## Mathematics

# Stochastic Integral Representation of Multidimensional Polynomial Poisson Functionals 

Vakhtang Jaoshvili*, Omar Purtukhia**

* I. Javakhishvili Tbilisi State University
** A. Razmadze Mathematical Institute, Tbilisi
(Presented by Academy Member E. Nadaraya)


#### Abstract

The paper suggests a method which allows one to construct explicit expressions for integrands which take part in the stochastic integral representation for multidimensional polynomial functionals of Poisson processes and for these functionals the formulas for calculation of the predictable projection of their stochastic derivatives are given. © 2008 Bull. Georg. Natl. Acad. Sci.


Key words: Poisson process, stochastic derivative, predictable projection.

According to the well-known result obtained by Ma, Protter, Martin [1], if $F \in D_{2,1}^{M}$, then the Ocone-HaussmannClark's representation $F=E(F)+\int_{(0, T]}{ }^{p}\left(D_{t}^{M} F\right) d M_{t}$ is valid. Here $M$ is the so-called normal martingales (a martingale is said to be normal, if $\left.\langle M, M\rangle_{t}=t\right), D_{2,1}^{M}$ denotes the space of square integrable functionals having the first order stochastic derivative, and ${ }^{p}\left(D_{t}^{M} F\right)$ is a predictable projection of the stochastic derivative $D_{t}^{M} F$ of the functional $F$. But, in this case (exactly, when the quadratic variation $[M, M]$ is not deterministic), unlike Wiener's one, it is impossible to define in a generally adopted manner an operator of stochastic differentiation to obtain the structure of Sobolev spaces, which allows one to construct explicitly the stochastic derivative operator in many cases. Consequently, the Ocone-Haussmann-Clark's formula makes it impossible to construct explicitly the operator of the stochastic derivative of the functionals of the Compensated Poisson process (which, obviously, belongs to a class of normal martingales $\langle M, M\rangle_{t}=t$, but its quadratic variation is not deterministic, $\left.[M, M]_{t}=N(t)=M(t)+t\right)$, saying nothing of the construction of its predictable projection.

Our approach (in the one-dimensional case) within the framework of nonanticipative stochastic calculus of semimartingales allows one to construct explicitly the expression for the integrand of the stochastic integral in the theorem of martingale representation for square integrable functionals of the Compensated Poisson process, and to derive a formula allowing one to construct explicitly predictable projections of their stochastic derivatives [2, 3]. In this paper we consider the multidimensional case.

Let $\left(\Omega ; \mathfrak{I}^{\prime} ; \mathfrak{I}_{t}, t \in[0, T] ; P\right)$ be a filtered probability space satisfying the usual conditions. Assume that the standard Poisson process $\left(N_{t}, \mathfrak{J}_{t}\right)$ is given on it and that $\mathfrak{I}_{t}$ is generated by $\mathrm{N}\left(\mathfrak{I}_{t}=\mathfrak{I}_{t}^{N}\right), \mathfrak{I}=\mathfrak{J}_{T}$. Denote $M_{t}:=N_{t}-t$, $v_{n}(t):=E\left[\left(M_{t}\right)^{n}\right]$.

Let us denote

$$
\begin{aligned}
& \nabla^{n} f\left(x_{1}, x_{2}, \ldots, x_{n}\right):=f\left(x_{1}+1, x_{2}+1, \ldots, x_{n}+1\right)-f\left(x_{1}, x_{2}, \ldots, x_{n}\right), \\
& \nabla_{x_{i}} f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right):=f\left(x_{1}, \ldots, x_{i}+1, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i}, \ldots, x_{n}\right), \\
& \nabla_{x_{i 1}} \nabla_{x_{i 2}} \cdots \nabla_{x_{i k}} f\left(x_{1}, \ldots, x_{n}\right):=\nabla_{x_{i 1}}\left[\nabla_{x_{i 2}}\left[\cdots\left[\nabla_{x_{i k}} f\left(x_{1}, \ldots, x_{n}\right)\right] \cdots\right]\right] .
\end{aligned}
$$

It is not difficult to see that for any permutation $\sigma(1), \sigma(2), \ldots, \sigma(k)$ of $i_{1}, i_{2}, \ldots, i_{k}$ we have:

$$
\nabla_{x_{\sigma(1)}} \nabla_{x_{\sigma(2)}} \cdots \nabla_{x_{\sigma(k)}} f\left(x_{1}, \ldots, x_{n}\right)=\nabla_{x_{i 1}} \nabla_{x_{i 2}} \cdots \nabla_{x_{i k}} f\left(x_{1}, \ldots, x_{n}\right)
$$

And, moreover,

$$
\nabla^{n} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{k=1}^{n} \sum_{\substack{i_{1}, i_{2}, \ldots, i_{k}=1 \\ i \leqslant<_{2}<-s_{k}}}^{n} \nabla_{x_{i_{1}}} \nabla_{x_{i_{2}}} \cdots \nabla_{x_{i_{k}}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

Denote

$$
\begin{aligned}
\nabla_{t}^{n} f\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right)=\sum_{k=1}^{n} & \left\{\sum_{\substack{i_{1}, i_{2}, \ldots, i_{k}=1 \\
i<i_{2} \lll<i_{k}}}^{n}\left[\left.\nabla_{x_{i_{1}}} \nabla_{x_{i_{2}}} \cdots \nabla_{x_{i_{k}}} f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right|_{x_{1}=M_{t_{1}}, x_{2}=M_{t_{2}}, \ldots, x_{n}=M_{t_{n}}}\right] \times\right. \\
& \left.\times I_{\left[0, t_{\left.i_{1}\right]}\right]}(t) \cdot I_{\left[0, t_{i_{2}}\right]}(t) \cdots I_{\left[0, t_{k_{k}}\right]}(t)\right\} .
\end{aligned}
$$

Theorem 1. For any polynomial function $P_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ the functional $P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right)$ admits ( $P$-a.s.) the following stochastic integral representation:

$$
P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right)=E P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right)+\int_{\left(0, t_{1} \vee t_{2} \vee \ldots v t_{n}\right]} E\left[\nabla_{t}^{n} P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right) \mid \Im_{t-}\right] d M_{t}
$$

Sketch of the proof. For the sake of simplicity, in order to avoid cumbersome expressions and calculations, we consider the two-dimensional case ( $n=2, x_{1}=x, x_{2}=y, t_{1}=S, t_{2}=T$ ). Thus, we must verify the following representation:

$$
\begin{equation*}
P_{2}\left(M_{S}, M_{T}\right)=E\left[P_{2}\left(M_{S}, M_{T}\right)\right]+\int_{(0, S \vee T]} E\left[\nabla_{t}^{2} P_{2}\left(M_{S}, M_{T}\right) \mid \mathfrak{I}_{t-}\right] d M_{t}(P \text {-a.s. }), \tag{1}
\end{equation*}
$$

Where $\nabla_{t}^{2} P_{2}\left(M_{S}, M_{T}\right)=\nabla_{x}\left[\nabla_{y} P_{2}\left(M_{S}, M_{T}\right)\right] I_{[0, S]}(t) I_{[0, T]}(t)+\nabla_{x} P_{2}\left(M_{S}, M_{T}\right) I_{[0, S]}(t)+\nabla_{y} P_{2}\left(M_{S}, M_{T}\right) I_{[0, T]}(t)$
Fix $u \leq S \leq T$ and consider the power functional $M_{S}^{n} \cdot M_{T}^{m}(m, n \in N)$. According to the well-known properties of the Compensated Poisson process, we can easily obtain that: $E\left[M_{T}^{m} \mid \mathfrak{J}_{S}^{M}\right]=\sum_{i=0}^{m} C_{m}^{i} \nu_{m-i}(T-S) M_{S}^{i}$ and

$$
X_{u}:=E\left[M_{S}^{n} \cdot W_{T}^{m} \mid \mathfrak{J}_{u}^{M}\right]=E\left[W_{S}^{n} E\left\{W_{T}^{m} \mid \mathfrak{J}_{S}^{M}\right\} \mid \mathfrak{F}_{u}^{M}\right]=\sum_{i=0}^{m} \sum_{j=0}^{n+i} C_{m}^{i} C_{n+i}^{j} v_{m-i}(T-S) v_{n+i-j}(S-u) M_{u}^{j}
$$

Therefore, due to the Ito's formula, using the Propositions 1.5 and 2.1 [3], it is not difficult to see that:

$$
\begin{gathered}
X_{u}=\sum_{i=0}^{m} \sum_{j=0}^{n+i} C_{m}^{i} C_{n+i}^{j} v_{m-i}(T-S) \times \\
\times\left\{\int_{(0, u]} j v_{n+i-j}(S-t) M_{t-}^{j-1} d M_{t}+\int_{(0, u]} v_{n+i-j}(S-t) \sum_{k=2}^{j} C_{j}^{k} M_{t-}^{j-k} d N_{t}-\int_{(0, u]} M_{t-}^{j} \sum_{k=0}^{n+i-j-2} C_{n+i-j-2}^{k} v_{k}(S-t) d t\right\} .
\end{gathered}
$$

Comparing now the terms with the same powers of $M_{t-}$ in the two last integrals, due to the equality $d N_{t}-d t=d M_{t}$, we conclude that:

$$
X_{u}=\sum_{i=0}^{m} \sum_{j=0}^{n+i} C_{m}^{i} C_{n+i}^{j} v_{m-i}(T-S)\left[\int_{(0 . u]} j v_{n+i-j}(S-t) M_{t-}^{j-1} d M_{t}+\int_{(0, u]} v_{n+i-j}(S-t) \sum_{k=2}^{j} C_{j}^{k} M_{t-}^{j-k} d M_{t}\right] .
$$

Analogously, if $S<u \leq T$, one can obtain:

$$
\begin{gathered}
X_{u}=E\left[M_{S}^{n} \cdot M_{T}^{m} \mid \mathfrak{J}_{u}^{M}\right]=M_{S}^{n} E\left[M_{T}^{m} \mid \mathfrak{J}_{u}^{M}\right]=M_{S}^{n} \sum_{i=0}^{m} C_{m}^{i} v_{m-i}(T-u) M_{u}^{i}= \\
=M_{S}^{n} \sum_{i=0}^{m} C_{m}^{i}\left[\int_{(0, u]} i v_{m-i}(T-t) M_{t-}^{i-1} d M_{t}+\int_{(0, u]} v_{m-i}(T-t) \sum_{j=2}^{i} C_{i}^{j} M_{t-}^{i-j} d N_{t}+\int_{(0, u]}-M_{t-}^{i} \sum_{k=0}^{m-i-2} C_{m-i}^{k} v_{k}(T-t) d t\right]= \\
=\sum_{i=0}^{m} C_{m}^{i} M_{S}^{n} \int_{(0, u]}\left[v_{m-i}(T-t) \sum_{j=1}^{i} C_{i}^{j} M_{t-}^{i-j}\right] d M_{t}(P-\text { a.s. }) .
\end{gathered}
$$

Summing up the above results, due to the relation $X_{T}=M_{S}^{n} \cdot M_{T}^{m}$, we ascertain that the following representation is valid:

$$
\begin{aligned}
M_{S}^{n} M_{T}^{m}=E\left[M_{S}^{n} M_{T}^{m}\right] & +\sum_{i=0}^{m} \sum_{j=0}^{n+i} C_{m}^{i} C_{n+i}^{j} v_{m-i}(T-S) \int_{(0, S]} v_{n+i-j}(S-t)\left[j M_{t-}^{j-1}+\sum_{k=2}^{j} C_{j}^{k} M_{t-}^{j-k}\right] d M_{t}+ \\
& +\sum_{i=0}^{m} C_{m}^{i} M_{S}^{n} \int_{(S, T]}\left[v_{n-i}(T-t) \sum_{j=1}^{i} C_{i}^{j} M_{t-}^{i-j}\right] d M_{t}(P-\text { a.s. })
\end{aligned}
$$

Furthermore, it is not difficult to see that:

$$
\begin{gathered}
\nabla_{t}^{2}\left(M_{S}^{m} \cdot M_{T}^{n}\right)=\left\{\left[\left(M_{S}+1\right)^{n}\left(M_{T}+1\right)^{m}-M_{S}^{n}\left(M_{T}+1\right)^{m}\right]-\left[\left(M_{S}+1\right)^{n} M_{T}^{m}-M_{S}^{n} \cdot M_{T}^{m}\right]\right\} I_{(0, S]}(t)+ \\
+\left[\left(M_{S}+1\right)^{n} M_{T}^{m}-M_{S}^{n} \cdot M_{T}^{m}\right] I_{(0, S]}(t)+\left[M_{S}^{n}\left(M_{T}+1\right)^{m}-M_{S}^{n} \cdot M_{T}^{m}\right] I_{(0, T]}(t)= \\
=\left\{\left[\left(M_{S}+1\right)^{n}-M_{S}^{n}\right] \cdot\left[\left(M_{T}+1\right)^{m}-M_{T}^{m}\right]\right\} I_{(0, S]}(t)+ \\
+\left[\left(M_{S}+1\right)^{n}-M_{S}^{n}\right] \cdot M_{T}^{m} I_{(0, S]}(t)+\left[\left(M_{T}+1\right)^{m}-M_{T}^{m}\right] \cdot M_{S}^{n} I_{(0, T]}(t)= \\
\quad=\sum_{i=0}^{n-1} C_{n}^{i} M_{S}^{i} \sum_{j=0}^{m} C_{m}^{j} M_{T}^{j} I_{(0, S]}(t)+\sum_{j=0}^{m-1} C_{m}^{j} M_{T}^{j} M_{S}^{n} I_{(0, T]}(t)= \\
= \\
=\left[\sum_{i=0}^{n-1} C_{n}^{i} M_{S}^{i} \sum_{j=0}^{m} C_{m}^{j} M_{T}^{j}+\sum_{j=0}^{m-1} C_{m}^{j} M_{T}^{j} M_{S}^{n}\right] I_{(0, S]}(t)+\sum_{j=0}^{m-1} C_{m}^{j} M_{T}^{j} M_{S}^{n} I_{(S, T]}(t)= \\
= \\
=\left[\sum_{i=0}^{n-1} \sum_{j=0}^{m} C_{n}^{i} C_{m}^{j} M_{T}^{j} M_{S}^{i}+\sum_{j=0}^{m-1} C_{m}^{j} M_{T}^{j} M_{S}^{n}\right] I_{(0, S]}(t)+\sum_{j=0}^{m-1} C_{m}^{j} M_{T}^{j} M_{S}^{n} I_{(S, T]}(t)
\end{gathered}
$$

On the other hand, using arguments similar to those presented above, we have:

$$
\begin{aligned}
& \int_{(0, T]} E\left[\nabla_{t}^{2}\left(M_{S}^{n} \cdot M_{T}^{m}\right) \mid \Im_{t-}^{M}\right] d M_{t}=\sum_{i=0}^{m} \sum_{j=0}^{n+i} C_{m}^{i} C_{n+i}^{j} v_{m-i}(T-S)\left\{\int _ { ( 0 , S ] } v _ { n + i - j } ( S - t ) \left[j M_{t-}^{j-1}+\right.\right. \\
& \left.\quad+\sum_{k=2}^{j} C_{j}^{k} M_{t-}^{j-k}\right] d M_{t}+\sum_{i=0}^{m} C_{m}^{i} M_{S}^{n} \int_{(S, T]}\left[v_{n-i}(T-t) \sum_{j=1}^{i} C_{i}^{j} M_{t-}^{i-j}\right] d M_{t}(P-\text { a.s. }) .
\end{aligned}
$$

Thus, we see that the representation is true for the power functional $M_{S}^{n} \cdot M_{T}^{m}$. Hence, taking into account the linearity of the operator $\nabla_{t}^{2}$, of the mathematical expectation, and of the stochastic integral, we can see that the representation (1) is valid.

Theorem 2. For the functional $P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right)$ the following relation is valid:

$$
\begin{equation*}
{ }^{p}\left[D_{t}^{M} P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right)\right]=E\left[\nabla_{t}^{2} P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right) \mid \Im_{t-}^{M}\right](d P \otimes d \lambda \text {-a.s. }) \tag{2}
\end{equation*}
$$

Where ${ }^{p}\left[D_{t}^{M} P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right)\right]$ denotes the predictable projection of the stochastic derivative with respect to the Compensated Poisson process (as a normal martingale) of functional $P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right)$.

Proof. According to the Ocone-Haussmann-Clark representation [1], we have:

$$
\left.P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right)=E P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right)+\int_{\left(0, t_{1} \vee t_{2} v \cdots v_{t_{n}}\right]}\left\{{ }^{p}\left[D_{t}^{M} P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right)\right]\right\} d M_{t} \text { (P-a.s. }\right) .
$$

Let us denote by $\eta_{t}$ the difference between the left and right sides of relation (2) and denote by $\xi_{t}$ the following stochastic process:

$$
\xi_{t}:=\int_{[0, t]}\left\{{ }^{p}\left[D_{u}^{M} P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right)\right]-E\left[\nabla_{u}^{2} P_{n}\left(M_{t_{1}}, M_{t_{2}}, \ldots, M_{t_{n}}\right) \mid \mathfrak{J}_{u-}^{M}\right]\right\} d M_{u}=\int_{[0, t]} \eta_{u} d M_{u} .
$$

Then, due to Theorem 1, it is clear that $\xi_{T}=0$ (P-a.s.). On the other hand, according to the Ito's formula, we obtain that:

$$
\xi_{T}^{2}=2 \int_{[0, T]} \xi_{t-} \eta_{t} d M_{t}+\int_{[0, T]} \eta_{t}^{2} d[M, M]_{t}(P-\text { a.s. })
$$

Taking now the mathematical expectation from both sides of the last relation, using the well-known properties of the square and predictable characteristics of the martingale, we conclude that:

$$
0=E \int_{[0, T]} \eta_{t}^{2} d[M, M]_{t}=E \int_{[0, T]} \eta_{t}^{2} d\langle M, M\rangle_{t}=E \int_{[0, T]} \eta_{t}^{2} d t
$$

Therefore it is clear that $\eta_{t}=0(d P \otimes d \lambda$-a.s. $)$. Hence, the relation (2) is true.
The work has been financed by the Georgian National Science Foundation grant № 337/07, 06_223_3-104.

## 

##  

## 









## REFERENCES

1. J. Ma, P. Protter, J.S. Martin (1998), Bernoulli J. of Math.Stat. and Probab., 4: 81-114.
2. V. Jaoshvili, O. Purtukhia (2006), Bull. Georg. Acad. Sci., 174, 2: 29-32.
3. V. Jaoshvili, O. Purtukhia (2007), Proc. A. Razmadze Mathematical Institute, 143: 37-60.
