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Abstract. In this paper we suggest the method which allows to construct explicit expressions
for integrands taking part in the stochastic integral representation of functionals of Poisson
processes and for these functionals the formula for calculation of the predictable projection
of their stochastic derivatives are given.
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1. Introduction. In the 80th of past century, it turned out (Harison, Pliska
(1981)) that the martingale representation theorems (along with the Girsanov’s mea-
sure change theorem ) play an important role in the modern financial mathematics.
According to the well-known Clark’s formula, if F is a FwT -measurable square integrable
random variable, then F = EF +

∫
(0,T ]

ϕt(ω)dwt for some ϕt(ω) ∈ L2([0, T ]×Ω). Due to

the so-called Ocone-Clark’s formula: ϕt(ω) = E[Dw
t F |Fwt ], where Dw

t F is the stochas-
tic derivative (so-called Malliavin’s derivative) of the functional F. But, in the cases if
the functional F has no stochastic derivative, its application is impossible. Another
distinct method of finding an integrand ϕt(ω) for ”maximal” type functional belongs
to Shyryaev, Yor (2003). Our approach allows one to construct ϕt(ω) even when the
functional F has no the stochastic derivative (Jaoshvili, Purtukhia [3]).

On the other hand, if F ∈ DM
2,1 , then the Ocone-Haussmann-Clark’s representation

F = EF +
∫

(0,T ]

p(DM
t F )dMt is valid (Ma, Protter, Martin [1]), where M is a normal

martingale – i. e. 〈M,M〉t = t, DM
2,1 denotes the space of square integrable functionals

having the first order stochastic derivative – DM
t F , and p(DM

t F ) is the predictable
projection of the DM

t F .But, in this case (exactly, when the quadratic variation [M,M ]
is not deterministic), unlike the Wiener’s one, it is impossible to define in a gener-
ally adopted manner an operator of stochastic differentiation to obtain the structure
of Sobolev spaces, which allows one to construct explicitly the stochastic derivative
operator in many cases (in particular, the space DM

p,1 (1 < p < 2) cannot be defined
in the usual way – i.e., by closing the class of smooth functionals with respect to the
corresponding norm. Later on, in work of Purtukhia [2] the space DM

p,1 (1 < p < 2) is
proposed for a class of normal martingales and the integral representation formula of
Ocone-Haussmann-Clark is established for functionals from this space). Consequently,
the Ocone-Haussmann-Clark’s formula makes it impossible to construct explicitly the
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operator of the stochastic derivative of the functionals of the Compensated Poisson
process (which, obviously, belongs to a class of normal martingales 〈M,M〉t = t, but
its quadratic variation is not deterministic [M,M ]t = Nt = Mt + t), saying nothing on
the construction of its predictable projection. Our approach within the framework of
nonanticipative stochastic calculus of semimartingales allows one to construct explicitly
the expression for the integrand for functionals of the Compensated Poisson process,
and to derive the formula allowing one to construct explicitly predictable projections
of their stochastic derivatives.

2. Auxiliary notations and results. Let (Ω,=,P, (=t)0≤t≤∞) be a filtered
probability space satisfying the usual conditions. Assume that the standard Poisson
process Nt is given on it (P (Nt = k) = tk

k!
×e−t, n = 0, 1, 2, ...) and that =t is generated

by N (=t = =Nt ), = = =T . Denote Mt := Nt − t and by νn(t)– its n-th order moment
(νn(t) := E[Mn

t ], n ≥ 1).
Let us denote ∆xf(x) := f(x+1)−f(x). In particular, ∆xPn(MT ) = ∆xPn(x)|x=MT

.
Proposition 2.1 (cf. Proposition 1.5 [4]). The n-th order moment of the Com-

pensated Poisson process satisfies the following differential equation:

dνn(t) =

[
n−2∑
i=0

Ci
nνi(t)

]
dt. (2.1)

Proposition 2.2 (cf. Proposition 2.1 [4]). For any natural power n of the Com-
pensated Poisson process Mt the following representation is valid:

Mn
t =

∫

(0,t]

nMn−1
s− dMs +

n∑
i=2

∫

(0,t]

Ci
nM

n−i
s− dNs (P − a.s.). (2.2)

Theorem 2.1 (cf. Theorem 2.2 [4]). For any polynomial function of one variable
Pn(x) (n ≥ 1) the following stochastic integral representation holds:

Pn(MT ) = E[Pn(MT )] +

∫

(0,T ]

E[∆xPn(MT )|=t−]dMt (P − a.s.). (2.3)

Theorem 2.2 (cf. Theorem 2.3 [4]). For any polynomial function Pn(x) the
following relation is valid:

p[DM
t Pn(MT )] = E[∆xPn(MT )|=t−] (dP ⊗ ds− a.s.), (2.4)

where p[DM
t Pn(MT )] denotes the predictable projection of the stochastic derivative (with

respect to the Compensated Poisson process) of functional Pn(MT ).
3. Main results. Let us denote

∆t
2g(MT ,MS) := ∆x(∆yg(MT ,MS))I[0,T ](t)I[0,S](t)

+∆xg(MT ,MS)I[0,T ](t) + ∆yg(MT ,MS)I[0,S](t).
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Theorem 3.1. For any polynomial function of two variables Pn(x, y) the following
stochastic integral representation holds:

Pn(MT ,MS) = E[Pn(MT ,MS)] +

∫

(0,T∨S]

E[∆t
2Pn(MT ,MS)|=t−]dMt (P − a.s.). (3.1)

Proof. Fix T ≥ S ≥ l and consider the power function Mn
S ·Mm

T . It is clear that:

E[Mm
T |=MS ] = E[(MT −MS +MS)m|=MS ] =

m∑
i=0

C i
mνm−i(T − S)M i

S.

Therefore,

Xl := E[Mn
S ·Mm

T |=Ml ] = E[Mn
SE{Mm

T |=MS }|=Ml ] =
m∑
i=0

Ci
mνm−i(T − S)

×
n+i∑
j=0

Cj
n+iνn+i−j(S − l)M j

l =
m∑
i=0

n+i∑
j=0

Ci
mC

j
n+iνm−i(T − S)νn+i−j(S − l)M j

l .

Then, according to the Ito’s formula, taking into account the Propositions 2.1 and
2.2, it is not difficult to see that:

Xl =
m∑
i=0

n+i∑
j=0

Ci
mC

j
n+iνm−i(T − S){ ∫

(0,l]

jνn+i−j(S − t)M j−1
t− dMt

+
∫

(0,l]

−M j
t−

n+i−j−2∑
k=0

Ck
n+i−j−2νk(S − t)dt+

∫
(0,l]

νn+i−j(S − t)
j∑

k=2

Ck
jM

j−k
t− dNt}.

Studying carefully the last relation, one can easily notice that for any Lebesgue
integral with respect to dt there exists the corresponding stochastic integral with respect
to dNt with the same integrand of opposite sign. Therefore, due to equality dMt =
dNt − dt, we have:

Xl =
m∑
i=0

n+i∑
j=0

Ci
mC

j
n+iνm−i(T − S)× { ∫

(0,l]

jνn+i−j(S − t)M j−1
t− dMt

+
∫

(0,l]

νn+i−j(S − t)
j∑

k=2

Ck
jM

j−k
t− dMt}.

Furthermore, if S < l ≤ T , analogously, one can write:

Xl := E[Mn
S ·Mm

T |=Ml ] = Mn
SE[Mm

T |=Ml ] = Mn
S

m∑
i=0

Ci
mνm−i(T − l)M i

l

= Mn
S

m∑
i=0

Ci
m{
∫

(0,l]

iνm−i(T − t)M i−1
t− dMt +

∫
(0,l]

νm−i(T − t)
i∑

j=2

Cj
iM

i−j
t− dNt

+
∫

(0,l]

[−M i
t−

m−i−2∑
k=0

Ck
m−iνk(T − t)]dt} =

m∑
i=0

Ci
mM

n
S

∫
(0,l]

[νm−i(T − t)
i∑

j=1

Cj
iM

i−j
t− ]dMt.
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Summing up the above results, using the equality XT = Mn
S ·Mm

T , it is not difficult
to see that the following representation is valid:

Mn
S ·Mm

T = E[Mn
S ·Mm

T ] +
m∑
i=0

n+i∑
j=0

Ci
mC

j
n+iνm−i(T − S)× { ∫

(0,S]

νn+i−j(S − t)[jM j−1
t−

+
j∑

k=2

Ck
jM

j−k
t− ]dMt}+

m∑
i=0

Ci
mM

n
S

∫
(S,T ]

[νm−i(T − t)
i∑

j=1

Cj
iM

i−j
t− ]dMt.

On the other hand, we have:

∆t
2[Mn

S ·Mm
T ] = {[(MS + 1)n(MT + 1)m −Mn

S (MT + 1)m]

−[(MS + 1)nMm
T −Mn

S ·Mm
T ]}I(0,S](t) + [(MS + 1)nMm

T −Mn
S ·Mm

T ]I(0,S](t)

+[Mn
S (MT + 1)m −Mn

S ·Mm
T ]I(0,T ](t) = {[(MS + 1)n−Mn

S ][(MT + 1)m−Mm
T ]}I(0,S](t)

+{[(MS + 1)n −Mn
S ]Mm

T }I(0,S](t) + {[(MT + 1)m −Mm
T ]Mn

S}I(0,T ](t)

=
n−1∑
i=0

Ci
nM

i
S

m∑
j=0

Cj
mM

j
T I(0,S](t) +

m−1∑
j=0

Cj
mM

j
TM

n
S I(0,T ](t)

= {
n−1∑
i=0

C i
nM

i
S

m∑
j=0

Cj
mM

j
T +

m−1∑
j=0

Cj
mM

j
TM

n
S}I(0,S](t) +

m−1∑
j=0

Cj
mM

j
TM

n
S I(S,T ](t)

= {
n−1∑
i=0

m∑
j=0

Ci
nC

j
mM

j
TM

i
S +

m−1∑
j=0

Cj
mM

j
TM

n
S}I(0,S](t) +

m−1∑
j=0

Cj
mM

j
TM

n
S I(S,T ](t).

Therefore, using the arguments similar to those presented above, we obtain that:
∫

(0,T∨S]

E{∆t
2[Mn

S ·Mm
T ]|=t−}dMt =

m∑
i=0

n+i∑
j=0

Ci
mC

j
n+iνm−i(T − S){ ∫

(0,S]

νn+i−j(S − t)

×[jM j−1
t− +

j∑
k=2

Ck
jM

j−k
t− ]dMt}+

m∑
i=0

Ci
mM

n
S

∫
(S,T ]

[νm−i(T − t)
i∑

j=1

Cj
iM

i−j
t− ]dMt.

Hence, the representation is true for the power function Mn
S ·Mm

T . Further, taking
into account the linearity of the mathematical expectation, of the conditional mathe-
matical expectation,of the operator ∆t

2 and of the stochastic integral, we complete the
proof of theorem. 2

Theorem 3.2. For any polynomial function of two variables Pn(x, y) the following
relation is valid:

p[DM
t Pn(MT ,MS)] = E[∆t

2Pn(MT ,MS)|=t−](dP ⊗ dλ− a.s.), (3.2)

where p[DM
t Pn(MT ,MS)] denotes the predictable projection of the stochastic derivative

(with respect to the Compensated Poisson process) of functional Pn(MT ,MS), S ≤ T .
Proof. According to the well-known result of Ma, Protter and Martin [1] we have:

Pn(MT ,MS) = E[Pn(MT ,MS)] +

∫

(0,T ]

{p[DM
t Pn(MT ,MS)]}dMt (P − a.s.).
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Consider the difference:

yT :=

∫

(0,T ]

{E[∆t
2Pn(MT ,MS)|=t−]− p[DM

t Pn(MT ,MS)]}dMt :=

∫

(0,T ]

ηtdMt.

In the one hand, it is clear, due to the Theorem 3.1, that yT = 0 (P -a.s.)
On the other hand, according to the Ito’s formula, we can write:

y2
T = 2

∫

(0,T ]

yt−ηtdMt +

∫

(0,T ]

η2
t d[M,M ]t.

If now we take the mathematical expectation from the both sides of the last relation,
using the well-known properties of the square and predictable characteristics of the
martingale, we ascertain that:

0 = E

∫

(0,T ]

η2
t d[M,M ]t = E

∫

(0,T ]

η2
t d〈M,M〉t = E

∫

(0,T ]

η2
t dt,

whence we conclude that the relation (3.2) is true. 2
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