Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics Volume 25, 2011

ITO TYPE FORMULA FOR POISSON ANTICIPATING INTEGRAL

Purtukhia O., Jaoshvili V.

Abstract. The quadratic variation of the anticipating Skorokhod integral with respect of compensated Poisson martingale is computed and anticipative Ito type formula for the so-called an anticipative Poisson semimartingales in terms of anticipative Skorokhod integrals is derived.

Keywords and phrases: Stochastic derivative, Skorokhod integral, Ito's formula, anticipative Poisson semimartingale.

AMS subject classification: 60G51, 60H07, 62P05, 91B28.

In the anticipative case the Ito type formula was obtained by Ustunel [1] in the Wiener space for random fields $F(x, \omega)$. This fields are fast decreasing with respect to x and argument x is replaced by the so-called Ito's anticipative process (with respect to Wiener process). The general case was considered by Nualart and Pardoux [2]. In case when F(t, x) (for any x) is adapted diffusion process and x is replaced by Ito's anticipative process the anticipative Ito-Ventsel type formula was established by Martias [3]. The case where both $F(t, x, \omega)$ (for any x) and u_t are Ito's anticipative processes the Ito-Ventsel type formula and an integral variant of the Ito-Ventsel formula was obtained by Purtukhia ([4],[5]). In the Poisson case the similar questions was studied by Peccati and Tudor [6] and anticipative Ito type formula was established in terms of nonanticipative Ito integrals. Our aim is to derive anticipative Ito type formula for the so-called an anticipative Poisson semimartingales in terms of anticipative Skorokhod integrals [7].

Let $(\Omega, \mathcal{F}, {\mathcal{F}_t}_{t \in [0,T]})$ be a filtered probability space satisfying the usual conditions. Suppose that N_t is the standard Poisson process $(P(N_t = k) = \frac{t^k e^{-t}}{k!}, k = 0, 1, 2, ...)$ and \mathcal{F}_t is generated by $N(\mathcal{F}_t = \mathcal{F}_t^N), \mathcal{F} = \mathcal{F}_T$. Let M_t be the compensated Poisson process $(M_t = N_t - t)$. Denote by $D_{\cdot}^M G$ the stochastic derivative of functional G (see Definition 4.1 [8]). In what follows we shall write D.G instead of $D_{\cdot}^M G$.

For any integer $k \geq 1$ we introduce the seminorm

$$||F||_{2,k} = ||F||_{L_2(\Omega)} + \sum_{i=1}^k ||D^i F||_{L_2([0,T]^i \times \Omega)}$$

and denote by $D_{2,k}^M$ the completion of class of differentiable random variables with respect to the norm $|| \cdot ||_{2,k}$.

Definition 1. We denote by $L_{2,1}^M$ the class of processes $u \in L_2([0,T] \times \Omega)$ such that $u_t \in D_{2,1}^M$ for a.a. t and there exists a measurable version of $D_s u_t \in L_2([0,T]^2 \times \Omega)$.

Definition 2. We denote by $L_{2,2}^M$ the class of processes $u \in L_2([0,T] \times \Omega)$ such that $u_t \in D_{2,2}^M$ for a.a. t and there exists a measurable version of $D_r D_s u_t \in L_2([0,T]^3 \times \Omega)$.

Let $\Pi^n, n \in N$ be a sequence of partitions of the segment [0, T] of the form $\Pi^n = \{0 = t_{0,n} < t_{1,n} < \cdots < t_{n,n} = T\}$ such that $|\Pi^n| = sup_k(t_{k+1,n} - t_{k,n}) \to 0$, as $n \to \infty$. In what follows we shall write (t_k) instead of $t_{k,n}$.

Proposition. Let $\xi_t, t \in [0, T]$ be a measurable process such that $\xi \in L_2([0, T] \times \Omega)$. Then

$$\sum_{k=0}^{n-1} \left(\frac{1}{t_{k+1,n} - t_k, n} \int_{t_k, n}^{t_{k+1,n}} \xi_s ds \right) (M_{t_{k+1,n}} - M_{t_k, n})^2 \to \int_0^T \xi_s ds$$

in $L_1(\Omega)$, as $n \to \infty$.

Proof. Let's enter the following designations:

$$\xi^{m} := \sum_{i=0}^{m-1} \left(\frac{1}{t_{i+1,m} - t_{i}, m} \int_{t_{i},m}^{t_{i+1,m}} \xi_{s} ds \right) I_{[t_{i,m}, t_{i+1,m}[, t_{i+1,m}]},$$
$$\alpha_{n}(\xi) := \sum_{k=0}^{n-1} \left(\frac{1}{t_{k+1,n} - t_{k}, n} \int_{t_{k},n}^{t_{k+1,n}} \xi_{s} ds \right) (M_{t_{k+1,n}} - M_{t_{k},n})^{2},$$
$$\alpha_{n}(\xi_{m}) := \sum_{i=0}^{m-1} \left(\frac{1}{t_{i+1,m} - t_{i}, m} \int_{t_{i},m}^{t_{i+1,m}} \xi_{s} ds \right) I_{[t_{i,m}, t_{i+1,m}[.$$

Using the Cauchy-Bunyakovski inequality, it is not difficult to see that

$$E|\alpha_n(\xi)| \le \left\{ E \sum_{k=0}^{n-1} \frac{(M_{t_{k+1,n}} - M_{t_k,n})^4}{t_{k+1,n} - t_k, n} \right\}^{1/2} \left\{ E \sum_{k=0}^{n-1} \frac{(\int_{t_k,n}^{t_{k+1,n}} |\xi_s| ds)^2}{t_{k+1,n} - t_k, n} \right\}^{1/2} \le C||\xi||_{L_2([0,T] \times \Omega)}.$$

Hence, we can write

$$E|\alpha_n(\xi) - \int_0^T \xi_s ds| \le E|\alpha_n(\xi - \xi^m)| + E|\alpha_n(\xi^m) - \int_0^T \xi_s^m ds|$$
$$+ E\int_0^T |\xi - \xi_s^m|ds| \le E|\alpha_n(\xi^m) - \int_0^T \xi_s^m ds| + (C+1)||\xi - \xi^m||_{L_2([0,T] \times \Omega)}.$$

It is obvious that $\xi^m \to \xi$ in $L_2([0,T] \times \Omega)$ as $m \to \infty$. On the other hand, it is evident that for any fixed $m : \alpha_n(\xi^m) \to \int_0^T \xi_s^m ds$ in probability as $n \to \infty$. Moreover, due to the Holder's inequality, we can easily obtain that for any $p \in (1,2)$:

$$||\alpha_n(\xi^m)||_{L_p(\Omega)} \le C_p ||\xi^m||_{L_2([0,T] \times \Omega)}.$$

Therefore, for each m the sequence of random variables $\{\alpha_n(\xi^m), n \in N\}$ is uniformly integrable, which with the convergence in probability implies that $\alpha_n(\xi^m) \to \int_0^T \xi_s^m ds$ in $L_1(\Omega)$ as $n \to \infty$. Passing now to the limit in above relation at first as $m \to \infty$, and after as $n \to \infty$ we complete the proof of the Proposition. **Theorem 1.** Let $u \in L_{2,2}^M$. Then

$$\sum_{k=0}^{n-1} \left(\int_{t_k}^{t_{k+1}} u_s \delta M_s \right)^2 \to \int_0^T u_s^2 ds$$

in $L_1(\Omega)$, as $n \to \infty$.

Proof. Let $u, v \in L_{2,1}^M$. By virtue of the Cauchy-Bunyakovski inequality we can write

$$E\sum_{k=0}^{n-1} \left| \left(\int_{t_k}^{t_{k+1}} u_s \delta M_s \right)^2 - \sum_{k=0}^{n-1} \left(\int_{t_k}^{t_{k+1}} v_s \delta M_s \right)^2 \right|$$

$$\leq \left(E\sum_{k=0}^{n-1} \left(\int_{t_k}^{t_{k+1}} (u_s - v_s) \delta M_s \right)^2 \right)^{1/2} \left(E\sum_{k=0}^{n-1} \left(\int_{t_k}^{t_{k+1}} (u_s + v_s) \delta M_s \right)^2 \right)^{1/2}.$$

Define u^n as follow:

$$u^n = \sum_{k=0}^{n-1} \overline{u}_k I_{[t_k, t_{k+1}[},$$

where

$$\overline{u}_{k,n} = \frac{1}{t_{k+1} - t_k} \int_{t_k}^{t_{k+1}} u_s ds$$

for $0 \le k < n-1$ and $\overline{u}_{-1,n} = \overline{u}_{0,n} = 0$.

Substituting now $v = u^n$ in the above estimate, one can conclude that

$$E\sum_{k=0}^{n-1} \left| \left(\int_{t_k}^{t_{k+1}} u_s \delta M_s \right)^2 - \sum_{k=0}^{n-1} \left(\int_{t_k}^{t_{k+1}} u_s^n \delta M_s \right)^2 \right| \to 0,$$

as $n \to \infty$.

On the other hand, due to the Proposition 3.2 [9], we have

$$\begin{split} \sum_{k=0}^{n-1} \left(\int_{t_k}^{t_{k+1}} u_s^n \delta M_s \right)^2 &= \sum_{k=0}^{n-1} \left(\int_{t_k}^{t_{k+1}} \overline{u}_{k,n} \delta M_s \right)^2 \\ &= \sum_{k=0}^{n-1} \left(\frac{1}{t_{k+1} - t_k} \int_{t_k}^{t_{k+1}} \left(\int_{t_k}^{t_{k+1}} u_s ds \right) \delta M_s \right)^2 \\ &= \sum_{k=0}^{n-1} \left\{ \frac{1}{t_{k+1} - t_k} \left[\left(M_{t_{k+1}} - M_{t_k} \right) \int_{t_k}^{t_{k+1}} u_s ds \right. \right. \\ &- \int_{t_k}^{t_{k+1}} \left(\int_{t_k}^{t_{k+1}} D_r u_s ds \right) dr - \int_{t_k}^{t_{k+1}} \left(\int_{t_k}^{t_{k+1}} D_r u_s ds \right) \delta M_r \right] \right\}^2 : \\ &= \sum_{k=0}^{n-1} \left(a_{k,n}^2 - 2a_{k,n} b_{k,n} + b_{k,n}^2 \right), \end{split}$$

where

_

$$a_{k,n} = \frac{M_{t_{k+1}} - M_{t_k}}{t_{k+1} - t_k} \int_{t_k}^{t_{k+1}} u_s ds,$$

$$b_{k,n} = \frac{1}{t_{k+1} - t_k} \int_{t_k}^{t_{k+1}} \left(\int_{t_k}^{t_{k+1}} D_r u_s ds \right) dr - \int_{t_k}^{t_{k+1}} \left(\int_{t_k}^{t_{k+1}} D_r u_s ds \right) \delta M_r.$$

Using the Cauchy-Bunyakovski inequality and the elementary inequality $(x+y)^2 \leq$ $2x^2 + 2y^2$, we can write that

$$E\sum_{k=0}^{n-1} b_{k,n}^2 \leq 2E\sum_{k=0}^{n-1} \int_{t_k}^{t_{k+1}} \int_{t_k}^{t_{k+1}} |D_r u_s|^2 ds dr$$
$$+ 2E\sum_{k=0}^{n-1} \left[\int_{t_k}^{t_{k+1}} \int_{t_k}^{t_{k+1}} |D_r u_s|^2 ds dr + \int_{t_k}^{t_{k+1}} \int_{t_k}^{t_{k+1}} \int_{t_k}^{t_{k+1}} |D_\theta D_r u_s|^2 ds dr d\theta \right].$$

Hence, $\sum_{k=0}^{n-1} b_{k,n}^2$ tends to zero in $L_1(\Omega)$ as $n \to \infty$, because $u \in L_{2,2}^M$. Next, it is obvious that $(u^n)^2 \to u^2$ in $L_2([0,T] \times \Omega)$ and since

$$\sum_{k=0}^{n-1} a_{k,n}^2 = \sum_{k=0}^{n-1} \frac{(M_{t_{k+1}} - M_{t_k})^2}{t_{k+1} - t_k} \int_{t_k}^{t_{k+1}} (u_s^n)^2 ds,$$

using the reasoning similar to that used in proving of the Proposition, we conclude that

$$\sum_{k=0}^{n-1} a_{k,n}^2 \to \int_0^T u_s^2 ds$$

in $L_1(\Omega)$, as $n \to \infty$.

Finally, by virtue of the Cauchy-Bunyakovski inequality, we have

$$\left|\sum_{k=0}^{n-1} a_{k,n} b_{k,n}\right| \le \left(\sum_{k=0}^{n-1} a_{k,n}^2\right)^{1/2} \left(\sum_{k=0}^{n-1} b_{k,n}^2\right)^{1/2}$$

and therefore $\sum_{k=0}^{n-1} a_{k,n} b_{k,n}$ tends to zero in $L_1(\Omega)$ as $n \to \infty$.

Summing up the above obtained limit expressions, we complete the proof of theorem.

Definition 3. The stochastic process $U_t(\omega)$ is called an anticipative Poisson semimartingale, if it has the representation

$$U_t(\omega) = U_0(\omega) + \int_0^t v_s(\omega) ds + \int_0^t u_s(\omega) \delta M_s(\omega),$$

where the last integral is the Skorokhod anticipative integral. In this case we use the notation $dU_t = v_t dt + u_t \delta M_t$.

Theorem 2. If U_t is an anticipative Poisson semimartingales with $dU_t = u_t \delta M_t$, $u \in L_{2,2}^M$ and $F \in C_b^2$, then the process $F(U_t)$ admits the following integral representation

$$\begin{split} F(U_t) &= F(U_0) + \int_0^t F'(U_{s-}) u_s \delta M_s + \int_0^t D_s^M [F'(U_{s-})] u_s \delta M_s + \frac{1}{2} \int_0^t F''(U_{s-}) u_s^2 ds \\ &+ \int_0^t D_s^M [F'(U_{s-})] u_s ds + \sum_{0 < s \le t} \{F(U_s) - F(U_{s-}) - F'(U_{s-}) \Delta U_s\}. \end{split}$$

Proof. It is obvious that

$$F(U_t) - F(U_0) = \sum_{k=0}^{n-1} [F(U_{t_{k+1}}) - F(U_{t_k})] = \sum_{k=0}^{n-1} F'(U_{t_k})(U_{t_{k+1}} - U_{t_k}) + \frac{1}{2} \sum_{k=0}^{n-1} F''(\overline{U}_{t_k})(U_{t_{k+1}} - U_{t_k})^2,$$

where \overline{U}_{t_k} is a random intermediate point between U_{t_k} and $U_{t_{k+1}}$.

Due to the Proposition 3.2 [9], we can write

$$\sum_{k=0}^{n-1} F'(U_{t_k})(U_{t_{k+1}} - U_{t_k}) = \sum_{k=0}^{n-1} F'(U_{t_k}) \int_{t_k}^{t_{k+1}} u_s \delta M_s$$
$$= \sum_{k=0}^{n-1} \int_{t_k}^{t_{k+1}} F'(U_{t_k}) u_s \delta M_s + \sum_{k=0}^{n-1} \int_{t_k}^{t_{k+1}} D_s F'(U_{t_k}) u_s ds + \sum_{k=0}^{n-1} \int_{t_k}^{t_{k+1}} D_s F'(U_{t_k}) u_s \delta M_s.$$

Using the reasoning similar to that used in proving of the Theorem 1, one can ascertain that the right side of the above expression is tends to

$$\int_{0}^{t} F'(U_{s-})u_{s}\delta M_{s} + \int_{0}^{t} D_{s}^{M}[F'(U_{s-})]u_{s}\delta M_{s} + \int_{0}^{t} D_{s}^{M}[F'(U_{s-})]u_{s}ds$$

in $L_1(\Omega)$, as $n \to \infty$.

On the other hand, using the Proposition and Theorem 1, due to the continuity of F'', one can conclude that

$$\frac{1}{2} \sum_{k=0}^{n-1} F''(\overline{U}_{t_k}) (U_{t_{k+1}} - U_{t_k})^2 \to$$
$$\to \frac{1}{2} \int_0^t F''(U_{s-}) u_s^2 ds + \sum_{0 < s \le t} \{F(U_s) - F(U_{s-}) - F'(U_{s-}) \Delta U_s\}$$

in $L_1(\Omega)$, as $n \to \infty$.

Summing up the above obtained limit expressions, we complete the proof of theorem.

Acknowledgement. The work is supported by Shota Rustaveli National Science Foundation grants N 09 471 3-104, N 09 383 3-106, N Y 809 68 3-104.

$\mathbf{R} \to \mathbf{F} \to \mathbf{R} \to \mathbf{N} \to \mathbf{C} \to \mathbf{S}$

1. Ustunel A. The Ito formula for anticipative processes with nonmonotonous time scale via the Malliavin calculus. *Probab. Theor. Rel. Fields*, **79** (1988), 249-269.

2. Nualart D., Pardoux E. Stochastic calculus with anticipating integrands. *Probab. Theor. Rel.* Fields, **78** (1988), 535-581.

3. Martias C. Une formule de Ito-Ventsel pour les processus anticipatifs. C.R. Acad. Sci., Paris. Ser., I 307 (1988), 675-678.

4. Purtukhia O. Ito-Ventsel formula for anticipative processes. New trends in Probability and Statistics, V. Sasonov and T. Shervashidze (Eds.), 1991 VSP/Mokslas, 503-527.

5. Purtukhia O. On the representation of measure-valued solution of second order stochastic parabolic equations. *Proc. A Razmadze Math. Inst.*, **116** (1998), 133-158.

6. Peccati G., Tudor C.A. Anticipating Integrals and Martingales on the Poisson Space. Preprint, April 12, 2005.

7. Skorokhod A.V. On a generalization of a stochastic integral. *Theor. Prob. Appl.*, **20** (1975), 219-233.

8. Jaoshvili V., Purtukhia O. Stochastic Derivative of Poisson Polynomial Functionals. Proc. I. Vekua Appl. Math., 58 (2008), 59-66.

9. Jaoshvili V., Purtukhia O. The Stein's identity and Poisson functionals. *Enlarged Sess. Semin. I. Vekua Appl. Math.*, **24** (2010), 113-118.

Received 17.07.2011; accepted 17.10.2011.

Authors' addresses:

O. PurtukhiaIv. Javakhishvili Tbilisi State University2, University St., Tbilisi 0186Georgia

A. Razmadze Mathematical Institute
Georgian National Academy of Science
1, M. Aleksidze St., Tbilisi 0193
Georgia
E-mail: omar.purtukhi@tsu.ge

V. Jaoshvili Iv. Javakhishvili Tbilisi State University 2, University St., Tbilisi 0186 Georgia E-mail: vakhtangi.jaoshvili@gmail.com