
Reports of Enlarged Session of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 27, 2013

ON THE OPTIMAL STOPPING OF PARTIALLY OBSERVABLE PROCESSES
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Abstract. The Kalman-Buces continuous model of partially observable stochastic processes

is considered. The problem of optimal stopping of a stochastic process with incomplete data

is reduced to the problem of optimal stopping with complete data. The convergence of payoffs

is proved when ϵ1 → 0, ϵ2 → 0, where ϵ1 and ϵ2 are small perturbation parameters of the

nonobservable and observable processes respectively.

Keywords and phrases: Partially observable process, gain function, payoff, stopping time,

optimal stopping.

AMS subject classification: 60J05, 91B28, 91B70.

1. Introduction. We consider a partially observable stochastic process (θt, ξt),
0 ≤ t ≤ T , of Kalman-Buces model

dθt = [a0(t) + a1(t)θt]dt+ ϵ1dw1(t), (1)

dξt = dθtdt+ ϵ2dw2(t), (2)

where ϵ1 > 0, ϵ2 > 0 are constants, the coefficients ai(t), i = 0, 1, nonrandom measur-
able functions and w1(t), w2(t) are independent Wiener processes. It is assumed that
in model (1), (2) θt is the nonobservable process and ξt is the observable process [1].

Consider a linear gain function of such from

g(x, t)− f1(t) + f2(t)x, (3)

where fi(t), i = 1, 2, is nonrandom measurable function, x ∈ R, and introduce the
payoffs

S0
T = supτ∈ℜθ

T
Eg(τ, θτ ), Sϵ1,ϵ2

T = supτ∈ℜξ
T
Eg(τ, θτ ), (4)

where as usual we denote a class of all stopping times for a random process X =
(Xt,ℑX

t ) relative to a family of σ-algebras FX = (ℑX
t ) with ℑX

t = σ{Xs, 0 ≤ s ≤ t} as
ℜX

T [1],[2].
The payoff S0

T corresponds to an optimal stopping problem with complete data for
the process θt, while the payoff Sϵ1,ϵ2

T corresponds to the process θt with incomplete
data. The first problem (reduction problem) consists in reducing the optimal stopping
problem with incomplete data of the process θt to the optimal stopping problem of some
completely observable process. The second problem (convergence of payoffs problem)
is a proof the convergence Sϵ1,ϵ2

T → S0
T as ϵ1 → 0, ϵ2 → 0 [3], [4], [5].

Consider the example which show that from the smallness of coefficients ϵ1 and ϵ2
not necessarily by follows the closeness of the payoffs. We suppose that θt = ϵ1w1(t),
g(t, x) = g(x) = a, when x = x0 and g(t, x) = 0, when x ̸= x0, x0 ̸= 0. Then it is
possible to show that Sϵ1,ϵ2

T → 0 ̸= S0
T = a, when ϵ1 → 0, ϵ2 → 0.
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In this paper the problems of reduction and convergence of payoff are investigated
for model (1),(2).

2. The reduction problem. Let us introduce the following notations

mt = E(θt|ℑξ
t ), γt = E(θt −mt)

2. (5)

Theorem 1. The payoff Sϵ1,ϵ2
T can be presented in the following form

Sϵ1,ϵ2
T = supτ∈ℜξ

T
Eg(τ,mτ ). (6)

Proof. Note that for arbitrary τ ∈ ℜξ
T and A ∈ ℑ we have A ∩ {τ ≤ t} ∈ ℑξ

T for
all t ≤ T . Because we have

Sϵ1,ϵ2
T = supτ∈ℜξ

T
E{f1(τ) + f2(τ)θτ} = Sϵ1,ϵ2

T = supτ∈ℜξ
T
E{E[f1(τ) + f2(τ)θτ ]|ℑξ

τ}

= Sϵ1,ϵ2
T = supτ∈ℜξ

T
E{f1(τ) + f2(τ)E(θτ |ℑξ

τ )}.

Next we can write

I{τ=t}E(θτ |ℑξ
τ ) = E(I{τ=t}θτ |ℑξ

τ ) = E(I{τ=t}θt|ℑξ
τ ) = I{τ=t}E(θt|ℑξ

τ ),

where IA is the indicator of set A. According to Lemma 1.9[1], on the set {τ = t}, we
have E(θt|ℑξ

τ ) = E(θt|ℑξ
t ), i.e.

I{τ=t}E(θτ |ℑξ
τ ) = I{τ=t}E(θt|ℑξ

t ).

Thus we get the proof of (6).
Theorem 2. The payoff Sϵ1,ϵ2

T can be presented in the following form

Sϵ1,ϵ2
T = supτ∈ℜθ

T
Eg(τ, θ̃τ ), (7)

where the stochastic process θ̃t is defined by the following stochastic differential equation

dθ̃t = [a0(t) + a1(t)θ̃t]dt+ a1(t)γtdw1(t). (8)

Proof. According to Theorem 10.3 [1] and Theorem 7.12 [1] we have

dmt = [a0(t) + a1(t)mt]dt+ a1(t)γt(dξ
ϵ
t − [a0(t) + a1(t)mt]dt),

dξt = [a0(t) + a1(t)mt]dt+
√

ϵ21 + ϵ22dw(t), (9)

dmt = [a0(t) + a1(t)mt]dt+
a1(t)γt√
ϵ21 + ϵ22

dw(t), (10)

where w(t) is so called innovation Wiener process, which has such property that the
σ-algebra ℑξ

t and ℑw
t coincide. From (8) and (10) we have

dθt = Φt[

∫ t

0

Φ−1
s a0(s)ds+

∫ t

0

Φ−1
s

a1(s)γs√
ϵ21 + ϵ22

dw1(s)], (11)
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dmt = Φt[

∫ t

0

Φ−1
s a0(s)ds+

∫ t

0

Φ−1
s

a1(s)γs√
ϵ21 + ϵ22

dw(s)], (12)

where the deterministic function Φt is defined by the following relation

Φt = exp{
∫ t

0

a1(s)ds}. (13)

From (11), (12) we can write

sup
τ∈ℜθ̃Eg(τ, θ̃τ ) = supτ∈ℜξEg(τ,mτ ), (14)

where ℜθ̃ = ℜθ. Thus

sup
τ∈ℜθ̃Eg(τ, θ̃τ ) = supτ∈ℜθEg(τ, θ̃τ ).

According to Theorem 1 supτ∈ℜξEg(τ,mτ ) = Sϵ1,ϵ2
T and we get (7).

3. Convergence of payoffs. In proving the payoffs convergence rate, an estima-
tion of the conditional variance γt by means of small parameters ϵ1, ϵ2 plays an essential
role. We recall that for γt we have the ordinary differential equation

γ
′

t = 2a1(t)γt −
a21(t)γ

2
t

ϵ21 + ϵ22
+ ϵ21, γ0 = 0. (15)

Let ρ(t) denote a continuous increasing majorant of the function

φ(t) =
ϵ1

a1(t)
Φ−2

t ,

where the function Φt is defined by (13).
Theorem 3. Let ρ(t) ≥ φ(t). Then the following estimate holds for all 0 ≤ t ≤ T :

γt ≤
√
ϵ21 + ϵ22Φ

2
tρ(t). (16)

Proof. We introduce a function ut by using the following transformation

γt =
√
ϵ21 + ϵ22Φ

2
tut, u0 = 0. (17)

It is not difficult to see that the function ut satisfies the ordinary differential equation

u
′

t =
a21(t)Φ

2
t√

ϵ21 + ϵ22
[
ϵ21Φ

−4
t

a21(t)
− u2

t ], u0 = 0. (18)

Let us show that ut ≤ ρ(t), 0 ≤ t ≤ T . Assume the opposite. Then there exist
points t0 and t1 with t0 < t1 such that ut0 = ρ(t0) and ut > ρ(t) for t0 < t ≤ t1. For
t ∈ [t0, t1] we have

u
′

t ≤
a21(t)Φ

2
t√

ϵ21 + ϵ22
[ρ2(t)− u2

t ] < 0.
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Therefore ut < ut0 = ρ(t0) ≤ ρ(t) and we have obtained ut < ρ(t), which contradicts
our assumption. Thus ut ≤ ρ(t), 0 ≤ t ≤ T, and we obtain the estimate (16).

We introduce the notations [5]:

h(t) = ϵ21

∫ t

0

Φ−2
s ds, h̃(t) =

∫ t

0

Φ−2
s

a21(s)γ
2
s√

ϵ21 + ϵ22
ds, (19)

l = exp{2
∫ T

0

a1(s)ds}ρ(T ), (20)

Lg(t, x) = f
′

1(t) + f
′

2(t)x+ f2(t)[a0(t) + a1(t)x]. (21)

Theorem 4. Let the following condition hold:

E(supt≤Tg(t, θt)) < ∞. (22)

Then the estimate is true:

0 ≤ S0
T − Sϵ1,ϵ2

T ≤ (ϵ1 + ϵ2)lsupt≤TE(Lg(t, θt)). (23)

Proof. First we show that S0
T ≥ Sϵ1,ϵ2

T . from Theorem 3[5] and the identity of the
σ-algebras ℑw

t and ℑξ
t it follows that

Sϵ1,ϵ2
T = supτ∈ℜwEg(τ,mτ + η

√
γτ ), (24)

where η is standard normal random variable. The process mt, 0 ≤ t ≤ T, is Markovian
with respect to the family Fw = (ℑw

t ) and in that case as is well known, the class of
stopping times ℑm

T is sufficient [2], i.e. we have

Sϵ1,ϵ2
T = supτ∈ℜm

T
Eg(τ,mτ + η

√
γτ ).

Let us now introduce an auxiliary payoff for stopping times τ ∈ ℜθ
T :

S̃ϵ1,ϵ2
T = supτ≤Tϵ1,ϵ2

Eg(τ, θτ ), (25)

where Tϵ1,ϵ2 be denoted by the relation h̃(T ) = h(Tϵ1,ϵ2). It is easy to see that for
τ ∈ ℑθ

t :

0 ≤ S0
T − S̃ϵ1,ϵ2

T ≤ supτ≤TE[g(τ, θτ )− g(τ ∧ Tϵ1,ϵ2 , θτ∧Tϵ1,ϵ2
)],

where s ∧ t := min(s, t).
Further, by Ito’s formula we can write

E[g(τ, θτ )− g(τ ∧ Tϵ1,ϵ2 , θτ∧Tϵ1,ϵ2
)] = E

∫ τ

τ∧Tϵ1,ϵ2

Lg(t, θt)dt ≤
∫ T

Tϵ1,ϵ2

E[Lg(t, θt)]dt

≤ (T − Tϵ1,ϵ2)supt≤TE[g(t, θt)] ≤ (ϵ1 + ϵ2)lsupt≤TE[g(t, θt)].

Therefore we have

S0
T − S̃ϵ1,ϵ2

T ≤ (ϵ1 + ϵ2)lsupt≤TE[g(t, θt)]. (26)
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From (26), by Theorem 4 [5], we obtain the estimate (23).
Example. Consider the following model

dθt = b(t)dw1(t), dξt = A(t)w1(t)dt+ ϵdw2(t).

We have

γ
′

t = b2(t)− A2(t)

ϵ2
γ2
t , γt = ϵ

b(t)

A(t)
th

A(t)b(t)

ϵ
t,

where thx is tangens hyperbolic function of x. Let Lg(t, x) = f
′
1(t) + f

′
2(t)x.

The estimate (23) we can rewrite by following form:

0 ≤ S0
T − Sϵ

T ≤ ϵ
b(T )

A(T )
th

A(T )b(T )

ϵ
Tsupt≤TE[Lg(t, θt)].
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