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ITO TYPE FORMULA FOR POISSON ANTICIPATING INTEGRAL
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Abstract. The quadratic variation of the anticipating Skorokhod integral with respect of

compensated Poisson martingale is computed and anticipative Ito type formula for the so-

called an anticipative Poisson semimartingales in terms of anticipative Skorokhod integrals

is derived.
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In the anticipative case the Ito type formula was obtained by Ustunel [1] in the
Wiener space for random fields F (x, ω). This fields are fast decreasing with respect to
x and argument x is replaced by the so-called Ito’s anticipative process (with respect
to Wiener process). The general case was considered by Nualart and Pardoux [2]. In
case when F (t, x) (for any x) is adapted diffusion process and x is replaced by Ito’s an-
ticipative process the anticipative Ito-Ventsel type formula was established by Martias
[3]. The case where both F (t, x, ω) (for any x) and ut are Ito’s anticipative processes
the Ito-Ventsel type formula and an integral variant of the Ito-Ventsel formula was
obtained by Purtukhia ([4],[5]). In the Poisson case the similar questions was studied
by Peccati and Tudor [6] and anticipative Ito type formula was established in terms of
nonanticipative Ito integrals. Our aim is to derive anticipative Ito type formula for the
so-called an anticipative Poisson semimartingales in terms of anticipative Skorokhod
integrals [7].

Let (Ω,F , {Ft}t∈[0,T ]) be a filtered probability space satisfying the usual conditions.

Suppose that Nt is the standard Poisson process (P (Nt = k) = tke−t

k!
, k = 0, 1, 2, ...)

and Ft is generated by N(Ft = FNt ),F = FT . Let Mt be the compensated Poisson
process (Mt = Nt − t). Denote by DM

· G the stochastic derivative of functional G (see
Definition 4.1 [8]). In what follows we shall write D·G instead of DM

· G.
For any integer k ≥ 1 we introduce the seminorm

||F ||2,k = ||F ||L2(Ω) +
k∑
i=1

||DiF ||L2([0,T ]i×Ω)

and denote by DM
2,k the completion of class of differentiable random variables with

respect to the norm || · ||2,k.
Definition 1. We denote by LM2,1 the class of processes u ∈ L2([0, T ]×Ω) such that

ut ∈ DM
2,1 for a.a. t and there exists a measurable version of Dsut ∈ L2([0, T ]

2 × Ω).
Definition 2. We denote by LM2,2 the class of processes u ∈ L2([0, T ]×Ω) such that

ut ∈ DM
2,2 for a.a. t and there exists a measurable version of DrDsut ∈ L2([0, T ]

3 ×Ω).
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Let Πn, n ∈ N be a sequence of partitions of the segment [0, T ] of the form Πn =
{0 = t0,n < t1,n < · · · < tn,n = T} such that |Πn| = supk(tk+1,n − tk,n)→ 0, as n→∞.
In what follows we shall write (tk) instead of tk,n.

Proposition. Let ξt, t ∈ [0, T ] be a measurable process such that ξ ∈ L2([0, T ]×Ω).
Then

n−1∑
k=0

( 1

tk+1,n − tk, n

∫ tk+1,n

tk,n

ξsds
)
(Mtk+1,n

−Mtk,n)
2 →

∫ T

0

ξsds

in L1(Ω), as n→∞.
Proof. Let’s enter the following designations:

ξm :=
m−1∑
i=0

(
1

ti+1,m − ti,m

∫ ti+1,m

ti,m

ξsds

)
I[ti,m,ti+1,m[,

αn(ξ) :=
n−1∑
k=0

(
1

tk+1,n − tk, n

∫ tk+1,n

tk,n

ξsds

)
(Mtk+1,n

−Mtk,n)
2,

αn(ξm) :=
m−1∑
i=0

(
1

ti+1,m − ti,m

∫ ti+1,m

ti,m

ξsds

)
I[ti,m,ti+1,m[.

Using the Cauchy-Bunyakovski inequality, it is not difficult to see that

E|αn(ξ)| ≤

{
E

n−1∑
k=0

(Mtk+1,n
−Mtk,n)

4

tk+1,n − tk, n

}1/2{
E

n−1∑
k=0

(
∫ tk+1,n

tk,n
|ξs|ds)2

tk+1,n − tk, n

}1/2

≤ C||ξ||L2([0,T ]×Ω).

Hence, we can write

E|αn(ξ)−
∫ T

0

ξsds| ≤ E|αn(ξ − ξm)|+ E|αn(ξm)−
∫ T

0

ξms ds|

+E

∫ T

0

|ξ − ξms |ds| ≤ E|αn(ξm)−
∫ T

0

ξms ds|+ (C + 1)||ξ − ξm||L2([0,T ]×Ω).

It is obvious that ξm → ξ in L2([0, T ] × Ω) as m → ∞. On the other hand, it is

evident that for any fixed m : αn(ξ
m)→

∫ T
0
ξms ds in probability as n→∞. Moreover,

due to the Holder’s inequality, we can easily obtain that for any p ∈ (1, 2) :

||αn(ξm)||Lp(Ω) ≤ Cp||ξm||L2([0,T ]×Ω).

Therefore, for each m the sequence of random variables {αn(ξm), n ∈ N} is uniformly

integrable, which with the convergence in probability implies that αn(ξ
m)→

∫ T
0
ξms ds

in L1(Ω) as n→∞. Passing now to the limit in above relation at first as m→∞, and
after as n→∞ we complete the proof of the Proposition.
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Theorem 1. Let u ∈ LM2,2. Then

n−1∑
k=0

(∫ tk+1

tk

usδMs

)2

→
∫ T

0

u2sds

in L1(Ω), as n→∞.
Proof. Let u, v ∈ LM2,1. By virtue of the Cauchy-Bunyakovski inequality we can

write

E
n−1∑
k=0

∣∣∣ (∫ tk+1

tk

usδMs

)2

−
n−1∑
k=0

(∫ tk+1

tk

vsδMs

)2 ∣∣∣
≤

(
E

n−1∑
k=0

(∫ tk+1

tk

(us − vs)δMs

)2
)1/2(

E
n−1∑
k=0

(∫ tk+1

tk

(us + vs)δMs

)2
)1/2

.

Define un as follow:

un =
n−1∑
k=0

ukI[tk,tk+1[,

where

uk,n =
1

tk+1 − tk

∫ tk+1

tk

usds

for 0 ≤ k < n− 1 and u−1,n = u0,n = 0.
Substituting now v = un in the above estimate, one can conclude that

E
n−1∑
k=0

∣∣∣ (∫ tk+1

tk

usδMs

)2

−
n−1∑
k=0

(∫ tk+1

tk

uns δMs

)2 ∣∣∣→ 0,

as n→∞.
On the other hand, due to the Proposition 3.2 [9], we have

n−1∑
k=0

(∫ tk+1

tk

uns δMs

)2

=
n−1∑
k=0

(∫ tk+1

tk

uk,nδMs

)2

=
n−1∑
k=0

(
1

tk+1 − tk

∫ tk+1

tk

(∫ tk+1

tk

usds

)
δMs

)2

=
n−1∑
k=0

{
1

tk+1 − tk

[(
Mtk+1

−Mtk

) ∫ tk+1

tk

usds

−
∫ tk+1

tk

(∫ tk+1

tk

Drusds

)
dr −

∫ tk+1

tk

(∫ tk+1

tk

Drusds

)
δMr

]}2

:

:=
n−1∑
k=0

(
a2k,n − 2ak,nbk,n + b2k,n

)
,
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where

ak,n =
Mtk+1

−Mtk

tk+1 − tk

∫ tk+1

tk

usds,

bk,n =
1

tk+1 − tk

∫ tk+1

tk

(∫ tk+1

tk

Drusds

)
dr −

∫ tk+1

tk

(∫ tk+1

tk

Drusds

)
δMr.

Using the Cauchy-Bunyakovski inequality and the elementary inequality (x+y)2 ≤
2x2 + 2y2, we can write that

E
n−1∑
k=0

b2k,n ≤ 2E
n−1∑
k=0

∫ tk+1

tk

∫ tk+1

tk

|Drus|2dsdr

+2E
n−1∑
k=0

[∫ tk+1

tk

∫ tk+1

tk

|Drus|2dsdr +
∫ tk+1

tk

∫ tk+1

tk

∫ tk+1

tk

|DθDrus|2dsdrdθ
]
.

Hence,
∑n−1

k=0 b
2
k,n tends to zero in L1(Ω) as n→∞, because u ∈ LM2,2.

Next, it is obvious that (un)2 → u2 in L2([0, T ]× Ω) and since

n−1∑
k=0

a2k,n =
n−1∑
k=0

(Mtk+1
−Mtk)

2

tk+1 − tk

∫ tk+1

tk

(uns )
2ds,

using the reasoning similar to that used in proving of the Proposition, we conclude
that

n−1∑
k=0

a2k,n →
∫ T

0

u2sds

in L1(Ω), as n→∞.
Finally, by virtue of the Cauchy-Bunyakovski inequality, we have

∣∣∣ n−1∑
k=0

ak,nbk,n

∣∣∣ ≤ (n−1∑
k=0

a2k,n

)1/2(n−1∑
k=0

b2k,n

)1/2

and therefore
∑n−1

k=0 ak,nbk,n tends to zero in L1(Ω) as n→∞.
Summing up the above obtained limit expressions, we complete the proof of theo-

rem.
Definition 3. The stochastic process Ut(ω) is called an anticipative Poisson semi-

martingale, if it has the representation

Ut(ω) = U0(ω) +

∫ t

0

vs(ω)ds+

∫ t

0

us(ω)δMs(ω),

where the last integral is the Skorokhod anticipative integral. In this case we use the
notation dUt = vtdt+ utδMt.
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Theorem 2. If Ut is an anticipative Poisson semimartingales with dUt = utδMt,
u ∈ LM2,2 and F ∈ C2

b , then the process F (Ut) admits the following integral representa-
tion

F (Ut) = F (U0) +

∫ t

0

F
′
(Us−)usδMs +

∫ t

0

DM
s [F

′
(Us−)]usδMs +

1

2

∫ t

0

F
′′
(Us−)u

2
sds

+

∫ t

0

DM
s [F

′
(Us−)]usds+

∑
0<s≤t

{F (Us)− F (Us−)− F
′
(Us−)∆Us}.

Proof. It is obvious that

F (Ut)− F (U0) =
n−1∑
k=0

[F (Utk+1
)− F (Utk)] =

n−1∑
k=0

F
′
(Utk)(Utk+1

− Utk)

+
1

2

n−1∑
k=0

F
′′
(U tk)(Utk+1

− Utk)2,

where U tk is a random intermediate point between Utk and Utk+1
.

Due to the Proposition 3.2 [9], we can write

n−1∑
k=0

F
′
(Utk)(Utk+1

− Utk) =
n−1∑
k=0

F
′
(Utk)

∫ tk+1

tk

usδMs

=
n−1∑
k=0

∫ tk+1

tk

F
′
(Utk)usδMs +

n−1∑
k=0

∫ tk+1

tk

DsF
′
(Utk)usds+

n−1∑
k=0

∫ tk+1

tk

DsF
′
(Utk)usδMs.

Using the reasoning similar to that used in proving of the Theorem 1, one can
ascertain that the right side of the above expression is tends to∫ t

0

F
′
(Us−)usδMs +

∫ t

0

DM
s [F

′
(Us−)]usδMs +

∫ t

0

DM
s [F

′
(Us−)]usds

in L1(Ω), as n→∞.
On the other hand, using the Proposition and Theorem 1, due to the continuity of

F
′′
, one can conclude that

1

2

n−1∑
k=0

F
′′
(U tk)(Utk+1

− Utk)2 →

→ 1

2

∫ t

0

F
′′
(Us−)u

2
sds+

∑
0<s≤t

{F (Us)− F (Us−)− F
′
(Us−)∆Us}

in L1(Ω), as n→∞.
Summing up the above obtained limit expressions, we complete the proof of theo-

rem.
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