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ABSTRACT. Nearly all natural reactions are of random character. In many spheres of science and
applications essential use is made of probabilistic-statistical methods. Using these methods, probabilistic
models were constructed and fundamental results were obtained in the investigation of the following
issues of chemistry and biology: autocatalytic, unimolecular, bimolecular, monomolecular and chain
reactions, population growth, mutation, epidemic theory, gene frequency theory, radiobiology, and so on.
In this paper a chemical reaction of first order is considered when the reagent concentration is distributed
by the binomial law. New expressions are obtained for the mathematical expectation and variance of the
reagent concentration and product. A stochastic model of a first order reaction is constructed.
© 2013 Bull. Georg. Natl. Acad. Sci.
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The motion and velocity of each particle or a sys-
tem of particles obey certain laws. For instance in clas-
sical mechanics the behavioral laws of particles in time
and space are deterministic — the current state of a
particle uniquely determines its future states. On the
other hand, for instance, Brownian motion laws, varia-
tion of energy levels of elementary particles, motion
laws in quantum mechanics and others are stochastic
—the current state of a particle can determine only the
probability of future states of a particle. Besides, de-
terministic models are described by real functions of
time, whereas stochastic models are described by ran-
dom (stochastic) processes [1-3]. Note that the math-

ematical theory of Brownian motion as a stochastic

process was constructed by N. Wiener. This theory
underlies the modern stochastic integral and differen-
tial calculus (stochastic analysis) [6-8].

Nearly all natural processes are of random char-
acter. In many spheres of science and applications
essential use is made of probabilistic-statistical meth-
ods. Using these methods, probabilistic models were
constructed and fundamental results were obtained
for instance in the investigation of the following is-
sues of chemistry and biology: autocatalytic,
unimolecular, bimolecular, monomolecular and chain
reactions, population growth, mutation, epidemic
theory, gene frequency theory, radio biology and so
on[1,4,5].
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Let us consider the unimolecular reaction
A—*_ g, where under certain conditions the sub-

stance 4 (reagent) transforms irreversibly to the sub-
stance B (product). A reaction velocity constant
k >0 depends on the conditions and kind of reac-
tion. Let the concentration of the reagent 4 be de-
scribed by the function A4 (¢), and that of the product
B by the function B (¢), t > 0. Assume that in this

chemical reaction of first order A(0)=4,>0,

B(0)=0 and the equality

Ay —A(1)=B(1), 120 )

is fulfilled for any moment of time.

According to the deterministic model of a first
order chemical reaction, the reagent and product con-
centrations are described respectively by the follow-
ing functions of time [3]

A(t)= 4™, 120 @)

B(t)= 4y (1-¢™), 120 3)

Note that 4 (¢) is a decreasing function of time
since the first derivative with respect to time is
4(t)= ~kAye ™™ < 0. Clearly, this fact is natural.
Also, A4 (¢) is
Ay (1) = J* 4ye™ > 0. We obtain analogously that

convex from below -

B (?) is an increasing, convex from the above

function since we have B/(f)= kdye ™ >0,
Btt (t) = —k* Aoe*k‘ < 0. Let us consider some mo-
ment of time ¢ =, and draw tangent lines for the
functions 4 (¢) and B (¢) at the points M (to, A (lo ))

and N (tO,B (% )) , respectively. Equations of these

tangent lines have the form
F() =4 (o)t +A(t) — 4/ (1
g(t)=B/(t)t+B(t)-B/(to

For the points (O,A(O)) and (O,B(O)) the tan-

)t
)

'to.

gent lines have the following form:
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fo(t)=4/(0)1+ 4, @)
2o (1)=B/(0)r. )

The angular coefficients 4/ (¢,) and B/(t,) of

these linear equations express the concentration ve-
locities of 4 (f) and B (¢), respectively, at any moment

of time £, > 0. It is obvious that at any moment of
time ¢ >0 wehave 4/(¢)+ B/ (¢)=0,i.e. the sum of

instantaneous concentrations 4 (¢) and B (¢) at any
moment of time ¢ > 0 is equal to zero. From (2)-(5) we

immediately obtain for the initial velocities of reagent
A and product B that 4, (0)=—kA4,, B/(0)=k4,.
Note also that the graphs of the functions 4 (¢) and

. . 1 .
B (?) intersect at the point ¢ =;ln2 at which we

1 1
have 4 (% In 2} =B (Z In 2} =3 Ay . In other words,

. 1 .
the moment of time ¢ = ;ln 2 is the moment of the

half reaction of the reagent A (half reaction of the
product B). Moreover, the line A(t) =0 is the as-
ymptote of the function A(f), whereas the line
B(t) = A, is the asymptote of the function B (¢). The
functions 4 (¢) and B (¢) are mutually symmetric with

respect to the line A(7) = B(1) = %AO . Analogously,

the line 4/ (¢)=B/(¢)=0 is the asymptote for the
velocity functions 4, (t) and B, (t) and these func-
tions are mutually symmetric with respect to this line.
The reaction velocity 4/ (t) ofthe reagent A4 always
increases and the reaction velocity Bj(¢) of the

product B always decreases.

To construct the stochastic model of a
unimolecular reaction we assume that the concentra-
tion of the reagent 4 as a random process 4, is de-

fined by the formula



94 Besarion Dochviri, Omar Purtukhia, Grigol Sokhadze

t

4, =A0+jr(s)ds+jc7(s)dws ©6)
0 0

where the first integral is the usual Riemann integral
and the second (stochastic) integral is taken over the
Wiener process [8]. The functions of time » (f) and

log (t) are unknown and have to be found. At every
fixed moment oftime ¢ > 0 the value 4, isarandom

variable whose possible values are x=0,1,..., 4,.

We should find the distribution of this random vari-
able.

In many problems of biology and chemistry there
exist definite connections between deterministic and
stochastic models. For instance in population growth
models the mean value of a population size coincides
with the population size function for a deterministic
process of population growth [1]. Due to this fact we

assume that the random variable 4, has the binomial

distribution

P(4, =x)=Cj0px (l—p)AO_x )

where the probability of “success” is

p=e". Note that the distribution measure
t, (x)=P(4, =x) is smooth, has the logarithmic

derivative with respect to the parameter ¢
/ x ke N gy —kxt ___—kxt
u,(x)=C o (l—e ) (xe —x+Aje T —xe ) .

This discrete measure with alternating signs is
absolutely continuous with respect to the measure
L, (x) and the Radon-Nycodim derivative is written
as

du (x) kekt(x+1)

= an (x) = 1 (xe’k’—x+AOeka'—xeka').

E,(x)

Hence it follows that all measures 1, (x) are
equivalent. This practically means that the process
4, cannot be “very bad”, i.e. we should not expect

any large deviations from the averaged process
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E (At ) . By virtue of (2) and (7), for the mathematical

expectation and variance of 4, we can write

E(4,)=A(t)= 4™ @®)

D(4)=Ae ™ (1=e™)=a(r)(1-¢) ()

It is easy to see that B, has the following bino-

mial distribution with probability of “success” 1 — e

P(B,=x)=C} (1-e*) ()" (0)
and we obtain

E(B,)=4y(1-¢™)=B(¢) (11)

D(B)=dy(1-¢™)e™ =D(4) (12)

Thus, in the deterministic model (2), (3) the func-
tions A (f) and B (¢) are the averaged trajectories of
the processes 4, and B,. The dispersions of these

processes coincide, have a maximum at the moment

. In2 . . . .
of time ¢ = - and a unique point of inflection at

. In4
the moment of time ¢ = nT .

Note that according to (8) and (11) the velocities
of the concentrations 4 (¢) and B (¢) coincide with the
of the

values of the processes 4, and B5,,

velocities average concentration

respectively:
A4/()=(E(4)) . B(1)= (E(8,)) ,- Moreover,
4, and B, are the so-called Markov processes, dis-
crete in space and continuous in time. 4, is the proc-
ess of pure death and B, is the process of birth. Note

that expressions (8), (9) are obtained by a different

technique when 4, has a distribution different from
M0l

Let us now find the functions r () and O'(t) .
From (6) we have

E(At)=A0+Ir(s)ds=Aoe_k’ (13)
0



On One Stochastic Model of a Chemical Reaction

95

D(4,)
& D(8)
I
I
A 4o B :
1 A ([) :
i i
H |
0 1
lln2 0 + + i
1 1
P In2 —In4
Fig. 1. Concentration of functions of a reagent and a L
product. Fig. 3. Variance of concentration of a reagent and a
product.
kAO
t 11
1 =
56) 4 =AO—kIAS ds+k2I 4, (2¢™ ~1) dw, 5,
0 0
5 An analogous representation can be easily ob-
1
tained for the process B, , too. Note that if there is a
4,0 possibility to observe the course of the process 4,
and to obtain the sampling 4, ,..., 4, , then one can
- kA, "
solve various statistical problems as the behavior of

Fig. 2. Concentration of velocities of a reagent and a
product.

D(4,)= jcrz (s)ds = Ape™ (1 —eM ) (14)
0

From (15), (14) we easily find

r(t)=—kdye™ =—k4,,
o? (t) =k4, (2€_kt —1).

Thus for the process 4, we obtain the stochastic

integral representation
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the process 4, . Also note that the found functions
r (¢) and O'(t) satisfy the conditions which ensure
the existence of representation (6).

For functions 4 (¢), B (1), 4/(t), B/(t), D(4,)
and D(Bt) we have the graphs (Figs. 1-3).
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