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ON ONE PROBLEM OF HYPOTHESES TESTING

Dochviri B., Nadaraya E., Purtukhia O., Sokhadze G.

Abstract. The problem of testing two simple hypotheses for a Gaussian Markovian process

is reduced to an optimal stopping problem for a two-dimensional random Markovian process.

The latter problem is reduced in turn to the corresponding Stefan problem. A solution of a

second order differential equation is found for the Stefan problem.
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1. Assume that we observe a random process ξ = (ξt), t ≥ 0, that satisfies the
stochastic differential equation

dξt = −rθξt dt+ σ dwt, σ > 0, r ̸= 0,

where w = (wt) is a standard Wiener process and θ is an unknown random variable.
Also assume that we have a given family of probability measures {Pπ, 0 ≤ π ≤ 1} such
that

Pπ = πP1 + (1− π)P0.

Let a random value θ takes two values 1 and 0 with probabilities Pπ(θ = 1) = π and
Pπ(θ = 0) = 1−π. The problem consists in determining the true value of the parameter
θ by observation of the process ξ, i.e., in checking which of the two hypotheses is true:
H0 : θ = 0 or H1 : θ = 1.

Let δ = (τ, d) be a decision function (decision rule), where τ is a moment of time
at which the observation was stopped (a stopping time) and d is the decision made at
the moment τ and taking two values 1 or 0 [1]. If d = 1, then the hypothesis H1 is
accepted, but if d = 0, then the hypothesis H0.

2. Let α and β denote the first and second order error probabilities

α = P1(d = 0), β = P0(d = 1).

Assume that an average loss for the decision rule δ = (τ, d) is measured by the
value

ρδ(π) = π
[
cE1τ + aP1(d = 0)

]
+ (1− π)

[
cE0τ + bP0(d = 1)

]
, (1)

where a, b, c are non-negative constants, E0 and E1 are the values averaged with respect
to the measures P0 and P1, respectively.

The decision rule δ∗ = (τ ∗, d∗) is called π-Bayes if

ρδ∗(π) = inf
δ
ρδ(π),

where the infimum is taken with respect to the class of all decision rules. The decision
rule δ∗ = (τ ∗, d∗) is called Bayes if δ∗ is the π-Bayes rule for all 0 ≤ π ≤ 1.



32 Dochviri B., Nadaraya E., Purtukhia O., Sokhadze G.

Denote by
π = Pπ

(
θ = 1| F ξ

t

)
, F ξ

t = σ{ξs, s ≤ t},
an a posteriori probability of the hypothesis H1 : θ = 1 and assume that w = (wt) is
the so-called innovation Wiener process [2], [3].

Lemma 1. Random processes π = (πt) and ξ = (ξt), t ≥ 0, satisfy the following
stochastic differential equations

dπt =
r

σ
πt(1− πt)ξt dwt, (2)

dξt = −rπtξt dt+ σ dwt. (3)

Lemma 2. A pair of processes (π, ξ) = (πt, ξt), t ≥ 0, determined by the equations
(2), (3) is a Markovian process.

Lemma 3. For a decision rule δ = (τ, d) the value (1) is given as follows:

ρδ(π) = ρδ(π, ξ) = g(π, ξ),

where
g(π, ξ) = cτ +min

[
aπ + b(1− π)

]
+ λξ(1− π), λ > 0.

Lemma 4. For any decision rule δ = (τ, d) there exists a decision rule δ̃ = (τ, d̃)
such that

ρδ̃(π, ξ) ≤ ρδ(π, ξ)

while the value ρ(π, ξ) of observation of a process (π, ξ) = (πt, ξt), t ≥ 0, is a solution
of the following optimal stopping problem

ρ(π, ξ) = inf
δ
ρδ(π, ξ) = inf

τ
Eπ,ξg(πτ , ξτ ), (4)

where τ is a stopping time from the class Mπ,ξ with respect to the σ-algebra Fπ,ξ =
σ{(πs, ξs), s ≤ t}.

By the foregoing lemmas it can be proved that the value ρ(π, ξ) defined by means
of (4) is a solution of the following Stefan problem.

Theorem 1. On the set D =
{
(π, ξ) : ρ(π, ξ) < g(π, ξ)

}
the value ρ(π, ξ) satisfies

the differential equation

1

2

r2

σ2
π2(1− π)2ξ2ρ′′ππ +

1

2
σ2ρ′′ξξ − rπ(1− π)ξρ′′πξ − rπξρ′ξ = −c,

with the following boundary conditions on the boundary ∂D of the set D:

ρ
∣∣
∂D

= g
∣∣
∂D
,

∂ρ

∂π

∣∣∣
∂D

=
∂g

∂π

∣∣∣
∂D
,

∂ρ

∂ξ

∣∣∣
∂D

=
∂g

∂ξ

∣∣∣
∂D
.

We will seek for ρ(π, ξ) in the form

ρ(π, ξ) =
∞∑
k=0

fk(ξ) · πk.
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Now let us introduce the transformation

fk(ξ) = uk(x) exp
rk

2σ2
(1−

√
k)x2,

where

x =

√
2rk

σ2
(ξ +

√
k − 1).

It is not difficult to verify that for k ≥ 2 the function fk(ξ) is a solution of the
differential equation

1

2
σ2f ′′

k (ξ)− rkξf ′
k(ξ) +

1

2

r2

σ2
k(k − 1)fk(ξ) = 0

while the function uk(x) is a solution of the Weber differential equation

u′′k(x)− xu′k(x)−
√
k − 1

2
√
k

uk(x) = 0.

Theorem 2. A function fk(ξ) is given by the expression

fk(ξ) = exp
rk

2σ2
(1−

√
k)ξ2

×

[
1 +

∞∑
i=1

s(s+ 2) · · · (s+ 2i− 2)

(2i)!

(
2rk

σ2

)i (
ξ +

√
k − 1

)2i]
,

where

s =

√
k − 1

2
√
k

.
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