
                                                       
   

 

ISSN: 2277-3754   

ISO 9001:2008 Certified 
International Journal of Engineering and Innovative Technology (IJEIT) 

Volume 4, Issue 5, November 2014 

57 

 

 

 

Abstract— the problem of European Option hedging in the 

case of Black-Scholes market model is considered. It is 

well-known, that the Clark-Ocone integral representation 

formula is the effective tool for the solving of hedging problem. 

But in this case there are some difficulties to use this formula 

directly, because integrand of payoff is not differentiable by 

Malliavin. So, we solve this hedging problem using the local time 

of the risky asset price process and its relationship with the payoff 

of option. 

 
Key words or phrases: Black-Scholes model, Clark-Ocone 

representation, local time, Trotter-Meyer Theorem, hedging 

problem. 

I. INTRODUCTION AND PRELIMINARIES 

We consider the European Option of integral type in the 

case of Black-Scholes market model.  We develop the method 

of hedging of option based on the using the local time of the 

risky asset price S . We give the Clark representation of local 

time and then using the relation between payoff of option and 

local time based on the stochastic type Fubini theorem we 

obtain the Clark integral representation of payoff our option. 

Therefore we solve the hedging problem. The method will be 

useful in cases when there are difficulties to use directly the 

Clark-Ocone integral representation ([1], [6]). 

Let on the probability space ( , , )P   be given the 

Wiener process ( )tw w , [0, ]t T  and ( )w
t , [0, ]t T  be 

the natural filtration generated by the Wiener process w . 

Consider the Black-Scholes market model with risk-free asset 

price evolution described by  

                       t tdB rB dt ,   0 1B  ,                             (1.1) 

where 0r   is interest rate and risky asset price evolution 

                    t t t tdS S dt S dw   ,                           (1.2) 

where R  is appreciation rate and 0   is volatility 

coefficient. 

Let  
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and TP  is the measure on ( , )w
T   such that T Td P Z dP .  

 

 

From Girsanov's Theorem it follows (see [8]) that under this 

measure (martingale risk neutral measure) 

                      t t

r
w w t






   

is the standard Wiener process and 

                                  tt t tdS rS dt S d w  ,                   (1.3) 

or 

                
2

0 exp{ ( / 2) }ttS S w r t    . 

Consider the problem of "replication" the European 

Option with the payoff of integral type 

                      
2

{ }

0
t

T

a S b tG I S dt   ,                         (1.4) 

where a  and b  are some positive constants, a b . 

Remark 1. It is well-known, that the Clark-Ocone stoc-

hastic integral representation formula is the effective tool for 

the solving of hedging problem. But in our case there are 

some difficulties to use this formula directly, because 

integrands of integral type payoff are not differentiable by 

Malliavin. In the Malliavin theory it is well-known that the 

indicator of event A  is Malliavin differentiable if and only if 

probability ( )P A  is equal to zero or one. Hence, for all t  

the indicator { }a S bt
I    has not Malliavin derivative. Earlier, by 

us it was proved one result: if square integrable random 

processes tu  has the Wiener-Chaos decomposition with 

kernels , ( )
t

u nf  , measurable in all their variables, then the 

Lebesgue average process with respect to dt , has the 

Wiener-Chaos decomposition with kernels coinciding to the 

Lebesgue  average of , ( )
t

u nf   with respect to dt . On this basis 

we established that if the square integrable random process is 

not stochastic differentiable, then the Lebesgue average (wih 

respect to dt ) process also is not stochastic differentiable. 

Hence, the functional G  (from (1.4)) considered by us is not 

stochastic differentiable, and, therefore application of the 

Clark-Ocone integral representation formula is impossible. In 

this paper, we try to obtain the Clark integral representation 

formula with known integrand applying a nonconventional 

method.  

Our main goal is to find a trading strategy ( , )t t   , 

[0, ]t T  such that the capital process 

                                 t t t t tX B S   ,    TX G           (1.5) 

under the self-financing condition 

                                    t t t t tdX dB dS   .                        (1.6) 

Let for simplicity 0r   and 0 1S  . Then, on the one 

hand, from (1.6) and (1.3) we have 

0

0

t

ut u uX X S d w    . 
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On the other hand, from (1.5) one have 

               0

0

T

uT u uG X X S d w     .            (1.7) 

Our problem is to find the trading strategy ( )t , 

[0, ]t T . From (1.7) we see that this problem equivalent to 

finding a martingale representation of the payoff G  with 

explicit form of integrand. Note that G  is square integrable 

functional (it will be checked below) of Wiener process 

( )tw w , [0, ]t T  and therefore we try to obtain the Clark 

integral representation with known integrand.  

II. AUXILIARY RESULTS 

Consider the local time of stochastic 

process ( )tS S , [0, ]t T . By definition (see [7], (IV.44.1)) 

local time of S  at point x R  is 

0

0

( ) | | | | sgn( )

t
x
t t u ul S S x S x S x dS      .  (2.1) 

For any measurable and bounded real function   it is true 

(see [7], Trotter, Meyer Theorem IV.45.1) the following 

relation 

         

0

( ) ( ) ( )

T
x

t t TS d S l S x dx 





    ,            (2.2) 

where tS   is the predictable square variation of martingale 

S . 

Suppose  

{ }( ) a x bx I   . 

Note also that in considered case ( 0r  ), according to the 

Ito’s formula, we have 
2 2 2 22 tt t tdS S d w S dt   , 

and, therefore  

2 2

0

t

t uS S du    . 

Then, from (2.2) we obtain 

                   
2 2

{ }

0

( )
t

T b
x

a S b t T

a

I S dt l S dx    ,     (2.3) 

and, hence, the payoff G  of our option will become the 

following form 

                                          
2

1
( )

b
x
T

a

G l S dx


  .                (2.4) 

Theorem 1. The Clark integral representation of local 

time ( )x
Tl S  is the following 

( ) (| |) |1 |x
T Tl S E S x x      

                          

2

0

ln ( / 2 )
{1 2 [ ]}

T
t

tt

x w T t
S d w

T t

 




  
  


  

                    

0

{sgn( )}

T

tt tS x S d w  .               (2.5) 

Proof. In our case ( 0r  , 0 1S  ) from the relations (1.3) 

and (2.1) we have: 

       

0

( ) | | |1 | sgn( )

T
x

tT T t tl S S x x S x S d w      .      (2.6) 

Using the Clark-Ocone representation formula we find the 

integral representation of | |TS x . Note that the Malliavin 

derivative of | |TS x  is (see [5], Proposition 1.2.4 or [4], 

Theorem 2) 

(| |) [( ) ( ) ]t T t T TD S x D S x S x        

{ } { }T TT S x T S xS I S I     

and consequently the integrand of Clark-Ocone integral rep-

resentation will be 

{ }[ (| |) | ] [ | ]
T

w w
t T t T S x tE D S x E S I       

{ } 1 2[ | ]:
T

w
T S x tE S I J J     , 

where 
w
t  is the natural filtration of Wiener process w . 

According to the well-known properties of Wiener 

process and conditional mathematical expectation, it is not 

difficult to see that 

2
1 { }: [ | ] [exp{ / 2}

T

w
TT S x tJ E S I E w T      

                                              2{exp{ /2} }
| ]

T

w
tw T x

I
  

    

2[exp{ ( ) / 2}T t tE w w w T        

                       2{ ( ) /2 ln }
| ]

T t t

w
tw w w T x

I
     

    

2exp{ / 2} [exp{ ( )}t T tw T E w w       

                       2{ ( ) /2 ln }
| ]

T t t

w
tw w w T x

I
     

    

2exp{ / 2} [exp{ ( )}t T tw T E w w       

                       2{ ( ) /2 ln }
| ]

T t t
t

w w w T x
I w
     

   

2exp{ ( ) / 2}{ [exp{ ( )}T ttS T t E w w       

                     2{ ( ) ln /2}
]} | :

tT t y ww w x y T
I
      

   

2
1: exp{ ( ) / 2}{ ( )}|

tt y w
S T t J y 


   . 

For the purpose of calculation the last multiplier 1( )J y  

above we will use the fact that the random variable 

( )T tw w   has the normal distribution with the parameters 

0  and 
2 ( )T t  . Then, due to the standard technique of 

integration, we easily obtain
1
 

 
1 Here and below ,   is the normal distribution function 

with parameters   and  , and ,   is its density function; 

0,1:   and 0,1:  . 
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21 { ( ) ln /2}
( ) : [exp{ ( )} ]

T t
T t

w w x y T
J y E w w I

  


   
    

            

2

2

22
ln /2

1
exp{ }exp{ }

2 ( )2 ( ) x y T

v
v dv

T tT t  




 

  


  

2

2

1
exp{ ( ) / 2}

2 ( )
T t

T t



 


 

                          
2

2 2

2

ln /2

[ ( )]
exp{ }

2 ( )
x y T

v T t
dv

T t
 







 

 
  


  

2exp{ ( ) / 2}T t   

         2 2
2

( ), ( )
[1 (ln / 2)]

T t T t
x y T

 
 

 
      

2exp{ ( ) / 2}T t   

2ln ( / 2 )
{1 [ ]}

x y T t

T t

 



  
 


. 

Combining the above-obtained relations, we conclude that  
2 2

1 exp{ ( ) / 2}exp{ ( ) / 2}tJ S T t T t       

      
2ln ( / 2 )

{1 [ ]}tx w T t

T t

 



  
  


 

              
2ln ( / 2 )

{1 [ ]}t
t

x w T t
S

T t

 




  
 


.        (2.7) 

Further, by arguments similar to those used in proving of 

relation (2.7), it is not difficult to verify that 

2
2 { }: [ | ] [exp{ / 2}

T

w
TT S x tJ E S I E w T                                                                                        

                                      2{exp{ /2} }
| ]

T

w
tw T x

I
  

    

     
2ln ( / 2 )

[ ]
t

t

x w T t
S

T t

 




  
 


.          (2.8) 

Hence, due to the Clark-Ocone integral representation 

formula, taking into account the relations (2.7) and (2.8), we 

ascertain that 

0

| | (| |) [ (| |) | ]

T
w

tT T t T tS x E S x E D S x d w      

(| |)TE S x   

          
2

0

ln ( / 2 )
{1 2 [ ]}

T
t

tt

x w T t
S d w

T t

 




  
  


 .    (2.9) 

Summing up the relations (2.6) and (2.9), we complete the 

proof of theorem. 

III. INTEGRAL REPRESENTATION THEOREM AND 

HEDGING THE OPTION WITH PAYOFF G  

Recall that, our aim is to find the stochastic integral 

representation of the Wiener functional G  from (2.4). At 

first, we will check that it is a square integrable functional. 

Indeed, due to the Helder's inequality, we have  

2 2 2 4
{ } { }

0 0

( ) { } { }
t t

T T

a S b t a S b tE G E I S dt E T I S dt        

4 2 4

0

{ }

T

E T b dt T b    . 

Theorem 2. The following integral representation formula 

is fulfilled 

2
0

1
[ (| |) |1 |]

b T

tT t

a

G E S x x dx v d w


      , 

where 

21 ln ( / 2 )
{1 2 [ ]}

b
t

t t

a

x w T t
v S dx

T t

 

 

  
   


         

                           
1

{sgn( )}

b

t t

a

S S x dx


  .                   (3.1) 

Proof. At beginning, let us rewrite the relation (2.5) in the 

form 

0

( ) : ( , ) ( , , , )

T
x

t tT tl S C T x g t x w S d w   .          (3.2) 

According to the Clark formula, there exists the adapted 

(to the filtration of w ) and square integrable process ( , )h t x  

such that the functional G  admits the representation 

            

0

( , )

T

tG EG h t x d w   .                              (3.3) 

Suppose that tu  is any adapted an square integrable 

process on the [0, ]T   and let us denote 

                      

0

:

T

ttF u d w  . 

Then, on the one hand, we have 

               

0

( ) { ( , ) }

T

tE GF E h t x u dt  .                 (3.4) 

On the other hand, using the stochastic Fubiny Theorem 

(see [3], Lemma III.4.1 or [2], Corollary of the Lemma 

IV.2.4), due to the relation (2.3) it is easy to see that 

2
0

1
{ ( , ) ( , , , ) }

b T

t tt

a

G C T x g t x w S d w dx


     

      
2 2

0

1 1
( , ) { [ ( , , , ) ]}

b T b

t tt

a a

C T x dx S g t x w dx d w
 

    . 

Therefore we can write 

2

1
( ) [ ( , ) ] ( )

b

a

E GF C T x dx E F


    

     
2

0

1
[ ( , , , ) ]

T b

tt t

a

E u S g t x w dx dt


    

        
2

0

1
{[ ( , , , ) ] }

T b

t t t

a

E g t x w dx S u dt


   .        (3.5) 
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Due to the relations (3.4) and (3.5), for any 

2([0, ] )u L T   we have 

2
0

1
( { ( , ) [ ( , , , ) ] } ) 0

T b

t t t

a

E h t x g t x w dx S u dt


   . 

From here we conclude that for almost all ( , , )t x   

   
2

1
( , ) [ ( , , , ) ]

b

t t

a

h t x g t x w dx S


  .                      (3.6) 

Combining now the relations (2.5), (1.4), (3.2), (3.3) and 

(3.6) we easily ascertain that the representation (3.1) is 

fulfilled. 

The result of Theorem 2 give to us the possibility to find 

the component t  of the hedging strategy ( , )t t   , 

[0, ]t T  which is defined by integrand of representation 

(3.1) and is equal 

2

2

1 ln ( / 2 )
{1 2 [ ]}t

t

b
v t

t S
a

x w T t
dx

T t

 




  
    


  

                                      
2

1
sgn( )

b

t

a

S x dx


  .                 (3.7) 

Remark 2. Using the integration by parts formula, due to 

the well-known properties of integration, it is not difficult to 

see that 

2ln ( / 2 )
{1 2 [ ]}

b
t

a

x w T t
dx

T t

 



  
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
  

2ln ( / 2 )
2{ [ ]} |

t b
a

x w T t
b a x

T t

 



  
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
 

22exp{ ( 3 / 2)}tw T t     

2ln (3 / 2 2 )
{ [ ]} |

t b
a

x w T t

T t

 



  
 


. 

On the other hand, it is not difficult to see that the last 

integral in (3.7) is equal 

    sgn( ) ( ) | ( ) |

b
b b

t t a t a

a

S x dx x S x S       

    { } { } { }( ) (2 ) ( )
t t tS a t a S b S ba b I S a b I b a I          . 

Further, using the result of Theorem 2, we can find the 

capital process 

      

0

[ | ]

t
w

st t sX E G EG v d w     .                (3.8) 

It is well-known (see [8], or (1.5) in this paper) that the 

second component t  of hedging strategy  : 

                 t t t tX S   .                                          (3.9) 

Therefore hedging strategy ( , )t t   , [0, ]t T  in 

problem of "replication" of integral type European Option 

with payoff G  given by (1.4) in case of Black-Scholes 

model, is defined by relations (3.9), (3.8) and (3.7) and the 

price C  of this option 

2

1
[ (| |) |1 |]

b

T

a

C EG E S x x dx


     . 

Remark 3. By the definition of a mathematical expecta-

tion, due to the well-known properties of the normal distri-

bution, using the standard technique of integration, we easily 

conclude that  
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