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HEDGING OF EUROPEAN OPTION OF EXOTIC TYPE

O. GLONTI†, V. JAOSHVILI AND O. PURTUKHIA

Abstract. We consider Exotic type European Option in the
case of Bachelier financial market model whose payoff function
is a certain combination of the Binary and Asian options payoff
functions and investigate the hedging problem. The Clark sto-
chastic integral representation formula for corresponding Wiener
functionals with the explicit form of integrand is given.

ÒÄÆÉÖÌÄ. ×ÉÍÀÍÓÖÒÉ ÁÀÆÒÉÓ ÁÀÛÄËÉÄÓ ÌÏÃÄËÉÓ ÛÄÌÈáÅÄ-
ÅÀÛÉ ÜÅÄÍ ÅÉáÉËÀÅÈ ÄÂÆÏÔÉÊÖÒÉ ÔÉÐÉÓ ÄÅÒÏÐÖË Ï×ÝÉÏÍÓ,
ÒÏÌËÉÓ ÂÀÃÀÓÀáÀÃÉÓ ×ÖÍØÝÉÀ ßÀÒÌÏÀÃÂÄÍÓ ÁÉÍÀÒÖËÉ ÃÀ
ÀÆÉÖÒÉ Ï×ÝÉÏÍÉÓ ÂÀÒÊÅÄÖË ÊÏÌÁÉÍÀÝÉÀÓ ÃÀ ÅÉÊÅËÄÅÈ
äÄãÉÒÄÁÉÓ ÐÒÏÁËÄÌÀÓ. ÛÄÓÀÁÀÌÉÓÉ ÅÉÍÄÒÉÓ ×ÖÍØÝÉÏÍÀËÉ-
ÓÀÈÅÉÓ ÃÀÃÂÄÍÉËÉÀ ÊËÀÒÊÉÓ ÓÔÏØÀÓÔÖÒÉ ÉÍÔÄÂÒÀËÖÒÉ
ßÀÒÌÏÃÂÄÍÉÓ ÉÍÔÄÂÒÀÍÃÉ ÝáÀÃÉ ÓÀáÉÈ.

1. Introduction and Preliminaries

We have developed some methods of obtaining the stochastic integral rep-
resentation of nonsmooth (in the Malliavin sense) Wiener functionals and
their applications in the problems of hedging of European Options. In turn,
for receiving obvious integral expressions, we use the result of stochastic in-
tegral representation proven by us earlier, which demands the smoothness
only of a conditional mathematical expectation of the considered functional,
instead of the usual requirement of smoothness of the functional (as it was
in the well-known Clark-Ocone formula). The suggested method allows to
remove integral representation for the indicator I{K1≤ST≤K2} (which is, as
is known, not differentiable in Malliavin sense) for the functional of integral
type

∫ T

0
I{K1≤St≤K2}dt (which is, as it has been proved, also not differen-

tiable in Malliavin sense), etc.
The payoff functions of derivative securities with forms, more complicated

than standard European or American call and put options are known as
Exotic Options. One of such kind Exotic Options is the so-called Binary
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Option. It is an option with discontinuous payoff function. The simplest
examples of Binary Options are call and put options “cash or nothing”. The
payoff function of the call option has the form BCT = QI{ST>K}, and for
the put option – BPT = QI{ST<K}, where K is the strike price at the
time of execution T . This is also common the Binarny Option “an asset or
nothing”. There are same conditions as in “cash or nothing” option, but the
difference is that an owner of the call option receives price of the asset ST

instead of amount Q. The Standard European Call Option (i.e. the option
with the payoff function (ST − K)+) is equivalent to a long position (the
bought asset) in the “an asset or nothing” option and short position (the
sold asset) in the “cash or nothing” option, when Q = K.

Moreover, the so-called Asian Options are also of the type of Exotic
Option. The payoff function of this option depends on average value of the
price of an asset during the certain period of option life time. The payoff
function of the Asian Option has by definition the following representation:
CA

T = (AS(T0, T )−K)+, where

AS(T0, T ) =
1

T − T0

T∫
T0

Stdt

is arithmetic mean of the prices of asset at time interval [T0, T ], K is a strike
and S = (St) (0 ≤ t ≤ T ) is geometrical Brownian motion. The main
difficulty in pricing and hedging of the Asian Option is that the random
variable AS(T0, T ) is no lognormal distributed and, therefore it is rather
difficult to obtain explicit formulas of pricing of this option.

We consider an Exotic Option which is a certain combination of the Bi-
nary and Asian Options and investigate the hedging problem. In particular,
we study the European Option with payoff function Q

∫ T

0
I{K1≤St≤K2}dt,

and for this purpose we give the Clark stochastic integral representation of
such kind payoff function with the explicit form of integrand.

Let on the probability space (Ω,ℑ, P ) be given the Wiener process w =
(wt), t ∈ [0, T ] and (ℑw

t ), t ∈ [0, T ] be the natural filtration generated by
the Wiener process w. Consider the Bachelier market model with a risk-free
asset price evolution described by

dBt = rBtdt, B0 = 1, (1.1)

where r ≥ 0 is an interest rate and risky asset price evolution

dSt = µdt+ σdwt, S0 = 1, (1.2)

where µ ∈ R is an appreciation rate and σ > 0 is a volatility coefficient.
Let

ZT = exp
{
− µ− r

σ
wT − 1

2

(µ− r

σ

)2

T
}
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and P̃T be the measure on (Ω,ℑw
T ) such that

dP̃T = ZT dP.

From Girsanov’s Theorem it follows (see Shiryaev [1]) that under this
measure (martingale measure),

w̃t = wt +
µ− r

σ
t

is the standard Wiener process and

dSt = rdt+ σdw̃t, S0 = 1,

or
St = 1 + rt+ σw̃t. (1.3)

Consider the problem of “replication” the European Option of Exotic
Type with the payoff of integral type

G =

T∫
0

I{K1≤St≤K2}dt (1.4)

(where K1 and K2 are some positive constants, K1 < K2), i.e. one needs
to find a trading strategy (βt, γt), t ∈ [0, T ] such that the capital process

Xt = βtBt + γtSt, XT = G (1.5)

under the self-financing condition

dXt = βtdBt + γtdSt. (1.6)

From the relations (1.3), (1.5) and (1.6), we have

G = XT = X0 +

T∫
0

r(βtBt + γt)dt+

T∫
0

σγtdw̃t. (1.7)

Our problem is to find the trading strategy (γ, β) = (γt, βt), t ∈ [0, T ]. It
is well-known that this problem is equivalent to finding a martingale rep-
resentation of the payoff G with explicit form of integrand. Note that G
is square integrable, but not differentiable in Malliavin sense, functional of
the Wiener process w̃ = (w̃t), t ∈ [0, T ], and therefore we try to obtain the
Clark integral representation with the known integrand applying a noncon-
ventional method (because the Clark-Ocone’s well-known method here is
not applicable).
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2. Main Notions and Results

The anticipating stochastic calculus for the Wiener process is based on a
variational (Malliavin) derivative operator D (gradient) and its adjoint (di-
vergence or Skorohod integral). There are two basically different methods
to define these operators (Nualart and Pardoux 1988, Nualart and Zakai
1986, Nualart 1995). The first approach uses the Wiener chaos decomposi-
tion and the seconed one consists in defining the operator D as a directional
derivative on a space of test functions.

Starting from the 70th of the past century, many attempts were made to
weak the requirement for the integrand to be adapted for the integrand of
the Ito’s stochastic integral as well as in the theory of “the extension of filtra-
tion”. Skorokhod (1975) suggested absolutely different method, symmetric
with respect to the time inversion and not requiring for the integrand to be
independent of the future Wiener process. Towards this end, he required
for the integrand to be smooth in a certain sense, i.e., its stochastic differen-
tiability. This idea was later on developed in the works of Gaveau-Trauber
(1982), Nualart, Zakai (1986), Pardoux (1982), Protter, Malliavin (1979),
etc. It turned out (as it was shown by Gaveau and Trauber in 1982) that the
operator of Skorokhod stochastic integration coincides with the conjugate
operator of stochastic differentiation in the sense of Malliavin. As is known,
the original aim of Malliavin’s infinite-dimensional stochastic investigation
was to study the density smoothness of a solution of a stochastic differential
equation. The situation changed in 1991 when Karatsas and Ocone showed
how one can apply in financial mathematics the Ocone’s theorem of stochas-
tic integral representation (the martingale representation theorem) for the
functional of diffusion processes. This theorem was subsequently called the
Ocone-Haussmann-Clark formula. It has been used in constructing hedging
strategies at full financial markets driven by Brownian motion. Due to this
result, the interest in Malliavin calculus on the part of mathematicians and
financial researchers grew essentially. Since that time Malliavin’s theory
has been actively developing. Also, an active search for new areas of its
application is being carried out. Malliavin’s methods for jump processes (in
particular, for Levy’s processes) were developed by many authors. Despite
the fact that in the general case, financial markets driven by Levy’s pro-
cesses are not full, the Ocone-Haussmann-Clark formula nevertheless plays
an important role in financial applications.

In the 80th of the past century, it turned out (Harison, Pliska (1981)) that
the martingale representation theorems (along with the Girsanov’s measure
change theorem) play an important role in the modern financial mathemat-
ics. According to the well-known Clark’s formula (see Clark [2]), if F is an
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ℑw
T -measurable square integrable random variable, then

F = EF +

T∫
0

φt(ω)dwt

for some adapted (to the filtration ℑw
t , t ∈ [0, T ]) and square integrable

random process φt(ω) (φ·(·) ∈ L2([0, T ]×Ω)). Due to the so-called Ocone-
Clark’s formula (see Ocone [3]): φt(ω) = E[DtF |ℑw

t ], where DtF is the
stochastic derivative (the so-called Malliavin’s derivative) of the functional
F . But in the cases if the functional F has no stochastic derivative, its
application is impossible.

The derivative of a smooth random variable F of the form

F = f(w(h1), . . . , w(hn)), f ∈ C∞
p (Rn), hi ∈ L2([0, T ])

is the stochastic process DtF given by

DtF =
n∑

i=1

∂f

∂xi
((w(h1), . . . , w(hn))hi(t).

For example, Dtw(h) = h(t). We will consider DF as an element of
L2([0, T ] × Ω), that means DF is a square integrable process indexed by
the parameter space [0, T ]. In order to interpret DF as a directional deriv-
ative, for any element h ∈ L2([0, T ]) we can write

⟨DF, h⟩L2 = lim
ϵ→0

1

ϵ
[f(w(h1) + ϵ⟨h1, h⟩L2 , . . . , w(hn) + ϵ⟨hn, h⟩L2)− f ].

This means, the scalar product ⟨DF, h⟩L2 is the derivative at ϵ = 0 of the
random variable F composed with shifted white noise w(A) + ε

∫
A

hdt.

D is closable as an operator from L2(Ω) to L2(Ω;L2([0, T ])). We denote
its domain by D2,1. This means that D2,1 is equal to the adherence of the
class of smooth random variables with respect to the norm

||F ||2,1 := ||F ||L2(Ω) + |||DF |||L2(Ω;L2([0,T ])).

For the completeness of the statement we present some results from the
Nualart’s book [4] below:

Proposition 2.1. Let F be a square integrable random variable with
development

F =

∞∑
n=0

In(fn(·))

(where In(fn(·)) is the multiple Wiener-Ito stochastic integral of the function
fn ∈ L2([0, T ]

n)).
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Then F belongs to the space D2,1 if and only if
∞∑

n=1

nn!||fn(·)||2L2([0,T ]n) < ∞,

and in this case we have

DtF =

∞∑
n=1

nIn−1(fn(·, t))

(see [4, Proposition 1.2.7]).

Proposition 2.2. Let φ be a continuously differentiable function with
bounded derivative. Suppose that F ∈ D2,1. Then φ(F ) ∈ D2,1 and

D(ϕ(F )) =
∂φ

∂x
DF

(see [4, Proposition 1.2.3]).

Proposition 2.3. Let A ∈ ℑ. Then the indicator function of A belongs
to D2,1 if and only if P (A) is equal to zero, or to unity

(see [4, Proposition 1.2.6 ]).
Let p(u, t, wu, A) be the transition probability of the Wiener process w,

i.e. P [wt ∈ A|ℑw
u ] = p(u, t, wu, A), where 0 ≤ u ≤ t, A is a Borel subset of

R and
p(u, t, x,A) =

1√
2π(t− u)

∫
A

exp
{
− (x− y)2

2(t− u)

}
dy.

For the computation of conditional mathematical expectation below we
use the well-known statement:

Proposition 2.4. For all bounded or positive measurable functions f we
have the relation

E[f(wt)|ℑw
u ] =

∫
R

f(y)p(u, t, wu, dy) (P − a.s.). (2.1)

Theorem 2.5. Suppose that gt = E[F |ℑw
t ] is Malliavin differentiable

(gt(·) ∈ D2,1) for almost all t ∈ [0, T ). Then we have the stochastic integral
representation

gT = F = EF +

T∫
0

νudwu, (P − a.s.),

where
νu := lim

t→T
E[Dugt|ℑw

u ] in the L2([0, T ]× Ω)

(see, [5, Theorem 1]).
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Theorem 2.6. If ut has the Wiener-Chaos decomposition ut =
∞∑

n=0
In(f

t
n(·)) with kernels, measurable in all their variables, then the av-

erage process
∫ T

0
utdt has the development

T∫
0

utdt =

∞∑
n=0

In

( T∫
0

f t
n(·)dt

)
.

Proof. It is well-known that if the square integrable random variable

F =

∞∑
n=0

In(fn(·))

belongs to the space D2,∞, then fn = 1
n!E(DnF ) for every n.

Therefore, if for almost every t ∈ [0, T ] : ut ∈ D2,∞, the kernels gn of the

average process
T∫
0

utdt we can calculate as

gn =
1

n!
E

(
Dn

( T∫
0

utdt

))
=

T∫
0

1

n!
E(Dnut)dt =

T∫
0

f t
n(·)dt.

Hence, the proof can be completed by using the standard technique of
approximation. �

Theorem 2.7. For any real number K1 < K2, the integral
T∫

0

I{K1≤wt≤K2}dt

is not in the space D2,1.

Proof. Since for any t ∈ [0, T ] the probability of the event {K1 ≤ wt ≤ K2}
is not zero or unity 1 ̸= P{K1 ≤ wt ≤ K2} > 0, due to Proposition 2.3,
the indicator function I{a≤wt≤b} is not in space D2,1. For all t ∈ [0, T ],
I{K1≤wt≤K2} is a square integrable random variable, and hence it has the
Wiener-Chaos decomposition

I{K1≤wt≤K2} =
∞∑

n=0

In(f
t
n(·)),

where the deterministic kernels f t
n(·) are symmetric and depend on the

parameter t. Using the standard approximation technique to the process
I{K1≤wt≤K2} in L2([0, T ]×Ω) by a sequence of simple processes, these ker-
nels can be chosen to be measurable in all their variables. Hence, due to
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Theorem 2.6, we have
T∫

0

I{K1≤wt≤K2}dt =
∞∑

n=0

In

( T∫
0

f t
n(·)dt

)
.

Further, according to Proposition 2.2, the series
∞∑

n=1

nn!||f t
n(·)||L2([0,T ]n)

is nonconvergent for all t ∈ [0, T ].
On the other hand, according to the Fubini Theorem, we can conclude

that the integral
T∫

0

∞∑
n=1

nn!||f t
n(·)||2L2([0,T ]n)dt =

∞∑
n=1

T∫
0

nn!||f t
n(·)||2L2([0,T ]n)dt

is also nonconvergent, because otherwise we obtain
∞∑

n=1

nn!||f t
n(·)||2L2([0,T ]n) < ∞

for almost all t ∈ [0, T ].
Therefore, using Proposition 2.1, we easily ascertain that the theorem is

true. �

Theorem 2.8. In scheme (1.2), for any real number K and θ ∈ [0, T ], the
functional I{Sθ≤K} admits the following stochastic integral representation:

I{Sθ≤K} = Φ
(K − 1− rθ

σ
√
θ

)
−

−
θ∫

0

1√
2π(θ − u)

exp
{
− (K − 1− rθ − σw̃u)

2

2σ2(θ − u)

}
dw̃u.

1 (2.2)

Proof. First, we will check that the conditions of Theorem 2.5 are satis-
fied. Fix t < θ. Using the well-known properties of Wiener’s process and
conditional mathematical expectation, it is not difficult to see that

gθt := Ẽ[I{Sθ≤K}|ℑw̃
t ] =

= Ẽ[I{w̃θ≤K−1−rθ
σ }|ℑ

w̃
t ] = Ẽ[I{w̃θ−w̃t≤K−1−rθ−σw̃t

σ }|ℑ
w̃
t ] =

= Ẽ[I{w̃θ−w̃t≤K−1−rθ−σw̃t
σ }|w̃t] = Ẽ[I{w̃θ−w̃t≤K−1−rθ−σy

σ }]|y=w̃t
=

1Here and below, Φ is the standard normal distribution function.
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= P̃
{ w̃θ − w̃t√

θ − t
≤ K − 1− rθ − σy

σ
√
θ − t

}∣∣∣
y=w̃t

=

= Φ
(K − 1− rθ − σy

σ
√
θ − t

)
|y=w̃t

= Φ
(K − 1− rθ − σw̃t

σ
√
θ − t

)
.

Hence, due to Proposition 2.2 (see also [8]), the random variable gθt =

Ẽ[I{Sθ≤K}|ℑw̃
t ] is Malliavin differentiable (gt(·) ∈ D2,1) for all t ∈ [0, θ).

According to Theorem 2.5, we have the following stochastic integral rep-
resentation:

I{Sθ≤K} = Ẽ[I{Sθ≤K}] +

T∫
0

νθudw̃u, (P − a.s.), (2.3)

where
νθu := lim

t→T
Ẽ{Du([I{Sθ≤K}|ℑw̃

t ])} in the L2([0, T ]× Ω).

Clearly,

Ẽ[I{Sθ≤K}] = P̃{Sθ ≤ K} =

= P̃
{
w̃θ ≤ K − 1− rθ

σ

}
= Φ

(K − 1− rθ

σ
√
θ

)
. (2.4)

Further, due to Proposition 2.2, we have

DuΦ
(K − 1− rθ − σw̃t

σ
√
θ − t

)
=

= − σ

σ
√
θ − t

φ
(K − 1− rθ − σw̃t

σ
√
θ − t

)
I[0,t](u).

2

Hence, according to Theorem 2.5, to find the integrand in the relation
(2.2) we have to calculate the following limit

νθu := lim
t→θ

Ẽ[Dug
θ
t |ℑw̃

u ] = lim
t→θ

Ẽ
[
DuΦ

(K − 1− rθ − σw̃t

σ
√
θ − t

)
|ℑw̃

u

]
=

= lim
t→θ

{
− 1√

θ − t
Ẽ
[
φ
(K − 1− rθ − σw̃t

σ
√
θ − t

)
|ℑw̃

u

]
I[0,t](u)

}
. (2.5)

Using Proposition 2.5, we can write

Ẽ
[
φ
(K − 1− rθ − σw̃t

σ
√
θ − t

)
|ℑw̃

u

]
=

=
1√

2π(t− u)

∞∫
−∞

φ
(K − 1− rθ − σx

σ
√
θ − t

)
exp

{
− (x− w̃u)

2

2(t− u)

}
dx =

2Here and below φ is the standard normal distribution density function.
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=
1

2π
√
(t− u)

∞∫
−∞

exp
{
− (K − 1− rθ − σx)2

2σ2(θ − t)
− (x− w̃u)

2

2(t− u)

}
dx. (2.6)

To calculate the last integral, we transform its subintegral expression,
in particular, we allocate a full square from argument of an exponential
function. We have

− (K − 1− rθ − σx)2

2σ2(θ − t)
− (x− w̃u)

2

2(t− u)
=

= − (K − 1− rθ − σx)2(t− u) + σ2(x− w̃u)
2(θ − t)

2σ2(θ − t)(t− u)
=

= −
x2 − 2x[ (K−1−rθ)(t−u)+σ(θ−t)w̃u

σ(θ−u) ] +
(K−1−rθ)2(t−u)+σ2(θ−t)w̃2

u

σ2(θ−u)

2(θ − t)(t− u)/(θ − u)
=

= −
[x− (K−1−rθ)(t−u)+σ(θ−t)w̃u

σ(θ−u) ]2

2(θ − t)(t− u)/(θ − u)
+

+

−(K−1−rθ)2(t−u)(θ−t)+2σ(K−1−rθ)(t−u)(θ−t)w̃u−σ2(θ−t)(t−u)w̃2
u

σ2(θ−)

2σ2(θ − t)(t− u)(θ − u)
=

= −
[x− (K−1−rθ)(t−u)+σ(θ−t)w̃u

σ(θ−u) ]2

2(θ − t)(t− u)/(θ − u)
−

−−(K − 1− rθ − σw̃u)
2

2σ2(θ − u)
. (2.7)

From the relations (2.6) and (2.7), using the well-known property of the
distribution density function, we easily find that

− 1√
θ − t

Ẽ
[
φ
(K − 1− rθ − σw̃t

σ
√
θ − t

)
|ℑw̃

u

]
=

= − 1

2π
√
(t− u)(θ − t)

exp
{
− −(K − 1− rθ − σw̃u)

2

2σ2(θ − u)

}
×

×
∞∫

−∞

exp
{
−

[x− (K−1−rθ)(t−u)+σ(θ−t)w̃u

σ(θ−u) ]2

2(θ − t)(t− u)/(θ − u)

}
dx =

= −
√
(θ − t)(t− u)/(θ − u)√

θ − t

1√
2π(t− u)

exp
{
− (K − 1− rθ − σw̃u)

2

2σ2(θ − u)

}
=

= − 1√
2π(θ − u)

exp
{
− (K − 1− rθ − σw̃u)

2

2σ2(θ − u)

}
. (2.8)
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Hence, according to the relation (2.8), we have

νθu := lim
t→θ

Ẽ[Dug
θ
t |ℑw̃

u ] =

= lim
t→θ

{
− 1√

2π(θ − u)
exp

{
− (K − 1− rθ − σw̃u)

2

2σ2(θ − u)

}
I[0,t](u)

}
=

= − 1√
2π(θ − u)

exp
{
− (K − 1− rθ − σw̃u)

2

2σ2(θ − u)

}
I[0,θ](u). (2.9)

Combining now the relations (2.3), (2.4) and (2.9), we easily ascertain
that the representation (2.2) is fulfilled. �

3. Hedging of Option

Theorem 3.1. In scheme (1.2), for any real numbers K1 < K2, the
functional G from (1.4) admits the following stochastic integral representa-
tion:

T∫
0

I{K1≤St≤K2}dt =

T∫
0

[
Φ
(K − 1− rt

σ
√
t

)]∣∣∣K2

K=K1

dt−

−
T∫

0

T∫
u

1√
t− u

[
φ
(K − 1− rt− σw̃u

σ
√
t− u

)]∣∣∣K2

K=K1

dtdw̃u. (3.1)

Proof. Taking from the both parts of expression (2.2) the integral with
respect to dθ, using the stochastic type Fubini’s theorem (see [6, Lemma
III.4.1] or [7, Corollary of the Lemma IV.2.4]), it is not difficult to see that
the following stochastic integral representation is fulfilled

T∫
0

I{Sθ≤K}dθ =

T∫
0

Φ
(K − 1− rθ

σ
√
θ

)
dθ−

−
T∫

0

θ∫
0

1√
2π(θ − u)

exp
{
− (K − 1− rθ − σw̃u)

2

2σ2(θ − u)

}
dw̃udθ =

=

T∫
0

Φ
(K − 1− rθ

σ
√
θ

)
dθ−

−
T∫

0

T∫
u

1√
θ − u

φ(
K − 1− rθ − σw̃u

σ
√
θ − u

)dθdw̃u. (3.2)
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It is clear that
T∫

0

I{K1≤St≤K2}dt =

T∫
0

I{St≤K2}dt−
T∫

0

I{St<K1}dt. (3.3)

From the relations (3.2) and (3.3), we easily obtain the representation
(3.1). �

Corollary 3.2. In the case r=0, for any real numbers 1≤K1 <K2, 3

the functional G from (1.4) admits the following stochastic integral repre-
sentation:

G =

T∫
0

I{K1≤St≤K2}dt =

T∫
0

[
Φ
(K − 1

σ
√
t

)]∣∣∣K2

K=K1

dt−

−
T∫

0

T∫
u

1√
t− u

[
φ
(K − 1− σw̃u

σ
√
t− u

)]∣∣∣K2

K=K1

dtdw̃u, (3.4)

where
T∫

0

[
Φ
(K − 1

σ
√
t

)]∣∣∣K2

K=K1

dt = T
[
Φ
(K2 − 1

σ
√
T

)
− Φ

(K1 − 1

σ
√
T

)]
+

+
(K1 − 1

σ

)2[1
2
erf

( v√
2

)
+

φ(v)

v

]∣∣∣K2−1

σ
√

T

v=
K1−1

σ
√

T

+

+
[(K2 − 1

σ

)2

−
(K1 − 1

σ

)2]
×

×
{
− 1

2

[
1− erf

(K2 − 1

σ
√
2T

)]
+

σ
√
T

K2 − 1
φ
(K2 − 1

σ
√
T

)}
. (3.5)

and
T∫

u

1√
t− u

[
φ
(K − 1− σw̃u

σ
√
t− u

)]∣∣∣K2

K=K1

dt =

=

[√
2

π

√
T − u exp

{
− K2

2(T − u)

}
+

+Kerf
( K√

2(T − u)

)]∣∣∣K2−1−σw̃u
σ

K=
K1−1−σw̃u

σ

. (3.6)

3The case of other possible values of constants K1 and K2 can be considered similarly.
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Proof. It is clear that in our case, the inequality K1−1
σ
√
t

≤ v ≤ K2−1
σ
√
t

is
equivalent to (K1 − 1

σv

)2

≤ t ≤
(K2 − 1

σv

)2

.

Therefore, due to the Fubini’s Theorem, we have

T∫
0

[
Φ
(K − 1

σ
√
t

)]∣∣∣K2

K=K1

dt =
1√
2π

T∫
0

K2−1

σ
√

t∫
K1−1

σ
√

t

exp
{
− v2

2

}
dvdt =

=
1√
2π

K2−1

σ
√

T∫
K1−1

σ
√

T

T∫
(
K1−1

σv )2

exp
{
− v2

2

}
dtdv+

+
1√
2π

+∞∫
K2−1

σ
√

T

(
K2−1

σv )2∫
(
K1−1

σv )2

exp
{
− v2

2

}
dtdv =

=
1√
2π

T

K2−1

σ
√

T∫
K1−1

σ
√

T

exp
{
− v2

2

}
dv−

− 1√
2π

(K1 − 1

σ

)2

K2−1

σ
√

T∫
K1−1

σ
√

T

v−2 exp
{
− v2

2

}
dv+

+
1√
2π

[(K2 − 1

σ

)2

−
(K1 − 1

σ

)2] +∞∫
K2−1

σ
√

T

v−2 exp
{
− v2

2

}
dv :=

= −I1 − I2 + I3. (3.7)

Clearly,

I1 :=
1√
2π

T

K2−1

σ
√

T∫
K1−1

σ
√

T

exp
{
− v2

2

}
dv = T

[
Φ
(K − 1

σ
√
T

)]∣∣∣K2

K=K1

. (3.8)
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Further, according to the standard technique of integration, it is not
difficult to see that for any constants 0 < a < b we easily obtain

b∫
a

v−2 exp
{
− v2

2

}
dv =

[
−
√

π

2
erf

( v√
2

)
− exp{−v2/2}

v

]∣∣∣b
v=a

, (3.9)

where erf(·) is the so-called error function, i.e.,

erf(x) =
2√
π

x∫
0

exp{−v2}dv.

Therefore, on the one hand, we have

I2 :=
1√
2π

(K1 − 1

σ

)2

K2−1

σ
√

T∫
K1−1

σ
√

T

v−2 exp
{
− v2

2

}
dv =

=
(K1 − 1

σ

)2[
− 1

2
erf

( v√
2

)
− φ(v)

v

]∣∣∣K2−1

σ
√

T

v=
K1−1

σ
√

T

. (3.10)

On the other hand, due to the relations erf(+∞) = 1 and

lim
v→+∞

φ(v)

v
= 0,

we conclude that

I3 :=
1√
2π

[(K2 − 1

σ

)2

−
(K1 − 1

σ

)2] +∞∫
K2−1

σ
√

T

v−2 exp
{
− v2

2

}
dv =

=
[(K2 − 1

σ

)2

−
(K1 − 1

σ

)2]
×

×
{
− 1

2

[
1− erf

(K2 − 1

σ
√
2T

)]
+

σ
√
T

K2 − 1
φ
(K2 − 1

σ
√
T

)}
. (3.11)

Combining now the relations (3.8)-(3.12), we ascertain that the (3.6) is
fulfilled.

Due to the standard technique of integration, it is easy to see that for
any constants 0 < a < b, we have

b∫
a

1√
v

exp
{
− K2

2v

}
dv =

=
[
2
√
v exp

{
− K2

2v

}
+
√
2πKerf

( K√
2v

)]∣∣∣b
v=a

. (3.12)
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According to the relation (3.13), it is not difficult to verify that the
relation (3.7) and therefore the proof is complete. �

In the case r = 0, the result of Corollary 3.2 gives us the possibility to
find the component γt of the hedging strategy π = (βt, γt), t ∈ [0, T ] which
is defined by the integrand of representation (3.4) and is equal to

γt = − 1

σ

T∫
t

1√
u− t

[
φ
(K − 1− σw̃t

σ
√
u− t

)]∣∣∣K2

K=K1

du. (3.13)

Further, using the result of Corollary 3.2, we can find the capital process
Xt = Ẽ[G|ℑw̃

t ] = ẼG+

+

t∫
0

T∫
u

1√
v − u

[
φ
(K − 1− σw̃u

σ
√
v − u

)]∣∣∣K2

K=K1

dvdw̃u. (3.14)

It is well-known (see Shiryaev [1], or (1.5) in this paper) that the second
component βt of hedging strategy π :

βt = Xt − γtSt. (3.15)
Therefore, the hedging strategy π = (βt, γt), t ∈ [0, T ] in the problem of

“replication” of Exotic type European Option with payoff G given by (1.4)
in the case of Bachelier financial market model, is defined by the relations
(3.13), (3.14) and (3.5) and the price C of this option

C = ẼG =

T∫
0

[
Φ
(K − 1

σ
√
t

)]∣∣∣K2

K=K1

dt.
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