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ABSTRACT. The paper suggests a method which allows one to construct explicit expressions for integrands
which take part in the stochastic integral representation for multidimensional polynomial functionals of Pois-
son processes and for these functionals the formulas for calculation of the predictable projection of their
stochastic derivatives are given. © 2008 Bull. Georg. Natl. Acad. Sci.
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According to the well-known result obtained by Ma, Protter, Martin [1], if F € D% , then the Ocone-Haussmann-

Clark’s representation F = E(F)+ I ?(DMF)dM, is valid. Here M is the so-called normal martingales (a martingale
(.1

is said to be normal, if <M M >l =1), D% denotes the space of square integrable functionals having the first order
stochastic derivative, and 7 (D F) is a predictable projection of the stochastic derivative D} F of the functional F.

But, in this case (exactly, when the quadratic variation [M,M] is not deterministic), unlike Wiener’s one, it is
impossible to define in a generally adopted manner an operator of stochastic differentiation to obtain the structure of
Sobolev spaces, which allows one to construct explicitly the stochastic derivative operator in many cases. Conse-
quently, the Ocone-Haussmann-Clark’s formula makes it impossible to construct explicitly the operator of the sto-
chastic derivative of the functionals of the Compensated Poisson process (which, obviously, belongs to a class of
normal martingales <M M >l =1, but its quadratic variation is not deterministic, [M,M], = N(t) = M (¢t)+t), saying
nothing of the construction of its predictable projection.

Our approach (in the one-dimensional case) within the framework of nonanticipative stochastic calculus of
semimartingales allows one to construct explicitly the expression for the integrand of the stochastic integral in the
theorem of martingale representation for square integrable functionals of the Compensated Poisson process, and to
derive a formula allowing one to construct explicitly predictable projections of their stochastic derivatives [2, 3]. In
this paper we consider the multidimensional case.

Let (€2;3;3,,t €[0,T];P) be a filtered probability space satisfying the usual conditions. Assume that the stan-

dard Poisson process (V,,,) is given onitand that J, is generatedby N (3, = 3V ), I=3,. Denote M, =N, -1,
v, ()= E[(M,)"].
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Let us denote
V' (x,%y,..%,) = f(x,+1Lx, +1,..,x, + D= f(x,%,,....,X,),
Vo X X,) = (X X L, X)) = (X500 X505 X,)
VoV oV f@ren) =V, [V, AV, (e
It is not difficult to see that for any permutation o(1),o(2),...,0(k) of i,i,,...,i, we have:

[ x,) =V, VoV f(3x,)

Xo (1) xo'(2) o(k)

And, moreover,

n n
V"f(xl,xz,...,xn)zz Z Vo Vi Ve S X,000x,)
k=1 iy iy o =1 :

ij<iy <-<if

Denote

vznf(MtlaM[z’"':Mz”)zz{ Z [vxtlvx,-2 ”'Vx‘kf(xl’xw“"xn)|x|:Mt1,xz:M,2 ..... )r,,:M,"]><

k=l iy igyensiy =l

ij<ip<-<if.

><I[o,t,1 ](t) ' I[o,f12] (t) o '1[0,% ] (t)} .

Theorem 1. For any polynomial function P,(x,,x,,...,x,) the functional F,(M,,M, ,...M, ) admits (P-a.s.)
the following stochastic integral representation:
%(le,Mzzv---,Mz,,)=ER1(M11,MzZv--~,Mz,,)+ I E[V; n(M, M, Ml”)|Sl_]dM, .
(0,4 viyveevt, ]
Sketch of the proof. For the sake of simplicity, in order to avoid cumbersome expressions and calculations, we
consider the two-dimensional case (n=2, x,=x, x,=y, t,=5, t,=T). Thus, we must verify the following
representation:

B (M, My)= ELB (Mg, M;)]+ j E[V;B(Ms,M,)|3,_JM, (P-as.), &

(0,8vT']

Where V’B(M,,M,) = VIV, BEM g, M5O () +V B (Mg, M) /() +V P(Mg, M), 1 (2)

Fix u <8 < T and consider the power functional M¢ -M;" (m,n € N ). According to the well-known properties

mY m—i

of the Compensated Poisson process, we can easily obtain that: E[M," |3¥]= Z Civ, (T-S)M; and

SIS S8 v, (TS, (5w

i=0 j=0

X, = E[M” W

~M:| |:W EW"|3

Therefore, due to the Ito’s formula, using the Propositions 1.5 and 2.1 [3], it is not difficult to see that:

X, =35y, (-9
i=0 j=0
nti—j— 2
X{ '[ jvn+[_j(S_t)ML_]dMl + ..- V""” /(S t)z CkM/_de .[ Mj n+: J= ka(S_t)dt}.
(0.u] (O] o] ~

Comparing now the terms with the same powers of M,_ in the two last integrals, due to the equality dN, —dt = dM,,

we conclude that:

m  n+i . J .
X, = ZO“ z{; CLClVu i T=SN [ ¥y (S=0OMdM,+ [ v, (S —t)kz; C'M/™*dM,).
i=0 j= Ou] (O,u] =
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Analogously, if S <u<T, one can obtain:

X, =E[ M; M7 |3 | = MyE[ M}

=M Z Cly, (T—uwM! =

=M CL [ v, (T-OMaM,+ [ v, (T t)ZCfM’ aN,+ [ ML (T —ndn =

(O,u] O,u] J (0,u] k=0

=> My [ v, (T-0Y.C/M71M, (P-a.s).
i=0 0,u] J=1
Summing up the above results, due to the relation X, = Mg -M;', we ascertain that the following representation
is valid:

MIM? =E[M;M;"]+ZZC' ClLov, (T=8) [ v, (S=0iM/- 1+Zc’fo “1dM, +

m n+i’ m—i
i=0 j=0 (0,81

C’M” [ v (- t)ZCfM’ M, (P-a.s.).

i=0 (8.T]

Furthermore, it is not difficult to see that:
VIMg M) = {[(Ms+1) (M +1)" =M (M, +D)"1=[(Mg +1)" M7 =M -M]' T} (1) +
HM g +1)" My =M - My U 5 () + [Mg(M +1)" = Mg - MU (1) =
={l(Ms+1)" =M ]-[(M; +1)" =M TH 5, () +
HM s +1)" =M 1M 5 (O + (M +1)" = M- M1 1y (0) =

n-1 m m—1
= ZCLMIS zcrf'zM%I(O,S](t) + zcrﬁM%M;I(o,r](l) =
i=0 j=0 j=0

m-1

m—1
—[ZCM ZC M+ CIMIMN (O + D CIMIM I ¢ 1 (1) =

i=0 Jj=0 Jj=0 j=0

m-1

n—-1 m
:[zzcﬂ mMle +ZC){1M]{M;]I(O,S](t)+ZC;«M]]'M;](S,T](t)

i=0 j=0 Jj=0 Jj=0
On the other hand, using arguments similar to those presented above, we have:

m  n+i

[ BV -Mp)|30aM, =Y CoClv, (T=S) [ v, (S =M™ +

n+i’ m—i
0,71 i=0 j=0 0,51

+Z CEM [ dM, + Z My [ v, (T -0 C/M71M, (P-a.s).
(8,71 J=1

Thus, we see that the representation is true for the power functional Mg -M;". Hence, taking into account the

linearity of the operator V;, of the mathematical expectation, and of the stochastic integral, we can see that the
representation (1) is valid. O
Theorem 2. For the functional F,(M,,M, ,...,M, ) the following relation is valid:

"[DP(M, .M, ..M, )=E[V;P(M, M,,..M)|3](dP®dA-as.), (@)

Where *[DY P.(M ,»M, ... M, )] denotes the predictable projection of the stochastic derivative with respect to

the Compensated Poisson process (as a normal martingale) of functional P,(M,, M, ,...M, ).
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Proof. According to the Ocone-Haussmann-Clark representation [1], we have:

P(M,.M, ..M, )=ER(M,,M,,..M)+ [ {’[DIP(M,.M,_,...M,)]}aM, (P-as).

0,4y vty v-vit, ]
Let us denote by 7, the difference between the left and right sides of relation (2) and denote by &, the following

stochastic process:

&= [ IDYP,(M, .M, ..M, =EIV:E,(M, .M, ... M,) |3} 1M, = [ n,dM,
0,t

u-n
2]

10,11 [
Then, due to Theorem 1, it is clear that &, =0 (P-a.s.). On the other hand, according to the Ito’s formula, we
obtain that:

g=2[ &naM,+ [ nldiM, M), (P-as).

[0,T] [0,7]
Taking now the mathematical expectation from both sides of the last relation, using the well-known properties
of the square and predictable characteristics of the martingale, we conclude that:

0=E [ nid[M,M),=E [ nid(M,M), =E | nidt

[0,7] [0,7] [0,7]

Therefore it is clear that 77, =0 (4P ® d A -a.s.). Hence, the relation (2) is true. I
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