equation:

dνn(t)

dt
=

n−2∑

k=0

Ck
nνk(t).

2. Integral Representation for Polynomial Functionals of

Poisson Processes

Proposition 2.1. For any natural power n of the Compensated Poisson

process Mt the following representation

Mn
t =

∫

(0,t]

nMn−1
s− dMs +

n∑

i=2

∫

(0,t]

Ci
nMn−i

s− dNs (P -a.s.) (2.1)

is valid.

Proof. According to the Ito’s formula, we have:

Mn
t =

∫

(0,t]

nMn−1
s− dMs +

∑

s≤t

(Mn
s − Mn

s− − nMn−1
s− ∆Ms).
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Further, using the relation:

an − bn − n(a − b)bn−1 =

n∑

i=2

Ci
n(a − b)ibn−i, (2.2)

it is not difficult to see, that:

Mn
t = n

∫

(0,t]

Mn−1
s− dMs +

∑

s≤t

n∑

i=2

Ci
n∆M i

sM
n−i
s− =

= n

∫

(0,t]

Mn−1
s− dMs +

∑

s≤t

n∑

i=2

Ci
nMn−i

s− ∆Ns =

= n

∫

(0,t]

Mn−1
s− dMs +

∫

(0,t]

n∑

i=2

Ci
nMn−i

s− dNs. �

Remark 2.1. It must be noted that to obtain Proposition 1.5 it suffices
in expression (2.1) to replace dNs by dMs + ds and take mathematical
expectation of both sides. Indeed, we will then obtain the equality

νn(t) =

t∫

0

n∑

i=2

Ci
nνn−i(s)ds =

t∫

0

n−2∑

i=0

Ci
nνi(s)ds,

which is equivalent to the claim of Proposition 1.5.

Before formulating the general representation theorem, let us give two
examples.

Example 2.1. The random variable M2
T has the following stochastic

integral representation:

M2
T = E[M2

T ] +

∫

(0,t]

(1 + 2Ms−)dMs (P -a.s.).

Let us denote Xt := E[M2
T |Ft]. According to the well-known properties

of the Compensated Poisson process, we obtain the following representation:

Xt = E[(MT − Mt + Mt)
2|Ft] = E[(MT − Mt)

2]+

+2MtE(MT − Mt) + M2
t = T − t + M2

t .

On the other hand, due to the Proposition 2.1, (P -a.s.) we have:

M2
t =

∫

(0,t]

2Ms−dMs +

∫

(0,t]

dNs =

∫

(0,t]

2M−sdMs + Nt.
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Substituting now the last expression in the above relation we ascertain that:

Xt =T−t+

∫

(0,t]

2Ms−dMs+Nt =T+Mt+

∫

(0,t]

2Ms−dMs =T+

∫

(0,t]

(1+2Ms−)dMs,

whence, taking into account the relations: XT = E[M2
T |FT ] = M2

T and
T = E[M2

T ], we obtain the desired representation, which is an analog of the
Ocone-Clark’s formula written for the power functionals of the Compensated
Poisson process in cases n = 2 (note that in the Wiener process cases the
Ocone-Clark’s formula gives us that:

w2
T = E[w2

T ] +

∫

(0,t]

2wtdwt (P -a.s.)).

Remark 2.2. It must be noted that in the case of square stochastic
integral representation can be obtained more easily using the Ito’s formula.
We present the above method to illustrate that approach which we use in
the general case.

Example 2.2. Using the arguments similar to those presented above, we
obtain the following stochastic integral representation for the third power
of the Compensated Poisson process:

M3
T = E[M3

T ] +

∫

(0,T ]

[1 + 3(T − s) + 3Ms− + 3M2
−s]dMs (P -a.s.)

(note that in the Wiener process cases the Ocone-Clark’s formula gives us
that:

w3
T = E[w3

T ] +

∫

(0,t]

3w2
t dwt (P -a.s.)).

Theorem 2.1. For any natural n ≥ 1 the following integral representation

is valid:

Mn
T = E[Mn

T ] +

n∑

k=1

Ck
n

k∑

i=1

Ci
k

∫

(0,T ]

Mk−i
s− vn−k(T − s)dMs P -a.s. (2.3)

Proof. It is obvious that the representation (2.3) holds for n = 1. Due to
the Examples 2.1 and 2.2 it is true for n = 2 and n = 3. Therefore we
consider the case n ≥ 4. For that let us calculate the conditional mathe-
matical expectation Xt := E[Mn

T |Ft]. Using the well-known properties of
the Compensated Poisson process and the relation V1(T − t) = 0, one can
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easily ascertain that:

Xt := E[Mn
T |Ft] = E[(MT − Mt + Mt)

n|Ft] =

= E

[ n∑

k=0

Ck
n(MT − Mt)

n−kMk
t |Ft

]
=

n∑

k=0

Ck
nνn−k(T − t)Mk

t =

= νn(T − t) + nMtνn(T − t) +
n−2∑

k=1

Ck
nMk

t νn−k(T − t) + Mn
t .

Further, according to the Ito’s formula, taking into account the Propositions
1.5 and 2.1, it is not difficult to see that:

Xt = X0 −
n−2∑

i=0

Ck
n

∫

(0,t]

νi(T − s)ds+

+n

∫

(0,t]

νn−1(T − s)dMs −
n−3∑

i=0

nCi
n−1

∫

(0,t]

Ms−νi(T − s)ds−

−
n−2∑

k=1

Ck
n

n−k−2∑

i=0

Ci
n−k

∫

(0,t]

Mk
s−νi(T − s)ds+

+

n−2∑

k=1

Ck
n

k∑

i=2

Ci
k

∫

(0,t]

Mk−i
s− νn−k(T − s)dNs+

+

n−2∑

k=1

Ck
nk

∫

(0,t]

Mk−1
s− νn−k(T − s)dMs+

+

n∑

k=2

Ck
n

∫

(0,t]

Mn−k
s− dNs + n

∫

(0,t]

Mn−1
s− dMs := νn(T ) − It + INt + IMt .

Studying carefully the obtained relation, one can easily notice (as well as
in Examples 2.1 and 2.2) that for any Lebesgue integral with respect to ds
there exists the corresponding stochastic integral with respect to dNs with
the same integrand of opposite sign.

Indeed, due to relations ν0(T − s) = 1, ν1(T − s) = 0, we have:

It :=

n−2∑

i=0

Ci
n

∫

(0,t]

νi(T − s)ds +

n−3∑

i=0

nCi
n−1

∫

(0,t]

Ms−νi(T − s)ds+

+
n−2∑

k=2

Ck
n

n−k−2∑

i=0

Ci
n−k

∫

(0,t]

Mk
s−νi(T − s)ds =



STOCHASTIC INTEGRAL REPRESENTATION 45

=

n−2∑

k=0

Ck
n

n−k−2∑

i=0

Ci
n−k

∫

(0,t]

Mk
s−νi(T − s)ds

and

INt :=
n−2∑

k=2

Ck
n

k∑

i=2

Ci
k

∫

(0,t]

Mk−i
s− νn−k(T − s)dNs +

n∑

k=2

Ck
n

∫

(0,t]

Mn−k
s− dNs =

=

n−2∑

k=2

Ck
n

k∑

i=2

Ci
k

∫

(0,t]

Mk−i
s− νn−k(T − s)dNs+

+ Cn−1
n

n−1∑

i=2

Ci
n−1

∫

(0,t]

Mn−1−i
s− νn−(n−1)(T − s)dNs+

+ Cn
n

n∑

i=2

Ci
n

∫

(0,t]

Mn−i
s− νn−n(T − s)dNs =

=

n∑

k=2

Ck
n

k∑

i=2

Ci
k

∫

(0,t]

Mk−i
s− νn−k(T − s)dNs.

Compare now members with the same powers m of Ms− in representa-
tions of It and INt . Denote these members by It(m) and INt(m) accordingly.
Then we have:

It(m) = Cm
n

n−m−2∑

i=0

Ci
n−m

∫

(0,t]

Mm
s−νi(T − s)ds

and

INt = Cm+2
n C2

m+2

∫

(0,t]

Mm
s−νn−m−2(T − s)dNs+

+ Cm+3
n C3

m+3

∫

(0,t]

Mm
s−νn−m−3(T − s)dNs+

+ · · · + Cm+n−m
n Cn−m

m+n−m

∫

(0,t]

Mm
s−νn−m−(n−m)(T − s)dNs =

=

n−m∑

i=2

Cm+i
n Ci

m+i

∫

(0,t]

Mm
s−νn−m−i(T − s)dNs.
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Denote by Ij
t (m) (accordingly by In−m−j

Nt
(m)) the j-th member of It(m)

(accordingly the (n−m−j)-th member of INt(m)). Then it is obvious that:

Ij
t (m) = Cm

n Cn−m−j−1
n−m

∫

(0,t]

Mm
s−νn−m−j−1(T − s)ds =

=
n!

m!(n − m − j − 1)!(j + 1)!

∫

(0,t]

Mm
s−νn−m−j−1(T − s)ds

and

In−m−j
Nt

(m) = Cm+j+1
n Cj+1

m+j+1

∫

(0,t]

Mm
s−νn−m−j−1(T − s)dNs =

=
n!

m!(n − m − j − 1)!(j + 1)!

∫

(0,t]

Mm
s−νn−m−j−1(T − s)dNs

Therefore, summing up the aforementioned integrals, due to relation
Ms = Ns−s, we obtain the stochastic integral with respect to dMs. Hence,
using the equalities XT = Mn

T , X0 = E[Mn
t ] and ν1(T − s) = 0 it is not

difficult to see that the following representation is valid:

Mn
T = E[Mn

T ] +

n∑

k=1

Ck
n

∫

(0,T ]

Mn−k
s− dMs+

+

n−2∑

k=2

Ck
n

k∑

i=1

Ci
k

∫

(0,T ]

Mk−i
s− νn−k(T − s)dMs + n

∫

(0,T ]

νn−1(T − s)dMs.

The last representation can be rewritten in the following form:

Mn
T = E[Mn

T ] +

n∑

k=1

Ck
n

k∑

i=1

Ci
k

∫

(0,T ]

Mk−i
s− νn−k(T − s)dMs,

which completes the proof of the theorem. �

Corollary 2.1. For any natural n ≥ 1 the following integral representa-

tion holds:

Mn
T = E[Mn

T ]+

+

∫

(0,T ]

E[(1 + Ms−+MT −Ms)
n−(Ms−+MT − Ms)

n|Fs]dMs (P -a.s.).

(2.4)
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Proof. Due to the relation (2.2) (from the Proposition 2.1), we have:

(Ms− + 1)k − Mk
s− =

k∑

i=1

Ci
kMk−i

s− .

Therefore, according to the Theorem 2.1, we can write:

Mn
T = E[Mn

T ] +

∫

(0,T ]

n∑

k=1

Ck
n[(Ms− + 1)k − Mk

s−]νn−k(T − s)dMs (P -a.s.).

On the other hand, using the Newton’s binomial formula and the well-
known properties of the Compensated Poisson process, one can conclude
that:

E[(1 + Ms− + MT − Ms)
n|Fs] =

n∑

k=0

E[Ck
n(1 + Ms−)k(MT − Ms)

n−k|Fs] =

=

n∑

k=0

Ck
n(1+Ms−)kE[(MT −Ms)

n−k|Fs]=

n∑

k=0

Ck
n(1+Ms−)kE(MT −Ms)

n−k=

=

n∑

k=0

Ck
n(1 + Ms−)kEMn−k

T−s =

=

n∑

k=0

Ck
n(1 + Ms−)kνn−k(T − s).

Analogously, one can easily obtain that:

E[(Ms− + MT − Ms)
n|Fs] =

n∑

k=0

Ck
nMk

s−νn−k(T − s).

Combining the relations obtained above, we ascertain that the representa-
tion (2.4) is valid. �

Let us denote by Pn(x) a polynomial of order with respect to x.

Corollary 2.2. The following representation is valid (P -a.s.):

Pn(MT ) = E[Pn(MT )]+

+

∫

(0,T ]

E[Pn(1 + Ms− + MT − Ms) − Pn(Ms− + MT − Ms)|Fs]dMs.

Proof. The proof is easily obtained from the linearity of stochastic integrals
and conditional mathematical expectation. �

Let us denote ∆f(x) := f(x + 1) − f(x), (∆Pn(MT ) = ∆Pn(x)|x=MT ).
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Theorem 2.2. For any natural n ≥ 1 the following representation holds:

Pn(MT ) = E[Pn(MT )] +

∫

(0,T ]

E[∆Pn(MT )|Ft−]dMt (P -a.s.). (2.5)

Proof. At first we prove the representation (2.5) for power functionals. Due
to the well-known properties of the Compensated Poisson process, we can
write:

E[∆(MT )n|Fs−] = E[(MT + 1)n − Mn
T |Fs−] = E

[ n−1∑

k=0

Ck
nMk

T |Fs−

]
=

= E

[ n−1∑

k=0

Ck
n(MT − Ms− + Ms−)k|Fs−

]
=

= E

[ n−1∑

k=0

Ck
n

k∑

i=0

Ci
k(MT − Ms−)iMk−i

s− |Fs−

]
=

=

n−1∑

k=0

Ck
n

k∑

i=0

Ci
k[E(MT − Ms−)i]Mn−i

s− =

n−1∑

k=0

Ck
n

k∑

i=0

Ci
kνi(T − t)Mk−i

s− , (2.6)

where in the last equality we used the stochastic continuity of the Compen-
sated Poisson process.

If now we consider both the right side of the last relation and the second
summand as the polynomial of order n − 1 with respect to Ms−, using
the properties of Newton’s binomial, it is not difficult to see that these
polynomials are just the same. Therefore, we conclude that:

Mn
T = E[Mn

T ] +

∫

(0,T ]

E[∆Mn
T |Ft−]dMt (P -a.s.).

From this, using the linearity of the stochastic integrals, the conditional
mathem-atical expectation and of the ∆ operator, we easily obtain the de-
sired integral represent-tation for the polynomial functionals of the Com-
pensated Poisson process. �

Corollary 2.3. Because, for any fixed T the polynomial Pn(x−T ) again is

a polynomial of order n with respect to x but with other coefficients, therefore

it is clear that the representation of type (2.5) is valid for the polynomial

functionals of the Poisson process:

Pn(NT ) = E[Pn(NT )] +

∫

(0,T ]

E[∆Pn(NT )|Ft−]dMt (P -a.s.).
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Theorem 2.3. For any polynomial function Pn(x) the following repre-

sentation is valid:

p[DM
t Pn(MT )] = E[∆Pn(MT )|Ft−] (dP ⊗ ds-a.s.). (2.7)

where p[DM
t Pn(MT )] denotes the predictable projection of the stochastic de-

rivative of the Compensated Poisson process.

Proof. According to the well-known result of Ma, Protter and Martin (1998)
we have:

Pn(MT ) = E[Pn(MT )] +

∫

(0,T ]

{p[DM
t Pn(MT )]}dMt (P -a.s.).

Consider the difference:

YT =

∫

(0,T ]

{E[∆Pn(MT )|Ft−] − p[DM
t Pn(MT )]}dMt :=

∫

(0,T ]

ηtdMt.

In the one hand, it is clear, due to the Theorem 2.1, that Yt = 0 (P -a.s.).
On the other hand, according to the Ito’s formula, we have:

Y 2
t = 2

∫

(0,T ]

Yt−ηtdMt +

∫

(0,T ]

η2
t d[M, M ]t.

If now we take the mathematical expectation from the both sides of the
last relation, using the well-known properties of the square and predictable
characteristics of the martingale, we ascertain that:

0 = E

∫

(0,T ]

η2
t d[M, M ]t = E

∫

(0,T ]

η2
t d〈M, M〉t = E

∫

(0,T ]

η2
t dt,

whence we conclude that the relation (2.7) is true. �

3. Integral Representation for Square Integrable

Functionals

Below we will see that the results obtained above are true for more wide
classes of functionals than the polynomial functionals. In this section we
prove the integral representation for some class of functionals from the space
L2.

Let Z+ = {0, 1, 2, . . .} and P = {P1, P2, P3, . . .} – be the Poisson distri-

bution: Px = e−T T x

x! , x = 0, 1, 2, . . .. Let us denote ▽f(x) = f(x)−f(x−1)
(f(x) = 0, x < 0) and define the Poisson-Sharle’s polynomials: Πn(x) =
(−1)n▽nPx

Px
, n ≥ 1; Π0 = 1.

It is wellknown from the course of Functional Analysis [15] that the se-

quence {πn(x)}n≥0

(
πn(x) = Πn(x)

cn

)
is a basis in the space L2(Z

+)(L2(Z
+) =

{f :
∑∞

x=0 f2(x) < ∞}).
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Let ρ(x, T ) := T x

x! e−T and denote by LT
2 := L2(Z

+; ρ(x, T )) the func-

tional space on Z+ with the finite norm ‖g‖2,T := ‖gρ1/2(T )‖L2
.

Proposition 3.1. The space LT
2 is a Banach space with basis {xnρ(x, T )}.

Proof. The proof is based on the well-known result of Functional Analysis.
By the statement VIII.4.3. [15], it is not difficult to ensure this, since:

∞∑

x=0

ec|x|T
x

x!
e−T = e−T

∞∑

x=0

(ecT )x

x!
= e−T eecT < ∞. �

Proposition 3.2. If f(· − T ) ∈ LT
2 , then the stochastic integral

∫

(σ,T )

E[f(MT )|Ft−]dMt

is well defined.

Proof. According to the well-known properties of the stochastic integral,
using the Lyapunov’s and Jensen’s inequalities and by the Fubini’s theorem,
it is not difficult to see that:

‖E[f(MT )|F·−]‖ := E

{ ∫

(0,T ]

(E[f(MT )|Ft−])2d[M, M ]t

}1/2

≤

≤
{

E

∫

(0,T ]

(E[f(MT )|Ft−])2d[M, M ]t

}1/2

=

=

{
E

∫

(0,T ]

(E[f(MT )|Ft−])2d〈M, M〉t
}1/2

=

=

{
E

∫

(0,T ]

(E[f(MT )|Ft−])2dt

}1/2

≤
{

E

∫

(0,T ]

E[{f(MT )}2|Ft−]dt

}1/2

=

=

{ ∫

(0,T ]

E[f(MT )]2dt

}1/2

= {T · E[f(MT )]2}1/2 = {T · ‖f(· − T )‖2
2,T}1/2.

For this, due to the statements II.2 [16], E[f(MT )|Ft−] ∈ L[F, [M, M ]]
and, hence, aforementioned stochastic integral is well defined. �

Theorem 3.1. If f ∈ LT
2 and for some 0 < α < 1 number ∆f(· − T ) ∈

L
T/α
2 , then the stochastic integral below is well defined and for the functional

f(MT ) the following representation is valid:

f(MT ) = E[f(MT )] +

∫

(0;T ]

E[∆f(MT )|Ft−]dMt (P -a.s.). (3.1)
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Proof. Since, it is obvious that: ‖g‖2
2,T ≤ exp{(1−α)T/α}‖g‖2

2,T/α, accord-

ing to the Proposition 3.2, under the conditions of the theorem, we conclude
that the stochastic integral in (3.1) is well defined.

Denote by: f̃(x) := f(x − t). Due to the Proposition 3.1 there exists a
sequence of polynomials Qn(x) such that the relation

lim
n→∞

‖Qn(x) − ∆f̃(x)‖2,T/α = 0

holds.
Let us define P̃n(x) := f̃(0) +

∑x−1
i=0 Qn(i), then according to the Corol-

lary 2.3 the following representation is fulfilled:

P̃n(NT ) = E[P̃n(NT )] +

∫

(0,T ]

E[∆P̃n(NT )|Ft−]dMt (P − a.s.). (3.2)

It is obvious that:

P̃n(NT ) = f̃(0) +

NT−1∑

i=0

Qn(i),

f̃(NT ) = f̃(0) +

NT −1∑

i=0

[f̃(i + 1) − f̃(i)] = f̃(0) +

NT −1∑

i=0

∆f̃(i)

and

P̃n(NT ) − f̃(NT ) =

NT−1∑

i=0

[Qn(i) − ∆f̃(i)].

Further, using the elementary inequality

( ∑n
i=1 ai

)2

≤ n
∑n

i=1 a2
i , one

can easily see that:

‖P̃n(NT ) − f̃(NT )‖2
2,T ≤

∞∑

k=0

k

k−1∑

i=0

[Qn(i) − ∆f̃(i)]2
T k

k!
e−T ≤

≤ T

i0+1∑

k=0

k−1∑

i=0

[Qn(i) − ∆f̃(i)]2
(T/α)i

i!
e−

T
α e

T
α

T k−1

(k − 1)!
e−T +

+T

∞∑

k=i0+1

k−1∑

i=0

[Qn(i) − ∆f̃(i)]2
(T/α)i

i!
e−

T
α

(k − 1)!

(T/α)k−1
e

T
α

T k−1

(k − 1)!
e−T ,

where by i0 = i0(T/α) is denoted the natural number for which i0!
(T/α)i0

≤ 1

and (i0+1)!
(T/α)i0+1 ≥ 1. Then, it is evident that for such number, we have:

max
{ i!

(T/α)i

}
=

{
1, if k − 1 ≤ i0(T/α)

(k−1)!
(T/α)k−1 , if k − 1 ≥ i0(T/α)
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Taking into account the aforementioned arguments, we can write:

‖P̃n(NT ) − f̃(NT )‖2
2,T ≤ ‖Qn(NT ) − f̃(NT )‖2

2,T/α×

×
(

T

i0+1∑

k=0

T k−1

(k − 1)!
e−T eT/α +

∞∑

k=i0+1

αk−1eT/αe−T

)
→ 0, as n → ∞.

Therefore, we can ascertain that: E[P̃n(NT )] → E[f̃(NT )], as n → ∞.
On the other hand, one can verify that:
∫

(0,T ]

E[∆P̃n(NT )|Ft−]dMt
L2−→

∫

(0,T ]

E[∆f̃(NT )|Ft−]dMt, as n → ∞.

Indeed, according to the well-known properties of the stochastic integral,
using the Jensen’s inequality, it is not difficult to see that:

E

{ ∫

(0,T ]

E[∆P̃n(NT )|Ft−] − E[∆f̃(NT )|Ft−]dMt

}2

=

= E

∫

(0,T ]

{E[∆P̃n(NT )|Ft−] − E[∆f̃(NT )|Ft−]}2d[M, M ]t =

= E

∫

(0,T ]

{E[∆P̃n(NT ) − ∆f̃(NT )|Ft−]}2d〈M, M〉t =

=E

∫

(0,T ]

{E[∆P̃n(NT )−∆f̃(NT )|Ft−]}2dt≤
∫

(0,T ]

E[∆P̃n(NT )−∆f̃(NT )]2dt=

=

∫

(0,T ]

E[Qn(NT ) − ∆f̃(NT )]2dt =

∫

(0,T ]

‖Qn(x) − ∆f̃(x)‖2
2,T dt ≤

≤ T · exp{(1 − α)T/α} · ‖Qn(x) − ∆f̃(x)‖2
2,T/α → 0, as n → ∞.

Passing now to the limit in the equality (3.2), as n → ∞ and taking into
account all the above-obtained relations, we conclude that:

f̃(NT ) = E[f̃(NT )] +

∫

(0,T ]

E[∆f̃(NT )|Ft−]dMt (P − a.s.) (3.3)

whence, according to the equalities f̃(x) = f(x−T ) and ∆f̃(x) = ∆f(x−T ),
we obtain the desired representation. �

Using the arguments similar to those presented in the proof of the The-
orem 2.3, one can prove that:
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Theorem 3.2. If f ∈ LT
2 and for some 0 < α < 1 number ∆f(· − T ) ∈

L
T/α
2 , then for any t ∈ [0, T ] the following relation holds:

p(DM
t f(MT )) = E[∆f(MT )|Ft−] (P -a.s.). (3.4)

4. Integral Representation for Functionals from the space

Wp,1,α

Let us denote by W2,1,α := {f : f ∈ LT
2 , ∆f̃T ∈ L

T/α
2 }. It is obvious that

W2,1,α is the Hilbert space whose scalar product is given by the norm:

‖f‖2,1,α := ‖f‖LT
2

+ ‖∆f̃T ‖L
T/α
2

.

Fix 1 ≤ p ≤ 2 and define: LT
p := {f : fρ1/p ∈ L2} and ‖f‖LT

p
:=

‖fρ1/p‖L2
. Let us introduce also the norm:

‖f‖p,1,α := ‖f‖LT
p

+ ‖∆f̃T‖L
T/α
p

.

Definition 4.1. Denote by Wp,1,α (1 ≤ p < 2) the Banach space which
is the closure of W2,1,α under the norm ‖ · ‖p,1,α.

Theorem 4.1. If f ∈ Wp,1,α, where 1 < p < 2, then the following

representation is valid:

f(MT ) = E[f(MT )] +

∫

(0,T ]

E[∆f(MT )|Ft−]dMt (P -a.s.).

Proof. According to the Definition 4.1 there exists a sequence {fn}∞n=1 ⊂
Wp,1,α , such that:

lim
n→∞

‖fn − f‖p,1,α = 0. (4.1)

Let us introduce the following martingales m(t) := E[f(MT )|Ft] and
mn(t) := E[fn(MT |Ft)].

Due to the the well-known martingale representation theorem one has:

m(t) = E[f(MT )] +

∫

(0,T ]

g(s)dMs.

On the other hand, under the conditions of the theorem, from the The-
orem 3.1, for any n we can write:

fn(MT ) = E[fn(MT )] +

∫

(0,T ]

E[∆fn(MT )|Ft−]dMt,

whence, if now we take the conditional mathematical expectation with re-
spect to Ft from the both sides of the last relation, we obtain that:

mn(t) = E[fn(MT )] +

∫

(0,T ]

E[∆fn(MT )|Fs−]dMs (P -a.s.). (4.2)
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According to the Doob’s maximal inequality and the Iensen’s inequality,
taking into account the relation (4.1), it is not difficult to see that:

{
E[ sup

0≤t≤T
|mn(t) − m(t)|]p

}1/p

≤ p

1 − p
sup

0≤t≤T
[E|mn(t) − m(t)|p]1/p =

=
p

1 − p
[E|mn(T ) − m(T )|p]1/p =

p

p − 1
‖fn(MT ) − f(MT )‖Lp ≤

≤ p

p − 1
‖fn − f‖p,1,α → 0, as n → ∞.

Further, using the Bukholder-Davis-Gandy’s inequality, due to the esti-
mate obtained above, we have:

E[mn − m, mn − m]
p/2
T =E

{ ∫

(0,T ]

|E[∆fn(MT )|Ft−] − g(t)|2d[M, M ]t

}p/2

≤

≤ cE{ sup
0≤t≤T

|mn(t) − m(t)|}p → 0, as n → ∞.

Moreover, according to the Lyapunov’s inequality, from the previous re-
lation we conclude that:

lim
n→∞

E

{ ∫

(0,T ]

|E[∆fn(MT )|Ft−] − g(t)|2d[M, M ]t

}1/2

≤

≤ lim
n→∞

(
E

{ ∫

(0,T ]

|E[∆fn(MT )|Ft−] − g(t)|2d[M, M ]t

}p/2)1/p

= 0.

From here, due to the Chebyshev’s inequality, we see that:

P − lim
n→∞

∫

(0,T ]

|E[∆fn(MT )|Ft−] − g(t)|2d[M, M ]t = 0,

where P − limn→∞– denotes the limit in probability.
Therefore, according to the Kunita-Watanebe’s inequality, one can as-

certain that:

P − lim
n→∞

∫

(0,T ]

|E[∆fn(MT )|Ft−] − g(t)|d[M, M ]t ≤

≤ P − lim
n→∞

{( ∫

(0,T ]

|E[∆fn(MT )|Ft−] − g(t)|2d[M, M ]t

)1/2

×

×([M, M ]T )1/2

}
=0. (4.3)
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On the other hand, by linearity of the conditional mathematical expec-
tation and of the ∆ operator, we can write:

E

∫

(0,T ]

|E[∆fn(MT )|Ft−] − E[∆f(MT )|Ft−]dt =

= E

∫

(0,T ]

|E{∆[fn(MT ) − f(MT )]Ft−}|dt.

Therefore, due to the Jensen’s, Cauchy-Bunyakovski’ s and Lyapunov’s
inequalities and by the Fubini’s theorem, under the conditions of the theo-
rem, we conclude that:

E

∫

(0,T ]

|E[∆fn(MT )|Ft−] − E[∆f(MT )|Ft−]|dt ≤

≤ E

∫

(0,T ]

E{|∆[fn(MT ) − F (MT )]‖Ft−}dt =

= E

∫

(0,T ]

|∆[fn(MT ) − f(MT )]|dt ≤

≤
√

TE

{ ∫

(0,T ]

|∆[fn(MT ) − f(MT )]|2dt

}1/2

≤

≤
√

T

{ ∫

(0,T ]

E|∆[fn(MT ) − f(MT )]|2dt

}1/2

≤

≤
√

T‖fn − f‖p,1,α → 0, as n → ∞. (4.4)

Since 〈M, M〉t = t and for any predictable h process:

E

∫

(0,T ]

|h(t)|dt = E

∫

(0,T ]

|h(t)|d〈M, M〉t = E

∫

(0,T ]

|h(t)|d[M, M ]t,

from the relation (4.4) we ascertain that:

lim
n→∞

E

∫

(0,T ]

|E[∆fn(MT )|Ft−] − E[∆f(MT )|Ft−]|d[M, M ]t = 0, (4.5)

and, moreover:

E

∫

(0,T ]

|E[∆f(MT )|Ft−]|d[M, M ]t = E

∫

0,T ]

|E[∆f(MT )|Ft−]|dt < ∞.
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Due to the relations (4.3) and (4.5) one can choose a subsequence {nk}k≥1,
such that (P -a.s.) the following relations are fulfilled:

lim
k→∞

∫

(0,T ]

|E[∆fnk
(MT )|Ft−] − g(t)|d[M, M ]t = 0

and

lim
k→∞

∫

(0,T ]

|E[∆fnk
(MT )|Ft−] − E[∆f(MT )|Ft−]|d[M, M ]t = 0.

From this, one can conclude that for almost all ω:
g(·, ω) = E[∆f(MT )|F·−](ω) d[M, M ]-almost everywhere.

Thus, for almost all ω we have:
∫

(0,T ]

|g(t) − E[∆f(MT )|Ft−]|d[M, M ]t = 0.

Therefore, we obtain that:

E

∫

(0,T ]

|g(t) − E[∆f(MT )|Ft−]|d[M, M ]t = 0,

whence, we conclude that:

g(t, ω) = E[∆f(MT )|Ft−](ω) dP ⊗ d[M, M ]-a.s.,

and, hence, dP -almost surely:
∫

(0,T ]

g(t)dMt =

∫

(0,T ]

E[∆f(MT )|Ft−]dMt.

This complete the proof of the theorem. �

From the proof of the Theorem 4.1 one can ascertain that:

Corollary 4.1. If f ∈ Wp,1,α (1 < p < 2), then:
∫

(0,T ]

|E[∆fn(MT )|Ft−]|2d[M, M ]t < ∞ (P − a.s.).

Following the scheme of the proof of the Theorem 2.3 one can prove:

Theorem 4.2. If f ∈ Wp,1,α , where 1 < p < 2, then for any t ∈ [0, T ]
the following relation is valid:

p[DM
t f(MT )] = E[∆f(MT )|Ft−] (dP ⊗ ds − a.s.).



STOCHASTIC INTEGRAL REPRESENTATION 57

Appendix

In this appendix we prove results which are given in section 1.

Proof of Proposition 1.1. Due to the Newton’s binomial formula, we have:

µn(t) =
∞∑

x=0

xn tx

x!
e−t =

∞∑

x=1

xn−1 tx

(x − 1)!
e−t =

= t
∞∑

x=1

(x − 1 + 1)n−1 tx−1

(x − 1)!
e−t = t

∞∑

x=1

n−1∑

i=0

Ci
n−1(x − 1)i tx−1

(x − 1)!
e−t =

= t
n−1∑

i=0

Ci
n−1

∞∑

x=1

(x − 1)i tx−1

(x − 1)!
e−t = t

n−1∑

i=0

Ci
n−1µi(t). �

Proof of Corollary 1.1. Since, E[Nt] = µ1(t) = t taking into account the
Proposition 1.1, by virtue of the Mathematical Induction Method, one can
easily ascertain that the assertion of the corollary is true. �

Proof of Proposition 1.2. Due to the Corollary 1.1: µn(t) =
∑n

k=0 aktk.
On the other hand, we have:

µn(t) =
∞∑

x=0

xn tx

x!
e−t =

( ∞∑

x=0

xn tx

x!

)
/

( ∞∑

i=0

ti

i!

)
.

Therefore, we can write:
∑∞

x=0 xn tx

x! =
∑n

k=0 aktk · ∑∞
i=0

ti

i! .
Using now the rule of multiplication of series, equating with each other

the coefficients at the same degrees of t in the both sides of the equality, we
ascertain that:

a0 = 0;

a0 + a1 = 1;

a0

2!
+ a1 + a2 =

2n

2!
;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ak

0!
+

ak−1

1!
+ · · · + a1

(k − 1)!
+

a0

k!
=

kn

k!
, k = 1, 2, . . . , n.

Whence we obtain that:

a1 = 1;

a2 =
2n

n!
− a1;

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ak =
kn

k!
−

k−1∑

i=0

ai

(k − 1)!
, k = 1, 2, . . . , n.
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Let us denote by Mt-the Compensated Poisson process Mt := Nt− t and
by νn(t) –its n-th order moment (νn(t) := E[Mn

t ], n ≥ 1). �

Proof of Proposition 1.3. It is clear that: ν0(t) = E[M0
t ] = E[1] = 1 and

ν1(t) = E[Mt] = E[Nt − t] = t − t = 0.
On the other hand, it is not difficult to see that (for any n ≥ 2), we have:

νn(t) = E[Mn
t ] = E[(Nt − t)n] =

∞∑

k=0

(k − t)n tk

k!
e−t =

=

∞∑

k=0

(k − t)n−1(k − t)
tk

k!
e−t =

∞∑

k=1

(k − t)n−1k
tk

k!
e−t −t

∞∑

k=0

(k − t)n−1t
k

k!
e−t=

=

∞∑

k=1

(k − 1 − t + 1)n−1 tk

(k − 1)!
e−t − tνn−1(t) =

= t

∞∑

k=1

n−1∑

i=0

Ci
n−1(k − 1 − t)i tk−1

(k − 1)!
e−t − tνn−1(t) =

= t

n−1∑

i=0

Ci
n−1

∞∑

m=0

(m − t)i t
m

m!
e−t − tνn−1(t) =

= t

n−1∑

i=0

Ci
n−1νi(t) − tνn−1(t) = t

n−2∑

i=0

Ci
n−1νi(t). �

Proof of Proposition 1.4. Because ν1 = 0 and ν2 = ν3 = t, therefore propo-
sition is fulfilled in cases n = 1, 2, 3. Assume that the assertion is true for

n = m and verify that is true for n = m+1. We have: νm(t) =
∑m/2

k=0 am
k tk,

therefore according to the Proposition 1.3, using the relation [(m + 1)/2] =
[(m − 1/2)] + 1, we obtain that:

νm+1(t) = t

m−1∑

i=0

Ci
m

i/2∑

k=0

ai
ktk = t

[(m−1)/2]∑

i=0

bit
i =

[(m+1)/2]∑

k=0

bk−1t
k.

Hence, by virtue of the Mathematical Induction Method, the relation (1.3)
is justified for any n ≥ 1.

On the other hand, one can write:

νn(t) =

∞∑

k=0

(k − t)n tk

k!
e−t =

∑∞
k=0(k − t)n tk

k!∑∞
i=0

ti

i!

=

[n/2]∑

k=0

an
k tk,

i.e.
∞∑

k=0

(k − t)n tk

k!
=

∞∑

i=0

ti

i!
·
[n/2]∑

k=0

an
k tk.
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Therefore, using the Newton’s binomial formula and the rule of multi-
plication of series, equating with each other the coefficients at the same
degrees of t in the both side of equality, it is not difficult to see that the
coefficients an

k in (1.3) satisfy the relations (1.4). �

Proof of Proposition 1.5. We have:

dνn(t)

dt
=

d

dt

[ ∞∑

k=0

(k − t)n tk

k!
e−t

]
= −

∞∑

k=0

n(k − t)n−1 tk

k!
e−t+

+

∞∑

k=1

(k − t)nk
tk−1

k!
e−t −

∞∑

k=0

(k − t)n tk

k!
e−t := I1 + I2 + I3,

where

I1 = −n

∞∑

k=0

(k − t)n−1 tk

k!
e−t = −nνn−1(t),

I2 =

∞∑

k=1

(k − t)n tk−1

(k − 1)!
e−t =

∞∑

k=1

(k − 1 − t + 1)n tk−1

(k − 1)!
e−t =

=

∞∑

k=1

n∑

i=0

Ci
n(k − 1 − t)i tk

(k − 1)!
e−t =

n∑

i=0

Ci
n

∞∑

k=1

(k − 1 − t)i tk−1

(k − 1)!
e−t =

=

n∑

i=0

Ci
nνi(t) =

n−2∑

i=0

Ci
nνi(t) + nνn−1(t) + νn(t)

and

I3 = −
∞∑

k=0

(k − t)n tk

k!
e−t = −νn(t).

Combining the relations obtained above, we conclude that the proposition
is valid. �
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