Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 24, 2010

ON ONE PROBLEM OF HYPOTHESES TESTING

Dochviri B., Nadaraya E., Purtukhia O., Sokhadze G.

Abstract. The problem of testing two simple hypotheses for a Gaussian Markovian process is reduced to an optimal stopping problem for a two-dimensional random Markovian process. The latter problem is reduced in turn to the corresponding Stefan problem. A solution of a second order differential equation is found for the Stefan problem.

Keywords and phrases: Hypothesis, process, stopping rule, stopping time, payoff.

AMS subject classification: 60J05, 91B28, 91B70.

1. Assume that we observe a random process $\xi = (\xi_t), t \ge 0$, that satisfies the stochastic differential equation

$$d\xi_t = -r\theta\xi_t \, dt + \sigma \, dw_t, \ \sigma > 0, \ r \neq 0,$$

where $w = (w_t)$ is a standard Wiener process and θ is an unknown random variable. Also assume that we have a given family of probability measures $\{P_{\pi}, 0 \leq \pi \leq 1\}$ such that

$$P_{\pi} = \pi P_1 + (1 - \pi) P_0.$$

Let a random value θ takes two values 1 and 0 with probabilities $P_{\pi}(\theta = 1) = \pi$ and $P_{\pi}(\theta = 0) = 1 - \pi$. The problem consists in determining the true value of the parameter θ by observation of the process ξ , i.e., in checking which of the two hypotheses is true: $H_0: \theta = 0$ or $H_1: \theta = 1$.

Let $\delta = (\tau, d)$ be a decision function (decision rule), where τ is a moment of time at which the observation was stopped (a stopping time) and d is the decision made at the moment τ and taking two values 1 or 0 [1]. If d = 1, then the hypothesis H_1 is accepted, but if d = 0, then the hypothesis H_0 .

2. Let α and β denote the first and second order error probabilities

$$\alpha = P_1(d=0), \quad \beta = P_0(d=1).$$

Assume that an average loss for the decision rule $\delta = (\tau, d)$ is measured by the value

$$\rho_{\delta}(\pi) = \pi \big[cE_1 \tau + aP_1(d=0) \big] + (1-\pi) \big[cE_0 \tau + bP_0(d=1) \big], \tag{1}$$

where a, b, c are non-negative constants, E_0 and E_1 are the values averaged with respect to the measures P_0 and P_1 , respectively.

The decision rule $\delta^* = (\tau^*, d^*)$ is called π -Bayes if

$$\rho_{\delta^*}(\pi) = \inf_{\delta} \rho_{\delta}(\pi),$$

where the infimum is taken with respect to the class of all decision rules. The decision rule $\delta^* = (\tau^*, d^*)$ is called Bayes if δ^* is the π -Bayes rule for all $0 \le \pi \le 1$.

Denote by

$$\pi = P_{\pi} \big(\theta = 1 | \mathcal{F}_t^{\xi} \big), \quad \mathcal{F}_t^{\xi} = \sigma \{ \xi_s, \ s \le t \},$$

an a posteriori probability of the hypothesis H_1 : $\theta = 1$ and assume that $\overline{w} = (\overline{w}_t)$ is the so-called innovation Wiener process [2], [3].

Lemma 1. Random processes $\pi = (\pi_t)$ and $\xi = (\xi_t)$, $t \ge 0$, satisfy the following stochastic differential equations

$$d\pi_t = -\frac{r}{\sigma} \pi_t (1 - \pi_t) \xi_t \, d\overline{w}_t,\tag{2}$$

$$d\xi_t = -r\pi_t \xi_t \, dt + \sigma \, d\overline{w}_t. \tag{3}$$

Lemma 2. A pair of processes $(\pi, \xi) = (\pi_t, \xi_t), t \ge 0$, determined by the equations (2), (3) is a Markovian process.

Lemma 3. For a decision rule $\delta = (\tau, d)$ the value (1) is given as follows:

$$\rho_{\delta}(\pi) = \rho_{\delta}(\pi, \xi) = g(\pi, \xi),$$

where

$$g(\pi,\xi) = c\tau + \min[a\pi + b(1-\pi)] + \lambda\xi(1-\pi), \ \lambda > 0$$

Lemma 4. For any decision rule $\delta = (\tau, d)$ there exists a decision rule $\tilde{\delta} = (\tau, \tilde{d})$ such that

$$\rho_{\widetilde{\delta}}(\pi,\xi) \le \rho_{\delta}(\pi,\xi)$$

while the value $\rho(\pi, \xi)$ of observation of a process $(\pi, \xi) = (\pi_t, \xi_t)$, $t \ge 0$, is a solution of the following optimal stopping problem

$$\rho(\pi,\xi) = \inf_{\delta} \rho_{\delta}(\pi,\xi) = \inf_{\tau} E_{\pi,\xi} g(\pi_{\tau},\xi_{\tau}), \tag{4}$$

where τ is a stopping time from the class $\mathfrak{M}^{\pi,\xi}$ with respect to the σ -algebra $\mathcal{F}^{\pi,\xi} = \sigma\{(\pi_s,\xi_s), s \leq t\}.$

By the foregoing lemmas it can be proved that the value $\rho(\pi, \xi)$ defined by means of (4) is a solution of the following Stefan problem.

Theorem 1. On the set $D = \{(\pi, \xi) : \rho(\pi, \xi) < g(\pi, \xi)\}$ the value $\rho(\pi, \xi)$ satisfies the differential equation

$$\frac{1}{2}\frac{r^2}{\sigma^2}\pi^2(1-\pi)^2\xi^2\rho_{\pi\pi}'' + \frac{1}{2}\sigma^2\rho_{\xi\xi}'' - r\pi(1-\pi)\xi\rho_{\pi\xi}'' - r\pi\xi\rho_{\xi}' = -c$$

with the following boundary conditions on the boundary ∂D of the set D:

$$\rho\big|_{\partial D} = g\big|_{\partial D}, \quad \frac{\partial \rho}{\partial \pi}\Big|_{\partial D} = \frac{\partial g}{\partial \pi}\Big|_{\partial D}, \quad \frac{\partial \rho}{\partial \xi}\Big|_{\partial D} = \frac{\partial g}{\partial \xi}\Big|_{\partial D}.$$

We will seek for $\rho(\pi,\xi)$ in the form

$$\rho(\pi,\xi) = \sum_{k=0}^{\infty} f_k(\xi) \cdot \pi^k.$$

Now let us introduce the transformation

$$f_k(\xi) = u_k(x) \exp \frac{rk}{2\sigma^2} \left(1 - \sqrt{k}\right) x^2,$$

where

$$x = \sqrt{\frac{2rk}{\sigma^2}} \left(\xi + \sqrt{k} - 1\right).$$

It is not difficult to verify that for $k \ge 2$ the function $f_k(\xi)$ is a solution of the differential equation

$$\frac{1}{2}\sigma^2 f_k''(\xi) - rk\xi f_k'(\xi) + \frac{1}{2}\frac{r^2}{\sigma^2}k(k-1)f_k(\xi) = 0$$

while the function $u_k(x)$ is a solution of the Weber differential equation

$$u_k''(x) - xu_k'(x) - \frac{\sqrt{k} - 1}{2\sqrt{k}} u_k(x) = 0.$$

Theorem 2. A function $f_k(\xi)$ is given by the expression

$$f_k(\xi) = \exp \frac{rk}{2\sigma^2} (1 - \sqrt{k})\xi^2$$
$$\times \left[1 + \sum_{i=1}^{\infty} \frac{s(s+2)\cdots(s+2i-2)}{(2i)!} \left(\frac{2rk}{\sigma^2}\right)^i \left(\xi + \sqrt{k} - 1\right)^{2i}\right],$$

where

$$s = \frac{\sqrt{k} - 1}{2\sqrt{k}}$$

Acknowledgment. This work was supported by the Georgian National Science Foundation grants No. GNSF/ST 09_383_3-106, 09_471_3_104.

REFERENCES

1. Shiryayev A. N. Optimal Stopping Rules. (Russian) Appl. Math., 8. Springer-Verlag, New York-Heidelberg, 1978.

2. Liptser R. S., Shiryayev A. N. Statistics of Random Processes. I. General Theory. Translated by A. B. Aries. Appl. Math., 5. Springer-Verlag, New York-Heidelberg, 1977.

3. Shiryayev A. On two problems of sequential analysis. (Russian) Kibernetika, 2 (1967), 79–80.

Received 13.06.2010; revised 19.10.2010; accepted 17.11.2010.

Authors' address:

B. Dochviri, E. Nadaraya, O. Purtukhia and G. Sokhadze
Faculty of Exact and Natural Sciences
Iv. Javakhishvili Tbilisi State University
2, University St., Tbilisi 0186
Georgia
E-mail: besarion.dochviri@tsu.ge
elizbar.nadaria@tsu.ge
giasokhil@i.ua

O. Purtukhia A. Razmadze Mathematical Institute Georgian National Academy of Science 1, M. Aleksidze St., Tbilisi 0193 Georgia E-mail: omar.putukhia@tsu.ge