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ON THE CRAMER-RAO INEQUALITY IN AN INFINITE
DIMENSIONAL SPACE

E. NADARAYA, O. PURTUKHIA AND G. SOKHADZE

Abstract. An infinite-dimensional analogue of the Cramer-Rao in-
equality is given. The technique of smooth measures are used. Con-
ditions of regularity are given and under these conditions a variant of
maximal likelihood principle for the infinite-dimensional case is pro-
posed. The consistency property of the maximum likelihood estimate
is given.

îâäæñéâ. éæôâĲñèæŽ çîŽéâî-îŽëï ñðëèëĲæï ñïŽïîñèë àŽêäë-
éæèâĲæŽêæ ŽêŽèëàæ. àŽéëõâêâĲñèæŽ àèñãæ äëéâĲæï ðâóêæçŽ. øŽéë-
õŽèæĲâĲñèæŽ îâàñèŽîëĲæï ìæîëĲâĲæ áŽ Žé ìæîëĲâĲöæ öâéëåŽãŽäâ-
ĲñèæŽ éŽóïæéŽèñîæ áŽïŽþâîëĲæï ìîæêùæìæï ñïŽïîñèë àŽêäëéæ-
èâĲæŽêæ ãŽîæŽêðæ. éëùâéñèæŽ éŽóïæéŽèñîæ áŽïŽþâîëĲæï öâòŽïâ-
Ĳæï úŽèáâĲñèëĲæï åãæïâĲŽ.

The Cramer-Rao (C-R) inequality and ensuing from it consequences play
fundamental role in statistical analysis. Many important problems are being
solved on the grounds of that analysis. But a range of such problems do not
involve situations which are connected with random processes. Therefore
the key point is to extend the methods of the C-R inequality to an infinite
dimensional case. Contemporary state of the infinite dimensional analysis
allows one to consider many basic problems of statistics from a more general
point of view.

The approach based on the analysis of sensibility of a family of prob-
abilistic measures is well-known (see, for e.g., E. Pitmen). The theory of
smooth measures ([2]–[3]) gives us a good chance for generalization in this
direction. The present paper realizes this chance by an example in which
the C-R inequality is generalized to an infinite dimensional case. The out-
lines of such ideas have actually been given by E. Gobet in [4]. The idea
consists in application of the theory of P. Malliavin calculus ([5]–[8]). In
their work [9], J.M. Corcuera and A. Kohatsu-Higa have used the technique
of stochastic calculus of variations (Malliavin calculus) and obtained the
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results for a finite dimensional (more precisely, for a one-dimensional) case.
In the present work the use will be made of the methods of smooth measures
allowing us to formulate a general look at the questions dealt with the C-R
inequality and related with them problems. In [10], the theory of smooth
measures has been used to estimate a logarithmic measure derivative.

1. The Logarithmic Measure Derivative

Let {Ω,=, P} be a complete probabilite space. X = X(ω; θ) is a randon
element with values in a linear space E and parameter θ ∈ Θ, where Θ a
subset of a separable real Banach space Ξ has the norm ‖ · ‖Ξ.

The basic problem of statistics is to estimate an unknown parameter θ.
This estimation should be based on observations for realization of the given
randon value X1, X2, . . . , Xn, . . . , a sequence (a sampling) of independent
and identical to X distributed random values. We are required to construct
such a statistics T = T (X1, X2, . . . , Xn) which will be optimal (in a sense
motivated in advance) to estimate θ.

Usually, this situation generates a sequence of statistical structures
{ℵ,<, (P (θ; ·), θ ∈ Θ)}, where ℵ = En(n = 1, 2, . . . ,∞ is a linear space gen-
erated by a sequence of random values X1, X2, . . . , Xn, < σ is the algebra
generated by observable sets, and {P (θ; ·), θ ∈ Θ)} is a system of probabilite
measures (distributions) generated by the vector Y = (X1, X2, . . . , Xn) by
virtue of the relation P (θ;A) = P (Y −1(A)), A ∈ <. In the classical statis-
tics, the main object of investigation is, namely, that statistical structure
{ℵ,<, (P (θ; ·), θ ∈ Θ)}.

On the other hand, there exist a vast variety of problems in which
X = X(ω; θ) is just the function, convenient to operate with by imposing
certain analytic requirements of smoothness (the conditions of regularity)
with respect to the parameter θ. In addition, there arises a good possibility
to apply an apparatus of stochastic calculus of variations.

Thus we obtain double calculus: the first one relies on the study of
properties of the statistical structure {ℵ,<, (P (θ; ·), θ∈Θ)}, the smoothness
of the measure family P (θ, ·), and the second, the direct stochastic methods
whose object of investigation is X(ω, θ).

In this connection, we will be interested in the family of distributions
{P (θ; A), θ ∈Θ, A ∈<} from the point of view of their smoothness with
respect to the both parameters θ and A. Here we cite some definitions,
therminological agreements and properties.

Throughout the paper, it will be assumed that ℵ is a separable, reflexive
Banach space. For every fixed θ∈Θ, P (θ, ·) is of positive measure. If h ∈ ℵ
is some vector, then by Ph(θ; A) we denote a measure obtained by the shift
Ph(θ;A) = P (θ; A + h).
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We say that the measure P (θ; ·) is differentiable along the vector h, if
there exists a bounded linear functional on ℵ, denoted by dhP (θ; ·), such
that for every A ∈ <, the equality

Ph(θ; A)− P (θ; A) = dh(θ; A)h + α(θ,A; h),

holds, where α(θ, A;h) is the function, such that α(θ, A; th) = o(t), t ∈ R.
This is the so-called measure differentiability due to Fomin (the detailed ac-
count of another, somewhat different from Fomin’s differentiability, defini-
tions, properties and interconnections between them can be found in mono-
graph [2]).

In the case, where ℵ is a separable, real Hilbert space with scalar product
(·, ·)ℵ and norm ||h||ℵ, h ∈ ℵ, we write Ph(θ; A)−P (θ; A) = (dhP (θ; A), h)ℵ+
α(θ, A;h), and sometimes (when this does not put us to confusion) under the
derivative dhP (θ; ·) will be understood an element of Hilbert space. Surely,
the function dhP (θ; ·) is the σ-additive (of alternating signs) measure on <.

The measure derivative of higher order is defined by iteration in the
course of determination of the derivative. Thus, for example, dkdhP (θ; ·) =
dk(dhP (θ; ·)h)k, k, h ∈ ℵ. In particular, in the case of Hilbert space ℵ, we
have (d(2)

h,hP (θ; ·)h, h)ℵ = (dh(dhP (θ; ·), h)ℵ, h)ℵ..
For the n times differentiable measure, the expansion

P (θ; A + h)− P (θ; A) =
n∑

k=1

1
k!

d
(k)
h,...,hP (θ; A) + α(θ,A; h),

is valid, where ϕ(t) = α(θ,A; th) is the (n− 1)-multiply differentiable func-
tion, vanishing together with its derivatives in zero faster than the corre-
sponding powers t.

The function ψθ(t) = P (θ, A + th) is nonnegative and everywhere differ-
entiable. If P (θ; A) = 0, A ∈ <, then the point t = 0 will turn out to be the
point of minimum for the function ψθ(t). Therefore dh(θ; A) = 0. Hence, by
the Radon-Nikodym’s theorem, there exists a measurable function βθ(x; h)

such that
dhP (θ; dx)
P (θ; dx)

= βθ(x, h). This function is called logarithmic mea-

sure derivative along the vector h ∈ ℵ.. The logarithmic derivative βθ(x, h)
is linear in the second argument. The vector h is called an admissible di-
rection for measure P (θ; ·). A set of all admissible directions is called an
admissible subspace.

Example 1. Let H+ ⊂ H ⊂ H− be a triple of Hilbert spaces whose
embedding operator i : H+ → H is the Hilbert-Schmidt’s operator. Such
a triple is called a Hilbert-Schmidt structure, or an equipped Hilbert space
with quasi-kernel embeddings. Let γθ be Gaussian measure in H− with a
unit correlation operator in H with θ mean, θ ∈ H−. An admissible space



124 E. NADARAYA, O. PURTUKHIA AND G. SOKHADZE

for γθ is H+. In addition, if h ∈ H+, then the logarithmic derivative of
measure γθ along h is (θ − x, h)H .

In the theory of differentiable measures, of great importance is the fact
that the formula of integration by parts is valid. Let ℵ be the separable,
real Hilbert space and f(x) be a functional in that space. Assume that
there exists its derivative directed with respect to the vector h ∈ ℵ, and
dhf(x) = lim

t→0
t−1[f(x + th) − f(x)], and dhf(·) ∈ L1(P (θ; ·)) for the fixed

θ ∈ Θ. Then, if measure P (θ; ·) is differentiable with respect to the direction
h, then (see [2])

∫

ℵ

(dhf(x), h)ℵP (θ; dx) = −
∫

ℵ

f(x)dhP (θ; dx) =

= −
∫

ℵ

f(x)βθ(x; h)P (θ; dx). (1)

We can define logarithmic derivative along nonconstant directions (the
so-called logarithmic gradient). Equality (1) may serve as a basis for such a
definition, or we can act analogously to what we have done in determining
the measure derivative along constant directions.

Let z(x) : ℵ → ℵ be the differentiable vector field possessing bounded
derivative sup

x∈ℵ
||z′(x)|| < ∞. An integral flow, corresponding to z(x), we

denote by St, t ∈ R. This implies that

dSt

dt
= z(St), S0 = I.

The family of measures (P (θ; ·)θ ∈ Θ) is associated with a class of
measures (Pt(θ; ·)θ ∈ Θ, t ∈ R) due to the transformation Pt(θ; A) =
P (θ; S−1

t (A)), A ∈ <.
We say that the measure P (θ; ·) is differentiable along the vector field

z(x), if there exists the measure (necessarily of alternating signs) DzP (θ; A)
such that for any bounded and differentiable function ϕ : ℵ → R, ϕ ∈
C1(ℵ;R) we have

∫

ℵ

ϕ(x)DzP (θ; dx) = − lim
t→0

∫

ℵ

ϕ(x)
Pt(θ)− P (θ)

t
(dx).

Hence after the transformation, we obtain
∫

ℵ

ϕ(x)DzP (θ; dx) = −
∫

ℵ

ϕ′(x)z(x)P (θ; dx).
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If, in addition, DzP (θ; ·) << P (θ; ·), then the Radon-Nikodym’s density is
called the logarithmic derivative P (θ; ·) along the vector field z(x):

βθ(x; z) =
DzP (θ; dx)
P (θ; dx)

.

Let H be the embedding in the ℵ Hilbert space whose embedding oper-
ator is the Hilbert-Schmitd’s operator. Then we can consider the Hilbert-
Schmidt’s structure ℵ∗ ⊂ H ⊂ ℵ. We distinguish an important class of
measures L for which there exists a measurable, locally bounded function
λ : ℵ → ℵ such that for every constant direction h ∈ ℵ∗ there exists the log-
arithmic derivative along h of the form βθ(x; h) = λ(θ;x)h = (λ(θ, x), h)H .
In this case we say that the measure possesses the logarithmic gradient
λ(θ; x).

If P (θ) ∈ L, and the vector field z : ℵ → ℵ∗ is bounded together with its
derivative, then for the measure P (θ) there exists the logarithmic gradient
(see [3]), and

βθ(x; z(x)) = 〈λ(θ; x), z(x)〉+ trz′(x).
This functional with respect to the continuity can be extended to smooth

vector fields z(x) : ℵ → H.

Example 2. In the conditions of Example 1, we consider the vector field
z(x) : H− → H−, possessing the bounded derivative: sup

x∈H−
||z′(x)|| < ∞.

If z : H− → H, then the logarithmic gradient exists. But if it is known
additionally that z : H− → H+, then βθ(x; z) = (θ − x, z(x))H + trz′(x).

Here we cite some properties of the logarithmic derivative; their proof
can be found in [2].

Proposition 1. Let the following conditions be fulfilled:
(i) The measures P = P (θ, ·) are differentiable along the vector h ∈ ℵ;
(ii) The functions f and g are differentiable along h ∈ ℵ;
(iii) f, g ∈ L1(dhP ) and f ′(x)h, g′(x)h ∈ L1(P );
(iv) (f ′(x)h)g(x), f(x)(g′(x)h), f(x)g(x)βθ(x; h) ∈ L1(P ).
Then ∫

ℵ

(f ′(x)h)g(x)P (θ; dx) = −
∫

ℵ

f(x)(g′(x)h)P (θ; dx) =

= −
∫

ℵ

f(x)g(x)βθ(x; h)P (θ; dx). (2)

Proposition 2. Let the measures P = P (θ, ·) be differentiable along
the vector h ∈ ℵ and the function ϕ(t) = βθ(x + th; H) be everywhere
differentiable with β′θ(x; h)h ∈ L2(P ). Then:

(i) P (θ, ·) is twice differentiable along h;



126 E. NADARAYA, O. PURTUKHIA AND G. SOKHADZE

(ii) d2
h,hP (θ, ·) = bβ′θ(x;h)h + (βθ(x;h))2cP (θ; ·);

(iii)
∫
ℵ

(βθ(x;h))2P (θ; dx) = − ∫
ℵ

β′θ(x; hP (θ; dx).

We will need measure smoothness with respect to the parameter, as
well. Let, as above, we have the statistical structure {ℵ,<(P (θ; ·), θ ∈ Θ)},
where ℵ is the separable, real Banach space, and let Θ be a smooth many-
fold imbedded into another separable, real Banach space Ξ. For any fixed
A ∈ < and for the vector ϑ ∈ Ξ, let us consider the derivative of the
function τ(θ) = P (θ; A) at the point θ along ϑ. We denote this deriva-
tive as follows: dθP (θ; A)ϑ. For the fixed θ and ϑ, this derivative is the
measure of alternating signs. It is easy to see that dθP (θ, ·)ϑ << P (θ, ·),
and by the Radon-Nikodym’s theorem, there exists the measutable func-

tion lθ(x; ϑ) =
dθP (θ; dx)ϑ

P (θ; dx)
. lθ(x; ϑ) which is called logarithmic derivative

of measure with respect to the parameter P (θ; ·).
When Ξ is the separable Hilbert space, by K we denote a space of mea-

sures for which the logarithmic derivative with respect to the parameter is
representable in the form of a scalar product lθ(x;ϑ) = (k(x, θ), ϑ)Ξ. In
addition, k(x, θ) will be called a vector logarithmic gradient with respect to
the parameter. For Examples 1 and 2, λ(x, θ) = θ − x and k(x, θ) = x− θ.

For the family of measures (P (θ; ·), θ ∈ Θ) possessing the logarithmic
derivative with respect to the parameter along ϑ, there exists the measure
ν dominating this family. It is known ([11]) that all measures P (θ; ·) are

mutually equivalent, and
P (θ2; dx)
P (θ1; dx)

= exp
θ2∫
θ1

lθ(x; ϑ)dθ.

2. The Regularity Conditions

A statistical structure is a notion, derivative from the probabilistic space
and from a random value. Therefore in some conditions of regularity the
above two notions of logarithmic derivative should be connected. Here we
point out these conditions (the conditions of regularity).

Condition 1. X(θ) = X(θ; ω) : Θ× Ω → ℵ, and there exists the deriv-
ative X ′(θ) with respect to θ along ϑ ∈ Ξ0, where Ξ0 ⊂ Ξ is the subspace
of Ξ. This derivative is a linear mapping Ξ → ℵ for every θ ∈ Θ. For any
ϑ ∈ Ξ0 and θ ∈ Θ, we have ||Ξ′(θ)ϑ||ℵ ∈ L2(Ω, P ).

Condition 2. E{X ′(θ)ϑ|X(θ) = x} is strongly continuous as the func-
tion x for all ϑ ∈ Ξ0, θ ∈ Θ.

Condition 3. The family of measures (P (θ; ·), θ ∈ Θ possess the loga-
rithmic derivative with respect to the parameter along constant directions
from the dense in Ξ subspace Ξ0 ⊂ Ξ, and lθ(x; ϑ) ∈ L2(ℵ, P (θ)), ϑ ∈ Ξ0,
θ ∈ Θ.
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Condition 4. The family of measures (P (θ; ·), θ ∈ Θ) possess the log-
arithmic derivative along constant ditections from the dense in ℵ subspace
ℵ0 ⊂ ℵ and βθ(x; h) ∈ L2(ℵ, P (θ)), h ∈ ℵ0, θ ∈ Θ.

Lemma 1. Under the conditions of regularity 1)–4), for the logarithmic
derivatives βθ(x; h) and lθ(x; ϑ), the equality

lθ(x; ϑ) = −βθ(x;Kθ,ϑ(x)) where Kθ,ϑ(x) = E

{
d

dθ
X(θ)ϑ|X(θ) = x

}
(3)

holds.

Proof. By the definition, P (θ;A) = P (X−1(θ; A)). Let f(x) be the bounded,
continuous differentiable along h ∈ ℵ real-valued function. By the change
of variable formula,

∫

ℵ

f(x)P (θ; dx) = Ef(X(θ)).

We differentiate both parts with respect to θ along ϑ. Thus we obtain
∫

ℵ

f(x)dθP (θ; dx)ϑ = E
d

dx
f(X(θ))

d

dθ
X(θ)ϑ,

or ∫

ℵ

f(x)lθ(x; ϑ)P (θ; dx) =
∫

ℵ

f ′(x)E{X ′(θ)ϑ|X(θ) = x}P (θ; dx).

Denote Kθ,ϑ(x) = E

{
d

dθ
X(θ)ϑ|X(θ) = x

}
, and write

∫

ℵ

f ′(x)Kθ,ϑ(x)P (θ; dx) = −
∫

ℵ

f(x)βθ(x,Kθ,ϑ(x))P (θ; dx).

Since f(x) is arbitrary, we obtain (3). ¤

Example 3. Let Ξ = R2, Θ = R × (0,∞), Ξ0 = R2, ℵ = R. For a
random X(θ1, θ2), the distribution P (θ; A), A ∈ B = <, where B, the Borel
σ-algebra in R, is prescribed by density

P (θ1, θ2;A) =
1√

2πθ2

∫

A

exp
{
− (x− θ1)2

2θ2
2

}
dx.

Then for any ϑ = (ϑ1, ϑ2)T , we have

lθ(x : ϑ) =
(x− θ1)θ2ϑ1 − θ2

2ϑ2 + (x− θ1)2ϑ2

θ3
2

.
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On the other hand, if by N we denote a standard normal distribution in
R, then we can write X(θ1, θ2) = θ2N + θ1. Hence

X ′(θ)ϑ = ϑ1 +
X(θ)− θ1

θ2
ϑ2.

Respectively, E{X ′(θ)ϑ|X(θ) = x} = ϑ1 +
x− θ1

θ2
ϑ2 = z(x). In this sit-

uation, λ(θ;x) =
θ1 − x

θ2
2

and k(x, θ) =
(

x− θ1

θ2
2

,
(x− θ1)2 − θ2

2

θ3
2

)T

. Clearly,

we have

βθ(x; z(x)) =
θ1 − x

θ2
2

(
ϑ1 +

x− θ1

θ2
ϑ2

)
+

ϑ2

θ2
= −lθ(x;ϑ).

Example 4. Let X(θ) be a normally distributed random element with
values in the separable, real Hilbert space H with 0 mean and with kernel
correlation operator θ = B. Let P (θ) be the corresponding Gaussian mea-
sure in H. In this case, ℵ = H, <, is the Borel σ-algebra in it, Ξ = L1(H, H)
is the Banach space of kernel operators in H with the norm ||K||1 = trK,
Θ ⊂ L1(H,H) is the space of linear operators C such that B−1/2CB−1/2 is
the kernel operator in H. We have X(B) = B1/2N , where N is the canonical
Gaussian value in H. As a direction, we take the operator C ∈ L−1(H, H).
Calculations provide us with X ′(B)C = 1/2

(
B−1/2CB−1/2(X(B))

)
and

E{X ′(B)C|X(B) = 1/2B−1/2CB−1/2x = z(x). Respectively,

lB(x; C)= −βB(x; z(x))=
1
2

(
B−1/2CB−1/2x,B−1x

)
H
−1

2
trHB−1/2CB−1/2.

3. The Cramer-Rao Inequality

Let {ℵ,<, (P (θ, ·), θ ∈ Θ)} be the statistical structure corresponding to
a random element X(ω) = X(θ, ω). Here, ℵ is the separable, real, reflexive
Banach space, < is the σ-algebra of Borel sets, and Θ ⊂ Ξ is an open subset
of the separable, real Banach space Ξ. The conditions of regularity 1)–4)
will be assumed to be fulfilled.

Let g(θ) = Eθ(T (X)), where T : ℵ → R is a measurable mapping (sta-
tistics). For the statistics we take one more condition of regularity.

Condition 5. For the statistics T = T (x) : ℵ → R, the equality

dϑ

∫

ℵ

T (x)P (θ; dx) =
∫

ℵ

T (x)dϑP (θ; dx)

is valid.
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Theorem 1 (The Cramer-Rao Inequality). Let the conditions of regu-
larity 1.–5. be fulfilled. Then

V arT (X) ≥ (g′ϑ(θ))2

Eθl2θ(X;ϑ)
. (4)

Proof. Having differentiated g(θ) along ϑ ∈ Ξ, we get

dϑEθT (X) = dϑ

∫

ℵ

T (x)P (θ; dx) =
∫

ℵ

T (x)dϑP (θ; dx)ϑ =

=
∫

ℵ

T (x)lθ(x, ϑ)P (η; dx) = EθT (X)lθ(X;ϑ).

Thus
dϑEθT (X) = EθT (X)lθ(X;ϑ). (5)

In (5), we put T (X) = 1. We obtain Eθlθ(X; ϑ) = 0. Therefore

dϑEθ(T (X)) = Eθ((T (X)− g(θ))lθ(X; ϑ)),

and hence

(dϑEθ(T (X)))2 ≤ Eθ (T (X)− g(θ))2 · Eθl
2
θ(X; ϑ)

which yields

V arT (X) ≥ (g′ϑ(θ))2

Eθl2θ(X;ϑ)
. ¤

Corollary 1. Taking into account our Lemma, inequality (4) takes the
form

V arT (X) ≥ (g′ϑ(θ))2

Eθβ2
θ (X; E(X ′(θ)ϑ|X))

.

Example 5. Let there be observed an Xk(θ1, θ2) =
1
θ1

ek + θ2 random

value, where every ek (k = 1, 2, . . . , n) is an exponentially distributed ran-
dom value with distribution density

p(x) =
{

e−x, x ≥ 0
0, x < 0 .

Let X1, X2, . . . , Xn be observations; X(θ) = (X1(θ1, θ2), . . . , Xn(θ1, θ2)).
Then

X ′(θ) =




− 1
θ2
1

e1 1

· · · · · · · · · · · · · · ·
− 1

θ2
1

en 1


 =




−X1(θ)− θ2

θ1
1

· · · · · · · · · · · · · · · · · · · · ·
−Xn(θ)− θ2

θ1
1


 , θ = (θ1, θ2).
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If we choose the direction ϑ =
(

ϑ1

ϑ2

)
, then

X ′(θ)ϑ =




−X1(θ)− θ2

θ1
ϑ1 + ϑ2

· · · · · · · · · · · · · · · · · · · · ·
−Xn(θ)− θ2

θ1
ϑ1 + ϑ2


.

Therefore

z(x) = E{X ′(θ)ϑ|X(ϑ) = x} =




−x1 − θ2

θ1
ϑ1 + ϑ2

· · · · · · · · · · · · · · · · · ·
−xn − θ2

θ1
ϑ1 + ϑ2


 .

For the exponential distribution X, the logarithmic derivative is

λ(x) = − 1
θ1

I (x ≥ θ2). If Λ =




λ(x)
· · · · · ·
λ(x)


, then

βθ(x; h) = (Λ, h)Rn = −I(x ≥ θ2)
θ1

n∑

k=1

hk.

Finally,

βθ(x; z(x)) = −I(minxk ≥ θ2)
θ1

n∑

k=1

[
t− xk − θ2

θ1
ϑ1 + ϑ2

]
+

+tr




−ϑ1

θ1
0 · · · · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · · · · −ϑ1

θ1


 =

I(minxk ≥ θ2)
θ2
1

n∑

k=1

xk−

−nI(minxk ≥ θ2)θ2ϑ1

θ2
1

− nI(minxk ≥ θ2)ϑ2

θ1
− nϑ1

θ1
.

4. The Method of Maximal Likelihood

Let {ℵ,<, (P (θ), θ ∈ Θ)} be the statistical structure corresponding to a
random element X = X(θ) = X(θ, ω), ω ∈ Ω, where ℵ is the separable,
real Banach space, < is the σ-algebra of the Borel subsets, and Θ is an
open subset of another separable, real Banach space Ξ. We assume that
the family of measures (P (θ, ·), θ ∈ Θ) possess the logarithmic derivative
with respect to the parameter lθ(x, ϑ) along ϑ ∈ Ξ. Then by Theorem
1, there exists the logarithmic derivative with respect to the measure, and
lθ(x, ϑ) = −βθ(x,E{X ′(θ)ϑ|X(θ) = x}.
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Consider a structure of repeated sampling {ℵ,<, (P (θ), θ ∈ Θ)}n =
{ℵn,<n, (Pn(θ), θ ∈ Θ)}.

Theorem 2. If there exists the logarithmic derivative lθ(x, ϑ) with re-
spect to the parameter in the statisical structure {ℵ,<, (P (θ), θ ∈ Θ)}, then
there likewise exists the logarithmic derivative Lθ((x1, . . . , xn), ϑn) with re-

spect to the parameter, along ϑn def
= (ϑ, . . . , ϑ), for the structure of repeated

sampling {ℵ,<, (P (θ), θ ∈ Θ)}n, and we have

Lθ((x1, . . . , xn), ϑn) =
n∑

k=1

lθ(xk, ϑ) =

= −
n∑

k=1

βθ

(
xn, E{X ′

k(θ)ϑ|Xk(θ) = xk}
)
. (6)

Proof. Since by the condition, there exists dϑ
θ P (θ), it is not difficult to cal-

culate that there likewise exists dϑ,...,ϑ
θ Pn(θ) =

n∑

k=1

dϑ
θ (xk, ϑ)

n∏

j=1
j 6=k

P (θ). This

last one is absolutely continuous with respect to Pn(θ). By the Radon-
Nikodym’s theorem, we find that the statements of the theorem, as well as
formula (6), are valid. ¤

It follows from the theorem that in the case under consideration we can
formulate the principle of maximal likelihood.

Let X1, X2, . . . , Xn be sampling from the random value X(θ), where θ is
an unknown parameter to be estimated by means of sampling. Assume that
there exists the logarithmic derivative lθ(x, ϑ) with respect to the parameter,
along any vector ϑ ∈ Ξ0, of distribution P (θ), which corresponds to X(θ)
and has the form lθ(x, ϑ) = 〈λ(x, θ), ϑ〉. Here, Ξ0 is the dense subset of Ξ.

As is known, all measures P (θ) are equivalent to each other. Let θ0 ∈ Ξ0

be a fixed point. Consider the likelihood function
dP (θ)
dP (θ0)

(x) = ρ(x, θ).

It can be easily seen that for P ∈ L the above equality results in
ρ′θ(x, θ)ϑ
ρ(x, θ)

= lθ(x, ϑ).

For the sampling X1, X2, . . . , Xn, the likelihood function is

L(X1, X2, . . . , Xn, θ; ϑ) =
n∏

k=1

ρ(Xk, θ).

According to the likelihood principle, the estimate of maximal likelihood
will be called the value θ = θ̂ which supplies the likelihood function L with
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maximum (provided that such value of the parameter θ exists). Since

ln L(X1, X2, . . . , Xn, θ; ϑ) =
n∑

k=1

ln ρ(Xk, θ),

the condition for maximum allows us to formulate this definition in terms
of the logarithmic derivative with respect to the parameter:

The estimate of maximal likelihood θ̂ with respect to the direction ϑ is
called the root (if exists) of the equation

n∑

k=1

lθ(xk, ϑ) = 0, ∀ϑ ∈ Ξ (7)

with respect to θ, under the condition that the expression
d

dθ
l(x, θ) is defined

negatively.
By Lemma 1, equation (7) can be replaced by

n∑

k=1

{k(xk, θ),K(xk, θ)ϑ)ℵ + trK ′
x(xk, θ)ϑ} = 0, ∀ϑ ∈ Ξ0. (8)

xk in formulas (7) and (8) are the values of Xi, experimentally.

Example 6. Let in the equipped Hilbert space H+ ⊂ H ⊂ H− be
considered the sampling X1, X2, . . . , Xn from the canonical Gaussian value
with an unknown mean θ, for which βθ(x, h) = (θ−x, h)H , h ∈ H+. Clearly,
X(θ) = N + θ, where N is the canonical Gaussian value with zero mean.
X ′(θ) = I, X ′(θ)h = h, and hence E{X ′

k(θ)h|Xk(θ) = x} = h. Thus, (8)
takes the form

n∑

k=1

(θ − xk, h)H = 0,

whence

(θ̂, h)H =
1
n

n∑

k=1

(Xk, h)H and θ̂ =
1
n

n∑

k=1

Xk = X 1.

In addition,
1
n

n∑

k=1

dh

dθ
(x− θ, h)H = −n||h||2H ≤ 0.

1 This equality is obtained under the condition h ∈ H+ and θ − xk ∈ H−. If j is the
embedding operator j : H+ → H and j∗ : H− → H, we can rewrite

(j∗θ̂, jh)H =
1

n

n∑

k=1

(j∗Xk, jh)H , and again θ̂ =
1

n

n∑

k=1

Xk = X.

If h ∈ H, then, as is known, the expression βθ(x, h) = (θ − x, h)H extends with respect
to the continuity as a measurable linear functional. The obtained in such a way so-called
Skorokhod’s integral solves our problem.
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As an application, we consider a random process x(t) = ϕ(t) + w(t),
where w(t) is a standard Wiener’s process, ϕ ∈ C[,∞) = Ξ is an unknown
component of the observable process. Surely, Ex(t) = ϕ(t). In this case,
H+ = C ′[0,∞), H− = L2[0,∞).

If x1(t), x2(t), . . . , xn(t) are observed, then ϕ̂(t) =
1
n

n∑

k=1

xk(t).

If H = Rn is finite-dimensional, we obtain the estimate of maximal
likelihood along any vector h = (h1, . . . , hn):

θ̂ = (θ̂1, . . . , θ̂) =
(

1
n

n∑

k=1

X1
k , . . . ,

1
n

n∑

k=1

Xm
k

)
.

5. Consistensity of the Maximal Likelihood Estimate

Let the statistical structure {ℵ,<, (P (θ), θ ∈ Θ)} possess the logarithmic
derivative with respect to the parameter along the constant vector ϑ ∈
Ξ0 − lθ(x, ϑ). We introduce a Kulbak-Leybler type function of distance
for pairs of measures:

D(θ1, θ2) = Eθ1{lθ1(x, θ2 − θ1)− lθ2(x, θ2 − θ1)}. (9)

Example 7. In the equipped Hilbert space H+ ⊂ H ⊂ H−, for canon-
ical Gaussian measures µ1 and µ2 with, respectively, θ1 and θ2 means, the
distance is D(µ1, µ2) = (θ1 − θ2, θ2 − θ1)H = −||θ2 − θ1||2H .

Lemma 2. Let the family be defined uniquely by the parameter, i.e., if
P (θ1) = P (θ2), then θ1 = θ2, and vice versa. And if D(θ1, θ2) ≥ 0, then
P (θ1) = P (θ2), and vice versa.

Proof. We note immediately that D(θ1, θ2) ≤ 0. Indeed,

D(θ1, θ2) = Eθ1{lθ1(x, θ2 − θ1)− lθ2(x, θ2 − θ1)} =

= Eθ1(λ(X, θ1)− λ(X, θ2), θ2 − θ1)Ξ =

= Eθ1(λ
′
θ(X, θ1+τ(θ2 − θ1))(θ2 − θ1), θ2−θ1)Ξ ≤ 0, (0≤τ ≤ 1).

Thus we can see that if D(θ1, θ2) ≥ 0, then θ1 = θ2, which implies P (θ1) =
P (θ2), and vice versa. ¤

Theorem 3. If Ξ0 is a convex precompact set, then the estimate of
maximal likelihood is consistent.

Proof. Let θ̂ be a solution of equation (8) or (9). Consider the difference

ϕn(t) =
1
n

ln L(x1, . . . , xn, θ; t(θ̂ − θ))− 1
n

ln L(x1, . . . , xn, θ̂; t(θ̂ − θ)).
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Since θ̂ for any t is a point of maximum, ϕn(t) decreases with respect to t
on [0, 1]. On the other hand, by the strong law of large numbers,

ϕn(t) =
1
n

ln
L(x1, . . . , xn, θ; t(θ̂ − θ))a.s

L(x1, . . . , xn, θ̂; t(θ̂ − θ))
→ ϕ(t),

and ϕn(t) is likewise the decreasing function. Therefore, ϕ′(t) ≤ 0. But

ϕ′(t)=P lim
n

ϕ′n(t) and ϕ′n
a.s→ Eθ̂{lθ(X, θ̂ − θ)− lθ̂(X, θ̂ − θ)}=D(θ̂, θ) ≤ 0.

By Lemma 2, we have θ = θ̂. ¤
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