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ABSTRACT. We developed one method of obtaining the stochastic integral representation of nonsmooth
(in Malliavin sense) Brownian functional and found explicit form of integrands in this representation.
Because the Clark-Ocone’s well-known method here is not applicable, we try to obtain the Clark integral
representation with known integrand applying a nonconventional method. We consider a case, when
functional represents the Lebesgue integral (with respect to time variable) from certain stochastically
nonsmooth square integrable process which is also not smooth functional. It turned out that the
requirement of smoothness of functional can be weakened by the requirement of smoothness only of its
conditional mathematical expectation. Despite the fact that integrand of the functional considered by us
satisfies the last requirement, its average (with respect to dr) functional has not the same property. At
first, we give the stochastic integral representation for integrand of our functional and then due to the
stochastic type Fubiny theorem we obtain the desired integral representation. © 2016 Bull. Georg. Natl.
Acad. Sci.
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Introduction and Auxiliary Results

As it is well-known from Ito’s calculus, stochastic integral from square integrable adapted process is square
integrable martingale. The answer on the inverse question: is it possible to represent the square integrable
martingale adapted to the natural filtration of Brownian motion, as the stochastic integral is given by well-

known Clark formula [1]. In particular, let B; (¢ €[0,T]) be standard Brownian motion and J; is a natural

filtration generated by this Brownian motion. If F'is a square integrable 3 -measurable random variable,
T
then there exists square integrable J, -adapted random process ¢, such that F' = EF + jo ¢;dB; . On the

other hand, finding of explicit expression for ¢, is a very difficult problem. In this direction, one general result

called Clark-Ocone formula is known [2], according to which ¢, = E(D,F | J,) , where D, is the so-called

© 2016 Bull. Georg. Natl. Acad. Sci.



18 Omar Purtukhia

Malliavin stochastic derivative. But, on the one hand, here the stochastically smoothness is required and, on
the other hand, even in case of smoothness, calculations of Malliavin derivative and conditional mathemati-
cal expectation are rather difficult.

The next step in this direction was taken by Ma, Protter and Martin [3], they offered the concept of

stochastic derivative and generalized stochastic integral for so-called normal martingales class and general-

o0
ized Clark’s formula for functionals from the class D% (the functional F = Z 1,,(f,) belongs to the space
n=0

o0
D% if and only if Znn! Il fr ||i (017 < ). We [4] introduced the space Dg’[] , 1< p<2 (Dg’[] the
n=l 25

Banach space which is the closure of D% under the following norm || £'[| , ;= E(|| F iz, +11DF I, go,r7)
and extended the Ocone-Haussmann-Clark formula for functionals from this space. Absolutely different
method for finding ¢, was offered by Shyriaev, Yor and Graversen [5, 6], which was based on using of Ito’s

(generalized) formula and Levy’s theorem for associated to F Levy’s martingale m; = E(F' | J;) . We [7]

introduced the new construction of stochastic derivative of Poisson functional and established the explicit
expression for the integrand of Clark representation.

In all the cases described above F was stochastically smooth. We [8] considered the case when F is not
stochastically smooth, but from associated with F'Levy’s martingale one can select a stochastically smooth
subsequence and in this case we gave the method for finding the integrand. In particular, we generalized the
Clark-Ocone formula in case, when functional is not stochastically smooth, but its conditional mathematical
expectation is stochastically differentiable and established the method finding this integrand.

It is well-known that ifrandom variable is stochastically differentiable in Malliavin sense, then its condi-

tional mathematical expectation is differentiable too [S]. In particular, if /' € D, ;, then £ (F|35) €Dy,
(where D,, = Dy, )and D[E(F|3)]=E(D,F |3, ®).
On the other hand, it is possible that conditional expectation can be smooth even ifrandom variable is not

stochastically smooth [8]. For example, it is well-known that I, <, & D, | (indicator of event 4 is Malliavin
differentiable if and only if probability P(4) is equal to zero or one [9]), but for alls €[0,T):
E[I{BTSX} | SS] = @((X—BS)/\IT—S) (S D2,1 .

Here we investigate a different case, when functional represents the Lebesgue integral from stochastically

nonsmooth square integrable process with respect to time variable. In particular, we consider the functional
T
of integral type G = (I)B,I tazs;<pydt (where § p is the geometrical Brownian motion corresponding to B, ).

According to the Theorem 2 from [10] this functional does not belong to D,, . Moreover, the conditional

mathematical expectation of this functional is not stochastically smooth, because we have:
s T
E(G|3y)=]B1,. s <nydi+ | E[Blq<s, <py | 351t
0 s

where the first summand is not differentiable, but the second summand is differentiable in Malliavin sense
(the average, with respect to dt, functional from stochastically smooth processes is also stochastically

smooth). Therefore, here neither the known method of Clark-Ocone is applicable nor our method which
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generalizesit [8, 10- 12].
For convenience of statement we will give some auxiliary results below.
Let p(u,t, B,, A) bethe transition probability of the Brownian motion B, i.e. P[B, € 4|3,]= p(u,t,B,,A),

where 0 <y <t, A1isaBorel subset of R and

2
plut,x, 4) = Jexpi-@ ™ g,

1
N27m(t—u) 4 2(t—u)

For computation of conditional mathematical expectation below we use the well-known statement:

Proposition 1. For all bounded or positive measurable function f'we have the following relation
E[f(B)|3,]= ] fWpw.t,B,,dy)  (P-as.).

Proposition 2. Let i : R™ — R be a continuously differentiable function with bounded partial deriva-

tives. Suppose that F' = (F L. F 2) is a random vector whose components belong to the space D, . Then
y(F)eD,;,and
m 0 i
Dy(y(F) = X —w(F)D,F
i=1 axl'
(see, [9, Proposition 1.2.3.]).
Theorem 1. Suppose that g, = E[F|3,] is Malliavin differentiable (g,() € D,;) for almost all

t €[0,T). Then we have the following stochastic integral representation

T

g, =F=EF+|v,dB, (P-a.s.),

0

where
v, = lltm E[D,g,|3,] in the L, ([0,7]x Q)
AT

(see, [8, theorem from section 2]).
Stochastic Integral Representation Theorem

Let on the complete probability space (2,3, P) be given the Brownian motion B =(B,), t<[0,T] and (S,),
t €[0,T] be the natural filtration generated by the Brownian motion B. Consider the geometrical Brownian

motion described by the equation
ds; = uS,dt+o0S,dB,, S,=1
(where p € R isappreciation rate and o > () is volatility coefficient) or
S, = exp{oB, +(u—o> /2)t} .
Theorem 2. For any real number ¢c>0 and t € (0,T] the random variable B,[{ST <c) have the following

stochastic integral representation

Inc-rt

BT[{STSC} :_\/;(P( O'\/; )+

Inc-rt-oB,, Inc-rr  /Inc-rr-oB
)~ o( “)]dB
ot —u oNt—u ‘o M)

[0
0

U\/T—u
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where r =y — o2 /2 (hereand below @ v, s the normal distribution function with parameters v and A and
@y, 1s its density function; @ =@, and ¢ =@y, i.e.

o 13 ~v)’
(xzi)) } and @U’l(x):m_&exp{—%}dy}

1
ng),/'L (x) = \/ﬁ CXp {_

Proof. According to the Proposition 1, using the standard technique of integration and the well-known
property of the normal distribution and its density functions, it is not difficult to see that

g = E[BIis <y | 311= E[Belip <ne-rryio} | 31]1=

1 3 (x—B,)
= I — _—_ =
m _J;O Xfx<(Inc-rr)/o} exp{ 27 —-1) }dx
;T(X_B)[ ex {_M}d
= 27[—(1' > ) {x<(Inc-rr)/c} €XP 2e—1)
+L Of I ex {—M}dx—
hﬂ'(‘r D {x<(Inc-rr)/c} CXP 2e—1)
- _T—_t OJ? I{x<(ln c—r‘r)/a}d(exp {_M}) +
N2m(T—1) 2(t—1)

Inc—rt
+qu)Bl,r—z(

)=

Inc-rr-oB, Inc—-rr—oB,
=T —19( )+ B,D(
o~NT—t !

!
Py ). Q)

Therefore, according to the Proposition 2, the random variable g/ = E[B, (s_<¢} | 3,1 is Malliavin differ-
<

entiable g/ € D, forallf €[0,7). Hence, due to the Theorem 1, we have the following stochastic integral
representation:

T
Bilis <¢y = ElBcIis <yl [v,dB,
0

(P-a.s.), 3
where
v, = liTmE[Dug,T |3,] inthe L,([0,7]xQ). @
e
It is not difficult to see that
o0
E[B:Iis <cj]= | Xl ix<(ine=rr)/oyPo,c (X)dx =
—0
-t (1 dexpt-) = ~rp(RE T
\/%_w {x<(Inc—rr)/c} p 2 @ O'\/l_' . o)

On the other hand, using the Proposition 2, from the relation (2) we can write
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Inc-rr—oB

Dug;[ =§D( O'\/— t)l()t (u)+

(D(lnc T — GB) W) - lnc T — GB ) @)
+ u u) =
iy o1 \/— odict [0,¢]
1
=J,(t,7,B) g () + I, (t,7,B) o 1(u)— Js(t,7,B ) o (1) . 6)
1 t)410,¢] 2 t7410,t] \/: 3 t7410,t]

Due to the Proposition 1, using again the standard technique of integration and the well-known property

of the normal distribution density function, we easily ascertain that
Inc—rr—0oB
ELA (47,8 5, )= Elp(————) 15,1 =
oNT-

1

\/271(1—

-B
Inc—rr — o-x)exp{—(x )

'[ o o1 —t 2(t—u)

tdx =

(Inc-rt —chu)2

1
- 27\[(t —u) P 202(1'—14)
{x_ (Inc-ro)(t-u)+oB,(r —t)T
+x

xof expi{— o(r—u)

- NeEGn

T—u

B 1 _(lnc—rz'—chu)2 ’2 (t—-t)(t—u) _
_Zﬁ\/(t—u) P 202(7_14) e T—u
T—t (lnc—rz'—chu)2
exp— .
2n(r —u) 202 (t—u)

llin?E[Jl (t,7,B) o) [ 3,]1=0. @)

Hence, it is clear that

Farther, using the Proposition 1, we obtain that

E[J5(t,7,B,)| 3, ] = E[@(———1)| 3, ] =

1 © Inc—rr—ox (x-B,)

NG _{0 O )exp{-

oNT—t 2(t—u)
Therefore, due to the relation

0, y<0;
lim® =<0.5, =0;
lim ((_r—t) y

1, y>0,

using the Lebesgue dominated convergence theorem, we conclude that
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llle E[.]z (t’T’Bl)I[O,l] (14) | Su] =
T

2 -B
1 (x u)} g 11 () =

m I {Inc-rr—cx>0} © exp{- 2z —u)

Inc—-rt Inc—rr—oB

=Pp (T)[[O,T] (u) = Q(T_u”)[ [0,71(1) . ®)

At last, by analogy of the transformations made at calculation of the conditional mathematical expectation

E[J,(t,7,B,)| 3,1 using the integration by parts formula, it is not difficult to see that

Inc-rr—oB

E[J5(t,7,B,)] 3, 1= [z@(Tttﬂ ul=

_ 1 Ofx¢(lnc—rr—O'x)exp{_(x—Bu)} o
27(t—u) oNT—t 2(t—u)
1
:mexp{ hl}_{nxexp{—( o )}d =
B 7 (x-h)
e e 5
«° (x—hy)
Xp{—h Xp{— dx,
- (t_u)e p{ 1}_1006 p{ o jdx
where
2
I ::hl(r,u,Bu)z(lnc_rT_GB”) ’

202(1' —u)

_ (Inc—rr)t—u)+oB,(r—-t)

o(t—u)

h2 = hz(T,t,u,Bu)

b

hy = iy (z ) = L=

T—u
Hence, according to the well-known property of the normal distribution density function, we can con-

clude that

(x B h2) 0

} =0

h
E[J5(t,7,B,)| 3,]= ——————exp{—F }exp{~

27\J(t—u) 2hy

—A—exp{-Iy W2r [y = ol 25 _exp{—hy}.

e Pt

Therefore, we obtain that

lim E[——

T \/7,-—

J3(t,7,B, )10, ()| 3, ]=exp{-h}x
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(Inc-rr)(t—u)+oB,(r —1)

x lim 1 =
zTr{ \/Ecr(r —u)3/2 104100
Inc-rt Inc—rr Inc—rr—oB
= exp{—Iy jx ——=—1], = o( ) 9
: o\27(t —u) [0.712) o~NT-u oNT—u 0.71(e): )

Combining now the relations (7), (8) and (9), we easily ascertain that

Inc-rr-oB Inc-rt Inc—-rr—oB
= [D( ) - o( o), (10)

oNT—U oNT—U oNT —U

which with the relations (3), (4) and (5) complete the proof of theorem.

Corollary 1. In the case = 2 /2 for any real number ¢ >0 and 1 €(0,T] the random variable

B Iis <cy admits the following stochastic integral representation
. g gral rep

Inc
B [{S <} T \/_€0(O_\/7
+?[q)(lnc—chu Inc (lnc oB, 4)1dB, ()

CT\/T u

Corollary 2. For any real number ¢ and t € (0,T] the random variable B; I{Br <cy has the following

0 oNT-u _crx/r—u

stochastic integral representation

- B, c c B,

f)” ==

Bilip <oy = —~ro(—= 1dB, - (12)

T
Theorem 3. For any real positive numbers a<b the integral type functional G = J.Bl[{agslgb}dt
0

admits the following stochastic integral representation

T T Inc—rt
[ Bl iyes <pydt = =] [N1o( NPy dt+
0 ! 0 ot
TT Inc—rt—ocB Inc—rt Inc-rt—oB
+ {f[D( uy o )]0, di}dB, . (13)

0 u oNt—u oNt—u oNt—u

Proof. Taking from the both parts of expression (1) integral with respectto 47 , using the stochastic type
Fubiny theorem (see, [ 13, Corollary of the Lemma ['V.2.4]), it is not difficult to see that the following stochastic
integral representation is fulfilled

Inc—rr

o=

lnc—rr—chu)_ Inc-rz 0 lnc—rr—chu)]dBudT _
ot —u ot —u ot —u

__ Inc— rz'
e

T'T Inc—rr—oB Inc—rt Inc—-rr—ocB
+[{[[D( ) - o( “)ldt}dB, . (14
0 u oNT—u oNT—u oNT—u

T T
fBr[{sTsC}dT=—f\/;( Ydt +
0 0

Tt
+] J1D(
00
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On the other hand, we have
T T T
[ Bltass, <pydt = | Bilis <pydt = | Bilis <qpdt - (15)
0 0 0

From the relations (14) and (15) we easily obtain the representation (13).
According to the standard technique of integration, it is not difficult to see that for any positive constant
¢>0 we have

[Nre ™" ar =§{\/, ~M(t—2¢) - 2\/>c3/zerf(:/[—ﬂ +const (16)

j;e_cm_u)dt = 2t —ue /71 —\/E(u - 2c)erf( Je
c

J +const =

(t- u)3 t-u
= Iy (t,c,u) + const (17)
and
U e, 2(Nmeu—terie 1\ u=0)) + (1 =we™
f—e dt = +const =,
Nt—u Ni—u
= hy (¢,c,u) + const (18)
where
l2
erf(z)= dt

\/_0

is the error function and erfi(z) is the “imaginary error function”, i.e. erfi(z) = —ierf(z) .
2 2
. . . Ina Inbd . .
Therefore, using the equality (16) with c =| —— | and ¢ =| —— | , taking into account the relations
V20 V2o

erf(+0) =1 and 1i¢m[\ﬁe‘°’/’]=0, (19)
30

we obtain

lnc
d I 101, di =
odt Ny dt = \/—0 [Vt exp{- (\/— )2 811, dt

e

Inc-oB, |l c¢=b;
B 0, c=a. @

¢ (a,b,0,T) =?\/—(
0

(Inb/\20)?
c=(na/\20)* - (20)

St

- %{f T (T ~2¢) - 2me? zerf(
It is clear that, in the case Ina <o B, <Inb, we have

lim @ (
tu oNt—u

Therefore, using the integration by parts formula, due to the equality (17), taking into account the rela-
tions (19) and (20), it is not difficult to see that

T Inc-oB Inc-oB
I q)( \/_u ) |c =a dl‘ {t@(?u) |c:a:| lT=u +
- —u
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Inc-0B, T t Inc-oB

"t
20 \/(t—u) (O'\/l— )t

Inc—-oB Inc-oB, Inc-oB,
—To(— T b, u+ { (e, )2 u)\,lu}i’:f

oNT-u 2027 o2

Inc-oB

=TO(——= —u+
( \/m )|c =a
Inc-oB, Inc-oB, » 4o Inc-oB b
h(T,(—="5)"u)- (u—=( %) | (lozai=
2027 o2 (nc-oB,) -
=cy(a,b,0,T,u). (22)

Analogously, using the equality (18), due to the relation (19), one can calculate

l
I[ \/—_u nc\/iB )] |?:a dt:=c3(a,0,0,T,u) @)

Combining now relations (20), (22) and (23), we obtain the following

T
Corollary 3. In the case u = /2 for any real positive numbers a < b the functional | B[I{agslgb}dt
0
admits the following stochastic integral representation

T T
I Bll{aSSISb}dt =—q (a,b,cr,T) + I [02 (a,b,cr,T,u) —C_o,(d,b, U,T9u)]dBu . (24)
0 0

By analogy of transformations made at calculation of relations (20), (22) and (23), it is easy to calculate:

T
c3(a,b,0,T) = [ [Nip(<=N 1, di =
0

J \/;exp{ (\/—) 11k, dt. (25)

J_o

lu

J.q)(\/—)|cadt { \/—)|ca:|

Cc—
+

)dt

=cs5(a,b,T,u), (26)

b
c=a

B, T
T— co(\/tf

T _
j[ﬁw(%n b_, dt =cq(a,b,T,u). Q7)

Combining the relations (25), (26) and (27), we obtain the following.

T
Corollary 4. For any real positive numbers a <b the functional | Bll{agBlgb}dt have the following
0

stochastic integral representation
T T
| Bll{aSBléb}dt =—c4(a,b,T) + [[cy(a,b,T,u)—c5(a,b,T,u)ldB, . (28)
0 0
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