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Abstract. The integral type Wiener functional is considered and the sto-

chastic integral representation formula of the Clark-Ocone type is established.

1. Introduction and Auxiliary Results

As is well known in modern stochastic analysis special place take the so-called
martingale representation theorems, which implies the representation of the adap-
ted functionals in the form of stochastic integrals. In the 80th of the past century,
it turned out (see, [1]) that the martingale representation theorems (along with
the Girsanov’s measure change theorem) play an important role in the modern
financial mathematics. In particular, using the integrand of the stochastic integral
appearing in the integral representation, one can construct hedging strategies in
the European options of different type.

The first proof of the martingale representation theorem was implicitly provided
by Ito (1951) himself. This theorem states that any square-integrable Wiener
functional is equal to a stochastic integral with respect to Wiener process. One
of the pioneer work on explicit descriptions of the integrand is certainly the one
by Clark ([2]): if F is a =Wt -measurable random variable with EF 2 < ∞, then
there exists the adapted process ψ(·, ·) ∈ L2([0, T ] × Ω), such that the integral
representation:

F = EF +

∫ T

0

ψ(t, ω)dWt (P − a.s.)

holds.
However, this result says nothing about explicitly finding the process ψ(t, ω).

A rather general result in this direction is well known Clark-Ocone formula (see
[3]), for the formulation of which we recall some definitions from [4] (see, also [5]).

The class of smooth Wiener functionals S is the class of a random variables
which has the form

F = f(Wt1 , ...,Wtn), f ∈ C∞p (Rn), ti ∈ [0, T ], n ≥ 1,

where C∞p (Rn) is the set of all infinitely continuously differentiable functions f :
Rn → R such that f and all of its partial derivatives have polynomial growth.
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The stochastic (Malliavin) derivative of a smooth random variable F ∈ S is the
stochastic process DtF given by

DtF =

n∑
i=1

∂f

∂xi
(Wt1 , ...,Wtn)I[0,ti](t).

Denote by D2,1 the Hilbert space that is the closure of the class of smooth
Wiener functionals with the following Sobolev type norm:

||F ||2,1 = ||F ||L2(Ω) + |||D·F |||L2(Ω;L2([0,T ])).

The Clark-Ocone formula is the following theorem from [3].

Theorem 1.1. If F is differentiable in Malliavin sense, F ∈ D2,1, then the sto-
chastic integral representation is fulfilled

F = E[F ] +

∫ T

0

E[DtF |=t]dWt (P − a.s.).

Shiryaev and Yor ([6]) (see, also Graversen, Shiryaev and Yor ([7]) proposed
a method based on Ito’s formula to find explicit martingale representations for
Wiener functionals which yields in particular the explicit martingale representation
of the running maximum of Wiener process. Even though they consider Clark-
Ocone formula as a general way to find stochastic integral representations, they
raise the question if it is possible to handle it efficiently even in simple cases. Later
on, using the Clark-Ocone formula, Renaud and Remillard ([8]) have established
explicit martingale representations for path-dependent Wiener functionals.

Application of the Clark-Ocone formula needs as a rule, on the one hand, es-
sential efforts, and, on the other hand, in the cases if the functional F has no
stochastic derivative, its application is impossible. Jaoshvili and Purtukhia (see
[9]) in the frame of the classical Ito calculus constructed ψ(t, ω) explicitly, by using
both the standard L2 theory and the theories of weighted Sobolev spaces, for some
class of functionals F that do not have a stochastic derivative.

Let B(R) be a Borel σ− algebra on R, λ be a Lebesgue measure, and ρ(x, T ) :=

exp{− x2

2T }.

Theorem 1.2. 1 Let the function f ∈ L2,T/α, 0 < α < 1, and it has the generalized
derivative of the first order ∂f/∂x, such that ∂f/∂x ∈ L2,T/β , 0 < β < 1/2, then
the following integral representation holds

f(WT ) = E[f(WT )] +

∫ T

0

E

[
∂f

∂x
(WT )|=Wt

]
dWt (P − a.s.),

where L2,T denotes the set of measurable functions u : R→ R, such that u(·)ρ(·, T )
∈ L2 := L2(R,B(R), λ).

It turned out that the requirement of smoothness of functional can be weakened
by the requirement of smoothness only of its conditional mathematical expecta-
tion2. Glonti and Purtukhia (see [10]) considered Wiener functionals which are

1see [9]
2It is well-known, that if random variable is stochastically differentiable in Malliavin sense,

then its conditional mathematical expectation is differentiable too. On the other hand, it is
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not stochastically differentiable and generalized the Clark-Ocone formula in case,
when functional is not stochastically smooth, but its conditional mathematical
expectation is stochastically differentiable and established the method of finding
of integrand.

Theorem 1.3. 3 Suppose that gt := E[F |=Wt ] is Malliavin differentiable (gt ∈
DW

2,1) for almost all t ∈ [0, T ). Then we have the stochastic integral representation

gT = F = E[F ] +

∫ T

0

νsdWs (P − a.s.),

where

νs = lim
t↑T

E[DW
s gt|=Ws ] in the L2([0, T ]× Ω).

Example 1.4. For any real x ∈ R the nonsmooth functional4 F = I{WT≤x} have
the representation

I{WT≤x} = Φ(
x√
T

)−
∫ T

0

1√
T − s

ϕ(
x−Ws√
T − s

)dWs,

where ϕ is standard normal distribution density function.

Example 1.5. For any real x ∈ R the nonsmooth functional F = I{W+
T ≤x}

(where

W+
T = max{0,WT }) admits the representation

I{W+
T ≤x}

=

√
T

2π
+

∫ T

0

Φ(
Ws√
T − s

)dWs.

It is clear that there are also such functionals which don’t satisfy even the weak-
ened conditions, i.e. the nonsmooth functionals whose conditional mathematical
expectations is not stochastically differentiable too. In particular, to such func-

tional belongs the integral type functional
∫ T

0
us(ω)ds with nonsmooth integrand

us(ω).

It is well-known that if us(ω) ∈ D2,1 for all s, then
∫ T

0
us(ω)ds ∈ D2,1 and

Dt{
∫ T

0
us(ω)ds} =

∫ T
0
Dtus(ω)ds. But if us(ω) is not differentiable in Malliavin

sense, then the Lebesgue average (with respect to ds) also is not differentiable
in Malliavin sense (see, for example, [11]). Indeed, in this case the conditional
mathematical expectation is not stochastically smooth, because we have:

E[

∫ T

0

us(ω)ds|=Wt ] =

∫ t

0

us(ω)ds+

∫ T

t

E[us(ω)|=Wt ]ds,

possible that conditional expectation can be smooth even if random variable is not stochastically
smooth. For example, it is well-known that I{WT≤x} /∈ D2,1, but for all t ∈ [0, T ) :

E[I{WT≤x}|=W
t ] = Φ

(
x−Wt√
T − t

)
∈ D2,1,

where Φ is standard normal distribution function.
3see [10]
4The indicator of event A is Malliavin differentiable if and only if probability P (A) is equal

to zero or one.
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where the first summand (integral) is analogous that the initial integral and there-
fore it is not Malliavin differentiable, but the second summand is differentiable in
Malliavin sense when us satisfied our weakened condition. It should be noted that
such type integral functionals have been considered in our previous works (Glonti,
Purtukhia, [11]) and (Glonti, Jaoshvili and Purtukhia, [12]).

Here we consider some stochastically smooth integral type (path-dependent)
Wiener functionals and obtain their stochastic integral representation formula of
the Clark-Ocone type with explicit expressions for the integrands.

2. Main Results

Let Wt, t ∈ [0, T ], be a standard Wiener process on a standard filtered proba-
bility space (Ω,=,=t, P ) and let =t = =Wt be the augmentation of the filtration
generated by W .

Let K be a real number and for simplicity of statement consider the path-
dependent Wiener functional

G =

(
1

T

∫ T

0

Wsds−K

)+

which, as is easy to see, is a special case of the payoff function of the so-called
Asian option in the Bachelier financial market model and derive the stochastic
integral representation formula with an explicit form of the integrand.

Proposition 2.1. For the Wiener functional G the following stochastic integral
representation holds

G = EG+

∫ T

0

T − t
T

{
1− Φ

( √
3√

(T − t)3

[
KT −

∫ t

0

(T − s)dWs

])}
dWt, (2.1)

where
EG =

√
T/3ϕ(K

√
3/T )−K[1− Φ(K

√
3/T )].

Proof. It is not difficult to see that the random variable
∫ T

0
Wsds has a normal

distribution with parameters zero and T 3/3. Indeed, due to the stochastic version
of integration by parts, we have∫ T

0

Wsds = sWs|T0 −
∫ T

0

sdWs =

∫ T

0

(T − s)dWs, (2.2)

and, hence, we easily ascertain that∫ T

0

Wsds ∼= N(0, E

∫ T

0

W 2
s ds) = N(0, T 3/3) (2.3)

and ∫ T

t

(T − s)dWs
∼= N(0, (T − t)3/3) := N(0, σ2). (2.4)

On the one hand, using (2.3) and the standard integration technique, we obtain

EG =
1√

2πT 3/3

∫ +∞

−∞
(
x

T
−K)+ exp{− x2

2T 3/3
}dx =
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=
1√

2πT 3/3

∫ +∞

KT

(
x

T
−K) exp{− x2

2T 3/3
}dx =

= − 1

T

1√
2πT 3/3

T 3

3

∫ +∞

KT

d
(

exp{− x2

2T 3/3
}
)
−

−K 1√
2π

∫ +∞

K
√

3/
√
T

exp{−x
2

2
}dx =

=

√
T

3

1√
2π

exp{−3K2

2T
} −K[1− Φ(K

√
3/T )] =

=
√
T/3ϕ(K

√
3/T )−K[1− Φ(K

√
3/T )]. (2.5)

On the other hand, according to the relation ∂x+/∂x = Ix>0, based on the rule
of stochastic differentiation of a composite function (see, Proposition 1.2.4 [5]),
using the well-known properties of the Malliavin derivative, we can write

DtG = I{ 1
T

∫ T
0
Wsds−K>0}

1

T

∫ T

0

DtWsds =

= I{
∫ T
0
Wsds>KT}

1

T

∫ T

0

I[0,s](t)ds =

=
T − t
T

I{
∫ T
0
Wsds>KT}.

Further, thanks to relations (2.2) – (2.4), due to the well-known properties of
conditional mathematical expectation, we have

E[DtG|=t] =
T − t
T

E[I{
∫ T
0
Wsds>KT}|=t] =

=
T − t
T

E[I{
∫ t
0

(T−s)dWs+
∫ T
t

(T−s)dWs>KT}|=t] =

=
T − t
T

E[I{x+
∫ T
t

(T−s)dWs>KT}]
∣∣
x=

∫ t
0

(T−s)dWs
=

=
T − t√
2πσT

∫ +∞

KT−x
exp{− y2

2σ2
}dy
∣∣
x=

∫ t
0

(T−s)dWs
=

=
T − t
T

∫ +∞

(KT−x)/σ

exp{−y
2

2
}dy
∣∣
x=

∫ t
0

(T−s)dWs
. (2.6)

Now, based on the Clark-Ocone formula, using relations (2.5) and (2.6), we
easily complete the proof of the proposition and obtain representation (2.1). �

Corollary 2.2. For G = (
∫ 1

0
Wsds−K)+ the following stochastic integral repre-

sentation holds

G = EG+

∫ T

0

(1− t)
{

1− Φ

(√
3(1− t)−3

[
K −

∫ t

0

(1− s)dWs

])}
dWt,

where

EG = ϕ(K
√

3)/
√

3−K[1− Φ(K
√

3)].
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Let us introduce the following notation:

erf(x) =
2√
π

∫ x

0

e−t
2

dt =
2√
π

∞∑
r=0

(−1)rx1+2r

(1 + 2r)r!
;

µ =
√
T 3/3, σ =

√
(T − t)3/3;

α(2i− 1, x) = 0, α(2i, x) = (2i− 1)!!

√
π

2

[
erf
( x√

2

)
+ 1
]
;

β(2i− 1) = 0, β(2i) = 1;

γ(2i− 1, x) = 0, γ(2i, x) = (2i− 1)!!

√
π

2

[
1− erf

( x√
2

)]
;

δ(i, x) = e−x
2/2·

[i/2]−β(i)+1∑
r=1

(i− 1)!!

(i− 2r + 1)!!
xi−(2r−1+β(i)),

where [i/2] denotes the integer part of i/2.
For the following calculations, we need some auxiliary results.

Lemma 2.3. For any natural number n ≥ 1 and real number y, the following
relations hold:∫ y

−∞
x2n−1 exp {−x

2

2
}dx = − exp {−y

2

2
}

n∑
r=1

(2n− 2)!!

(2n− 2r)!!
y2n−2r; (2.7)

∫ ∞
y

x2n−1 exp {−x
2

2
}dx = exp {−y

2

2
}

n∑
r=1

(2n− 2)!!

(2n− 2r)!!
y2n−2r. (2.8)

Proof. To prove this, we use the method of mathematical induction. Indeed, for
n = 1, according to the standard integration technique, we have∫ y

−∞
x exp {−x

2

2
}dx = −

∫ y

−∞
d
(

exp {−x
2

2
}
)

= − exp {−y
2

2
}.

Suppose now that (2.7) is valid for n, and we will show its validity for n + 1.
Using the partial integration formula, we easily obtain∫ y

−∞
x2n+1 exp {−x

2

2
}dx = −

∫ y

−∞
x2nd

(
exp {−x

2

2
}
)

=

= −x2n exp {−x
2

2
}|y−∞ + 2n

∫ y

−∞
x2n−1 exp {−x

2

2
}dx =

= −y2n exp {−y
2

2
} − exp {−y

2

2
}

n∑
r=1

2n(2n− 2)!!

(2n− 2r)!!
y2n−2r =

= − exp {−y
2

2
}
n+1∑
r=1

(2(n+ 1)− 2)!!

(2(n+ 1)− 2r)!!
y2(n+1)−2r.

Relation (2.8) is verified in a similar way. �

Analogously one can verify the validity of the following result.
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Lemma 2.4. For any natural number n ≥ 1 and real number y, the following
relations hold:∫ y

−∞
x2n exp {−x

2

2
}dx = (2n− 1)!!

√
π

2

(
erf
( y√

2

)
+ 1
)
−

−y exp {−y
2

2
}

n∑
r=1

(2n− 1)!!

(2n− 2r + 1)!!
y2n−2r; (2.9)

∫ ∞
y

x2n exp {−x
2

2
}dx = (2n− 1)!!

√
π

2

(
1− erf

( y√
2

))
+

+y exp {−y
2

2
}

n∑
r=1

(2n− 1)!!

(2n− 2r + 1)!!
y2n−2r. (2.10)

Proposition 2.5. Combining relations (2.7) and (2.9) and relations (2.8) and
(2.10) from the previous lemmas, respectively, we conclude that∫ y

−∞
xn exp {−x

2

2
}dx = α(n, y)− yβ(n) exp {−y

2

2
}×

[n/2]−β(n)+1∑
r=1

(n− 1)!!

(n− 2r + 1)!!
yn−(2r−1+β(n)); (2.11)

∫ ∞
y

xn exp {−x
2

2
}dx = γ(n, y) + yβ(n) exp {−y

2

2
}×

[n/2]−β(n)+1∑
r=1

(n− 1)!!

(n− 2r + 1)!!
yn−(2r−1+β(n)). (2.12)

Theorem 2.6. For any even natural number n the functional G =
[( ∫ T

0
Wsds

)n−
K
]+

admits the following stochastic integral representation

G = E[G] +
n√
2π

n−1∑
i=0

Cin−1

∫ T

0

σi(T − t)[θ1(i, t) + θ2(i, t)]dWt,

where

E[G] = −2K[1− Φ(K1/n/µ)]+

+2µn
1√
2π

[(n− 1)!!

√
π

2

(
1− erf

(K1/n

√
2µ

))
+
K1/n

µ
· δ(n, K

1/n

µ
)],

θ1(i, t) = xn−1−i{γ
(
i,
K1/n − x

σ

)
+
(K1/n − x

σ

)β(i)
δ
(
i,
K1/n − x

σ

)
}
∣∣
x=

∫ t
0

(T−s)dWs

and

θ2(i, t) = xn−1−i×

{α
(
i,
−K1/n − x

σ

)
−
(−K1/n − x

σ

)β(i)
δ
(
i,
−K1/n − x

σ

)
}
∣∣
x=

∫ t
0

(T−s)dWs
.
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Proof. Using the relation (2.3) and Lemma 2.3, we can write

E[G] =
1√
2πµ

∫ ∞
−∞

(xn −K)+ exp {− x2

2µ2
}dx =

=
1√
2πµ

∫ ∞
−∞

(xn −K)I{|x|>K1/n} exp {− x2

2µ2
}dx =

=
1√
2π

∫ ∞
−∞

(µnxn −K)I{|x|>µ−1K1/n} exp {−x
2

2
}dx =

= 2µn
1√
2π

∫ ∞
K1/n/µ

xn exp {−x
2

2
}dx− 2K[1− Φ(K1/n/µ)] =

= 2µn
1√
2π

[(n− 1)!!

√
π

2

(
1− erf

(K1/n

√
2µ

))
+
K1/n

µ
δ(n,

K1/n

µ
)]−

−2K[1− Φ(K1/n/µ)].

By virtue of the rule of stochastic differentiation of a composite function (see
Proposition 1.2.4 [5]), using the well-known properties of the Malliavin derivativea
and the relation (2.2), we have

DtG = I
{
( ∫ T

0
Wsds

)n
>K}

n
( ∫ T

0

Wsds
)n−1

∫ T

0

I[0,s](t)ds =

= n(T − t)
( ∫ T

0

Wsds
)n−1

I
{
∣∣ ∫ T

0
(T−s)dWs

∣∣>K1/n}
.

Next, according to the well-known properties of conditional mathematical ex-
pectation, due to the relation (2.4), we can write that

E[DtG|=t] = n(T − t)×

E
[(
x+

∫ T

t

(T − s)dWs

)n−1
I
{
∣∣x+

∫ T
t

(T−s)dWs

∣∣>K1/n}

]∣∣
x=

∫ t
0

(T−s)dWs
=

= n(T − t) 1√
2πσ

[ ∫ ∞
−∞

(x+ y)n−1I{|x+y|>K1/n} exp{− y2

2σ2
}dy
]∣∣
x=

∫ t
0

(T−s)dWs
=

= n(T − t)
n−1∑
i=0

Cin−1x
n−1−i 1√

2πσ

[ ∫ ∞
K1/n−x

yi exp{− y2

2σ2
}dy
]∣∣
x=

∫ t
0

(T−s)dWs
+

+n(T − t)
n−1∑
i=0

Cin−1x
n−1−i 1√

2πσ

[ ∫ −K1/n−x

−∞
yi exp{− y2

2σ2
}dy
]∣∣
x=

∫ t
0

(T−s)dWs
=

= n(T − t)
n−1∑
i=0

Cin−1x
n−1−i σi√

2π

[ ∫ ∞
(K1/n−x)/σ

yi exp{−y
2

2
}dy
]∣∣
x=

∫ t
0

(T−s)dWs
+

+n(T − t)
n−1∑
i=0

Cin−1x
n−1−i σi√

2π

[ ∫ (−K1/n−x)/σ

−∞
yi exp{− y2

2σ2
}dy
]∣∣
x=

∫ t
0

(T−s)dWs
.

Based on the above obtained relations, according to the Clark-Ocone formula,
using relations (2.11) and (2.12), the proof of the theorem is easily completed. �
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