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Abstract. We have developed some methods of obtaining the martingal integral represen-

tation of nonsmooth (in Malliavin sense) Wiener functionals and have found explicit form of

integrands in this representations.
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We have developed one method of obtaining the stochastic integral representation
of nonsmooth (in Malliavin sense) Wiener functionals and have found explicit form
of integrands in this representations. This method demands smoothness only for con-
ditional mathematical expectation of the considered functional, instead of the usual
requirement of smoothness of the functional (as it was in the well-known Clark-Ocone
formula). The offered method allows us to obtain the integral representations for the
indicator I{a≤h(wT )≤b} (which as it is known is not differentiable in the Malliavin sense),

for the functional of integral type
∫ T

0
I{a≤f(wt)≤b}h(wt)dt (which as it is proved also is

not differentiable in the Malliavin sense) and other nonsmooth functionals.
We introduce below a method for finding the integrand of Clark’s integral repre-

sentation formula for square integrable functionals F of the Wiener process w with
Malliavin differentiable conditional expectations E[F |ℑw

t ], t < T . This method allows
to obtain the explicit form of the integrand in case when the functional F has no
Malliavin derivative. Some applications of the main result are also presented.

On the probability space (Ω,ℑ, P ) is given the standard Wiener process w = (wt),
t ∈ [0, T ] and (ℑw

t ), t ∈ [0, T ] is the natural filtration generated by the Wiener process
w. We consider the functionals of the Wiener process, i.e. the random variables that
are ℑw

T -measurable.
We denote by L2([0, T ]×Ω) = L2([0, T ]×Ω,B([0, T ])⊗ℑ, λ× P ) (where B([0, T ])

is the Borel σ− algebra on [0, T ] and λ is the Lebesgue measure) the set of square inte-
grable processes, and L2

a([0, T ]×Ω) represents the subspace of adapted (to the filtration
(ℑw

t ), t ∈ [0, T ]) processes; L2([0, T ]) = L2([0, T ],B([0, T ]), λ). Let L2,T denote the set
of measurable functions u : R → R, such that u(·)ρ(·, T ) ∈ L2 := L2(R,B(R), λ),
where ρ(x, T ) = exp{− x2

2T
}.

Theorem A. (Clark, 1970, [1]). Let F be a square integrable ℑw
T -measurable ran-

dom variable. Then there exists a unique adapted stochastic process v ∈ L2
a([0, T ]×Ω)

such that

F = E[F ] +

∫ T

0

vtdwt. (1)

As it is familiar in Malliavin calculus, we introduce the norm

||F ||1,2 = {E[F 2] + E[||D·F ||2L2([0,T ])]}1/2,
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where D is the Malliavin derivative operator and D1,2 denotes the Hilbert space which
is the closure of the class of smooth Brownian functionals S1 with respect to the norm
|| · ||1,2.

When the random variable F belongs to the space D1,2, it turns out that the
integrand in the Clark representation (1) can be identified as the optional projection
of the derivative of F .

Theorem B. (Clark-Ocone’s representation formula, 1984, [2]). If F is differen-
tiable in the Malliavin sense, F ∈ D1,2, then the stochastic integral representation is
fulfilled

F = E[F ] +

∫ T

0

E[DtF |ℑw
t ]dwt. (2)

Theorem C. (Jaoshvili, Purtukhia, 2005, [3]). Let the function f ∈ L2,T/α, 0 <
α < 1, and it has the generalized derivative of the first order ∂f/∂x, such that ∂f/∂x ∈
L2,T/β, 0 < β < 1/2, then the following integral representation holds

f(wT ) = Ef(wT ) +

∫ T

0

E[
∂f

∂x
(BT )|ℑw

t ]dwt. (3)

Let F be a square integrable random variable. Denote

gt = E[F |ℑw
t ], t ∈ [0, T ]. (4)

Below we use the well-known statement:
Proposition 1. For all bounded or positive measurable function f we have the

relation

E[f(wt)|ℑw
u ] =

∫
R

f(y)p(u, t, wu, dy) (P − a.s.),

where p(u, t, wu, A) is the transition probability of the Brownian motion.
Theorem 1. (Glonti, Purtukhia, 2014 [5]). If ut has the Wiener-Chaos decompo-

sition ut =
∑∞

n=0 In(f
t
n(·)) with kernels, measurable in all their variables, then average

process
∫ T

0
utdt has the development∫ T

0

utdt =
∞∑
n=0

In(

∫ T

0

f t
n(·)dt).

Corollary of Theorem 1. For any real numbers a < b the integral∫ T

0

I{a≤wt≤b}h(wt)dt

is not in the space D2,1.

1Here S denotes the class of a random variables which has the form

F = f(wt1 , ..., wtn), f ∈ C∞
p (Rn), ti ∈ [0, T ], n ≥ 1,

where C∞
p (Rn) is the set of all infinitely continuously differentiable functions f : Rn → R such that

f and all of its partial derivatives have polynomial growth.
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Theorem 2. Suppose that there exists a sequence (tn)n≥1 in [0, T ), tn ↑ T, such
that gtn ∈ D1,2, n ≥ 1. Then we have the integral representation

gT = F = E[F ] +

∫ T

0

vsdws, (5)

where
vs := lim

tn→T
E[Dsgtn |ℑw

s ] in the L2([0, T ]× Ω).

Corollary of Theorem 2. Let F ∈ D1,2, then the Clark-Ocone’s representation
formula (2) follows from the Theorem 2 and the following relation is fulfilled

lim
tn→T

E[Dsgtn |ℑw
s ] = E[Ds lim

tn→T
gtn |ℑw

s ] in L2([0, T ]× Ω).

Remark 1. Despite the fact that the stochastic derivative operator is not a con-
tinuous operator, in our case we have ”continuity” in some weak sense.

Example 1. Consider the square integrable ℑw
T -measurable random variable

F = F (x) = I{wT≤x}, x ∈ R.

It is well-known that indicator of event A ∈ ℑ is Malliavin differentiable if and only
if probability P (A) is equal to zero or one (see [4], Chapter I, Proposition 1.2.6, page
30). Therefore, in general, F (x) = I{wT≤x}, (x ∈ R) are not Malliavin differentiable.

According to the result of Theorem 2, using Proposition 1 for the computation of
gt, due to the chain rule of stochastic differentiation of a composite function (see [4],
Chapter I, Proposition 1.2.3, page 28) the Malliavin derivative of gt, we can obtain the
following integral representation:

I{wT≤x} = Φ(
x√
T
)−

∫ T

0

φ(
x− ws√
T − s

)dws, x ∈ R, (6)

where Φ is the standard normal distribution function and φ is its density.
Remark 2. Formula (6) can be also deduced from Theorem C.
Note that, the integral representation (6) is obtained in [6] as an example for illus-

tration of Theorem C.
As an illustration of Corollary of Theorem 2 we give the following example.
Example 2. Let F = w+

T = max(0, wT ). In this case F has the Malliavin derivative

DtF = DTw
+
T = I{wT>0}I[0,T ](t)

and using Clark-Ocone’s representation formula (2), according to Proposition 1, we
have

w+
T = Ew+

T +

∫ T

0

E[I{wT>0}|ℑw
t ]dwt

=

√
T

2π
+

∫ T

0

Φ(
wt√
T − t

)dwt.



118 Purtukhia O.

On the other hand, using again Proposition 1, we can compute

gt = E[w+
T |ℑ

w
t ] = E[I{wT>0}wT |ℑw

t ]

=
1√

2π(T − t)

∫ ∞

0

x exp {−(x− wt)
2

2(T − t)
}dx.

Therefore, due to the chain rule of stochastic differentiation of an ordinary integral
and a composite function, using the standard technique of integration, we can directly
show that

lim
t→T

E[Dsgt|ℑw
s ] = E[Ds lim

t→T
gt|ℑw

s ] in L2([0, T ]× Ω).

But according to the Corollary of Theorem 2, it is a general fact, which follows
from the Malliavin differentiable of F .

Proposition 2. Let h = h(x), x ∈ R, be a nondecreasing function. Then the
indicator I{h(BT )≤x} allows the representation

I{h(wT )≤x} = P (wT ≤ h−1(x))−
∫ T

0

φ(
h−1(x)− wt√

T − t
)dwt, x ∈ R. (7)

Theorem 3. (Glonti, Purtukhia, 2014 [5]). Let F = (BT − K)+I{B∗
T≤L} (where

w∗
T = max0≤t≤TBt). Then the following stochastic integral representation is fulfilled

F = EF +

∫ T

0

[Φ(
wt −K√
T − t

)− Φ(
wt − 2L+K√

T − t
)− 2(L−K)√

T − t
φ(

L− wt√
T − t

)]dwt

(where K and L > 0 are constants).
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