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ABSTRACT. The problem of European Option hedging is considered. The integral type option is
investigated in the case of Bachelier financial market model. We solve this hedging problem using the
local time of the risky asset price process and its relationships with the payoffs of option. At first, we give
the Clark stochastic integral representation formula in an explicit form for the local time and then we
use the Trotter-Meyer Theorem and the Fubini Theorem of stochastic type. It is well known that the
Clark-Ocone stochastic integral representation formula is the effective tool for solving of hedging
problem. But in our case there are some difficulties to use this formula directly, because integrands of
integral type payoffs are not differentiable by Malliavin. In the Malliavin theory it is well known that the
indicator of event A is Malliavin differentiable if and only if probability P (A) is equal to zero or one.

Hence, for all t the indicator { }a w bt
I    does not have Malliavin derivative. We prove that if the squaree

integrable random process is not stochastic differentiable, then the “average” process is not stochastic
differentiable either. For the check of the mentioned proposition we use one result proved by us: if square

integrable random processes tu  has the Wiener-Chaos decomposition with kernels , ( )t
u nf  , measurable

in all their variables, then the average process with respect to dt has the Wiener-Chaos decomposition

with kernels coinciding with the average of , ( )t
u nf   with respect to dt. Moreover, we need calculation of

some integrals connected with the normal distribution and for completeness of a statement we give
calculation of these integrals in Appendix. © 2014 Bull. Georg. Natl. Acad. Sci.

Key words: Bachelier model, Clark-Ocone representation, local time, Trotter-Meyer theorem, Fubini theo-
rem, hedging problem.

We consider the European Option of integral type in the case of Bachelier market model. We develop the
method of hedging of this option based on the application the local time of the risky asset price S. We give the
Clark representation of local time and then using the relation between the payoffs of option and local times
based on the stochastic type Fubini theorem we obtain the Clark integral representation of payoffs of our
option. Therefore we solve the hedging problem. The method will be useful in the cases, when there are
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difficulties to use directly the Clark-Ocone integral representation [1, 2].

Let on the probability space ( , , )P  be given the Wiener process ( )tw w , [0, ]t T and ( )w
t ,

[0, ]t T be  the natural filtration generated by the Wiener process .w  Consider the Bachelier market model
(see, for example [3]) with the risk-free asset price evolution described by

1,tB  (1)

and risky asset price evolution

0, 1,t tdS dt dw S    (2)

where R  is appreciation rate and 0   is volatility coefficient.
Let

21exp{ ( ) }
2T TZ w T 

 
  

and TP  is the measure on ( , )w
T  such that

T Td P Z dP .

From Girsanov’s Theorem [3] it follows that under this measure (martingale risk neutral measure)

tt tw w 


 

there is the standard Wiener process and

, 10ttdS d w S  (3)

or

1 ttS w  .

Consider the problem of “replication” the European Option with the payoff of integral type

2

0
{ }

T

t
G I dta S b     (4)

(where a and b are some positive constants, a < b), i.e., one needs to find a trading strategy ( , )t t  ,

[0, ]t T such that the capital process

,t t t t t TX B S X G    (5)

under the self-financing condition

t t t t tdX dB dS   . (6)

From the relations (3), (5) and (6) we have

0
0

tT t

T
G X X d w    . (7)

Our problem is to find the trading strategy ( , ) ( , )t t    , [0, ]t T . It is well-known that this problem
is equivalent to finding a martingale representation of the payoff G with explicit form of integrand. Note that

G is square integrable but not differentiable in Malliavin sense functional of Wiener process ( )tw w ,

[0, ]t T  and therefore we try to obtain the Clark integral representation with known integrand applying a
nonconventional method (because the Clark-Ocone’s well-known method here is not applicable).



6 Omar Glonti, Omar Purtukhia

Bull. Georg. Natl. Acad. Sci., vol. 8, no. 3, 2014

Consider the local time of stochastic process tS , [0, ]t T . By the definition ([4], IV.44.1) local time of S
at the point x R  is

0
0

( ) | | | | sgn( )
tx

t t u ul S S x S x S x dS      . (8)

For any measurable and bounded real function ( )x  ([4], Trotter-Meyer Theorem IV.45.1) the following

relation is true

0
( ) ( ) ( )

T x
t t TS d S l S x dx 




    , (9)

where tS   is the predictable square variation of the martingale tS , [0, ]t T .

Suppose that

( ) { }x I a x b    .

Note also that, according to the Ito’s formula

2 2 2 tt tdS dt S d w   ,

and, hence,
2

tS t   .

Further, from the relation (9) we obtain

2

0
( ){ }

T b x
Tt a

I dt l S dxa S b     . (10)

Auxiliary results

In the Malliavin theory it is well known that the indicator of event A is Malliavin differentiable if and only if

probability P (A) is equal to zero or one (see Proposition 1.2.6 [5]). Hence,  the indicator { }a w bt
I    has no

Malliavin derivative. We prove that if the square integrable random process is not stochastic differentiable,
then the “average” process is not stochastic differentiable either. At first we will formulate one result proved
by us:

Theorem 1. If square integrable random processes 2 ([0, ] )tu L T   has the Wiener-Chaos decompo-

sition 
0

( ( ))t
t n n

n
u I f




  with kernels, measurable in all their variables, then the average process 

0

T
tu dt has

the development

00 0
( ( ) )

T T t
t n n

n
u dt I f dt




   .

Theorem 2. Let the square integrable random processes 2 ([0, ] )tu L T   such that for almost all

[0, ]t T  the random variable tu  does not belong to 2,1D . Then the average process 
0

T
tu dt  is not in the
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space 2,1D .

Proof. For almost all [0, ]t T tu  is square integrable random variable, and hence it has the Wiener-Chaos

decomposition

0
( ( ))t

t n n
n

u I f



  ,

where the deterministic kernels ( )t
nf   are symmetric and depend on the parameter t. Using the standard

approximation technique to the process tu  in 2 ([0, ] )L T   by a sequence of simple processes, these

kernels can be chosen to be measurable in all their variables. Hence, due to Theorem 1 we have

00 0
( ( ) )

T T t
t n n

n
u dt I f dt




   .

Further, according to the Proposition 1.2.7 [5], the series

1 2
!|| ( ) ||

([0, ] )
t

n n
n

nn f
L T






is unconvergent for all [0, ]t T .
On the other hand, according to the Fubini theorem, we can conclude that the series

1 12 20 0
!|| ( ) || ! || ( ) ||

([0, ] ) ([0, ] )

T Tt t
n n n n

n n
nn f dt nn f dt

L T L T
 

 

       
 

is also unconvergent, because otherwise we obtain that

1 2
!|| ( ) ||

([0, ] )
t

n n
n

nn f
L T




  

for almost all [0, ]t T .
Therefore, using again the Proposition 1.2.7 [5], we easily ascertain that the theorem is true.

Corollary. Since the indicator function { }a w bt
I   does not belong to D2,1 for all [0, ]t T , hence, for all

real number a < b

2,1
0

{ }
T

t
I dt Da w b    .

Below we need calculation of some integrals connected with the normal distribution, whose value will be
given below in the form of propositions. For the sake of complements, we included a proof of these proposi-
tions in the Appendix.

Proposition 1. For any constants 1c R , 2 0c  and 0c   the following relationships are fulfilled:
i)

1 1 1
0,1 1 0,1 2 0,1

2 2 2
( ) [( ) ( ) ( )] |x c x c x cdx x c c

c c c





 
  

     ;

ii)

2 2
0,1 0,1 0,1

1( ) [( ) ( ) ( )] |
2

x x xx dx x c cx
c c c





      .
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Proposition 2. The following relationship is true

0,1 0,1| | [2 ( ) 1] 2 ( )T
x xE w x x T
T T

     .

Integral representation theorem and hedging of the option

Now we investigate the hedging problem of European Option with payoff

0
{ }

T

t
U I dta S b    , (11)

where
1t tS t w   

is risky asset price and risky free asset price 1tB  , i. e., we consider the Bachelier model. Note that TU  is

really the occupation time of ( , )a b  up to time T of risky asset process S.

Under the martingale measure P ( P P and is such that [3] Td P Z dP  with 21exp{ ( ) }
2T TZ w T 

 
   )

tt tw w 


 

is the standard Wiener process and

1 ttS w  . (12)

From (11), using (12), we have

0 1 1{ }

T

t

U I dta bw
 

   
 

. (13)

According to the Trotter-Meyer Theorem ([4], Theorem IV.45.1) for any measurable and bounded real

function ( )x the following relation holds

0
( ) ( ) ( )

T x
t t TS d S l S x dx 




    ,

where tS   is the predictable square variation of martingale S and ( )x
Tl S  is the local time of S at the point

x R . If we take here { }( ) a x bx I   , then for the Wiener process we obtain that

( 1) /

1 1{ }
0 ( 1) /

( )
t

bT
x

a b Tw
a

U I dt l w dx


 



  


   , (14)

where ( )x
Tl w is the local time of the Wiener process w at the point x R .

It is well known ([6] or [4], Tanaka’s formula IV.43) that the local time of the Wiener process admits the
following representation:

0

( ) | | | | sgn( )
T

x
T t tTl w w x x w x dw     . (15)

Theorem 3. The local time of Wiener process admits the following integral representation
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0,1
0 0

( ) | | | | {1 2 ( )} sgn( )
T T

tx
T t t tT

x wl w E w x x d w w x d w
T t


       
  , (16)

where

0,1 0,1| | [2 ( ) 1] 2 ( )T
x xE w x x T
T T

     . (17)

Proof. Due to the Clark-Ocone integral representation formula [2], we have

0

| | | | [ (| |) | ]
T

w
T T T tt tw x E w x E D w x dw      .

Using the relation ([5], Proposition 1.2.4 or [7], Theorem 2)

{ } { }(| |) [( ) ( ) ]
T TT T Tt t w x w xD w x D w x w x I I 
       

the integrand of the Clark-Ocone integral representation we can rewrite as

1 2{ } { }[ (| |) | ] [ | ] [ | ] :
T T

w w w
Tt t t tw x w xE D w x E I E I J J         .

According to the well-known properties of Wiener process and conditional mathematical expectation it is not
difficult to see that

1 { } { } { }: [ | ] [ | ] [ ] |
T T t t T t t

w
ttw x w w w x w w y x y wJ E I E I w E I           

0, 0,1{ } | 1 ( ) | 1 .
t t

t
T t T ty w y w

x wP w w x y x y
T t 

 
            

Analogously, we can verify that

2 0,1{ }: [ | ]
T

tw
tw x

x wJ E I
T t

 
       

.

Combining now the above obtained expressions and using the relation (15) and Proposition 2 we easily
complete the proof of theorem.

Theorem 4. The  following integral representation formula is fulfilled

0

T

ttU EU L d w   ,

where ( )E   is mathematical expectation with respect to P ,

( 1) /2 2
0,1 0,1 ( 1) /

1{( ) ( ) ( ) [sgn( ) 1]} |
2

b
a

x xEU x T Tx x x
T T


 

      (18)

and

( 1) /
0,1 0,1 ( 1) /{ [1 sgn( )] 2( ) ( ) 2 ( )} |t t b

t tt a
x w x wL x w x x w T t

T t T t

 


 

       
 

.

Proof. From (14) using the relations (16) and (17), we obtain that

( 1) /

0,1 0,1
( 1) /

{ [2 ( ) 1] 2 ( ) | |}
b

a

x xU x T x dx
T T
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( 1) /

0,1
( 1) / 0

{ [1 ( ) sgn( )] }
b T

t
t t

a

x w w x dw dx
T t










   

  .

Fubini Theorem of stochastic type ([6], Lemma III.4.1 or [8], Corollary of the Lemma IV.2.4) give us possibility
to have the following representation:

( 1) /

0,1 0,1
( 1) /

[2 ( ) 2 ( ) ( | |)]
b

a

x xU x T x x dx
T T









     

( 1) /

0,1
0 ( 1) /

{ [1 ( ) sgn( )] }
bT

t
t t

a

x w w x dx d w
T t










   

  .

Using the Proposition 1 ii) with ( 1) /a   , ( 1) /b    and c T  we have
( 1) /

2
0,1 0,1 0,1

( 1) /

( 1) / ( 1) /2 ( ) ( ) ( ) | ( ) |( 1) / ( 1) /
b

a

x x xb bx dx x T Txa aT T T





  




        .

Further, it is easy to see that
( 1) / ( 1) /

0,1 0,1 0,1
( 1) / ( 1) /

( 1) /2 ( ) 2 [ ( )] 2 ( ) |( 1) /
b b

a a

x d x x bT dx T T dx T adxT T T

 

 

 
 

 

       .

Moreover, we have

( 1) /
2

( 1) /

1 ( 1) /( | |) [sgn( ) 1] |( 1) /2

b

a

bx x dx x x a











    .

On the other hand, due to the Proposition 1 i) with ( 1) /a   , ( 1) /b   , 1 tc w  , 2c T t  ,
using the relation

( 1) /

( 1) /

( 1) /sgn( ) sgn( ) |( 1) /
b

a

bc x dx x c x a











    ,

it is not difficult to see that

( 1) /

0,1
( 1) /

( 1) /[1 ( ) sgn( )] [ sgn( )] |( 1) /
b

t t
a

x w bt w x dx x x w x aT t












        

0,1 0,1
( 1) / ( 1) /2( ) ( ) | 2 ( ) |( 1) / ( 1) /

t
t

x w x wb btx w T ta aT t T t
  

        
.

Combining now the above obtained expressions we complete the proof of theorem.

In the conclusion we notice that the components of hedging strategy are: /t tL  and

t t t tX S   , where the capital process

0

t

st sX EU L d w   .

and the price of this option is defined by (18).
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Remark. Here we do not consider the problem of choosing constants a and b. We note only that if
b < 1, then [( 1) / , ( 1) / ]( | |) ( ) 0a bx x I x     and therefore the price of our option will be equal to

( 1) /2
0,1 0,1 ( 1) /{( ) ( ) ( )} | b

a
x xEU x T Tx
T T


 

    .

Appendix

Proof of Proposition 1. i) Using the integration by parts formula, due to the well-known properties of the
integration, it is not difficult to see that

1 1 1
0,1 0,1 0,1

2 2 2 2

1( ) [ ( )] | ( )x c x c x cdx x x dx
c c c c

 

 

 
  

     

1 1
0,1 1 1 0,1

2 2 2

1[ ( )] | ( ) ( )
x c x c

x x c c dx
c c c





 
 

     

1 1 1 1
0,1 2 0,1 1 0,1

2 2 2 2
[ ( )] | [ ( )] ( ) ( )x c x c x c x cx c d c d

c c c c

 

 

  
   

     

1 1
1 0,1 2 0,1

2 2
[( ) ( ) ( )] |

x c x c
x c c

c c
 

 
    .

ii) Analogously, consecutively using the integration by parts formula, we easily ascertain that

2 2
0,1 0,1 0,1

1 1( ) ( ) ( ) [ ( )] |
2 2

x x xx dx d x x
c c c

 

 


      

2 2
0,1 0,1 0,1

1 1 1( ) [ ( )] | [ ( )]
2 2 2

x x xx dx x c xd
c c c c

 

 

      

2 2
0,10,1 0,1

1 1 1
[ ( )] | [ ( )] | ( ) ( )

2 2 2
x x x xx c x c d
c c c c


 
 


     

2 2
0,1 0,1

1 [( ) ( ) ( )] |
2

x xx c cx
c c

     .

Proof of Proposition 2. By the definition of mathematical expectation, due to the well-known properties of
normal distribution and integration, we can write

21| | | | exp{ }
22T
uE w x u x du
TT




    

2 21 1( )exp{ } ( )exp{ }
2 22 2

x

x

u ux u du u x du
T TT T 




       

2 2

0, ( ) exp{ } ( )
2 22

x
T

T u ux x d
T TT 

     

2 2

0,exp{ } ( ) [1 ( )]
2 22 T

x

T u ud x x
T TT
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0, 0, 0, 0,( ) ( ) | ( ) | [1 ( )]T T T T
xx x T u T u x xx        

0,1 0,1[2 ( ) 1] 2 ( )x xx T
T T

    .
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maTematika

integraluri tipis evropuli ofcionis hejireba

o. Rlonti*, o. furTuxia**
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(warmodgenilia akademiis wevris e. nadaraias mier)

ganixileba evropuli ofcionis hejirebis amocana. gamokvleulia integraluri tipis
ofcioni finansuri bazris baSelies modelis SemTxvevaSi. hejirebis aRniSnuli amocana
gadawyvetilia riskiani fasiani aqtivis procesis lokaluri drois cnebisa da ofcionis
gadasaxadis funqciasTan misi damokidebulebis gamoyenebiT. pirvel rigSi Cven gamogvyavs
klarkis stoqasturi integraluri warmodgenis formula cxadi integrandiT da Semdgom
viyenebT troter-meieris Teoremasa da stoqasturi tipis fubinis Teoremas. kargad aris
cnobili, rom hejirebis amocanis gadawyvetis efeqtur saSualebas warmoadgens klark-
okonis stoqasturi integraluri warmodgenis formula. magram Cven SemTxvevaSi
warmoiqmneba garkveuli siZneleebi, vinaidan integraluri gadasaxadis funqciis integrandi
araa diferencirebadi malivenis azriT da klark-okonis formulis pirdapiri gamoyeneba
SeuZlebelia. malivenis aRricxvaSi cnobilia, rom A  xdomilebis indikatori aris

malivenis azriT warmoebadi maSin da mxolod maSin, rodesac am xdomilebis ( )P A albaToba

nuli an erTia. Sesabamisad, nebismieri t -sTvis { }a w bt
I   indikators ar gaaCnia malivenis

warmoebuli. Cven vaCveneT, rom Tu kvadratiT integrebadi stoqasturi procesi ar aris
stoqasturad warmoebadi, maSin “gasaSualebuli” procesi agreTve ar aris stoqasturad
warmoebadi. aRniSnuli debulebis Sesamowmeblad gamoyenebul iqna Cven mier miRebuli

erTi Sedegi: Tu kvadratiT integrebad stoqastur tu process gaaCnia vineris qaoturi
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warmodgena , ( )t
u nf   gulebiT, romelic zomadia yvela Tavisi cvladis mimarT, maSin

dt -s mimarT gasaSualoebul process agreTve gaaCnia vineris qaoturi warmodgena gulebiT,,

romelic emTxveva , ( )t
u nf   gulis saSualos dt-s mimarT. garda amisa, Cven dagvWirda

normalur ganawilebasTan dakavSirebuli zogierTi integralis gamoTvla da naSromis
sisrulis mizniT aRniSnuli integralebis gamoTvla moyvanilia damatebaSi.
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